On Weakly Wandering Functions

by

Eugene M. Klimko

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 296

July, 1972

Research of the author was supported in part by a Faculty XL grant from the Purdue University Research Foundation.

Abstract

Hajian [2] showed that ergodic conservative measure preserving point transformations on infinite measure spaces always admit of a weakly wandering set of infinite measure. The notion of a weakly wandering set has been generalized by Neveu [5] for transformations acting on Lebesque spaces. Here we give a Lebesque space analogue of a weakly wandering set of infinite measure on the sequence spaces ℓ_1 and ℓ_∞ . We do not know whether weakly wandering functions always exist, but we give sufficient conditions for their existence with respect to certain operators on ℓ_1 and ℓ_∞ determined by a class of positive matrices.

by

Eugene M. Klimko*

Purdue University

1. Introduction. Let $(\Omega, \mathcal{B}, \mu)$ be a measure space and let $L_1 = L_1(X, \mathcal{B}, \mu)$ be the space of all \mathcal{B} measurable functions f on Ω for which the L_1 norm of f, $\int_{\Omega} |f| d\mu$, is finite. We assume that there is a positive linear operator T acting on L_1 for which $||T|| \leq 1$. We denote the dual of T by T^* ; T^* acts on functions $g \in L_\infty$ and is defined by the relationship

(1.1)
$$\int_{\Omega} f T^*g d\mu = \int_{\Omega} TF \cdot g d\mu$$

for $f \in L_1$, $g \in L_{\infty}$. We let the sum $\sum_{0}^{\infty} T^n f$ be denoted by $T_{\infty} f$. Throughout this paper, we assume that all operators are <u>conservative</u>; that is, $T_{\infty} f(x)$ has the value 0 or ∞ for each non-negative function $f \in L_1$.

While studying ergodic conservative measure preserving point transformations τ on Ω , Hajian and Kakutani [3] introduced the notion of a <u>weakly wandering</u> set; i.e., a set W ε B such that there is a sequence of integers $0 = n_0 < n_1 < n_2 < \ldots$ for which the images of W under τ are all disjoint: $\tau^{n_1} = 0$ W $\to 0$ W $\to 0$ if i $\neq 0$. Hajian and Kakutani showed that the existence of a weakly wandering set of positive measure is equivalent to the existence of an equivalent finite invariant measure which is a basic problem in ergodic theory. This result of Hajian and Kakutani has been extended to L_1 operators by Neveu [5]. A function $h \in L_{\infty}$ with norm $||h||_{\infty} = \text{ess sup } |h| \leq 1$ is $\frac{\text{weakly wandering}}{\text{measure}}$ if and only if for any $\delta > 0$, there is a sequence $0 = n_0 < n_1 < \ldots$ such that

Research of the author was supported in part by a Faculty XL grant from the Purdue University Research Foundation.

(1.2)
$$\left| \left| \sum_{i=0}^{\infty} T^{*i} h \right| \right|_{\infty} < 1 + \delta.$$

For ergodic conservative measure preserving point transformations τ on Ω , Hajian [2] showed that if μ is an infinite (σ -finite) measure, then there exists a weakly wandering set W of infinite measure. We also note that in case $\mu(\Omega)$ = 1, Sucheston [6] showed that for ergodic conservative point transformations τ which admit no equivalent finite invariant measure, for any $\varepsilon > 0$ there exists a weakly wandering set W of measure $\mu(W) > 1-\varepsilon$. Here, we construct function analogues of Hajian's weakly wandering set of infinite measure. However, our results are not completely general; we restrict our attention to operators on ℓ_1 (defined below) determined by certain matrices. It would be interesting to see these results in a general setting.

We now let $\Omega = \{1,2,\ldots\}$. The σ -field B is the set of all subsets of Ω and μ is assumed to be the counting measure ascribing to each set in B, the number of its points. The space ℓ_1 is the set of all absolutely convergent sequences $\{f_i\}_{i=1}^{\infty}: \sum_{i=1}^{\infty} |f_i| < \infty$. The dual space ℓ_{∞} is the set of all bounded sequences $\{g_i\}_{i=1}^{\infty}: |g_i| \leq M$, $i=1,2,\ldots$ for some fixed M. Our operators T and T^* acting on ℓ_1 and ℓ_{∞} are defined by an infinite matrix $T = [t_{ij}]$ which transforms a function $f \in \ell_1$ with $f = (f_i)_{i=1}^{\infty}$ into a function f whose i'th coordinate f is given by

(1.3)
$$(Tf)_{i} = \sum_{j=1}^{\infty} f_{j} t_{ji}$$
.

