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ABSTRACT

Let T .;ﬂk be k populations such that ™ has cdf F(x;Oi). It is

93¢
permitted to draw n'samples from each of these k populations and the sum of
the n observations in the sample is considered to be the reward. It is
desired to.make the expected reward as large as possibie. This problem is
formulated as a game based on a selection procedure. The maximin strategy of
the game formulated is used for the sampling scheme. Some properties of
selection rules advantageous for the sampling scheme are studied. Sufficient
conditions for fhe existence of the value of the game are given. The least
favorable configuration for the game is found for the case where the popula-

tions are normal with common known variance. An asymptotic optimal property

for the maximin strategy is shown to hold.

0. INTRODUCTION AND SUMMARY

In a pioneering paper Robbins (1952), proposed a problem of sequential

sampling of two populations. In this problem two populations are given such

that their cumulative distribut 'nns belong to some class. Suppose

their respective means exist; k .. »? draw n samples from the two
¢
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populations if one'srobject is to achieve the greatest possible expected
value of the sum of the n observations? In the special case of Bernoulli
trials i.e. the two-armed-bandit problem, much work has been done since then
by several authors, for example, Smith and Pyke (1965). Bﬁt in the general
formulation of this problem, no good sampling scheme has been proposed so
far. In this paper, we propose a two-stage scheme of sampling based on a
selection procedure. We formulate the problem in a géme theoretic set-up
and obtain a maximin strategy.

In Section 1 we give the formulation of the problem. A maximin strategy
is derived in Section 2. Asymptotic optimal properties are studied in
Section 3. Some numerical computations related to the maximin strategy are

given in Tables 1-6 at the end of the paper.

1. NOTATION AND FORMULATION OF THE PROBLEM

Let MyaTyseees M be k populations such that M has the cumulative dis-
tribution, c.d.f., F(x;Qi), i=1,2,...,k. Let Q denote the parameter space

of 0 = (01,

Q(d) = {9 = (91,9-2,...,9k)le[k]-o[k_l] 2 d}, where 01y < 6p)y <i.o< Oy

.50

92,...,Ok). For d > 0, define

are the ordered values of 0 K Let Xij denote the jth independent
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observation from m. and define S, = ) X.., i=1,2,...,k, n=1,2,... . Let
i “in L]

W(XI’XZ""’xn) denote a statistic of random variables Xl,X » X

greees X
Suppose we are allowed to draw a total of n observations from the k
populations. We are perfectly free to choose a population from whiqh we
draw our ath'observation; a=1,2,...,n. Let  SEETRERFR . be the samples
drawn, then a reward W(xl,xz,...,xn) is received. The problem is how to
design a sampling strategy so that the expected reward EOW(XI’XZ”"’Xn) is
as large as possiblé. In this paper we confine ourselve;.to the reward
function W(XI’XQ"'°’Xn) = Xl + X2 +...04 Xn' We note that when ™ is a coin
with the probability of a head Py this becomes the k;armed—bandit problem

with a finite number of tosses.



2. A MAXIMIN STRATEGY

By a test block U(m) we mean a sequence of random outcomeS'{Xll,X12

lm’x21’x22""’ sz,..., Xkl’xk2""’ Xk

outcome of LR By a trial block V(i,m) we mean a sequence of m random

. X } where X.. is the jth
m ij

outcomes of T, i.e. {xil’xiz"'

for selecting the unique population associated with e[k], the largest

"Xim}° Let R be a selection procedure

parameter, when Q@ = Q(d). Let m(R;m) be a random variable taking value in
{1,2,...,k} such that n(R;m) = i means " is selected based on m independent
observations from each population using the rule R. It should be pointed
out that here we are using the indifference zone type selection (see
Bechhofer (1954) and not the subset type selection (see Gupta (1965)).

Define yi(m;g) = Pe{v(R;m)=i}, i=1,2,...,k. For convenience, when there is
‘no possible confus;;n, we write yi(m) instead of Yi(m;g). Let Eexil = t(ei),
i=1,2,...,k, where g;(el,ez,...,ek). Without loss of generalityj-we as;ume
t(ek)=1T?fk t(ei). vBy a.corregt selection, CS, we mean‘thgt T is selected.
Define y(m) = inf P{CS|R}. For a given integer m (Ofyfjgﬂ), a UV(R;m)
scheme is a saﬁé?%ng strategy which follows a test block U(m) first and then
follows a trial block V(w(R;m),n-km). Let W(R;m) denote the reward using

k
UV(R;m) scheme. Then, it is obvious that W(R,m) = I Si

_ 121 m»+ Sn(R;m),n-km'
Let A = {0,1,2,...,[1]:-]} and B = 0(d). For given R, define G(a,b) = E W(R;a)
for a € A and b € B. Now if we consider a zero-sum two person game such
that a statistician (player I) plays a game against nature (player II) with
reward G, then, following the UV scheme we have a game (A,B,G). In this
game, player II tries to minimize the reward G while player I wants to
maximize the reward. Hence, a good strategy for player I is a maximin
strategy, i.e. player I needs to choose m*=m(R,k,n) e A so that
(2.1 G(m*,8) = max inf E, W(R;m).

pe(d) 2
O<m<[#] T



When player I cﬁooses m* as hié maximin strategy, he follows the sampling
scheme UV(R;m*). It is clear that a maximin strategy always exists for our
problem.

We note that

(2.2) G(m,8) = m

t(ei) + {(n-km)
i

. . y; (m;8) t(6.)

1

n ™~ =
I~ =

Let
(2.3) L(R;m)

md + (n-km)y(m)d

U(R;m) where 6, = (0,0,...,0,d).
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Then, if ei > 0 and t(8)=6, we have

md + (n—km)yk(m

(2.4) max L(R;m) < max inf  G(m,8) < max U(R;m)
meA - meA 0eQ(d) meA

Let A* denote the convex hull of A. Let [Eﬂ=2, then A* is a closed convex
subset in RR, the 2-dimensional Euclidean space. Let y(m;8) = (yl(m;el),
vz(m;ez),..., yk(m;ek)) and 519)=(t(61),t(62),...,t(ek)). Let y(a) denote
the polygonal interpolation of {y(m); m=0,1,2,...,} for any real a,

0 <a <. Also, let Yi(a) be extended by the polygonal interpolation,‘
i=1,2,...,k. Then, y(a) and yi(a) are continuous in o and we have the
following theorem:._ |

Theorem 2.1. If Q(d) is a closed convex subset of Rk and t(8) is continuous
and convex in 9 and Yi(m;g) is continuous in 8 and t(8). y(a;8) is convex
in 6 for every aéA*,then, (A*,2(d),G) has a value and player II has a good
pure strategy and player I has a good strategy which is a mixture of at most
min(g+1,k) pure strategies.

Proof: For aeA* and 8eQ(d) there exists a = (ao,al,...,az) such that
L L

[ "k

Za, =1and a= I ia.. We note that G(a,8) = ( Z ia.) (& t(8.))

i=0 * i=1 1 - i=1 Y =1 d
2 k

+ I (n-kiai) bX yj(iai;g)t(ej). By our assumption we see that G(a,d) is
i=0 j=1 -

- continuous and convex in § for every aeA* and G(a,8) is continuous in a for

every 6 in Q(d). Then, using some4resu1ts in game theory (see, for example,



p. 53 of Blackwell and Girshick (1954), it follows that the game has a value
‘and player II has a good strategy which is a mixture of at most min(2+1,k).

pure strategies.

Corollary 2.1. If Q(d) is closed and convex in Rk and t(0) is linear in ©

and yi(a;g) is convex in g_and monotome incréasing in ei for each i=1,2,
...,k, then, the result of theorem 2.1 holds.

