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~ ’ Abstract

Hajian [2] showed that ergodic conservative measure preserving point
transformations on infinite measure spaces always admit of a weakly
wandering set of infinite measure. The notion of a.weakly wandering set has
been generalized by Neveu [5] for transformations acting_on Lebésque spaces.
Here we give a Lebesque space analogue of a weakly wanderihg set of infinite
measure on the sequence spaces £, and %_. We do not know whether weakly
wandering functions always exist, but we give sufficient conditions for their

existence with respect to certain operators on 21 and ¢ determined by a

class of positive matrices.
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1. Introductidp.v Let (9,B,u) be a measure space_and let L1 = Ll(X,B,u)

be the spéce of ail B measurable functions £ on Q for which the L1

norm of £, fo|fldu, is finite. We assume that there is a positive linear

-operator T acting on Llﬁ for which ||T|| < 1. We denote the dual of T

by T*; T* acts on functions g e L_ and is defined by the relationship
. ) F * = - .
(1.1) | _ . jg £ T*g du fg TF « g du

.for' f el

1> 8 € L. We let the sum X T"f be denoted by T_f. Throughout
0 S

this paper, we assume that all operators are conservative; that is, T_f (x)

has the value 0 or « for each non-negative function f ¢ Ll.

\

While studying ergodic conservative measure preserving point transforma-
tions T on @, Hajian and Kakutaﬁi [3] introduced the notion of a weakly
wandering set; i.e., a set W e B such that there is a sequence of integers.
0=n,<n, <n, < ... for which the images of W wunder Tt are all disjoint:

0 1 2

n. n, , ‘
trtwntd ws ¢, if i # j. Hajian and Kakutani showed that the existence

of a weakly wandering set of positive measure is equivalent to the existence
of an equivalent finite invariant measure which is a basic problem in ergodic

theory. This result of Hajian and Kakutani has been extended to L, operators

1

by Neveu [5]. A function h e L, with norm [|h||_ = ess sup |h| <1 is

weakly wandering if and only if for any 6 > 0, there is a sequence

0=n, < n, < ... such ‘that
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e © q,
(1.2) 1T T "nl], <1+
' i=0

For ergodic conservative measure préserving point transformations = “on

2, Hajian [2] showed fhat if yu is an infinite (o-finite) measure, then
there exists a weakly wandering set W of infinite measure. We also note

that in case u(2) = 1, Sucheston [6] showed that for’ergodic conservative
point transformations +t which admit no equivalent finite invariant measure,
for any € > 0 there exists a weakly wandefing set W of measﬁre u(W) > 1-e.
Here, we construct function analogues of Hajian's weakly wandering set of
infinite measure. However, our results are not cohpletely general; we restrict

our attention to operators on £ (defined below) determined by certain

1

matrices. It would be interesting to see these results in a general setting,
We now let @ = {1,2,...}. The g -field B is the set of all subsets
of © and u is assumed to be the counting measure ascribing to each set in

B, the number of its points. The space 21 is the set of all absolutely
I |£] <= The dual space %_ is the

convergent sequences {fi}?
i=1

i=1 :

‘'set of all bounded sequences {gi}:=1: Igil <M i-= 1,2,..; for some fixed

M. Our operators T and T* acting on 2 aﬁd' 2., are defined by an

1

infinite matrix T = [tij] which transforms a function f 5'21 with

f =»(fi):=1 into a function Tf whose i'th coordinate (Tf)i is given by

f. t.., .

.3 - (T); = ; tsy
| 1

j

fie~138

It may be easiiy varified that the dual operator T* of T, determined by
(1.1), maps a function g = (gi):=0 e L into a function T*g whose i'th

coordinate is given by



—
~

(1.4) (T*g), =
J

e~ 38
o+
Q

, 1573

We remark that the action of T* on £ _ may be easily described by -
considering elements g of f_ as column vectors and noting that T*g
is obtained by matrix multiplication of g by T on the left. Similarly

T acts on £&. by a matrix multiplication on the right. We shall use the

1
. symbol T to denote both the matrix [tii] and the %, operator determined

by [t

ij]" When tij >0 for ifj =1,2,... the operator T »is Rgsitivé:

