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INTRODUCTION

When an experimenter encounters a problem of comparing k
categories such as k new drugs, k kinds of wheats or k new
machines, efc., the classical tests of homogeneity are usually
not sufficient to answer the various questions. His méin'
interest is not only knowing if £hose categories are identical
‘but, which category (or categories) is the best or the worst
for his speciai purpose. Similarly, to a gambler, the question:
of most congérn is which number on the roulette wheel comes up
most frequently and not so much the question of whe;ﬁer the roulette
Qheel is fair or not. All these and related important practical
pfoblems constifute the investigations in the theory of selection
and r#nking.’

In the theory of selection and ranking procedures, there are
two basic apprdaches to the problem. One is called the 'indifference
zone' appreach and the other is célled the 'subset selection'
approach. In the former approach, uSually the experimenter
specifies a value d before the experiment, which is some sort of
difference befween the parameters of the best and second best
population. This is called the indifference zone. The so-called

best and the second best populations are to be defined in terms of



some desirable characteristic by the experimenter. Usually,
these are the populations associated with tﬁe largest (smallest)
and the second largest (second smallest) paramefers which are
under consideration. In the simplest case this approach leads
to the selection of a unique population. When the population
selected is truly the best, it is célled a correct selection
(CS). The probability of a CS is at least p*(i— <P*<1), a
preassigned value, whenever the difference between the best and
second best is at least equal to d. When the indifference zone
is not assumed by the experimenter, he can use another app:oach,
the subset selection approach. In this situation, the popula-
tions may have the most general configuration of.the‘parameters.
The usual procedures select a non-empty subset of populations.
The number of the populations in the subset selected is usually
a random variable'taking values between 1 and k inélusive. In
this case one requires that the probability that the subset
selected contains the best (or a best) population is at least
P*. Details of this approach may be found in Gupta [21] where
references to the other earlier papers are given. A rather
complete reference to literatures in the field, especially for
sequential procedures, is pfovided by Bechhofer and Kiefe; and
Sobel [6].

This thesis consists of three chapters. In Chapter 1, some
classes of sequential selection procedures are constructed. The

formulation is in terms of the indifference zone approach.



Procedures for both binomial and normal populations are derived.
Also a class of procedures is constructed for the binomial popula-
tions in the case when the value d is positive but not specified.
For normal populations, a sufficient condition is given for the
construction of sequential procedures so that in a finite number
of stages a unique population is selected under the subset
selection formulation. The P*-condition is satisfied for all cases.
The confidence interval estimators for the largest parameters for
both the binomial and normal populations are also obtained. A
class of sequential procedufes for the selection of the stochas-
tically smallest (largest) population is derived under some mild
conditions.

In Chapter 2, k given normal populations are partitioned into
two subgroups with respect to a control so that one group is worse
and the other group is better than the control. The partition is
in terms of population means (univariate case) and the generalized
variances (multivariate case), respectively. For the former case
Bayes and empirical Bayes procedures are derived.

In Chapter 3, the k-armed-bandit problem is formulated as a
selection probiem. The solution is not necessarily restricted to
the binomial populations. The problem is alsq studied in terms of
a game. A maximin strategy is derived and an asymptotic optimality
property is shown to hold. Some numerical computations for the

‘maximin strategy are given for normal and binomial populations.



CHAPTER 1

SOME CLASSES OF SEQUENTIAL PROCEDURES

1.0 Introduction

In the problem of selection and ranking, some sequential
procedures have been proposed and studied. The purpose of using
a sequential procedure is not only to reduce the costs of samp-
ling, but, in some cases, it achieves a goal which can not be
achieved by any kind of fixed-sample size procedure. For instance,
in the problem of selecting the population corresponding to the
largest mean among a finite set of normal populations with a common
unknown variance, no fixed sample size procedure would satisfy the
P*-condition if we use the indifference zone approach. Accordingly,
studies of sequential procedures are important in ranking and selec-
tion problems.

As fixed sample size procedures in-ranking and selection
problem, there are two formulations of sequential procedures, that
is, indifference zone formulation and subset selection formulation.
The sequential procedures of Paulson [41], [43], Bechhofer and
Kiefer and Sobel [6] Robbins, Sobel and Starr [49] and others
belong- to the former formulation while the procedures of Barron

and Gupta [4] belong to the latter formulation.



In this chapter we review the types of known procedures.

- We treat the cases when the given populations are respectively
binomial, normal and nonparametric for some formulations of
praoblems. It is emphasized that the procedures proposed in
this chapter treat the case where the conditions imposed are
somewhat between indifference zone formulation and subset
selection formulation. More exactly, it treats the case under

a sole assumption that the difference between the largest and
the second largest parameters is positive but unknown . Further-
more, a sufficient condition is given for these procedures so
that in finite stages a unique populatioﬁ will be selected and
the P*-condition is satisfied under the subset selection formula-
tion. Some comparisons among rules in terms of the expected
sample size required are investigated. Confidence interval for

the largest parameter is also studied.

1.1 Various Types of Sequential Rules

In the selection and ranking problems, sequential procedures
which satisfy the P*-condition can be classified as one of the
following four types. Before we state the various types of rules,
we introduce some definitions and notation .

Let LWL PRI be k (k > 2) given populations such that m
has cdf F(x;Oi); where Qi is a real-valued parameter, i=l,2,...,k.
We say m is the best if Oi is the largest (or the smallest) among
k parameters 0

,Qk. Let Xir denote the rth random observa-

1,02,...

tion from ni-for i=1,2,...,k, r=1,2,... . Let {d(n); n=1,2,...}



denote a sequence of positive real-valued numbers. Let
Ti(xl,xz,...,xn) denote a statistic of the random variables

X .,Xn for i=1,2,...,k. Then we have the following

1’X2"'
types of rules.
(a) Elimination Typé Rule

At the first stage, a certain number of observations are
taken from each population. According to these observations,
some comparison is made among them and as a result, some popula-
tions are considered ''bad" and are rejected. For these popula-
tions that are rejected, we do not take any further observations -
from them and no comparisons will be made with them any more. At
each stage, a certain number of observations are drawn from those
populations which are not rejected in the preceding stages.
According to all these observations which are sampled from the
remainingpopdlations a comparison is made among them and as a
result, some populations will be rejected. The sampling and
comparison procedures continue until only one population is left
which is considered to be the best. More generally, iet
{ni; i=1,2,...} denote a sequence of positive integers and
{hi; i=1,2,...} denote a sequence of functions such that hi(-)
with s variables is a Lebesgue-measurable function on R>. Then,
at the rth stage, n, observations are drawn from those t popula-
tions, say, “il’ﬁi

,m., which have not been rejected in the

PASL R | 4

preceding stages. Let Tij denote the statistic from "ij’ then,

reject “ij if



T.

. <h_ (T
i —'r

il,'l‘.lz,...,Tit)—d(r),

for r=1,2,... . The procedure of sampling continues until

a unique-population is leftl A procedure which follows the
above sampling scheme and stops in finite stages is said to
belong to the elimination type. In most cases, we take n, to

be a fixed positive integer and Ti(xl"°"xn) as a sufficient

statistic for'Oi; hi(') is some fixed function, say, h(.) for

each i=1,2,... . For example, in Paulson [41], n, 1,

1

n
T, (X} Xy5me X ) = izl Xio hy(Y)0Y5,000Y) = max{Y,,Y,,...,Y.]}

and d(n) = a,-n\ where a, and X are given such that 0 < A < A,

a, = [02/(A-X)] log[(k-1)/a] for given‘A,o and a. In Paulson

[43], n, is chosen according to a random observation from a

Poisson pbpulation with a preassigned positive integer-valued
parameter J. Ti(xl,xz,...,xn) is the number of successe; minus

~ the number of failures in n tosses of observations

xl’x2f""Xn using the coin LI hi(Yl’YZ""’Ys)=maX{Y1’Y2"’"Ys}’
d(n) = -[(log a/log N+nA(N)] with A(W=J[d(A2-1)- (A-1)°1/

Q@ log », Aris a parameter to be chosen béfore the experiment such
that 1 < A < (1+d)/(1-d) for given d. In Nomachi [38] n, = 1,

hi(Yl,,..,YS) = min{Yl,Y ,Ys}, -d(n) = K(A) + nX where A is

g2
some parameter to be chosen before the experiment and K(}) is some
given function of .