Proof: Since t(8) is linear it is convex and continuous in 6. To see
t(6)-y(a;8) is convex in §, it suffices to consider the case t(6)=6. Let

f(6)=6"y(a;8), the inner product of two vectors. Suppose 6

1 and 22 are in

Q(d) and 0 < a < 1, B=1—i. Let 9i=(eil’ei2""ieik)’ i=1,2. Then,
(2.5) f(ag; + 86,) =a jzlelej (a;08,+B8,)+ ij.lezj Y; (a;a0,+80,)
2 k 2 k k
<a” L 6..v.(8,)+8" L 6,.v.(8,)+aB [e,.v.(8,)
j=1 1551 j=1 23'j =2 j=1 13 j =2
+92jvj(94)]
k k
(2.6) af(gl) + Bf(EQ) =qa L elej(gd) + B.Z erYj(QQ)'
j=1 j=1
It follows from (2.5) and (2.6) that £(8) is convex, if, and only if,
' k k kK
(2.7) a(1-2) T 0,5, (9,)4808) T 0557, (6) 2 98 2 1015700357, (8]

Or, equivalently,
(2.8)  (x(8)) - x(8,))-(8; -8,) > 0, since a(l-a) = B(1-B) = aB $ 0.
Note that (2.8) is satisfied if yi(g) is monotone increasing in
0.s i=1,2,...,k.
This completes the proof.
Remark 2.1: When t(g) is non-decreasing in 8, Q(d) need only be bounded
below and be convex in Rk.
Definition. A selection rule R is most economical if, for any other

selection rule R', we have

(i) y(@®;m) < y(R';n) implies n > m and

y‘h.



(i1) 1lim Y(R;m) = 1
m>co

It has been shown by Hall (1959) that Bechhofer's procedure (1954) RB

and Sobel-Huyett procedure (1957), RSH’ both satisfy condition (i) of the

above definition. By the strong law of large numbers, R, and RS also

B H

satisfy (ii). For the problem of selecting the largest t(ei), let C denote
the set of the most economical selection rules. Then, the rules in C have
the following property.

Corollary 2.2. If t(6)=6 and ReC, then, for any rule R' other than R, we

have

max L(R';m) < max L(R;m) + min{nd (R;2), ky(R;2+1)}.d
meA meA

where L(R;m) is defined by (2.3) and & = [Eﬂ, 8§(R;2) = max{y(R;m+1)-y(R;m)}
meA

Proof: Since ReC, for any R', we have y(R';m)< v(R;m+1) for meA. Hence,
we have

(2.9) max L(R';s) <md + (n-km)y(R;m+1)d for some meA
SeEA

[(m+1)d+(n-k(m+1))y(R;m+1)d]-d+ky(R;m+1)d for some meA.

< max L(R;s)+ky(R;2+1)d since y(R;m) is monotone
SeA

increasing in m.
On the other hand, '
(2.10) max L(R';s) < md+(n-km) [y(R;m)+8(R;2)]d for some meA
: seA ‘

max [m'd+(n—km')y(R;m’)d]+(n-km)6(R;l)d
m'eA '

I A

max L(R;s) + n8§(R;2)d
seA :

IA

It follows from (2.9) and (2.10) that the result holds.
Henceforth, we confine ourselves to C whenever it is non-empty.

To find a maximin strategy we need to find a value 8 in Q(d),

the closure of Q(d), at which G(m,0) attains its minimum. There is



no general rule to do this. However, for k = 2, we have the following

sufficient conditions.

Corollary 2.3. Suppose t(8) is twice differentiable and yl(m;gj is also

twice'partially differentiable with respect to 91 and 62. If 6* = (91,62)

satisfies |6, - 6,] > d such that A(6,,6,)=B(8,,6,) = 0 and C(8,6,)-E(6,,6

> Dz(el,ez), then G(m,6*) attains its minimum on Q(d), where
. 3Y1
- 1 - — - '
A(el,ez) =mt (61) + (n-2m) [ael (t(el) t(ez))+y1t (81)]

3Y
3(91,92) =mt' (92) + (n-2m) [ae (t(se ) t(92))+(1 Y1 Jt' (e )]

_ 8271 Byl _
C(eliez) =m t" (61) + (n—zm) [—2— (t(el)_t(ez))+2—aT t'(el)+Y1t"(el)]
: , 381 1
oy aY1
D(91,0,) = (1-2m) [ (£(6)-(9)) g (&' (02" ©)
1

2

3 8y1

E(®
a0

The proof is straightforward. We now call such 6* the least favorable

configuration for the reward function.

Theorem 2.2, If s is a normal population with mean 6i (ei > 0) and common

variance 1, for i=1,2,...,k, then, the least favorable configuration with

respect to the reward function is 6* = (0,0,...,0, d).

k k
Proof: Since G(m,0) = m I e + (n-km) I Y5 (m)e , it is clear that G(m,8)
. i=1 i=1
is invariant with respect to any permutation of 8 = (61,62,...,6k). Then,
we may assume for given 6 = (91,62,.. k) tZatkel<62__ <ek- Let
ij = ei -Lej. Then, we obtain yi(m;RB) = I ™ @(x 6 ﬁﬁ,l) dd (x)
J+1

for i=1,2,..., k, where (x;a,B8) denotes the normal cdf with mean o and

variance 8.

Let hi+1= ei+1- ei for i=1,2,...,k-1 and let h1 = 91. Then, for given 8

there corresponds a unique h = (hl,hz,...,hk). We note that if 61 and 92
7

y
1585) = m " (0,) + (n-2m) [—+ (t(el)'t(ez))"'(l-Yl)t"(ez)-zg'g €' (6,)]
: 2

5)



are associated with the same (hz’hS""’hk)’ yi(m;RB) remains same value under

91 and 92 respectively, for i=1,2,...,k. It suffices to show the following

facts.
(i) Let 21 and 92 be associated with same vector (h2,h3,...,hk) and let h1
and hi be respectively associated with 91 and 92. Then, G(m,gd) f_G(m,ez)

if h1 = 0. The inequality holds if h' > 0. It is because G(m,QQ) = m[k hi +
k

_(k—l)h2 .+ k hk] ; (n- km)lzly (m)(h'+h +. hi)’ >m [(k—l)h2+(k—2)h3+
.+ kh ]+ (n-km)izlyi(m) (hy*hg+...+h ) = G(m,p,).
- (ii) Let 6* = (6* 6* ...,ei) be the least favorable configuration for G.

Let h* = (h*,hz,...,hi) be associated with 8*. Let 6; be the first j%k

' n
* . B = ee.,0, 8% _-B% 0% 0%, ,..,6%-6%). Then
such that GJ > 0. Let 6 = (0,0, 10, 8%,1795585,,-83 X J)
the associated h vector keeps the same as that of 6* except ﬁ =0 and h;iﬂ.

By the same argument of (i), we see that for meA G(m,g) < G(m,gf) and
which contradicts our assumption that 6* is least favorable. Hence, we
conclude that 6 = (0,0,...,0,8%) with 6% > d. Let 8'% = (0,0,...,0,d),
then, we see that G(m,8'*) < G(m,8*) if Gi > d. Therefore, we conclude
that 6* = (0,0,...,0,d).

This completes the proof.

Some tables are tabulated in this paper. Table I and Table II give
m*-values and G(m*,8*) for the normal distributions. Table III and IV give
the m*-value and G(m*,6*) for 2 binomial populations. 'Maximum values of m
for the lower bounds L defined in (2.3) for binomial populations are given
in Table 5. Table 6 gives some values of the lower bounds of G(m*,6*) for

the binomial populations.

3. AN ASYMPTOTIC OPTIMALITY PROPERTY

It is natural to ask how good the maximum strategy is when n increases

to infinity. In the following we prove a result concerning this asymptotic

behavior.