It may be easily varified that the dual operator T^* of T, determined by (1.1), maps a function $g = (g_i)_{i=0}^{\infty} \in \ell_{\infty}$ into a function T^*g whose i'th coordinate is given by

(1.4)
$$(T*g)_{i} = \sum_{j=1}^{\infty} t_{ij} g_{j}$$
.

We remark that the action of T^* on ℓ_{∞} may be easily described by considering elements g of ℓ_{∞} as column vectors and noting that $\,T^{*}g\,$ is obtained by matrix multiplication of g by T on the left. Similarly T acts on ℓ_1 by a matrix multiplication on the right. We shall use the symbol T to denote both the matrix $[t_{ij}]$ and the l_1 operator determined by $[t_{ij}]$. When $t_{ij} \ge 0$ for i,j = 1,2,... the operator T is positive: Tf ≥ 0 if $f \geq 0$. If $\sum_{i=1}^{n} t_{ij} \leq 1$ for each i = 1, 2, ..., then the matrix [t_{ij}] is <u>sub-stochastic</u>; if moreover, $\sum_{i=1}^{\infty} t_{ij} \le 1$ for each j = 1, 2, ...,then $[t_{ij}]$ is doubly sub-stochastic. It is easy to see that if $[t_{ij}]$ is sub-stochastic, then the operator T maps ℓ_1 into ℓ_1 and $\int |Tf| d\mu \leq \int |f| d\mu$ for any $f \in \ell_1$; i.e., $||T|| \leq 1$. We further remark that in case $[t_{ij}]$ is doubly sub-stochastic, the operator T acting on ℓ_1 actually may be extended to ℓ_∞ by (1.3). Thus T is both an ℓ_1 and ℓ_∞ For $n = 0,1,..., let t_{ij}^{(n)} i, j = 1,2,...$ be the entries of contraction. the n'th power $[t_{ij}]^n$ of the matrix $[t_{ij}]$. Throughout this paper, we assume that the operator T is conservative which means that for any $f = (f_i)_{i=1}^{\infty} \in \ell_1$ with $f_i \ge 0$, i = 1,2,... and any $j \ge 1$,

(1.5)
$$(T_{\infty}f)_{j} = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} f_{i} t_{ij}^{(n)} = 0 \text{ or } \infty.$$

This assumption is not difficult to varify for certain classes of matrices.

2. Main results. In this section, we construct a function h which is, in two ways, analogous to a weakly wandering set of infinite measure: (1) the set on which h > 0 has infinite measure and (2) $\int h = \Sigma h_i = \infty$. It would

seem that the result should extend to general operators, but the author has not been able to obtain such an extension.

Theorem 2.1. Let $[t_{ij}]$ be a doubly sub-stochastic matrix which determines a conservative operator on ℓ_1 . Suppose further that $\lim\inf_{n\to\infty}\sup_{i,j}t_{ij}^{(n)}=0$. Then for any $\delta>0$, there exists a function h whose coordinates are 0's and 1's, and a sequence of integers $0=n_0< n_1<\dots$ such that h has infinitely many 1's and

(2.1)
$$\left|\left|\sum_{k=0}^{\infty} T^{*}^{n_{k}} h\right|\right|_{\infty} \leq 1 + \delta.$$

<u>Proof.</u> Let $a_n = \sup_{i,j} t_{ij}^{(n)}$, then since $\lim_{n \to \infty} a_n = 0$, there is a subsequence $0 = n_0 < n_1 < \dots$ such that $\sum_{k=0}^{\infty} a_k \le 1 + \delta/2$. Let ϵ_i , $i = 1,2,\dots$ be a sequence such that $\epsilon_i > 0$ for all $i \ge 1$ and $\sum_{i=1}^{\infty} \epsilon_i \le \delta/2$. Since both the row and column sums of $[t_{ij}^{(n)}]$ are convergent series, the following conditions hold:

$$\lim_{i \to \infty} t^{(n)}_{ij} = 0$$

for all fixed n,j and

(2.3)
$$\lim_{j\to\infty} t^{(n)}_{jj} = 0$$

for all fixed n,i. We shall construct an infinite sequence of vectors $h^{(i)}$, i = 1,2,... for which only one coordinate is one and all others are zero. The vectors $h^{(i)}$ will have the further property that no two of them have a one in the same position. The required function will then be

$$h = \sum_{i=1}^{\infty} h^{(i)}$$
. Set $N_0 = 1$ and define $h^{(1)} = 1_{\{N_0\}}$ (the indicator function

of the singleton set $\{N_0^{}\}$). Then

(2.4)
$$\left| \left| \sum_{k=0}^{\infty} T^{*}^{n_{k}} h^{(1)} \right| \right|_{\infty} = \sup_{i} \sum_{k=0}^{\infty} t_{i1}^{(n_{k})} \leq \sum_{k=0}^{\infty} a_{n_{k}} \leq 1 + \delta/2 .$$