We say a éequential rule is closed or truncated if there exists

some positive integer M, say, such that the process of sampling does



not exceed M stages, i.e. a decision would be made no later
than M stages. Procedures described in [38], [41], [43] are
all- closed.
(b) Ail Sampling Type Rule

At each stage, a certain number of observations are drawn
from each population. The sampling procedure continueé until
a certain condition is satisfied and as soon as the sampling
procedure terminates, a decision (selection) is made. More
exactly, let {hn (YI,YZ,...,Yk); n=1,2,...} be a sequence of
measurable functions on Rk and let {Dn(k,d,P*), n=1,2,...} be
a sequence of.functions of given parameters k,d and P*. At

stage r, n. observations are drawn from each of the populations

Let Tir denote a statistic based on all preceeding observations

drawn from.ni. “Then, the rule calls for termination of sampling

if

S :h

r r(T

lr’TZr""’Tkr) :_Dr(k,d,P*) holds.

When Sr holds at stage r, in most cases we select .
which is associated with T[k] as the best where T

In most cases,

T[k] is the ordered values of Tlr’TZr""’Tkr'

Tir is a sufficient statistic for the parameter of interest.

The Bechhofer-Kiefer-Sobel procedure [6] (BKS-procedure)

o n k-1
assumes T, (X;,X,,...,X ) = ] Xij0 hp(YYpu ) = 1
j=1 i=1
2
exp(-dZ./c”) where Z. = Y., .- Y,.. and Y <Y <Y
pl-dz;/o7) 7 YT Yy 2™ Y Sy S Vg
are the ordered values of Y,,bY Y, . Dn(k,d,P*) = (1-P*)/P*

1*¥geees Yy

(11 <2y &

<



and n, = 1; This procedure treats a selection problem for
giﬁen k normal populations with a common known variance using
the‘indifference zone approach. |

The RobbinséSobel-Starr procedure [49] (RSS-procedure)
which selects a unique population with the largest mean of k
normal populations with a common unknown variance using

indifference zone approach, assumes Tin(xl,xz,..., Xn)

n
= ) - 732 where X = %
i=1 * i

: B -1
X., h (Y, Yp,-ees Y) = [k(n-1)]7" -

1

ne-13

k
y 2 Yi’ Dn(k,d,P*) = Cn where C = d2/h2 and h is the solution
i=1

of the equation f @kbl(y+h) de(y) = P*. &(x) denotes the

-00

standard normal cdf. For special values of P*, h has been
tabulated in Gupta {20]. Alson, = 1. The BKS and RSS
procedures are not closed. The inverse sampling procedures of
Panchapakesan [39], Sobel and Weiss [52] also belong to this
type.
(c) Non-Elimination Type Rule

At each stage, a certain number of observations are taken
from each population and a population ., say, is either
considered rejected, accepted, or no decision is made. As soon
as w, is considered either rejected or accepted, ™ is called
tagged and its rejection or acceptance is determined although
at each stage observations are still drawn from . The
sampling procedure terminates as soon as each of the k

populations is tagged.
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Let {In; n=1,2,...} be a sequence of intervals of the real
line R. Let L = {xeR|x<yV YEI‘nY} and Un = {zeR|z>yvy yeIn} for
n=1,2,... . Let {ni; i=1,2,...};be a sequence of positive integers.
Let Tir (Xl,Xz,..., Xn) denote a suitably chosen statistic of
observations from ™. At stage r, n_ observations are drawn

from each population and let Tir = Tir(xl’xz""’ an) denote

the statistic based on n, observations from - If ™ has
not been tagged in the preceeding r-1 stages, then,

accept m. if Tir € Ur’

reject n, if T, e L_,
, i ir r

make no decision if T._ ¢ I
ir T

Let S(t) = {Tri|Tir € Ir for r=1,2,...,t}. Then, we continue
sampling from each population as long as S(t)$¢, for t=1,2,...
Of course, the. choice of {In;n=1,2,...} is not arbitrary. We
need to choose {In} so that P{S(t) = ¢, t<e} =1,

It should be pointed out that when I =[a ,+ =), L = (-=,a ),

U_ = ¢ where a = h_(T. ) for some t,l<t<k, the

... T,
n ’ n
n 11n 1t

procedure is still different from the all sampling type because
of the different sampling scheme. However, if, we take

In = (—w,bn) and Un = (bn,+w), Ln = ¢, where bn = hn(Tln,TZn""’
Tkn) and the sampling procedure terminates as soon as one Or

more populations are tagged, then the rule belongs to (b), the

all sampling type.
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Barron [3] and Barron and Gupta [4] gave a class of
procedures of this type using subset selection approach.
Their procedure selects a subset of k normal populations with
known variances such that the probability that the selected
subset contains the population associated with the largest
mean is at least P*, (% < P* < 1), a preassigned value. The
procedure assumes In = (6n-y1,6n+y2) where 8e(o0,1) and Yy and
Y, are positive integers. Based on Gupta's procedure R of
(1.10) in [21] for n = 1, a new random variable Yij is defined
such that Yij = 1 if the jth observation from ™ is selected
according to-R and Yij = 0 otherwise. The selection_problem
is thus_transforméd into a random walk problem by this
construction of new random variables. It is important to
note that when Ge(Pk_l,Pk), there exists a y=y(6,e) such that a
procedure with In = (6n-y, én+y) selects the best population
with probability at least l-e and selects the next best with
probability at most e assuming that Pl’pZ""’ Pk are given
where P. is the probability that the i pest is selected
according to R for n = 1.

This type of rule seems ﬁore economic than that of (a)
in the sense that at each stage, it permits not only rejection
but also acceptance so that it takes shorter time to stop.
However, it seems possible io reduce the costs of sampling
from those p0puiations which have been tagged. [3] and [4] are

the only known procedures belonging to this type in selection

problems that have been investigated.



(d) Acceptance Type Rule

Contrary to the elimination type, it is desirable to
construct a class of procedures which draw samples from each
population at each stage until one or more populations are
accepted. This type of rules uses, of course, the subset
selection approach. More specifically, let tJn; n=1,2,...}
be a sequence of right half line intervals and {hn(Yl,YZ,...,
Yk); n=1,2,...} be a sequence of measurable functions. At
stage T, n_ dbservations are drawn from each population. Let
T,, denote a sufficient statistic for 6; based on all observations
drawn from s Then M, is accepted, for the first r if
Tir € Jr’ for r = 1,2,... . The sampling procedure terminatés
as soon as at least one population is accepted. For instance,

let TSR be k normal populations with common known

oy M

variance. We want to select a subset which contains the best

population with probability at least P*, (% <P* < 1), We

n
may define Tir(xl’XZ""’ Xn) = .Zl Xj where Xj are iid from
k = k
T . hr(YI’Yz""’ Yk) = iz @ Y[i] where @, >0 and 121 @ = 1

for r = 1,2,... and Y[l] f-Y[Z] 53"5-Y[k] are the ordered

values of YI’Y Y. . Take Jr = (hir(Tlr’TZr""’ Tkr),+w).

greees Yy
We need to define {hr(~), r=1,2...} and {air’ i=1,2,..., k,
y=1,2,...} so that the P*-condition is satisfied and the

expected selected size is minimized. When ™ is a coin with

12
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probability of tossing a head pi,i=1,2,...,k we may define Ti(xl’XZ""
Xn) as the total number of heads of n tosses of‘ni. Let {C(n,t);
n=1,2,..., t=0,1,2,;.J be a positive monotone increasing

k

sequence with respect to each index. Define Tn'= 2 Tj(Xl,...,Xn).
j=1

At stage r, accept ™. if for the first time that

T, Xy Xpseees X ) 2 C(x,T )
T T
where Tn is the total number of heads of all tosses of k

T

coins, r=1,2,... . When this procedure is single-stage, this

becomes the Gupta-Nagel procedure (GN Procedure) of (2.4) in

[24]. The values {C(1l,n);n=1,2...} are tabulated in_[24].

It should be pointed out that when T < k (T is the total |

number of heads'of all tosses of k coins), the GN procedure

selects all coins as best. Therefore, when k is rather large

and Py is samll for each i, the single-stage procedure is

quite undesirable. Furthermore, when k is large and the confir-

uration is éf slippage or equally spaced type, this type of

rule seems more favorable than that of the elimination type.
Alllthese four types have their own features. For the

same formulations of problem, they may lead to different

types of rules. Also, procedures of the same type may be

used as solutions to different formulations of problems.