Lemma 3.1. Let {ni;i=1,2,...} and {mi;i=1,2,...} be increasing sequences of
positive integers such that m, > and mi/ni + 0 as i > ., Then,

E. W(R;m,)/n, -+ max t(6.) as i + » VYReC, where for each n,, we follow
0 1 i 1<i<k 1 i

' UV(R;m.) scheme

' k k
Proof: We note that gg W(R;mi) = mij§1t(ej) + ("i‘kmi)jzle(mi)t(ej)'
k k
Hence, EQ W(R;mi)/ni = ri'z t(ej) + (1—kri)_2 yj(mi;e)t(ej) where r, = mi/ni.

j=1 j=1
Since r, > 0 and Yk(mi;g) + 1 for every 6e@(d) as i » «. Hence, we conclude

max t(ei).

that Ee W(R;mi)/ni > t(ek) = :
- 1<i<k

Corollary 3.1. - Under the same assumptions of Lemma 3.1,

W(R;mi)/ni -  max t(Gr) a.s. VYReC, where g;(el,...,e

,...,ek) is the
1<r<k

T

true parameter.

Proof: According to the UV(R;mi) scheme we have

WRsmi)/ng = 8y % Sop *+eee® Sy /M5 + Sppim. Y, (n. -km, )/,
i i i AR S | i
k Sjm. m. Sn(R;m.),n.-km. n.- km,
- 3 i. i, i i i i i
. m, n. n. - km, n.
j=1 i i i i S 1
_ jm,
By the strong law of large numbers we see that LI t(ej) a.s. as i » =,
‘ C i
m, ni—kmi
j=1,2,...,k. Since = 0 and ——?;——-+ 1 it follows then W(R;mi)/ni >
i i

t(ej) a.s. for some j, as i +» =, If t(e.)+ max t(ei), then Lemma 3.1 leads
1<i<k

to a contradiction since t(6) is not a constant and e[k] > e[i] i+k.

This completes the proof.

Let {ni;i=1,2,..;} be a striétly increasing sequence of positive
integers. For a fixed ReC, let {m;;i=1,2,...} and {Q;;i=l,2,.i.} be
respectively the associated maximin strategies and the least favorable
configurations with respect to the reward function. Let 67 = {O;I’GEZ""’

e;k }. Then, we have the following theorem.
7



Theorem 3.1. If {6;;i=1,2,...} is bounded in Rk and t(e;j) is bounded for
each j=1,2,...,k and i=1,2,..., then, there exists a shbsequence

{n, ;j=1,2,...} of {n,} such that G(m* ,8)/n. - max t(® )'as jo VoeQ(d).
i. i i, T -
J _ ] j  l<r<k

Proof: (i) Let 2 [ ] for i=1, 2 . We are going to show that
{m;;i=1,2,...} is unbounded. Suppose there is some integer M such that

m; <M for i=1,2,..., then, we note that for m; <M< 2._for sufficiently

k : _
z [MY M) m*Y (m*)]t(e* )
=1

large 1,

G(m*,0%) < G(M,8*) if n, >
1 -1 -1 1
[Y M) - -Y; m¥)] t(e* )

1

II e B Al

j

Since t(G;j) is bounded for all i and j, it is easy to see that there

exists some i, such that G(m* ,8*, ) < G(M,6*. ). This contradicts the
0 1= 1, -1,

assumption that m; is a maximum strategy.
0
m¥ .

(ii) Suppose Hi‘+ a (0 <o <1). If {Q;} does not tend to limit,

i

we can choose a subsequence {Q; ;i=1,2,...} of {9;} such that 9* > 8%,

say, since {9;} is bounded. Then, t(eg) is finite where 6* = (e* 6* ...,ei).

Then the associated subsequences {m;-} and {ni } satisfy my > > and

j j j
m¥ /n. -+ a (0O<a<l). We note that
1j i, — = K
G(m; ,gf)/ni >a I t(e*)+(1 ka)t(6* ), assuming -
j j r=1
t(er ) max t(6*), as j - «, since m¥ >+ » and ReC. We note that
1<1<k 1]
k
a I (6*) (1-ka)t (0¥ ) is a decreasing function of a, hence, we conclude
r=1
that a = 0.

(ii1) If m;/ni does not tend to a limit, we can choose subsequences

{mif;j=1,2,...} and {n{_;j=1,2,...} of {m;} and {ni}, respectively, so that

m{f}ni' -+ B (0<B<1) sinie 0 _<__mi/ni < 1 for each i. Again; we can chooée

su%seqiences {m;_;j=1,2,...} and {ni';j=1,2,...} of {m{f} apd {ni.}

respectively so %hat‘the associated sequence {6;_} has a limit, s;y, 8* and
- ]






TABLE I1

The values of G(m*,gf).and Its Percentages of Maximum Reward
for k Normal Populations
The upper entry is the value of G(m*,6*) associated with the
maximin strategy and the lower entry is the percentage of the
ratio of G(m*,6*) over n d.

k=2
n 20 40 60 80 100
o1 0.1007 0.2019 0.3036 0.4055 0.5077
: 50.3420 50.485 50.595 50.687 50.768
05 0.5171 1.0484 1.5890 2.1369 2.6912
: 51.709 52.422 52.967 53.424 53.825
10 1.0682 2.1929 3.3539 4.5434 5.7572
. 53.412 54.823 55.898 56.792 57.572
50 6.6090 14.2947 22.5096 31.0467 39.8072
. 66.090 71.473 75.032 77.617 79.615
00 15.4615 33.4832 52.1538 71.1690 90.3611
. 77.308 83.708 86.923 88.961 90.361
00 56.0848 115.0680 174.0511 233.6922  293.6112
y 93.475 95.890 96.695 97.372 97.870
00 94.9817 194.9613 294.9410  394.9206  495.9003
. 94.982 97.481 98.314 98.730 98.980

k =3
n 20 40 60 80 100
o1 0.0672 0.1349 0.2029 0.2712 0.3396
: 33.613 33.730 33.821 33.897 35.964
05 0.3475 0.7068 1.0742 1.4480 1.8272
: 34.745 ©35.339 35.808 36.200 36.545
10 0.7237 1.4961 2.3018 3.1335 3.9878
: 36.185 37.402 38.364 39.169 39.878
50 4.8237 '10.8718 17.6258 24.8657 32.4543
. 48.237 54.359 58.753 62.164 64.909
00 12.4329 28.3141 45.5568 63.5507 81.9454
. 62.164 70.785 75.928 79.438 81.945
00 52.4086  110.5363 168.6640  227.4188  287.2617
. 87.348 92.114 93.702 94.758 95.754
00 89.9659  189.9259 289.8858  389.8457  489.8056
. 89.9659 94.963 96.629 97.461 97.961

I




TABLE II (cont'd)

=5
n : '

20 40 60 80 100
ol 0.0404 0.0810 0.1219 0.1629 0.2040
. 20.175 20.253 20.312 20.360 20.404
05 0.2089 0.4259 0.6481 0.8742 1.1045
y 20.887 21.296 21.603 21.856 22.089
Lo 0.4361 0.9066 1.3985 1.9080 2.4350
' 21.804 22.664 23.309 23.850 24.350
<0 3.0090 7.1242 11.8740 17,1711 22.9399
: 30.090 35.621 39.580 42.928 45.880
00 8.4055 20.9914 35.5136 51.2703 67.9090
. 42.027 52.478 59.189 64.088 67.909
00 45.5390  102.2577 158.9764  215.6950  274.6597
y 75.898 85.215 88.320 89.873 91.553
00 79.9415  179.8635 279.786 379.7075  479.6295
' 79.942 89.932 93.262 94.927 95.926