Let K_1 be such that $\sum\limits_{k=K_1}^{\infty} a_{n_k} \leq \varepsilon_1/2$. Since for each n, $\lim\limits_{(n_k)} t^{(n)} = 0$, we can find an M_1 such that $i > M_1$ implies that $t_{i1} \leq \varepsilon_1/2K_1$ for $k = 0, 1, \ldots, K_1 - 1$. Such an M_1 is found by determining M_{1k} such that $\binom{(n_k)}{i1} \leq \varepsilon_1/2K_1$ for $i > M_{1k}$ and setting $M_1 = \max_{0 \leq k \leq K_1 - 1} M_{1k}$. Combining estimates we find that for $i > M_1$

(2.5)
$$\sum_{k=0}^{\infty} t_{i1}^{(n_k)} = \sum_{k=0}^{K_1-1} t_{i1}^{(n_k)} + \sum_{k=K_1}^{\infty} t_{i1}^{(n_k)} \le \varepsilon_1/2 + \sum_{k=K_1}^{\infty} a_{n_k} \le \varepsilon_1$$

choose N_1 so large that $j \ge N_1$ implies that for each $i = 1, 2, \ldots, M_1$, K_1^{-1} $\binom{n_k}{j} \le \varepsilon_1/2$. Such an N_1 can be chosen in the following way: for each fixed $i = 1, 2, \ldots, M_1$ select N_{1i} such that $j \ge N_{1i}$ implies that $\binom{n_k}{ij} \le \varepsilon_1/2K_1$ for $k = 0, 1, \ldots, K_1^{-1}$, then set $N_1 = \max_{0 \le i \le M_1} N_{1i}$. Next $h^{(2)} = 1_{\{N_1\}}$ is defined. We note that for $0 < i \le M_1$ we have that

(2.6)
$$(\sum_{k=0}^{\infty} T^{*}^{n_{k}} h^{(2)})_{i} = \sum_{k=0}^{K_{1}-1} t^{(n_{k})}_{i,N_{1}} + \sum_{k=K_{1}}^{\infty} t^{(n_{k})}_{i,N_{1}} \leq \varepsilon_{1} ,$$

while for $i > M_1$ we have

(2.7)
$$(\sum_{k=0}^{\infty} T^{*n_k} h^{(2)})_i \leq \sum_{k=0}^{\infty} a_{n_k} \leq 1 + \delta/2 .$$

Combining the above with (2.4) and (2.5) we see that for all i,

 $(\sum\limits_{k=0}^{\infty} T^{*}^{n_k} (h^{(1)} + h^{(2)}))_i \leq 1 + \delta/2 + \varepsilon_1 \quad \text{(there are two cases: } i \leq M_1 \\ \text{and } i > M_1). \quad \text{Assuming that } K_{r-1}, M_{r-1}, N_{r-1}, \text{ and } h^{(r-1)} \quad \text{have been} \\ \text{defined, we define } K_r, M_r, N_r \quad \text{and } h^{(r)} \quad \text{in the following way: } K_r \quad \text{is such that } K_r \geq K_{r-1}, \quad \text{and } \sum\limits_{k=K_r} a_{n_k} \leq \varepsilon_r/2. \quad \text{In analogy to the case } r=1, \\ M_r \quad \text{is defined in such a way that } M_r > M_{r-1} \quad \text{and } i > M_r \quad \text{implies that} \\ t \quad i, N_{r-1} < \varepsilon_r/2K_r \quad \text{for } k=0,1,\ldots, K_r-1. \quad \text{It immediately follows that} \\ \text{for } i > M_r \quad ,$

(2.8)
$$\sum_{k=0}^{\infty} t_{i,N_{r-1}}^{(n_k)} = \sum_{k=0}^{K_r-1} t_{i,N_{r-1}}^{(n_k)} + \sum_{k=K_r}^{\infty} t_{i,N_{r-1}}^{(n_k)} \leq \varepsilon_r/2 + \sum_{k=K_r}^{\infty} a_{n_k} \leq \varepsilon_r .$$

We next define N_r in such a way that $j \ge N_r$ implies that for each $i = 1, 2, \ldots, M_r$, $\sum_{k=1}^{K_r-1} t_{ij}^{(n_k)} \le \epsilon_r/2$. Indeed, for each fixed $i = 1, 2, \ldots, M_r$,

select N_{ri} such that $j \ge N_{ri}$ implies that $t_{ij}^{(n_k)} \le \varepsilon_r/2K_r$ for $k = 0, 1, \ldots, K_r-1$, then set $N_r = \max_{0 \le i \le M_r} N_{ri}$. The function $h^{(r)}$ is defined by means of the formula $h^{(r)} = 1_{\{N_r\}}$. For $i \le M_r$ it follows that