For instance, the Paulson procedure [41], an elimination type,

and BKS procedure [6], an all sampling type, are both designed

for the indifference zone formulation. The Barron-Gupta
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procedure [4],.of non-climination type, and the procedures
presented in section 1.3, of climination type are both
designed for the subset formulation. Comparison can be made
between two procedures of different types, as the comparison
made by Perng [44] in terms of the expected number of observations
needed to terminate the sampling procedure when the P*-condition
is satisfied.

In the following, we investigate'some classes of procedures

which belong to the elimination type.

1.2 Sequential Procedures for Selecting the Best Coin
A. Notation and Assumptions

Let , 7, be k coins and X,,, X ... be

1’ 1T2,... k il? i2?

independent Bernoulli trials of tossing L with P(X.i= 1)

: Xi"
1 J

He~—3 =

= 1-P(Xi1= 0) = p; for i = 1,2,..., k. Let Sin = ;
It is known that Sin are independent with binomial distribution
B(n;pi) for each i=1,2,...,k. We assume 0 < Pi < 1 and

assume without loss of generality that p[k]= pk where 0 < P[l]

A P[Z],i P[3) 53..§_p[k] are the ordered values of P,, P,,..., Pk.

For a given value d, 0 < d < 1, we assume P[k] - p[k-l] > d.

For given P*, %-< P* < 1, we use o = (k-1)/(1-P*) throughout

k

selected and by an incorrect selection (IS) we mean some m

this chapter. By a correct selection (CS) we mean w is

other than M is selected. Using a rule R (defined below),

let N denote the stopping variable of R and let Sy denote the
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total number of successes in N tosses of L if R selects e
Let {c(n);n=1,2...} be a sequence of positive nuﬁbcrs.

By sequential sampling of k coins, we need to select a
unique coin corresponding to p[k] . We do not know. the correct

pairing between p[i] and ﬂj.

B, A Class of Procedures R(no;c(n))

Let n, be a positive integer. A selection rule R(no;c(n))
is defined as follows.
(i) At the first stage, n, observations are drawn from each

coin and we reject m if

Sino < max E%EB - c(no)f
o j=1,2,...,k o]
Let T1 denote the set of coins which are not rejected at the
first stage and let il denote the number of coins in T,. If
tl = 1 stop sémpling and select the unique coin in T1 as best.

Othexrwise, take one more toss of each coin in T The sampling

1
procedure stops as soon as all but one coin are rejected.
(ii) 1In general, at stage r, let Tr—l denote the set of coins

which are left in the preceeding r-1 stages. Take one more toss

of each coin and we reject L if

Sino+r-1 S.,no+r-1
—— < max - c(n_+r-1)
n°+r-1 jeT no+r-1 o]

r-1



Now let Tr dénoté the set of coins which are left and let t.
denote the number of coins in Tr‘ If tr=1’ Qg stop sampling
and select the unique coin in Tr as best. Otherwise, continue
sampling,

Let R(no,nl;c(n)) denote a closed (truncated) sequential
rule which operates as R(no;c(n)) except that the stages of

sampling do not exceed n -no+1 (nlzpo). And at stage n,, one more

1
toss is taken from each coin in T and if t > 1, we select m, if
1 1
S.(n,-n _+1) : Sj (n,-n_+1)
iv'1l o = max 1 "o
nl-n0+1 jeT nl—n0+1
nlr'l

If a tie occurs, we select'a coin by a random mechénism. We

note that {no,nl,{c(n)}} uniquely defines R.

Lemma 1.2.1 For givend, 0 <d < 1, if.n1 is such that

c(nl) < d, then,
- n

S
PUIS|R(L,n 5e(m)} < (k-1) ] [p{|_§£ _»pkliccn)/z}

n=1

S.
+ p{—%—“— Py > <) /537,

Proof: According to R(l,nl;c(n)) it is clear that an incorrect

~selection occurs only if there is some i¢k and some n l<n<n, -1

1
Skn Sin 3
such that - i c(n) or there is some jtk such that
kn1 iny
< Therefore, we have




- s, S,
(1.2.1)  P{IS|R(L,n e} < P{—nkﬂi—;ﬂ - ¢(n) for some n,

S S.

kn1 DL
l<n<n,-1 for some ieT } + P{—— < - for some
-1 n-1 nl - n1
jeT 4}
n; -1

Let A.1n and Bj denote respectively the following events

A —{S;].<-'1<§—i—"-c(n)} for 1 <n <n,-1

in  "n - n - =717
sknl Sjn1

BJ‘—'{n'f_nl} ’j*k'

By assumption that Pk - Pj‘z_d > 0, we have

Skn 'Sjn
1 d 1 d
BjC{I-—n—l—— Pl 2z UL Tl P23
Since c(nl)‘: d, we have thus
S S. .
kn c(n;) ing c(ny)

!
(1.2.2) BJ.C_{Inl -l 2 }u{nl ‘pji‘""‘z”"}'

There are three possible cases for the event A, .

S .
(i) prk € (—]r'(i& , —;113-), then, we have either

Skn

pk = n 3__ c(_n)l/Z, or,
Skn

%( - < c(n)/z. The latter implies that
n

in _ (n)/2 b sin Skn
" P >¢ p)v ecause —= - —;-‘1 c(n) and P >R



This concludes thét

Skn c(n) Sin
(1.2.3) A.nc{|-—n——-P > /2} U {— - P, x c(n)/2}.

"

i

(ii)v If P, < EEE then, since < < EEE we have
k < Tp » thems since p; <py < 5=, we ha

in Sin Skn

T TP Th T oz > emy/z.

Therefore, (1.2.3) still holds.

S S, S

"8,
. . in kn in kn
(i1i) 1If Py 2 > then, | Dl e T c(n)/2.

This conculdes that (1.2.3) holds true for all cases, It follows

from (1.2.1), (1.2.2) and (1.2.3) that

I k-1 ™M1 k1
P{IS|R(1,n,;c(n))} < P{ U U A,_U U B.}
1 T i=1 n=l M je1
nl-l
(k-1) P{ U
n=l

iA

Ain U Bj} for some jtk

! s S,
kn in
D L PUSE Pyl 2 emy/2) ¢ P(-% -py 2 cn)/2)]

n=

1A

The proof is thus complete.

Kambo and Kotz [29] (Kraft [30] gives a correction) give

the following exponential bounds for binomial probabilities.

Lemma 1.2.2 (Kambo-Kotz-Kraft ). For 0 < p, <1 and c >0

we have



P(—%B-- pi > ¢) < exp (-2nc?- g-nc4).

Let {cl(n);nsl,z,...} be a positive monotone decreasing -
sequence. Define

2k-2

o9 81,4 9, 3
(1.2.4) 4 () = ((2RE L BLE %y 2

Let N be the stopping rule of R(mo,ml;cl(n)), for some positive

integers m_ and ml. Define
SN
(1.2.9 - Ay = - 400
SN
(1.2.6) By = 5+ 4, (V)
(1.2.7) ‘IN = (Aﬁ,Bﬁ), where Aﬁ = max(o,AN) and

B! = min(l,BN).

Then, we have the following

Theorem 1.2.1 If mg,m and cl(n) are so chosen that

1
(1) c(m) <d

ml 2 4 1-p*
(2) ] expl-{nci(n)/2) - (nc (n)/36)] s 35Ty
n=m |
: 0

then,

(a) P{CSIR(mo,ml;c(n))} > P*

b .1
®) prr 3 Py} 2 2Pl

19



Proof: (a) We note that Lemma 1.2.1 holds for R(mo,ml;c(n))

when the summation over n is from m, to m, . Using this fact,

we set ¢ = ¢,(n)/2 in Lemma 1.2.2. It follows from éséumption

(2) we have
P{IS[R(mO,ml;c(n))} < 1-P*,
(b) . Let A = {p[k] € IN} , B = {nk is selected}.

Then, by (a) we have P(B) > P* > 0.

Hence, P(A) = P(ANB) + P(ANB®) > P(ANB) .
By definition of A and B we note that

S ] .
ANB = {|,%§ - pkl < dl(N)} n {vk is selected}.

It follows that Lemma 1.2.2 and definition (1.2.4) of dl(n) that

S
P{IN 3 p[ki.: P(ANB) = P({l—%1 - pk' < dl(N)} n{nk is selected}.
> P* - (1-P¥)
= 2P* - 1.

The proof is’complete.

Remark 1.2.1: (1) The most economical choices of m and m

1
m
are given by m, = min{n|c1(n) <d}, m = min{n| } exp[-ncz(n)/Z)

- (n <t m)/3e))

{A

(1-P*)/3(k-1) if my > m



(2) When m, = mys R(mo,mo,c(n)) becomes the Sobel-Huyett

1
Procedure [51].

We dgnote R1 = R(mo,ml;cl(n)).