= 10

20 40 60 80 100
o1 0.0202 0.0405 0.0609 0.0814 10.1019
' 10.078 10.118 10.148 10.170 10.190
05 0.1040 0.2119 0.3227 0.4350 0.5490
' 10.397 10.595 10.756 10.875 10.980
Lo 0.2163 0.4488 0.6941 0.9464 1.2057
y 10.814 11.220 11.568 11.830 12.057
50 1.4950 3.5333 6.0665 8.9862 12.2284
. 14.960 17.666 20.222 22.465 24.457
00 4.4095 11.5837 21.1674 32,3708 44.4183
¥ 22.048 28.959 35.279 40.464 44.418
00 30.0746 84,2237 138.3728  192.5219  246.6711
. 50.124 70.186 76.874 80.218 82.224
00 54.9171  154.7513 254.5855  354.4197  454.2540
: 54.917 77.376 84.862 88.605 90.851




TABLE III

For given n and d, this table gives the

maximin strategy m* for k binomial populations

k
q z 5 10 15 20 25 30
0.01 1 2 4 5 6 7
0.05 1 2 4 5 6 7
0.10 1 2 3 4 5 6
0.30 1 2 3 3 4 4
0.50 1 2 2 3 3 3

TABLE IV

- G(m*,6*) and its Percentage of Maximum

Reward For Two Binomial Populations

The upper entry is the value of G(m*,6%) associated with the

maximin strategy and the lower entry is the percentage of ratio

AN 5 10 15 20 25 30
0.01 0.0751 0.1506 0.2263 0.3024 0.3786 0.4551
' 75.150 75.296 75.447 75.590 75.725 75.856
0.05 0.1787  0.3645 0.5566 0.7546 0.9575 1.1648
: 59.583 60.747 61.843 62.883 63.833 64.713
0.10 0.3150 0.6565 1.0198 1.4012 1.7977 2.2065
: 57.273 59.679 61.807 63.698 65.370 66.863
0.30. | 0.9350 2.0588 3.2753 4.5616 5.9072 7.2682
' 60.323 66.299 70.437 73.575 76.223 78.153
0.50 1.6750 3.7176 5.9490 . 8.2370  10.6217  13.0063
. 65.686 72.895 77.765 80.755  83.307 85.009




- TABLE V

Maximum value of m for L of (2.3) for binomial populations using R=RSH

For k = 2, d = 0.20, m* = 6 the entry 36-41 in the table, shoﬁs that for
n from 36 to 41, the m*-value of L is 6.

K = 2
m .

\5\\\\\ 1 2 4 5 6 8 9 10
0.05 | 2-8  9-14 15-20 21-26 27-32 33-38 39-51 52-57  58-60
0.10 | 2-8 9-14 15-20 21-26 27-32 33-39  40-52 53-59 60
0.20 | 2-8 9-14 15:21 22-28 29-35 36-41  42-60
0.30 | 2-8 9-15 16-22 23-31 32-40 41-47  48-60
0.50 | 2-9 10-19 20-32 33-49  59-60
0.80 | 2-15 16-54 55-60

kK =3

P My 2 3 4 6 7 8 9 10
0.05 |3-8 9-17 18-29 30-38 39-47 48-55 56 57-74 75-83 84-90
0.10 |3-8 9-19 20-29 30-38 39-46 47-55 56-75 76-84 85-90
0.20 {3-9 10-20 21-29 30-39 40-48 49-57 58-81 82-90
0.30 |3-9 10-21  22-31 32-43 48-53 54-62 63-90
0.50 13-10 11-24 - 25-40 41-61 62-89 90
0.80 [3-16 17-63  64-90 k

=4
— _

) 2 3 4 5 6 8 9 10 11
0.05{4-11 12-19 20-31 32-49 50-61 62-72 73-98 99-109 110-120
0.10|4-11 12-19 20-37 38-49 50-60 61-71 72-96 97-108 109-119 120
0.2014-11 12-20 21-37 38-49 50-61 62-71 72-101 102-114 115-120
0.30|4-11 12-23 24-38 39-52 53-66 67-76 77-120
0.5014-12 13-29 30-48 49-72 73-103 103-120-
0.80|4-18 19-70 71-120 -

k=5
3 ™ 2 3 4 5 6 8 9 10 11
0.05|5-14 15-24 25-33 34-52 53-75  76-88  89-120 121-134 135-148 149-150
0.10|5-14 15-23 24-34 35-59 60-73 74-86 87-117 118-131 132-145 146-150
0.20|5-14 15-22 23-41 42-59 60-73 74-85 86-120 121-136 137-150
0.30|5-13 14-24 25-45 46-61 62-77 78-90 91.140 141-150
0.05/5-14 15-31 32-55 56-82 83-116 117-141 142-150
0.80{5-19 20-76 77-150




TABLE VI

The Maximum Value of L of (2.3) and Percentage of L over Maximum Reward
for k Binomial Populatlons

The upper entry is the maximum value of L and the lower entry is the
percentage of ratio of maximum of L over n d.

k = 2
n 20 30 40 50 60
05 0.5328 0.8113 1.0952 1.3849 1.6772
y 53.280 54.087 54.760 55.396 55.907
10 1.1304 1.7428 2.3748 3.0310 3.6938
y 56,520 58.093 59.370 60.620 61.563
30 4.1123 6.4810 8.9545 11.5371 14.2245
: 68.538 72.001 74.621 76.914 79.025
50 7.7754  12.2578 16.8711 21.5215 26.2768 .
y 77.754 81.719 84.356 86.086 87.589
go | 14-0416  21.8176  29.5936  37.3696  45.2302°
. 87.760 90.907 92.480 93.424 94.230
3
n
10 30 50 70 90
o5 0.1738 0.5505 0.9453 1.3576 1.7794
. 34.760 36.700 37.812 38,789 39,542
10 0.3635 1.2069 2.1253 3.1170 4.1461
. 36.350 40.230 42.506 44.529 46.068
30 1.2947 '4.9300 9.1303 13.7980 18.7536
y 43,157 54.778 60.869 65.705 69.458
50 2.5417 10.1880 18.7015 27.6408  36.7937
2% | 50.834 67.920 74.806 78.974 81.764
80 '5.3547 19.8416  35.0430 = S50.4247  66.1706
y 66.934 82.673 87.608 90.040 91.904
5 ~
| 30 60 90 120 150
o5 | 0-3249 0.6941 1.0800 1.4881 1.9067
. 21.660. 23,137 24.000 24.802 25.423
10 0.7109  1.6012 2.5769 -  3.6452 4.7664
. 23.697 26.687 28.632 30.377 31.776
30 3.1340 7.8433 13.3900 19.9763 26.6509
y 34.822 43.574 49.593 55.490 59.224
50 7.1016 18,1168  30.4022  43.3452  47.0755|
. 47.344 60.389 67.560 72.242 76.100
go | 16-2175 38,1438  60.6831 83.9963  107.3095
y 67.573 79.466 84.282 87.496 89.425

|
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Selection of a Restricted Subset of Normal
Populations Containing the One with Largest Mean*

by
Shanti S. Gupta and Thomas J. Santner

Purdue University

1. Introduction and Terminology

One of the prime motivations for the use of subset selection
procedures is to enable the experimenter to screen a group of
populations seiecting a subset of the best ones which will be further
studied in a more intensive fashion.. However, in practice, the
experimenter has only limited resources to use for sec&ndary
exploration. Hence the goal in this paper is to give more flexibility
to the experimenter than does the usual subset selection'procedure
by allowing him to specify an upper bound, m, on the number of
populations included in the selected subset. Should the data
clearly indicate a single population is best, this procedure still
retains that advantage of the subset éelection approach which would
allow selection of fewer than the maximum number of populations, m.
On the other hand, if the data make the choice of the best population
less obvious this procedure still selects a'subset for further study

but guarantees that no more than m populations are selected.