T£>0 if £>0. If ] tj; <1 foreach i=1,2,..., then the matrix
j=1 o
[tij] is sub-stochastic; if moreover, Z tij <1 for each j =1,2,...,
' S i=1 .
then [tij] is doubly sub-stochastic. It is easy to see that if [tij] is

sub-stochastic, then the operator T maps 21 into 21 and

fITf]du < [|£f|du for any f e 85 i.el, |IT|| < 1. We further remark that
in case [tij] is doubly sub-stochastic, the operator T acting on 21

actually may be extended to £_ by (1.3). Thus T is both an zl and 2

contraction. For n = 0,1,..., let ti?) i, 3 =1,2,... be the entries of
the n'th power [tij]n -of the matrix [tij]. Throughout this paper, we
assume that the operator T is conservative which means that for any

f =-(fi)i=1 € 21 with fi >0, i =‘1,2,... and any j > 1,

(1.5) B (S PRI NS S tM g or e
' J n=1 i=1 2

This assumption is not difficult to varify for certain classes of matrices.

»

2. Main results. In this section, we construct a function h which is,

in two ways, analogous to a weakly wandering set of infinite measure: (1) the

set on which h > 0 has infinite measure and (2) [h= Ehi = «», It would



seem that the result should extend to general operators, but the author has
not been able to obtain such an extension.
Theorem 2.1. Let [tij] be a doubly sub-stochastic matrix which

determines a conservative operator on & Suppose further that

1°

lim inf sup tg?) = 0. Then for any 6§ > 0, there exists a function h whose
n-—-+o« 1,]

coordinates are O0's and 1's and a sequence of integers 0 = n. < n.< ...
’ , 0 1

such that h has infinitely many 1's and

w n
(2.1) [ T “hl] <1+s.
- k=0

Proof. Let a = sup tgg) , then since 1lim inf a = 0, there is a
1,) -
. [~}
subsequence. 0 = n, < n, < ... such that X a <1+ 8/2. Let e,

i=1,2,... be a sequence such that €5 >0 forall i>1 and

o0

n
) e, < 8/2, Since both the row and column sums of [éig] are convergent
i=1 ~*

series, the following coﬁditions hold:
(2.2) ’ 1im ™. 2o
ive )
for all fixed n,j and
(2.3) @, -
for all fixed n,i., We shall construct an infinite sequence of vectors
h(l), i=1,2,... for which only one coordinate is one and all others are
zero. The vectors h(l9 will have the further property that no two of them

have a one in the same position. The required function will then be

n= 3 h). set N =1 and define h(P =1 (the indicator function



Tof the singleton set {NO}). Then

. o n, - (n ) ©
@4 I mERM sy e <] a <1v8/2.
k=0 i k=0 , k=0 'k
Let K., be such that z a < e,/2. Since for each 'n, lim t(n). = 0,
1 k=K nk —- 1 . (nk) il
we can find an M1 such tﬁat i»> M1 implies that til :_el/ZK1 for
k =0,1,..., K, - 1. Such an M1 is found by determining M1k such that
(n) * :
k . . _ S
til f_el/ZKl_ for i > Mlk and setting Ml =  max Mlk" Combining
Oikf_Kl“l
estimates we find that for i > M1
) K, -1 |
© (n) 1 (n,) ® (n,) . e
(2.5) ) tilk = ) t.lk + tilk e /2 y a <
k=0 k=0 k=K, k=K, Tk
choose N1 so large that j :_Nl implies that for each i = 1,2,..., Ml’
U e |
t.. < €.,/2. Such an N can be chosen in the following way: for
k=0 Y - 1 1
each fixed i = 1,2,..., M1 select Nli such that j Z-Nli implies that
tij f_el/ZKl for k = 0,1,..., Kl- 1, then set N1 = max Nli' Next
. 0<i<M
—1
h(z) = l{N } is defined. We note that for 0 < i E-Ml we have that
1 . :
: K,~-1
o n 1 (n)
(2.6) (] mEa@y =] oK .
k=0 k=0 1
(n, )
P Loe N se
k=K1 71

while for i > Ml we have



- N n
(2:7) (3 mFa®y <
k=0

! oa <1+38/2
k=0 "k

0

Combining the above with (2.4} and (2.5) we see that for all i,

(there are two cases: i <,M1

w n
() T* k (h(l) + h(z)))_ <1+ 68/2+c¢
k=0 1= 1

' . . (r-1) '
and i > MI)' Assuming that Kr-l’ Mr—l’ Nr-l’ and h have been

defined, we define Kr, Mr’ Nr and h(r)' in the following way: Kr is

[¢]