When there is some information that all Pi are large or
all are smali, we can improve the given procedure R(mo,ml;c(n))
by using sharper inequalities,

The following bounds are given by Kambo and Kotz [29] and

Kraft [30].

Lemma 1.2.3 (Kambo-Kotz-Kraft) If c > 0 and 0 < p; < 1,

q; = l-pi, then,

Sin
1) P~ - py

v

¢} < exp[-(n ¢©)/(2 pq;) - (4 n c*/3)] if p,>q,

S. ' )
(2) P{-—i—1 - Py ¢} < (qi/c¢53 exp[-2 n cz'— (4 n c4/9)]

|v

if n>3andp, +c< 3

Remark 1.2.2: We note that the following holds

S.
1) P{—%ﬁ - Py < -c} < exp[-(n c2/2 p;9;) - (4 n c4/3)1 if p.<q,

| A

s. |
(2)' P{—%ﬁ - Py -c} < (pi/c/ﬁj exp[-2 n cz— (4 n c4/9)] if n>3

and q + ¢ < .

. 1 . - . e
For given €(0 < € < 3), we define R2 = Rz(ro,rl,cz(n))

where T, and rl'are defined as follows.
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(1.2.8) ‘r_ = minfn|c,(n) < e
r, = max{3, re}
r, = min{n|c2(n) < d}
Define dz(n) to be the positive solution of equation

exp(8 n d'(n)/9),
/A d,(n)

(1.2.9) 4 n dg(n) +6n dg(n) - 3an (1 +

+ 3 n [(1-P*)/(k-1)] > 0

Let N, be the stopping rule of R2 and define
SN2
(1.2.10) | AN2,= N d,(N,)

o
1]

. + 2 d (N,)
N, AN2 2

(1.2.11) I

( B ) where Al = max(o,Ay ),
2AN 2

=
-
H

min(1,B,. ).
2 N,

+

Theorem 1.2.2  Suppose for some (0 < € < z) we have either

p; >4 +¢ forallis=1,2,..., k or, P; <% - e for all

j=12,...,k. 1f {c,(n)} is a positive monotone decreasing



o
o2

sequence such that

Ry 4 4 2 4
) [14———— exp(nc,(n)/18)] exP[-(ncz(n)/z)—(ncz(n)/IZ)]
n=r, /ﬁbz(n) ‘

< (1-P*)/(k-1), .then

(a) P{CS|R2(rO,r1;c2(n))} > p*

®) P{IN2 3 p[k]} > 2P*-1 ,
where TysT) and IN' are defined by (1.2.8), (1.2.9) and (1.2.11).
. ) 2
Proof: (a) Suppose p . 5_%-- e for all i. Then qQ; > Py for all i.

Also for every n > r cz(n) < £ since cz(n) is monotone decreasing

0
and cz(ro) < €. Hence, by (2) of lemma 1.2.3,

S. :
P(-&0. - p; 2¢) < (1/cvn) exp[-2nc2-(4nc4/9)] .
Now for any n (n > 1), take c=c,(n)/2, It follows thus
S, | '
(1.2.12) P(AR - p. > ¢ (n)/2) < (2/YAc,(m)exp[- (nc2(n)/2)-

4
-(nc,(n)/36)].
Again, since q; > p; for all i, it follows from (1) inlemma
1.2.3. that

S, -c,(n)
(1.2.13) P(="-p, < ) < exp[-(ncg(n)/Z)-(nc;(n)/IZ)]

by taking c=c2(n)/2 for n :_ro.



It follows from Lemma 1.4.1 (1.2.11) and (1.2.13) that

T

P(CSIR,) > 1-(k-1) ] [1+(4/¢ﬁb2(n))exp(nc4(n)/18)].

n=r0

. exp[-(nc2 (n)/2)- (ncy (n)/12)].

> P*,

Applying the same argument to the case Py 3_%—+ € we come to

the same conclusion.

(b) The proofs for (b) are analogous to the corresponding proofs
of (b) in Theorem 1.2.1.

This completes the proof.

Remark 1.2.3 (1) In general, cz(n) defined in Theorem 1.2.2 will
be smaller tﬁan cl(n) defined in Theorem 1.2.1 for the same P*,

iand thus the set of suitable cz(n) will contain that. of cl(n) since
sharper inequalities are used.

(2) dz(n) definéd by (1.2.9) will be in general smaller than

dl(p) defined in Theorem 1.2.1. The best dz(n) in (1.2.9) is

the solution of the equation (1.2.9) when equality holds.

(3) Under the assumptions of Theorem 1.2.1 and Theorem 1.2.2,

we take cl(n) and cz(n) as small as possible.

When d is unknown but positive, Paulson [43] and BKS [6]

procedures are not applicable. In this case, m in Theorem 1.2.1

“and r of (1.2.8) may tend to infinity. Let N1 and N2 be respec-

tively the stopping variables of Rl(mo) = Rl(mo;cl(n)) and

Rz(rl) = Rz(rl;cz(n)). We have the following
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Corollary 1.2.1 If Prk)Prk-1] 0, and {c,(n)} and fe, ()} are

two positive decreasing sequences such that

(1) ci(n) -0,1i=1,2

(2) z exp[—(nci(n)/Z)-(nci(n)/Sé)] 5.3% for some. m, > 1
n=m
0

8

(3) [1+(4/¢5b2(n))exp(nc;(n)/IB)]exp[—(ncg(n)/Z)

H o~

n=r

0
-(ej(m)/12)] <

where T, is defined by (1.2.8).

Then,

(a) P(N; <=) >P* i=1,2
(b) P{CS|R1(m0)} > 2P*-]

(c) P{CS|R2(r1)} > 2P*-1 if p; :'% + ¢ for all i or, pj i.% - €

for all j
i

(e) when k = 2, P(N, < =)=1, P(C5|Ri) > P* and P{INi.3 Pra) 2

> 2P*-1, i = 1,2.
Proof: (a) It suffices to show fhe case 1 = 1. Let p[k]—p[k_1]=6>0.
Then, PP > 6 for i # k. By the strong law of large numbers, there
exists n, such that for n >, (Skn/n)-pk > -8/4 and |
pi-(Sin/n) > -8/4 with probability one. Therefore, (Skn/n)—(Sin/n)_'=

[(Sgp/m)-py] + (oy-py) + [p- (S /m)] > -6/4+6-6/4

= §/2 WPl for n > n,- ’



Since cl(n) decreases to 0, there exists some n, >0 such

that cl(n) < &/2 if n > n;-

. S. S :
This shows that —:‘ii max (_rgxﬂ , —-:-i—rl) - cl(n) wpl for n>n.
jeT
n-1

‘ in S'n '
Let A={n, is selected} and B. ={— < max P LIS {(n)}.
k in " n = jeT n 1
n-1

We have

_ c
in = (Bin NA) U (Bin N A7) and thus

P(B, ) > P(B; N A)

Sin S'n Skn :
= P({—=2 ¢ max (2, <B-c,(n)} NA) if n >n
n - . T n n 1 =1
Jelna
= P(A)
> P* for i # k.

(b) P(CSIRl(mO)) > p({N; < =} N A) > P*-(1-P*)=2P*-1.
(¢) The proof is analogous to (b).
(d) By Theorem 1.2.1 and Theorem 1.2.2 that

P{p[k] € IN1} > 2P*-1 when N, < o wpl.

v

Hence, P{p[k] € IN }
i

P({p[k] € IN.} n {Ni < =}) > (2P*-1)-(1-P*)
1

= 3Pp*-2,

The proof for (e) follows directly from the proof of (a) (b)

and (c). This completes the proof.
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Corollary 1.2.2 If P; # pj for i # j, then under the same

asymptions of Corollary 1.2.1, we have
@ p(N, < =) =1

(b) p(CS[R;) > P

(c) P(P[k] e Iy ) >2P*-1 fori =1,2.
1

Proof: (a) For each fixed j, (j = 1,2,...,k-1), following the
same argument of the proof of (a) in Corollary 1.2.1, there is

some r and n(j,r) such that P, > pj and for n > n(j,r)
Sjn Tn in »
il cl(n) < max — - cl(n) wpl |
1:»:Tn_1

since ci(n) + 0. For (b), (c) the proofs are obvious.