*This research was supported in part by the Office of Naval Research
Contract N00014-A-0226-00014 at Purdue University. Reproduction in
whole or in part is permitted for any purpose of the United States
Government. '



Two special cases of this goal are the following. When m = 1
we select exactly one population and claim it 1is best.v'Suéh rules
have been widely studied in the literature and in particular
Bechhofer (1954) solves the normal means problem when the common
variance is knowm under this formulation. When m = k we select a
subset whose size is a random variable (1 < § < k) and claim the
best population is a member of the subset. Such rules have also been
widely studied in the liter;ture and in particular Gupta (1956,65)
solves the above normal means problem using such a procedure.

Formally our method of viewing the selection problem relates-
the subset selection formulation and the indifference zone formulatioh
by showing both are special cases of a general theory. In practice
our method allows us to blend éomerof the advantages cf each method
in the solution of the gelection problem.

To fix ideas we introdupe the following terminology which will
distinguish the various types of rules used.

Let S be the number of populations selected by the procedure
R. The goal is to select the "best" population. £ is the set of all

possible parameter configurations.

Definition 1.1: R is a fixed size subset rule means & s (1 < s <k)

such that
pe[s-s] = 1V0el

Rules for which s=1 are also known as indifference zone rules and
were introduced by Bechhofer (1954). 1In the more general case these

rules were introduced by Mahamynulu (1966,67).



Definition 1.2: R is a restricted subset selection procedure means
81 <8 <k such that Py[1 <5< s] = 1 Vel and R {5 not a fixed

size subset rule.

Definition 1.3: R 1s a subset selection procedure means Pefl <s<k]=1
v6e and R is neither a restricted subset selection procedure nor a

fixed size subset selection procedure.

2. Statement»of the Problem

Let m, ~ N(s,,0%) for i=1,..., k vhere the common 0° is known.

i
Also let u[11,<._.< u[k] be the ordered means and "(1) the population
with mean "[1]’ the best population being "(k)' We assume there is
no a priori knowledge concerning the pairing of the ["(i)} and {ni}.

Let 6§ > 0 and
Qa [“"‘ (ulv . """k) I“i € ('“’w)v"} '
0©) = {pe “lﬂ[k] - v'[k_ﬂz 6}

P®) = 4e0®) bpgg= e =M1 =Py - 81

Goal G: Given.f*, m and also possibly n and § > 0 define a procedure
R based on a cdmmon sample size n from each population which selects

a subset of the.populations not exceeding m in size such that the
subsetbcontains the population "kk) and satisfies the basic probability

requirement

pu[cslnl > Pk, yueQ(8) | (2.1)

As we shall see later, by fixing 6, n, and m < k, the admissable

range of P* values becomes



< er < Gem ¢ | [1-8¢e- By 00 () F ™ 1000 L as o)

The event [CS|R] is the selection of any subset containing ™)

We propose the following rule based on a sample of‘comon size

n from each of the k populations. As usual let X, be the sample

i
mean from m, and itljs e L ‘i[k]'
Rule R: Select ﬂi"'ii > mxii[k-m-&-l]’ i[k] - dO/v/t:} (2.2)

The following are special cases of the goal G and rule R.

A) m=k, §=0
Q) =Q
G: Choose a subset of [111,..., ﬂk} containing the best

population such that Pp[CSlR] >Pprypell

. oy b3 -
R: Select m, ® X >Xp 4 &//n

i

These are the goal and procedure studied by Gupta (1956,65).

‘B) m=1, §>0
G: Choose a single population such that Pu[Cslk] > P* Ve )(8)

R: Select that population m corresponding to i[k]'

Bechhofer (1954) studied this goal and procedure.
C) m=g(l<g<k), detx
R: S'elec: the populations corresponding to i[k-s +1]7°0 i[k]

This procedure was studied by Mahamunulu (1966,67) and Desu and
Sobel (1968). The procedure is a fixed size subset type and must

satisfy (2.1).




3. Probability of a Correct Selection

We introdu_ce' the fqllwing notation. For every £=1,...,k and
for every i=k-m,..., k-1 let [S;‘(z):j =1l,..0 (k;‘l)]be the collection
of all subsets of size i from {1,...,k}-{£}. Also let Ei(z) ={1,...,k}
SORHOR - |

Theorem 3.1. For any €, Pu’[CSIR] -

(bH |
2 z ‘[ " Q(l=+ 2( )) ﬂ U(ﬁch.( ))
- o¥k] " M{4] Wrk] "ML 4]
fuk-m j=1 gest ) 2631 (1)

] b

- Q(t+£2-(u[k]_- u.u]))} ad(t)

Proof:

Let Y( 1) dénote the mean from population Mgy then
plcs|r] = P['i(k) _>_max{i[k_ o]’ i[k] - & /V/n}]
-cb/./; for £ <k and i(k) > at leasﬁ (k-m) i-'(;) with l:+k]-

- r[x(k)gxu)

- Now for every i=k-m,..., k-1 and je=1,..., (k;_l) let '

vie St(k) amd X, <X

i
Ay=[Xgy 2% gy 3 W

-i
) vie sj(k)]

)
- - k-1 * 1
~ p[cs|R] = P[X gy 2 X,y - oot ana U U al]
i'_-k-m j=1
k-1 (1) |
- 2 z Py 2%y - doofn va<k and A;']
imk-m j=1 ' .



Now fix 1 and jJ

= 1
P[*(k) 2%, - do/n Vvi<k and Aj]

- S | = = = =i
= BX, 2%, Voes, (k) and Xy <X(p) <Xy + aw/fa VLES (K]

3

o0

| -j n Q(t-l'c(u-[kj )

n {Q(u-’cg(u[k] o ALY
Lesj‘(k) !,e-s';‘(k)

- *(ﬂé(u[k]f uu]))} a8 (¢t)

QED

Remark 3.1: As special cases we immediately obtain the results
of Bechhofer (1954) and Gupta (1965)
A) Bechhofer (m'-1 0<d<e)

P[cslkl-rtx(k) > x[k]-dO/f and A“l‘ 19

jwk'l o2 ) a8 (t)
- n t+—(1 M de(t
o ol (k] ™ "led
stace A7 =Xy 2 Xy VA<KIC[R Gy, 2 X (g
B) Gupta (m;-k, 0<d <o &1y
Cos|aIorE,.. > F ~ k-l S0
PLCS 3]- Xy 2 x&) - do/vn and 130 jgl AJ]
_J'“’ kol eadm |
- n 11 (t+—(u[k] ou)+d) di(t)
' A=l
k1 1)

since U U Ai

0 g1} (% 2 Xy - @1/

- &//a VL < k]



Remark 3.2: An application of the dominated convergence theorem shows

P[CS‘R] =1 as Wlk] " u'[k-l] o,

Next we determine the infimum over ((6) of the probability of a
correct selection.

Theorem 3.2. inf Plcs|R] = inf PlCS|R]
- f(8) 00 (8)

k-1
z .(kll) L’ Qi.(t+[6sfi){§(t+d+£35 )-ﬁ(t:+%)}k-1“i

dé(t)
i=k-m '

Proof:
We use the following lemma due to Alam and Rizvi (1965) and

also to D. Mahamunulu (1966).

Lemma _
Let X= (X;,..., X;) have k 21 independent componen.ts such that
for every i, X, has cdf H(xi|ei) . . Suppose {H(xle)] form a stochastically
| increasing family. If 4(X) is a monotone function of Xy when all other
components of X are held fixed; then Eeté(X)] is monotone in 91 in

the same direction.

utam-{“xm>3“ﬂﬁbmﬂﬁhr4wﬁ]
0, otherwise

We claim 4(X) is non increasing in 3(-(1) for i=1,...,k-1. Let

X

(1)<x'm, X= (X ) X'=(X

= wax {fpy - 901, Sy pua)  mecfifiy - 15 Ky )

> ), e Fanr X Fan



where the primes denoté the order statistics from X'. So if #(X) = 0

» 4(X') = 0. Hence

ru[csln] - r.p.(.s(x)] is nonincreasing in each bof "'[1]""’ Ble-1] when

all other theans_are fixed. So

inf P[cS|R) = inf P[CS|R] and substituting the vector of
Q¢s) o (8)

means ("'[1]""’ 13 u-[l]+5) gives the result.