(2.9)
$$(\sum_{k=0}^{\infty} T^{*}^{n_k} h^{(r)})_i = \sum_{k=0}^{\infty} t^{(n_k)}_{iN_r} \leq \varepsilon_r ,$$

while for i > Mr;

(2.10)
$$(\sum_{k=0}^{\infty} T^*^{n_k} h^{(r)})_i = \sum_{k=0}^{\infty} t^{(n_k)}_{iN_r} \le \sum_{k=0}^{\infty} a_{n_k} \le 1 + \delta/2 .$$

We assert that the function $h=\sum\limits_{r=1}^{\infty}h^{(r)}$ is the required function. It is only necessary to check that $\left|\left|\sum\limits_{k=0}^{\infty}T^{*}^{k}h\right|\right|_{\infty}\leq 1+\delta$. Let r be a given positive integer. For convenience in notation, set $g^{(r)}=\sum\limits_{n=0}^{r}h^{(n)}$. For each i, it is clear that

(2.11)
$$(\sum_{k=0}^{\infty} T^{*k} g^{(r)})_{i} = \sum_{k=0}^{\infty} \sum_{j=1}^{r} t_{iN_{j}}^{(n_{k})} = \sum_{j=0}^{r} \sum_{k=0}^{\infty} t_{iN_{j}}^{(n_{k})} .$$

The interchange of the order of summation is valid because all terms are non-negative. The following tabulation indicates a bound on the terms appearing in the inner sum of the last double sum. These bounds are a consequence of the construction employed.

From the above array, it is clear that for any i > 0,

Letting $r \rightarrow \infty$ in (2.11) and interchanging the order of summation which is justified because all terms are positive, we obtain that for all

i > 0 $(\sum_{k=0}^{\infty} T^*^k h)_i \le 1 + \delta$, which completes the proof of the theorem.

3. An Example. In this section, we give a simple example of a matrix satisfying the conditions of Theorem 2.1. For our example, we choose the unrestricted random walk on the integers $0, \pm 1, \pm 2, \ldots$ (see [1] p.342,ff.). We map the integers $n = 0, \pm 1, \ldots$ onto the non-negative integers $m = 0,1,\ldots$ by means of the mapping

(3.1)
$$m = -2n$$
 if $n \le 0$ $2n-1$ if $n \ge 0$

The transition matrix $T = [t_{ij}]$ will then have the form

$$t_{0j} = 1/2 j = 1,2$$

$$0 otherwise$$

$$t_{1j} = 1/2 j = 0,3$$

$$0 otherwise$$

$$t_{ij} = 1/2 j = i-1, i+1$$

$$0 otherwise .$$

We note that this matrix is doubly stochastic. Moreover, this random walk is recurrent (see [4], p. 49). It also has only one closed communicating class. These two facts imply that for every i,j $\sum_{n=0}^{\infty} t_{ij}^{(n)} = \infty$. This

ensures that the operator T on ℓ_1 is conservative in the sense of (1.5).

We next show that the second assumption of Theorem 2.1 is satisfied. Since the n'th power $[t_{ij}^{(n)}]$ of the matrix $[t_{ij}]$ has the probabilistic interpretation that the random walk is in state j given that it started in state i, the rows in $[t_{ij}^{(n)}]$ are binomial probabilities and it is easy to see that

It is well known that

(3.4)
$$\lim_{n\to\infty} {2n \choose n}/2^{2n} = \lim_{n\to\infty} {2n+1 \choose n}/2^{2n} = 0.$$

This shows that all of the conditions of Theorem 2.1 are satisfied.

Bibliography

- 1. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. I. (3rd Edition), Wiley, New York.
- 2. Hajian, A. B. (1965). On ergodic measure preserving transformations defined on infinite measure spaces. Proc. Amer. Math. Soc. 16, 45-48.
- 3. Hajian, A. B. and Kakutani, S. (1964). Weakly wandering sets and invariant measures. Trans. Amer. Math. Soc., 110, 136-151.
- 4. Karlin, S. (1966). A First Course in Stochastic Processes. Academic Press, New York.
- 5. Neveu, J. (1965). Sur l'existence de measures invariantes en théorie ergodique. C. R. Acad. Sci. Paris 260, 393-396.
- 6. Sucheston, L. (1964). On the existence of finite invariant measures. Math. Z. <u>86</u>, 327-336.