Corollary 1.2.3 If we change the sampling scheme bf R1 and R2

to the non-elimination type of sampling (Barron-Gupta type), then,
under the same assumptions of Corollary 1.2.1, we haQe the same
results (a), (b) and (c) of Corollary 1.2.2.
Proof: Because of the non-elimination type of sampling, Spn 1s
always compared to other Sin' Using the same arguments of
Corollary 1.2.2 the results follow immediately.
We see that when P* is sufficiently near 1, the procedures
R1 and R2 may come to a decision in finite stages. However, if
we use a seqﬁence of closed procedures we have asymptotic results.
Let {ni; i=1,2,...} and {mi; i=1,2,...} be two positive in-

creasing sequences of integers such that n >m, and m, >r

1 0 1 —-"0°



Let Rli(mo) = Rl(mo,ni; cl(n)) and sz(ro) = Rz(ro,mj; cz(n))

we have the following asymptotic result.

Corollary 1.2.4 Under the same assumptions as those of Corollary

1.2.1, let p[k]-p[k-l] =d > 0, we have

(1) 1lim 1lim~ P(CSIR..(mO)) > p* i=1,2.
d»0  jow tJ -
(2) !1m P{p[k] € IN..} > 2p*-1 i=1,2

Jree 1)
where Nij is tﬁe stopping rule of Rij for i = 1,2.' The
proofs follow imﬁediately from Theorem 1.2.1 and Theorem 1.2.2.
For given & (0 < 2 < %J, let nl(z) and nz(Z) denote respec-
tively the smallest integers such that dl(nl(l)) < % and
dz(nz(Z)) < £ which are defined by (1.2.4) and (1.2.9) respectively.

Let Ni = max{Ni,ni(l)} i =1,2, where Ni are stopping rules of

some closed procedure Ri' Then, we have

Corollary 1.2.5 Under the same assumptions of Theorem 1.2.1

and Theorem 1.2.2, IN is a (2P*-1)-confidence interval for p[k]

i
with length (Iﬁi) < 28 using Rl(mo,ml;cl(n)) and Rz(ro,rl;cz(n))
respectively, where
SNi Sﬁi . .
I. = (— -d. (R.), +d. (N.)) i=1,2.
Ni Ni it Ni it

Proof: It follows immediately from definitions of Ni and Theorem

1.2.1 and Theorem 1.2.2.
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C. Asymptotic Bounds for Expected Sample Sizes for Sclection Rules.
For given k, P* and d(p[k]-p[k-l] >d > 0), lect R, and Roo
denote respectively the Paulson procedure (P-pfocedure) [43] and
Bechhofer-Kiefer-Sobel procedure (BKS-procedure) [6]. We outline
RO and R, as follows.
First we describe the P-procedure. Let {Nir; i=1,2,...,k,
r =1,2,...} be a double sequence of independent randbm variables
such that each has a Poisson distribution with mean J, where J
is a positive integer to be chosen in advance of the experiment.
Let Sir and Fir denote respectively the number of successes and
the number Sf failures when Nir observations are taken from m, at
the rth stage of the experiment. N, = 0 implies Sir * Fir = 0.
Let A be a parameter such that 1 < X < (1+d)/(1-d), where d defines
the indifference zone and A is also to be chosen in advance of
the expériment. Define A(}) = J[d(kz-l)-(k-l)z]/(xznk) and let
N(A) denote the largest integer which is less than tna/(A(X)2n)A).
For the first stage, we take Nil observations from L for i =
1,2,...,k. We reject m at the first stage if
S.,-F.., < max (S.,-
Tigsk O

As the P-procedure is of elimination type, at the start of rth

Fjl)-(lna/lnk)+A(A).

stage, let Tr_1 denote the set populations which are not rejected

and t.1 denote the number of elements in T We takeiNir observa-

r-1°
tions from.ni for i e T r-1° Then, reject nj if

r

nZ,I(Sjn-F ) < lr:?x l[anSI“-Fm)] (Zna/2nA)+rA(A).



If therc is only one population left, stop sampling and accept

this population as the best, otherwise continue to the (r+l)st

stage. If tN(A) > 1, take one more observation from each popula-
tion in TN(A) and select ™ if
N(A)+1 N(A)+1
nzl SinFin) = nax ﬁzl‘ (S5n-Fyn)-
Ny ™

If a tie occurs, select any one by a random mechanism.
Next, we describe the BKS-procedure. At the nth stage of
experiment (n = 1,2,...) take an observation from each ™ and
' n
compute the sample sums S. = jzl Xij (i =1,2,...,k) which

employ Xij from all (n-1) preceding observations. Let

S[l]n 5-S[Z]n <.l f-s[k]n denote the ordered values of |
Sln’ SZn""’Skn' Define Din = S[k]n-s[i]n (i=1,2,...,k-1)
k-1 1+d _
and let Z_ = Z exp[-22n =— D, ]. We continue sampling until
N 1-d “in

for the first time we have Zn.i (1-P*)/P*, say at the nth stage.
Then, we select ™. which corresponds to S[k]n' If g tie occurs,
break it by a random mechanism.

- We estimate various asymptotic expected sample sizes needed

to terminate sampling using RO’ and R1 in this section. Some

Roo

asymptotic form is obtained in the sense of Perng[44].

Theorem 1.2.3 Let NOOi and NOi denote respectively the number of

stages needed to eliminate L using R

00 and R0 for any i=1,2,...,k-1.

Let T be the best population and let pk-pi=hid, i=1,2,...,k-1.



3]

Then, as P* » 1, we have

(a) (B-K-S)  E(Ny).) = {an(1-P*)"1/2d an[(1+d)/(1-d)]}

+

o(an(1-P*))

if h. =1
N .. 1
(®) EMN,) = (tne)/{I[d(A%-1)-(A-1)7] + 273h.d )

+ o(%no)

Proof: (a) is given in [5, p. 270] with v —Gk k-1 Ak k-1 =

2{an[(1+d)/(1-d)]}-d. We now prove (b).
(b) Let (E,B,P) be the underlying probability space. Let

Eo = {nk is selecﬁed}, E1 = E-EO.

According to RO, NOi is the smallest n such that

n
by GurFyp) £ max [r§ (;,7F 5,1~ (na/tn1)+mA ().

n-1
Let Jjn and Jin be respectively the numbers of observations taken
from "j and m, at stage n, n = 1,2,... . Throughout the proof, i

will be fixed and j # i. Then, it follows from the strong law of

large numbers that

(1.2.14) 2 [(s -F. )3,

jr Jr J1’+J

r=1
+...+Jin)]
> (pj-qj)-(pi-qi) = z(pj-pi) wpl as n > «,

where q, = l-pr, r = i,j. Define



wi
T

(1.2.15) U, = nJ/(Jr1+Jr2+..;+Jrn) r=1,2,....,k
Tjr = Sjr-Fjr for j = 1,2,...,k, j#i, r = 1,2,.
Then,
n n
1.2.16 T, J. +J. +...+J. = T. /nJ) Q. .
( ) rzll e/ U515 5n)] (rzl 5e/™)
Since Jrl’ Jr2”"’Jrn are independent random variables with a

common Poisson distribution with mean J, it follows again from

the law of large numbers that
(1.2.17) an -1 WPl asn-»+e forr-=1,2,...,k,

For 6 > 0, it follows from (1.2.14), (1.2.16), (1.2.17) and the

Egoroff theorem that on EO there exists Aj’ Bj and nj(d) such that
A. UB. = E
j J 0
P(Bj) < § and

for n > nj(G), we have, on Aj’ that

v n n ‘
(1.2.18) Z(pjwpi)-d i_[(rlejr)an/nJ]-[(rleir)Qin/nJ]

IA

z(pj-pi)+6

I A

(1.2.19)  1-8 SQp e lesforj =12,k A1

For n 3_nj(6), it follows from (1.2.8) and (1.2.9) that

n n '
2(pj-pi)—6-{6[r§1(ITjr|+|Tir|)]/nJ} f_rzl(Tjr-Tir)/hJ

n
f_Z(Pj'Pi)+6+{6[rzl(|Tjr|+lTirl)]/nJ} .



33

It is obvious that nj(é) can be chosen sufficiehtly large so that
n R

( leTjrl/nJ) + ( gllTirl/nJ) = 2(lps-a;l+Ip;-a; D < 4.

Hence, for every n 3_nj(6), we have on Aj that

n
(1.2.20) nJ[2(pj-pi)-56] < zl(Tjr-Tir) inJ[Z(pj—pi)+56].
r=

k
Define n(§) = max n.(8), B=U B,, E2 = EO-B.
j=1,2,...,k J j=1
i#i 3
Then,
P(B) < k& and for n > n(§), we have on E, that

2

. n
(1.2.21) nJ[2(p-p;)-58] < max r‘Z_l('rjr-'rir) < nJ[Z(pk-pi)+56].

where the maximum is taken over those populations which are left
at the (n-1)st stage. We note that LY is never rejected on E2.