. QED

Remark 3.3: As special cases we get the results obtained by Gupta

(1965), Bechhofer (1954) and Desu and Sobel (1968).

A) Bechhofer (m=1, 6>0)

inf P[cs|R] = I ﬁk’l(ué&) ad(t)
@) -

B) Gupta (m=k, 0<d<®, §=0)

| k-1 ...
: k-1 i k-i-1
f HoslRl = ) Ph[ doBew - 1o eo
i=0 '
J‘ kel T k-1 T ]“'1'1
" 7 (era) Z ( [Q(t-o-d)] Q(t+d) ak(e)
' i=0

-I #%"1 (p4a) dd(t)

C) Desu and Sobel (1< m<k, d=+, §>0)

k-1-1
inf P[cslnl = r 7 ) Qi(:-éb){»l-i(t-r/—g_ﬂ} dé(t)

- i-k-m



- Gem) (D) L[1-&(:-"-56)][1-@(:)]“"lt'@,(t)]“"‘"1 ad(t)

as we will later show.

4. Properties of R

Next we study the properties of the procedure R. To facilitate

this study we let pu(i) = Pl-l-tR selects 11'(1)] and recall the following

two definitions.

Definition 4.1: R is a monotone procedure means Vi € Q and 1i<j

p“(i) Spp(J) .

Definition 4.2: R is an unbiased procedure means Vyu € 1 and <k

R n > P .
Pl&[ does not select (j)] > u'l:R dogs not select ﬂ(k)]

Of course R monotone = R unbiased.

are

Definition 4.3: R is consistent wrt ('

Definition 4.4: R is strongly monotone

t in ”'[i] when all other
p. (1)
K 4 in k4] when all other

Remard 4.1: If R is non decreasing for
Q(s)

Theorem 4.1. For every i=1,...,k and

Other optimal properties

means 1im inf P{CS|R]=1
e O .

in 11( means

1)

components of p are fixed

components of u are fixed (j $1)

w then

(k)

‘inf plcs|R] = inf P[CS|R]
P (5)

for all procedures R of the

form (2.2), R is strongly monotone in T 1)
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Proof:
1) We have already shown this result for i = k. Since for 1 < k we
‘ 1, X, >max(Xr, .4, Xp q-do/Vn)
have pu(i) - Ea['n(x)] where N(x) = { 1 Ck-me1]* 7Lk v
v 0, otherwise,

the same argument applies to give the desired conclusion.

QED

Corollary 4.1. All ‘rules of the form (2.2) are monotone and unbiased.
The proof follows from the definition of monotonicity and the

property of being strongly monotone in ‘IT( i)V i.

Theorem 4.2. For every rule R of form (2.2) and every & >0,R is

consistent wrt £1(8).

Proof:

We must show

k-1 ' |
5ty s [ B rceror B - 1B i «
Do Yoo
{=k-m

We note each integrand is bounded wrt % measure and so dominated
convergence applies.

For every 1 < k-1 we have

1,../n /o, Vag, 1k-1-1
Lim & (t+-£'5)v[§(t+ Bo+d) - #(e+' 50} =0

and for i = k-1

k-
n_i_g $ l(t"'@) = 1. Hence the result follows.

QED
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This theorem says that no matter what probability requirement
(6 >0, P*) is made and which rule is used, (2.1) can be made_to hold by

choosing a sufficiently large sample.

Theorem 4.3. For every n and rule R of form (2.2), lim inf P[CSlR]==1.
e (2(8)

For every n, m<k, and >0, li.m inf PLCS|R] =
0(¢8)

0
wm &Y [ D021 #e) [1-80 ) b
-m J_g o _
Proof:
The first result follows from dominated convergence. The second

result follows ftom the same theorem and

k-1 :
® k-1-1
1im inf P(CS|R] = z ( I Qi(t-t-‘/a;‘:b) {1-@(:+‘€la)} dd(t)
we €(8) i=k-m -®
- (k-m)( ) 1(1-y)“""'1dy a(e)

Letting w = Q-l(l-y) and changing the order of integration yields

b [ I gl 2 1™ e 0 gz )

QED

Remark 4.2: The first part states that by taking 6 sufficiently large
we can attain any P* probability requirement for any rule d based

on any numbgr of observations. The second result s#ys that given an
indifferent zone 8§ > 0 and common sample size n we can not achieve all

P* values. We can only attain
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< em (1 | [1-8(e-/28) 0a(0) ™ -2 (0 " ek (o) <1

This interpretation follows since inf P{CS‘R] is a monotone non decreasing
i - Q(8) _

function of d.
Remark 4.3: USingbthe monotonicity of inf P[CS\R] we can obtain the
| Q) -

 following bounds: For m <k and d 2 0
° .
j Qk-.l(t+f£6) ad(t) < inf PlCS|R]
o . acs)

< e &h [ l-eeB630a0 1 -2 1 adco).

For the purpose of implemenfing the procedure R we have prepared
Table I found at the end of the paper. The body of the table contains
the values of @6 necessary to obtain P* = .75, .90, .975 using
rules d = .4, .7, 1.3 and 1.6 for k = 3(1)5 with m = 2(1)k-1 and also
for k = 6(1)10, 15, 20 with m = 2(1)5. In general given P*, d, k

and m the cortgsponding /56 is the solution of the following equation:

g
k-1 .
=) & L ot (¢4/2%) {;(t+d+f§6) - 2’26 1 aace).
i=k-m ' '

To compare this rule to the fixed size subset rule, we have

calculated

e (P¥,k,m,d) = %%f—;))-

where n(d') is the sample size necessary to achieve probability
requirement (2.1) using rule R with k,m and d'. The ratio shows the

relative samples sizes of the restricted subset selection rule to the
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fixed size subset rule when both attain the same probability
requirements. For larger d values this ratio is close to one indicating
that in many cases a slight additional cost will allow use of a
restricted subset selection procedure and still meet the same probability
requirement. The éxact savings in terms of (m-Eu[S|R]) dependsvof
course on the underlying i. Some exact comparisons for>the equispaced

means and slippage configurations will be described in the next section.

S. Expected Number of Selected Populations

As usual define

> Xe. o -
1, X(i) 2 maxfi[k_mll, x[k] do/v/n}
v, =1
0, otherwise
k
which gives § = E;Yi = number of populations selected.

i=1

k
Then Eu[S] - Zp“(i)
1

Theorem 5.1. For every peo, Eu[S|R] =

-1
k k-1 P o /F /—
L L .L mE (oGl -upyD) TRy - e )
{=]1 pek-m j=1 =~ LeSE(1) 265t (1)

b 3

Proof:
_From the above discussion we see that it suffices to calculate pu(i)

for 1 = 1,...,k. Using arguments similar to those above we get
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L &h
k-1 " p »
P (L) = 2 z P[x(1)>xm Vies (1) and Xy + dc//5>x(z)> x(i)vzesj(i)]
pk-m j=1
k-1 ( s
- ) 2 f "“t"o(“m brap) TS gy v pHD)
p=k-m j=1 zesi(i) ze?j’(i)

/n
- (g (u[ﬂ - uu]))} ad(t)
QED

Remark 5.1: Ep_[slnl <m VpeQ
Remark 5.2: Ifm=k = sup Eu[is] = sup E [sIRJ
Q(8) 0o (8)

This was proved by Gupta (1965).