such that K > K

T

-1 and 2 a f_er/z. In analogy to the case 1 =1,

k=K "k
Mr is defined in such a way that Mr > Mr-l and i > Mr implies that
() , . '
t . <e /2K for k =0,1,..., K -1. It immediately follows that
1’Nr-1 ¥ r T }

for i > Mr ,

K -1

OIS o

toy Lt L tiy  Sel2s Y a <e
a1 k=K Tr-l k=K_

_ © ()
(2.8) t. - =
kZO LNk

o~

0

We next define Nr in such a way that j :_Nr implies that for each

K -
. . I 4 1 (nk)
i=1,2,..., M, ) t .. < e /2. Indeed, for each fixed i = 1,2,...,M_,
. o0 ij—"r r
(i, )
select N_. such that j > N_. implies that t.. < e /2K  for
Ti R ! ij -7
k=0,1,..., Kr-l, then set N_ = max N_.. The function h(r) is defined
- 0<i<M -
o -7
by means of the formula h(r) = l{N 3 For i :_Mr it follows that
, r .
- ) n, o (n)
(2.9) (] 1K h(r))i =7 t k N € o
' k=0 k=0 1 T r .

while for i > M.



o © n w . (n) ©
(21000 (7 X a2 7 ¢ K <7 a <1482
, i iN_ - n, -—
k=0 k=0 r k<0 "k
We assert that the function h = h(r) is the required function. It is
r=1 :
@ n
only necessary to check that || J T* hHoo <1+48. Llet r be a given
' k=0 :
| NN NG ) S
positive integer. For convenience in notation, set g = 'X h . For
' n=0

each i, it is clear that

© n " e r  (n) r « (n)
k (r k k
RIIN CL G VR N N S B
k=0 k=0 j=1 j j=0 k=0 j
The interchange of the order of summation is valid because all terms are
non-negative. The following tabulation indicates a bound on the terms

appearing in the inner sum of the last double sum. These bounds are a

consequence of the construction employed.

S 0<isM Mo<icM,  My<i<Mg ... M <i<M L M o<i

_ 1 1 2 2 -3 °"° T+l T+l

() | |
Lo tiNO 1+ 6/2 € € .o € €
® (nk)
Lo tiN1 € 1 + 68/2 €, cea €, €,

(2.12)

I

Lo tiN2 €y . €, 1+ 68/2 .. €2 €4

> () - =
kZO tiNr € €p €. veo 1 f §/2 €r+1

From the above array, it is clear that for any i > 0,



ﬁétting r > » in (2.11) and interchanging the order of summation which
is justified because all terms are positive; we obtain that for all

i»>0 () T* k h)i <1 + §, which completes the proof of the theorem.
k=0 - ’ ' :
3. An Example. In this section, we give a simple example of a matrix

satisfying the conditions of Theorém 2.1. For our exémple, we choose the
unrestricted random walk on the integers 0, + 1, + 2,..,. (see | 1] p.342,ff.).
We map the integers n = 0, + 1,... onto the non-negative integers
m= 0,1,... by means of the mapping

-2n if n<ao

(3.1) m = .
2n-1 if n>0

The transition matrix T = [tij] will then have the form

toj = 1/2 j =1,2
0 otherwise
t,, = 1/2 j=0,3
(3.2) 1]
0 otherwise
tij = 1/2 j = 1i-1, i+l
0 otherwise .

We note that this matrix is doubly stochastic. Moreover, this random walk
is recurrent (see [4], p. 49). It also has only one closed communicating

class. These two facts imply that for every 1i,j Z ti?) = m; This
. = 0 d

ensures that the operator T on 21 is conservative in the sense of (1.5).



< We next shéw that the second assumption of Theorem 2.1 is satisfied.
Since the n'th power [tg?)] of the matrix [tij] has thehprobabilistic'
.interpretation that‘the random walk is in state j given that it started
in state i, thé rows in [tg?)] are binomial probabilities and it is

easy to see that 

(3.3) sup M (Zn)/zn if n even
>E T n
1] )
(22”)/2“ if n odd .
It is well known that
(3.4) 1n (M2 < 1 2P - o
R | U |

This shows that all of the conditions of Theorem 2.1 are satisfied.
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