Now, by the definition of NOi’ and (1.2.21) we have either

NOi < n(s) , or,

Rna/{lﬁA[ZJ(pk-pi) + AQ) + 5631} < Ny, <

< lna/{EnA[ZJ(pk-pi) + A(X) - 56J]} + 1.
Since znA[ZJ(pk-pi) + A(A) + 58J] is bounded and since as P* » 1,
we have fno + =, then, when P* is sufficiently near 1, we have

(1.2.22) n(8) i_zna/{znA[ZJ(pk-pi) + A(A) + 568J]) < Np; <

< Ena/{lnA[ZJ(pk-pi) + A(A) - 58J]} + 1 .

Define E, = (wINOi (@) < n(8)} N E,.



Then, we have
(1.2.23) E(Ny;) = fElNOidP + IESNOidP + sz_ESNOidP_+ [gNoidP -

According to R0 and the definitions of E1 and B, we have

(1.2.24) P(E)) < 1-P*, P(B) < k§ and 0 < Ny, < N(A)

0i
where N(A) = [fna/(A(A)2n}A)] and [-] denotes the largest integer.
Hence,

(1.2.25) [1/(A(A)na)]-1 < N(A)/%na < [1/(A(A)AnA)]+1

where the upper and lower bounds are independent of P*. Now, by

(1.2.23), (1.2.24) and (1.2.21), we have

(1.2.26) E(NOi)'5_N(x)(1-P*)+{zna/znx[2J(pk-pi)+A(x)-ssJ]}+1+N(x)ka

On the other hand, we have
(1.2.27) E(NOi) 3.(lna/{lnA[ZJ(pk-pi)+A(A)+56J]}}P(Ez—Es)-

We note that as P* » 1, p(ES) + 0 because of definition of E3 and

(1.2.22). Therefore, as P* » 1
P(EZ'ES) + 1-P(B) > 1-k§.

Now, it follows from (1.2.26), (1.2.27) and (1.2.25) that as

P* > 1, we have
(1.2.28) (l—kG)/{EnA[ZJ(pk-pi)+A(x)+56J]} f_E(NOi)/nna <
< 1/{2nA[2J(pk-pi)+A(A)556J]}+k6/(A(A)2nA)

Since (1.2.28) holds for any arbitrarily small positive §, we thus
conclude that as P* » 1,

E(NOi) = {zna/{znx[z.l(pk-pi)+A(A)]}}+0(zna).

This completes the proof.
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Corollary 1.2.6 If p; < Py for i = 1,2,...,k-1, then

lim P(N < N <,..<N.}=1.
Pra] 01 02 (1]

Proof: Let eij = pi—pj, i,j = 1,2,...,k.

It follows from (1.2.22) that on EZ’ there exists r (0<r1<1) such
that whenever P* Z_rl, we have
(1.2.29) Ng; < log a/{logA[ZJsk1+A(A)-56J]}+1 for arbitrary

fixed 6§ > 0.

‘Again, by (1.2.22), there exists r, (0 <, < 1) such that

2

whenever P* Z.rz we have

(1.2.30) N02 > log a/{logA[ZJek2+A(A)+56J]} for arbitrary fixed
§ > 0. We note that €1 %2 = PPy > O and § can be made arbi-
trarily small and X and J are fixed values. When P* is sufficiently

near 1, log o is sufficiently large and therefore there exists s,

*
1> Ty > max(rl,rz) and 61 > 0 so that whenever P > Ty and

§ <« 61, we have NOI

{A

log a/{logA[ZJek1+A(x)-56J]}+1

A

log o/ {logA[2Je, ,+A(X)+58J])

< Ny, by (1.2.29), (1.2.30).

Since P(Ez) > P*-ks, using_the analogous argument fpr'NOS, N04,...,
Nok; we conclude the resufis immediately.

This completes the proof.

Corollary 1.2.7 Let T00 and T0 denote respectively the total

number of observations needed to conclude a selection using R00

and R0 . Let hid = Py-Py i=1,2,...,k-1.

Then, as P* » 1
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(1) E(Ty,) = {k zn(l-P*)'l}/{Zd en[(1+d)/(1-d)]}+0(&n(1-P*))

when hi =1 fori#k
k-2 B
(2) E(Ty) = na Y (B(A)+2JAh den))” "+2(B(})
i=1
+ ZJAh;anA)'1]+o(2na)

where

B(A) = J[d(A%-1)-(A»-1)%], h* = nmin hy and a=(k-1)/(1-P¥).
(3) For slippage case, hi =1, and k = 2, we have

lim ===—=— > 1 or < 1 according to 2d ln(%iga'< B(A)+2JAdan)
P*+1 - -

or

24 zn(-i{%) > B(A)+2JAdnh .

Proof: According to the definition of RO and R., (1) and (2)

0 0’
follow from Theorem 1.2.3. (3) follows immediately from (1)

and (2).

Remark 1.2.4  In order that the P-procedure be more efficient

in the sense of (3), it is necessary to take a large J.

Theorem 1.2.4 Using the same notation as in Theorem 1.2.3, and

letting h' = min hi’ h" = max h,, we have the following
1<i<k-1 1<j<k-1 7 |

asymptotic results:
(1) (a) As d -0,

2n (P*a) 2n(P*a)

1 1
———7 g * 0 (——=—5) <EN...) < ‘ +o ( )
2h"d2,n(i—tg—) dzn(%:- 00i 2h'dzn(-}%g) dan (2td

-3



(b) when P* + 1 and follow d - 0 or when d *» 0 and follow

pr > 1,
na ina fna ina
+ o ) < E(N ) < +0 (— )
am(ED  dmEp T 0% Thdm@Ep T

(2) (a) Asd—+0

Lna 1 . ' “e
mAMs2hd] * Camaenap < Fles) < N 2-PTIreiED)

(b) when d + 0 and then P* » 1

na . ina

TATA()+20hd] * °(—,.mraj') E(Ng; JN()+o(N(V))

where A(\) = J[d(A2-1)-(A-1)2]/(A%n2) and N(A) is the largest

integer no larger than 2na/(A(A)2nA).

(3) when we take cl(n) = ny'l/z. 0 <y < 1/2, and use Ri(Y) =

7'1/2), we have, as d + 0,
2

EN,) < (l-P*)(-é-)l'zy v o’ = Y) where N, denote the total

R)(mg,my; n

number of samples needed to reject LI # k.
Proof: (1) (a) NOOi is the smallest n such that

(1.2.31) : Wn < (1-P*)/P* .

By the strong law.of large numbers we can show that

PPy P



By Egoroff's theorem, for 6 > 0 there exists A and B such that

= A U B, p(B) < 6§ and

—%B- converges uniformly on A where E is the whole space.

Hence, there exists n(§) such that for n > n(8) and on A
n(p[k]-p[i]-d) f-Din f_n(p[k]-p[i]+6) i.e.

k-1 k-1
(1.2.32) 2 exp{- 2n2n( )(h d-8)}> W = § expl- 2zn(1 d)o }

=1 i=1
k—
> Z exp{-2 nzn(l d)h d+8}.

It follows from (1.2.31) and (1.2.32) that

k-1

in{ | expl-2 Ny, ¢ (1) (h,d-8) 1} > (352 >
i=1
k-1 1+d
zn{lgl exp{-2 Nyo. in(3=p) (h,d+8) }}
Noting that
k-1
an{ z exp[-2 N 2n(1+d)h d+8]}
i=1
1+d
>&n{ (k-1)exp{-2 N0 ln( )h"d}}
=an(k-1) - 2 Nyo.h"d in (l*d ,
we have, for n.:_n(s) and on A,
n P*q zn(P*a)
(1.2.33) T+d N 00i < < T+d + 1 .

2(h"d+6)1n(

) 2(h'd- G)Q,n(1 d)

Let C = {wINOOi(w) <n(8)}nA
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(1.2.34) then, by (1.2.33), 1lim P(C) = 0.
d-»0 '

Hence, we have

(1.2.35) E(Ngpi) = [a-cNooidP * fcNgoi 9P * [eNgo; 9P -

It follows from (1.2.33), (1.2.34) and (1.2.35) that

gnpra .. EMNgos) anP*a
2R <him 1 ATy
d-»0 (————T—a—o
+
din (1)

since § can be made arbifrarily small.
This shows (a).