Since Eul:is] is increasing in d the experimenter should seek
to use rules with small d. On the other hand for fixed § and P* the
smaller d is the larger n must be to achieve (2.1). Hence, the
experimenter must decide what trade off between n, d, and § he is
willing to accept_;

To investigate his interdependencé in more detail we have

tabulated E[S|R] under the following configuratioms.
A) Equispaced Means 1 = (@, 4B, 0420,..., o+ (k-1)8)

Given P*, d, @6, k and m, Table III displays Eu[slnl =

- k-1,

L O /e, /. /s

Y ) z j M B(1-0)8)  m{E(erad Z(1-H8)-8(ed g (1-D8) ] a¥(®)
=lpmkm 3= gesia) 2657 ()
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B) Slippage 4 = (@,...,0,0+8)

Again given P¥*, d, Jéﬁ, k and m, Table IV gives

k-1 . -
E,[5|R] = z (kl',l) L‘r’m@){@(udfga)-o(u@a)}“'_"Pduc)
p=k-m : '

k-1 o
v aen ) 1D [ a3 o e -2 1 P

p=k-m

+ &8 [ Fwo [8(eva-'28)-8(e-"20) } (8 (e+0) 4% (6) 12 Pasi(o) ).

The same two tables also list

ok _ ‘
A) E:(k'i+1)pu(1)’ the expected sum of ranks of the selected
{=l '
populations ("(k) is assigned rank 1 etc.) and

B) Eu[slk]/m, the expected proportion of selected populations.

As an applic#tion of the theory we give the following example.
An experimentef is sampling from nine normal populations with
ﬂi..N(ui,l). He wishes to select a subset of size at most four which
contains the population with largest mean. For his screening process
he wishes to héve a probability of correct selection at least .975
whenever “[9]"u[83 > .8, As Eu[SIR] is increasing in d and n, he

wishes both to be small.
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Examining the four rules specified in Table I he finds his choices

d 4 .7 1.3 1.6
are . 18 15 11 10 °

He decides to base his preliminary research on a sample of size

10 from each population and uses the rule:

R: Select T X

i Z max{-i[ﬂ, E[Q] - 1.6/[]3} .

i

6. Extension to Location and Scale Parameter Family ‘
»We assume we are given independent random variables Xl, ey xk

from k populations T ,...,T, with cdf's Fo (x) where .
i
A) Fe(x) = F(x-0) (0e(-®,0)) in the location parameter case and
B) Fe(x)v - F(x/B) (F(0)=0 and 6>0) in the scale parameter case.

‘Here the eis are ynknown but F is known. Our goal is to select a

subset of the populations not exceeding m in size such that
Palcs) > P+ vOeD(s) | (6.1)
The event [CS] is the selection of any subset containing population
"(k) and
) 1(6) = {9‘9[k] - 9[k_1]_?_6] in the location paranieter case and

B) Q(8) = [Gle[k]/e > 8} in the scale parameter case.
[k-1]

As usual there is no knowledge of the correct pairing of the {nj} and

{ﬂ(-j)}. Our rules are the following:‘

A) R: Sélegt m ® xi > max{X[k] -d, x[k-m+1]}

where d>01in the location parameter case and (6.2)
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‘., © < <
B) R': Select T, ®X, > max{c x[k], x[k-m-!—l]} where 0 < c <1

in the scale parameter case (6.3)

As the results for the present cases are completely analogous to
those in the normal case we present them only for the location

parameter family and then without proofs.

Theorem 6.1. Pe[CS\R] =

k-1
k-1 ( i ) o ‘_
2 , Z .L ‘;F(‘“-"’e[kj' 8 _:[F(t-u-dw[k]- eu])-F(t+9[k]—eu])} dF(t)
i=k-m j=1 £eS j (k) ,(,esj (k) : |

and further

inf PlcS|R] = inf P[CS|R]
P (6)

ace)

k-1 - -
o) ] s (reerard) -F(erd) ¥ 11 ar(e)
i=k-m -

The optimality properties of R and R' parallel those in the

normal case.

Theorem 6.2. For every i = 1,...,k and every R of the form (6.2),

R is non decreasing in ﬂ( 1) Hence R is monotone and unbiased.
Theorem 6.3. _Fot every indifference zone 5§ >0 and m < k.

1m inf P[cS|R] = sup inf B[CS|R]
d=o £(5) a0 (8)

e Gew D[ fopen Le@ I (1-r@ P ar) (6.4)



18

As before we are not able to attain all P* values for a given
6 merely by choosing sufficiently large d. The right hand side of

(6.4) is the upper bound on the attainable P* values.

Theorem 6.4. For every rule of form (6.2),

1im inf Plcs|R] = 1.

§~0 £2(8)
Again analogous to the previous results, for amy rule R and
. P* we can always choose an indifference zone large enough so that
(6.2) holds. Finally we obtain the general expression for the

expected number of populations selectéd.

Theorem 6.4. Eg[S|R] =

(k-l
z z z ‘"F(t+9[i] - O[E]) o {F(t+d+e[1] - e[.l.])-F( tfe[i] '9[ !,]) 1dF(t) .
1=1 pek-m j=1 ~* gest (1) 265E (1)

i 3

Here as before the expected savings using a restricted subset
procedure over the fixed size subset procedure depends upon the

underlying F(x) and parameter point in question.
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Table I
TS
Tables /gs needed to attain P* levels .75, .90, .975 for the
rules given by d = .4, .7, 1.3 and 1.6
) _
__E m '4 -7
' P* 23

75 .90 .975 .75 .90 .975

3 2 1.078 1.891  2.766 0.863  1.645  2.520
4 2 1.32  2.123 2,998 1.156 1.906  2.781
3  1.286 2.067  2.942 1.017 1.767  2.642
5 2 1.516 2.266  3.141 1.348  2.098  2.973
3 1.456  2.225  3.125 1.192  1.942  2.817

4 1.448 2.216  3.104 1.151  1.932  2.807

6 2 1.647  2.397  3.272 1.490  2.209  3.084
3 1.591  2.341  3.216 1.335  2.054  2.929

4 1.570 2.321  3.196 1.283  2.033  2.908

5  1.569 2.320 3.19% 1.281  2.030  2.907

7 2 1.747  2.465  3.340 1.601  2.319  3.19
3 1.690 2.440  3.315 1.438  2.157  3.032

4 1.680. 2,430 3,305 1.389  2.139  3.014

5  1.667  2.417  3.292 1.370  2.120  2.995

8 2 1.830 2.549  3.424 1.684  2.403  3.278
3 1.772  2.491  3.366 1.529  2.248  3.123

4 1.758  2.475  3.350 1.468  2.212  3.087

S  1.755  2.474  3.347 1.462 2.181  3.056

9 2 1.906 . 2.625  3.500 1.766 2,453  3.328
3 1.841  2.560  3.435 1.609 2.296  3.171

4 1.829  2.549  3.423 1.541  2.260  3.135

5  1.822  2.541  3.416 1.526  2.245  3.120

10 2 1.956 2.675  3.550 1.837  2.525  3.337
3 1.884 2.603  3.478 1.666 2.385  3.198

4 1.871 2,590  3.470 1.601  2.319  3.19%

15 2 2.175  2.862  3.737 2.056 2.744  3.494
3  2.101 2.820  3.695 1.894  2.582  3.39%

4 2.086  2.798 3,673 1.825  2.542  3.391

5 2.080 2.791  3.660 1.794  2.513  3.388

20 2 2.321 3.008 3.821 2.207  2.895  3.645
3 2.245 2.933  3.808 2.045  2.732  3.482

4 2,218 2.905  3.780 1.968  2.656  3.468

5 2,213 2,900 3.775 1.935 3.449

19



Table I (cont.)