By some modifications, we see that

E(N,q:)
1 , . 00i 1
st < lim - lim < 5%
2h Pl ds0  ( Ln?+d ) 2h
de (T:aa
this proves (b).
(2) We note that 1 < A < %{%u Hence, as d - 0, A~ 1 and

&nx =+ 0.
It follows from (1.2.22) that when d is sufficiently near O,

Np; > n(8). Hence lim P(E;) = 0. By (1.2.23) and (1.2.22) we have
1= o O h |

P(E,-E.)
Lha 2 3
(1.2.36) E(Ny;) 3-(znx) 27h d+A (1) +58]

EN,.) |
o > (2na) (1-k8).
3

(QnA(ZJhid+A(A)+56J’

Hence, lim
d»+0




Since & can be made arbitrarily small, we have

) > tna +0( 1 )
01’ ~ lnA(ZJhid+A(A)) EnX(ZJhid+A(A))

E(N
On the other hand, by (1.6.9) and (1.6.8), we have

no
lnA[ZJhid+A(A)4SGJ]

E(N,) < N(A) (1-P*) + +1+N(A)KS -
for arbitrary § > 0.

Let § - 0, we have thus

no .1
znA(ZJhid+A(k))

(1.2.37) E(Ny;) < NO)(1-P*) +

’ na
_<_ N(A) (l-P*) "m + 1
= N(A)(2-P*) + 1 .
Hence, we have

E(Ny;) < N(A)(2-P*)+0(N(A)) where N(A)=gna/(A(A)2nA).

By some modifications of (1.2.36) and (1.2.37), let P* » 1,

we also have
Lna/[RnA(ZJhid+A(A))]+o(2na/2nk(2Jhid+A(A))
< E(NOi) < N(A)+0 (1/N(1)).

(3) The proofs are similar to the proofs of (3) of Theorem 1.3.3.
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D. Application_of Binémial Sequential Selection Procedures to
the Selection of the Best Cell Problem in Multinomial Distribu-
tions

The problem of selecting the particular of k multinomial
cells with the Highest probability (the so-called best cell)
has beén considered in several papers. For example, Bechhofer,
Elmaghraby and Morse [5] give a fixed sample size procedure.
Cacoullos and Sobel [8] investigate an inverse-sampling procedure
under an indifference zone formulation. Panchapakesan [39] also
studies an inverse sampling précedure under subset selection
,._formulation. Under the same formulation, Gupta and Nagel [23]
consider a fixed sample size procedure. However, when the problem
involves more than one multinomial population, the procedures just
mentioned are no more available. For instance, a gambler faces t
different kinds of roulefte wheels or s different kinds of loaded
dice. What kind of gambling strategies should he use with his
small amount of money? We note that he can observe as long as he
likes before he actually starts playing. Under this situation a
modified procedure based on binomial selection rules are given
below. |

Let m be a multinomial population with k cells. Let them be
cl,cz,...,c#'with positive ﬁrobabilities PysPys- Py respectively

kK
such that z P; = 1. LetX.l,Xz,... be observable independent
i=1 '

random variables from n. Without loss of generality, we assume



ﬁ_takes k values so that P(X1 =1i) = p;, i=1,2,...,k.

We define a sequence of new random variables {Yij} as follows:

Y

1if X1 =1 Y =1 if X2 = 2 and so on.

11 21

0 otherwise.

0 otherwise

In general, we define

(1.2.41) Yij 1 if the (i+(j-1)k)th observation from = takes

value 1i.

0 otherwise

where i = 1,2,...,k, j = 1,2,...

By our definition of (1.2.41), it is obvious that

{Yij; i=1,2,...,k, j =1,2,...} is a sequence of independent
random variables. Furthermore; {Yij; j = 1,2,...} are independent
Bernoulli trials withl’(Yij = 1) =Pi = l—P(Yij = 0) for
i=1,2,...,k. Let (92,8,P) be the underlying probability space
on which X1 is a random variable. Let Pi be the probability
measure on (Q,8) induced by Yil’ is= 1,2;...,k. Then, we can
consider Yij as the jth toss of coin LA which obeys-distribution
law according to (Q,B,Pi) for i = 1,2,.7.,k. Using Xl,Xz,...,
to select the cell corresponding to the largest value of P4 is

equivalent to selecting the best coin based on Yij'

Formulation of the problem

Let LT LA denote t multinomial populations such that

g0
'ni has ki cells with respective cell probabilities

Piy» Pyps---oPy foF
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i=1,2,...,t. Let k1+k2+...+kt = k. Let p[l] :_p[z] < ... < p[k]
be the ordered values of all k cell probabilities. For a given
value d (0 < d < 1), we assume the indifference zone p[k] - p[k] > d.
By a Forrect selection we mean a unique cell corresponding to p[k]
is selected; Taking observations sequentially from each ™., We
seek to find the cell so that the probability of a correct selection
is at least P* (%-< P* < 1), a preassigned value under-the indif-
ference zone formulation.

Let xij be the jth observation of m for i =1,2,...,t and
j=1,2,... . For fixed i1 (i = 1,2,...,t), accbrding to a sequence
of observable random variables xil’ xiZ""’ we define a sequence

of new random variables Y(i,j,r) according to (1.2.41) for

j = 1’2""’ki’ r=12,... . More exactly, define

(1.2.42) Y(i,j,r) =1 if the (j+(r-1)ki)th observation is from
cell j of L
= 0 otherwise
for j = 1,2,...,ki, r=1,2,...

Define

n
(1.2.43) S(i,j,n) = J Y(i,j,r), n = 1,2,...
r=1

Then, it is obvious that the random variable S(i,j,n) is distri-
buted as binomial with density b(n,pij).

We describe procedures ﬁOO’ ﬁo and ﬁl-as follows:



Procedure ROO:

On each stage, we take ki observations'from ™ for-all
i=1,2,...,t. According to definitions (1.2.42) and (1.2.43),
we have corresponding observations S(i,j,n). In general, at
stage r; we have {S(i,j,r); j = 1’2”"’ki’ i=1,2,...,t}, a
set of k values.v We use ROO’ the BKS-procedure introduced at
the beginning of last section, to select the best coin. As

soon as S(i,j,no) is selected, say, at stage Dy, We select the

jth cell of ™, as best.

Procedure ﬁoz

At the_first stage, ki observations are taken from m for
all i = 1,2,...,t. We have k corresponding observations
S(1,5,1), 3 = 1,2,...,k;, i = 1,2,...,t. According to rule Ry
the P-procedure, some cells may be rejected. Suppose Si1 cells
of m, are rejected, we sample LI (ki - sil) observations from
LAY for the second.stage. Let the numbers of cells df ™ that are

not rejected be i(1), i(2),...,i(ril). According to its ascendiné

order. We define

YA, i(3),2) 1 if jth observation of LA is from cell i(j)

0 otherwise

2
) Y(,i(),r).
r=1 ‘

and S(i,i(j),2)

The sampling scheme proceeds and on each stage some cells may be
rejected according to Ry- Sampling procedure stops as soon as a

unique cell is left. We select this cell as best.
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Procedure ﬁl:

Choose a certain procedure R1 in the class of procedures
proposed in Theorem 1.2.1. Following the same sampling scheme

as RO, we use R1 to select the best cell.

Let ﬁl be the sfopping rule of ﬂl' Then, we have

Theorem 1.2.5 For given d and P*, we have
(1) P{CS|R;} > P* i =00,0,1
(2) P{p[k] € Iﬁl} > 2P*-1

where Iﬁ is defined by (1.2.4) through (1.2.7) replacing N by

1 , ‘ _
Nl'
(3) P{p[k] € Iﬁl} > 2P*-1 with length (Iﬁl) < 2%

where IN are defined by Corollary 1.2.3 replacing N1 by N
1 -

The proofs follow immediately from our definitions of ﬁOO’ R0

1
and il and Theorem 1.2.1 and Corollary 1.2.3.

For ki = 2, our problem becomes a special case of t coins.
Let M sTyse..,m be k coins such that m; has p; of coming up a
head and probability qQ; of coming up a tail for i = 1,2,...,k.
Let r[I] f_r[z] < e f-r[Zk] denote the order values of all P,
and q; - For given d (0 < d < 1), we assume r[2k]'r[2k-1] > d.

Let = i .q. i i i
p(l)q(1) o1 ZTT?. iy pJqJ (which is un1qu¢ because of our

indifference zone assumption). Let 1) be the coin correspond-

ing to p(l)q(lji We want to select a coin which has the
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minimum variance. By a correct selection, we mean "(1) is

selected.