_mn 1.3 1.6
P* P*

75 .90 .975 .75 .90 .975

3 2 0.559 1.340  2.215 0.464  1.246  2.121
4 2 0.943 1.662 2.537 0.884 1.634 2.509
3 0.547 1.297  2.172 0.365 1.115 1.990

5 2 1.178 1.897  2.772 1.130  1.849  2.724
3 0.805 1.524  2.399 0.678 1.397 2,272

4 0.609 1.359  2.234 0.389  1.107 1.982

6 2 1.326  2.044  2.906 1.308 1.995  2.870
3 0.992 1.679  2.554 0.889 1.576  2.451

4 0.783  1.502  2.377 0.610 1.329  2.204

5  0.697 1.447  2.322 0.431 1.181 2.056

7 2 1.457 2.145  3.020 1.442  2.130  2.942
3 1.127 1.814  2.627 1.047 1.735  2.485

4 0.930 1.649  2.524 0.772  1.459  2.334

5 0.828  1.547  2.422 0.600 1.318  2.193

8 2 1.556 = 2.244 3.056 1.544 2.231 2.981
3 1.23%  1.922  2.73% 1.168 1.855  2.605

4 1.048 1.736  2.611 0.918 1.606  2.356

5 0.925 1.644  2.519 0.724  1.442  2.255

9 2 1.645 2.332  3.082 1.619  2.307 3.059
3 1.327 2.015  2.765 1.269  1.957  2.707

4  1.141  1.829 2,641 1.020 1.707 - 2.457

5 1.023 1.711  2.586 0.850  1.537 2.350

10 2 1.725  2.412  3.162 1.706  2.394  3.144
3 1.407  2.049  2.844 1.367  2.024  2.774

4 1.219 1.907  2.657 1.117 1.805  2.555

5 1.101 1.789  2.603 0.947 1.635  2.385

15 2 -1.967 2.655  3.405 1.952  2.640  3.390
3 1.692  2.349  3.099 1.659  2.315  3.065

4  1.516  2.173  2.923 1.449  2.106  2.856

5  1.388 2.075  2.825 1.284 1,941 2.691

20 2 2.138 2,794  3.544 2.116  2.772 3.522
3 1.871  2.527  3.277 1.842  2.498  3.248

4 1.695 2.351  3.101 1.644  2.301 3.051

5 1,578  2.234&  2.984 1.492  2.149  2.898

20
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Zsble 11

Using the rule R and under the configuration (d,a+6,...,a+(k-1)6)
this table gives in order the triple a) the expected number of selected
populations, b) the expected sum of ranks of the selected populations
and c) the expected proportion of gelected populations ((a) divided by m)

ﬂumber of Populations Studied

' k=3
;\<E$s .10 .50 .90 1.30 1.70

5% 1.3111  1.2800  1.2237  1.1649  1.1156
2.5300  2.1262  1.7606  1.4906  3.3121
0.6555  0.6400 0.6118  0.5825  0.5578
7 1.5039  1.4588  1.3751  1.2839  1.2038
2.913%  2.4731  2.0451  1.7073  1.4698
0.7520 _ 0.7294 _ 0.6875  0.6420  0.6019

_k = 4
74 1.3619  1.3090  1.2316  1.1660  1.1157
3.2056  2.3924  1.818  1.4971  1.3124
0.6810  0.6545  0.6158  0.5830  0.5578
7 1.5691  1.4972  1.3862  1,2855  1.2039
3.7113  2.8056  2.1237  1.7172  1.4704
0.7845  0.7486  0.6931  0.6427  0.6020
3 .4 1.4391 1.3629  1.2568  1.1750  1.1183
3.3970  2.5213  1.8765  1.5173  1.3183
0.4797  0.4543  0.4189  0.3917 - 0.3728
7 1.7789  1.6483  1.4611  1.3139  1.2126

4.2343 3.1766 2.3037 1.7845 1.4910
0.5930 0.549 0.4870 0.4380 0.4042

' k=5
2 % 1.3956  1.3208  1.2326  1.1660  1.1157
. 3.8362  2.5299  1.8277  1.4973  1.3124
0.6978 0.6604  0.6163  0.5830  0.5578
7  1.6097 1.5119  1.3875  1.2855  1.2039
4.4502  2.9794  2.3170  1.7175  1.4704

0.8048 0.7560 0.6938 0.6428  0.6020

3 4 1.4995 1.3845 1.2588 1.1751 1.1183
4.1402 2.6964 1.8893 1.5176 1.3183

0.4998 0.4615 0.4196 0.3917 0.3728

.7 1.8785 1.6862 1.4650 1.3140 1.2125
5.2408 3.4475 2.3276 1.7851 1.4910

0.6262 0.5621 0.4884 0.4380 0.4042

4 4 1.5165 1.3920 1.2601 1.1752 1.1183
4.1910 2.7184 1.8932 1.5180 1.3183

0.3791 0.3480 0.3150 0.2938  0.2796

7 1.9571 1.7230 1.4724 1.3148 1.2126
5.4774 3.5593 2.3499 1.7875 1.4912

0,4893 0.4308 0.3681 0.3287 0.3031
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Iable IV

Using the rule R and under the configuration (s ...,0+8) the table
gives in order the triple a) the expected number of selected populations,
b) the expected sum of ranks of the selected populations and ¢) the expected
proportion of selected populations ((a) divided by m)

Number of Populations Studied
k=3

}\<?ia .10 .50 .90 1.30

1.3120 1.2996 1.2702 1.2270 .1766
2.5773 2.3611 2.1156 1.8627 .6259

1.70
1
1
0.6560 0.6498 0.6351 0.6135 0.5883
1
1
0

)
>

.7 1.5052 1.4872 1.4437 1.3783 .3003
2.9629 2.7352 2.4657 2.1740 .8861

0.7526 __0.7436 __0.7219  0.6892 6502
k =4
5 4 1.3641  1.3529  1.3243  1.2792  1.2233
3.3491  3.0598  2.7192  2.3554  2.0028
0.6821 0.6765 0.6622  0.6396  0.6116
7 1.5720  1.5568  1.5169  1.4523  1.3696
3.8654  3.5571  3.1877  2.7804  2.3685

0.7860 0.7784  0.7585 0.7261 0.6848

3 N 1.4423 1.4266 1.3877 1.3288 1.2583
3.5441 3.2426 2.8768 2.4792 2.0908

0.4808 0.4755 0.4626 0.4429 0.419%

.7 1.7844 1.7578 1.6920 1.5915 1.4701
4.3959 4.0606 4.6299 3.1363 2.6292

0.5948 0.5859 0.5640 0.5305 0.4900

k=5
2 4 1.3993 1.3893 1.3622 1.3172 1.2587
4.1254 4.7752 3.3491 2.8800 2.4125
0.6997 0.6947 0.6811 0.6586 0.6294
.7  1.6145 1.6015 1.5653 1.5033 1.4198
4.7653 4.3894 3.9297 3.4130 2.8799
0.8072 0.8007 0.7827 0.7516 0.7099

3 4 1.5055 1.4904 1.4512 1.3887 1.3108
4.4422 4.0725 3.6089 3.0886 2.5649

.5018 4968 4837 4629 4369

7 1.8882 1.8635 1.7988 1.6946 1.5627
5.5835 5.1660 4.6218 3.9837 3.3107

0.6294 0.6212 0.5996 0.5649 0.5209

4 .6 1.5230 1.5067  1.4649  1.3990  1.3177
4.4949  4.1216  3.6502  3.1198  2.5859
0.3808 0.3767 0.3662  0.3498 = 0.329%
7 1.9692  1.9392  1.8631  1.7437  1.5964
5.8267  5.3950  4.8181 4.1356  3.4161
0.4923 _ 0.4848  0.4658 _ 0.4359  0.3991
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