Corollary 1.2.8

(1) P{cs|R;} > P*, i =00, 0, 1.

(2) P{p(l)q(l) € (A'ﬁl(l-B'ﬁl), B'Nl(l-A'ﬁl))} > 2P*-1

where A'ﬁ and B'ﬁ are defined by (1.2.4) through (1.2.7)

1 1
replacing N1 by Nl'
Proof: We note that for each i, P;q; = pi-pf is a monotone
decreasing function of P4 if p; > 1/2. Similarly, it is a
monotone decreasing function of a, if q; > 1/2. Therefore,
it is clear that p;q; = p(l)q(l), the minimum value, if either
p; = r[2k] or, q, = r[Zk]' When P; =q; = 1/2 for all i, this
contradicts our assumption of indifference zone. Therefore, to
select "(1) is equivalent to select ™ such that the best cell
is in . (1) is thus an immediate consequence of Theorem 1.2.5.

For (2), we note that p(l)q(l) = r[2k]_r[1] and

{r[2k] € (A'ﬁi.B'ﬁl)} is the same event as {r[2k]r[1] e (A'g

(l-B'ﬁ ), B'ﬁ (l—A'ﬁ )} in probabilistic sense.
1 1 1

Finally, let foo and TO denote, respectively, the total

1

number of observations needed to select the best cell using ﬁoo

and R. and Theorem

and RO' Then, by qur definitions of R00 0

1,2.3, we have .
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Corollary 1.2.9 As P* » 1, we have

(1) E(f g )=k{en(1-P*)"}/dan[d/ (1-d)]}+0(ana™") if hyy = 1

(2) Ef )=tna{ ] ——
(1,3)eT J[0°-1)- (0-1)%)9200h, ;damh

. 2 }+ o(2na)

J[A(A%-1)- (A-1)2]+22dana

if p[k]-pij = hijd > d, where T={(i,j),j=1,2,...,ki,i=1,...,t}

excluding the cells corresponding to p[k] and p[Zk—l]'

1.3. Sequential Procedures for Selecting the Best Population

Among k Normal Populations

A. Introduction and Formulations of Problems.

Paulson [41], Bechhofer, Kiefer and Sobel [6] and Robbins,
Sobel and Starr [49] present various kinds of sequential proce-
dures for selecting a population corresponding to the largest
mean of k normal populations employing the indifference zone
formulation. Barron and Gupta [4] present é class of non-elimi-
nation type of procedures under subset selection formulation.
Fabian [15] improves Paulson's procedure [41] in the sense that
the domain of parameter A, which is to be chosen before the
experiment, can be extended to [0,4) from original (0,A) and
the probability of a CS is increased from (l-a) to (1-B8(A)a)

where B(\) < 1.



In this section, we propose a class of selection rules of
elimination type for both the indifference zonc upproach and
the subset selection approach. It should be emphasized that
a unique population is selected satisfying the P*-condition
under the subset selection formulation. Some asymptotic
bounds on the expected sample sizes are also discussed.

Let be k normal populations such that ™

12Myaee s
has the distribution function ¢(x; Oi,cz), where Qi is unknown
and o is known, i = 1,2,...,k. Let O(1) < 92) S5 Op be
the ordered values of k means and let i) denote the population

which is associated with Q[i]. We assume no prior information

about this correct association. We define, for given d > O,

A(d) = (©1,0,,---18) 10 -Opy 1y 2 d). Let R® denote the
k-dimensional Euclidean space. Let Q denote the parameter space
in the problem at hand. Then our problem is to define a rule
which sampleS sequentially and selects one population so as to
guarantee with a prescribed probability P* (%-< P* < lj that ™ (k)

is selected. We assume ™= "(k)'
Case 1

Q=Q(d), d > 0, d may or may not be specified.

Case 2

Q=R (k > 2).
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B. A Class of Rules R3 = Rs(no,nl;d(n))
Let xij denote the jth observation from L and define

|
i ~13

X,. fori=1,2,...,k, n=1,2,...

in 1 1]

j
The rule Rs(no,nl;d(n)) has the same form as the rule R(no,nl;c(n))
of B of Section 1.2. with d(n) = nc(n). When n, is not specified,
the procedure is not closed. Let N denote the stopping variable of
Rs(no;d(n)). We must show that P(N < ») = 1 in our problem so that
a selection is possible and thus a correct selection makes sense.
In this case, we denote the procedure by RS(nO,N;d(n)).

Case 1. Q = Q(d), d specified.

We shall first discuss the truncated case and define
(1.3.1) 8 = /w(1-P*)/3(k-1)

(1.3.2) £(v(n)) = exp(mv(m) [(av (@) 2+ vy (a7n) 4

where v(n) is a positive sequence.

S S |
(1.3.3) Iy = (o -2(N), - + &(N)) for some positive function 2(n).

Theorem 1.3.1 For given d > 0, P* and k (k > 2), if {d(n);

n=1,2,...} is a positive sequence such that d(n)/n decreases

to zero and n, and n, are positive integers such that
03] d(nl)/n1 <d

Y 2
@ I eEEhyt <
n=n0 8c°n

then,



S0

(a) P{CSIRS(nO,nl;d(n))} > P*
(b) P{I, 3 glk]} > 2P*-1

-1 1+P*

where N is the stopping rule of R3 and ¢(n) =— ¢ (—7——0

3 la

S. 2
Proof: For any i, —%E- is distributed according to ¢(0i, EHJ.

Therefore,
s,
(1.3.4) P{—=-0, >a}= ; I; exp (-nt%/20°)dt.
V2no

We note that Lemma 1.2.1 holds for our case. Hence, we have

n

1 S S.
: kn d(n) jn d(n)
(1.3.5) P{CSIRS} > 1-(k-1)nzn [P(|T -gk| > SR (- -8y )]
=n, ,
we note that the normal density n(x;0, g; ) is symmetriC'about 0.

Using a well-known inequality (see for example 7.1.13 of [55])

2.4.1/2

(1.3.6) f: exp(-tz) f_exp(-az)/[a+(a + ;0 ] for a > 0,

it follows from (1.3.2), (1.3.4) and (1.3.5) that

n

1 2
(1.3.7) P{CS|R;} > 1 - kD) oy [f(d—é%-)]'f1 :
: m n=n, 8o’ n

By our assumption (2) and definition of B8, (a) follows immediately.
Follow the analogous argument in Theorem 1.2.1 and use our

2(n), (b) is concluded. The existence of n, and n, follows from our

assumption that d(n)/n decreases to 0 and the convergence of the
series | [£(d*(n)/80°n?)]7 .
=1
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Remark 1.3.1: If we take d(n) = c1n1/2+Y, % >y >0, ¢y positive

2
constant, then, n, = [[(d/cl)zY'l]] if f(cinfy/ggz) 1.% and
! cfmZY 1
n, = min{n| } [£( 2)] < B}. Here S is used to adjust n,
m=n 8o
and n,.

Corollary 1.3.1 Under the assumption that the parameter space

. + _ . . .
is 8 =0 = {(91, Qz,...,Ok)IO[k] > g[k-l]} and if N is the stopping

variable of R3(n N; d(n)) such that

O’
(1) d(n)/n decreases to 0

@ 1 [f@my/seln®)t <8
n=n0

we have

(a) P(N < =) > P~

(b) P(CS|R5(n N,d(n)) > 2P* - 1
2

() P{I,3 p[k]} > 3p*-2, P* > %

(d) when k = 2, P(N <w) =1, P(CS|R3) > P*, P{p[z] e Iy} > 2P*-1.

The proofs are analogous to that of Corollary 1.2.1.

Case 2 Q= Rk

In this we have

Lenma 1.3.1 Let X;; be iid with cdf 9(0,0%) for i = 1,2 and

j =1,2,... . Define Sin = Xil + Xiz ...+ Xin’ i=1,2.



Then, usiﬁg rule R3(1, N; d(n)),

o 2
P(N <w) =1 if ) d(n) exp(_d én)) diverges.
n=1 nv/2n o 4no
Proof. Define Y_ = X - X forn=1,2,... . Then Y, Y ...
n In 2n 1 2
are iid with cdf ¢(0, 20°). Let Z =Y /VZo. ThenZ, Z,,...
are iid with cdf ¢(0, 1). Let Vn = Y1 + Y2 ...t Yn and
U =2, +2,+...+2 . ThenV_= V2 oU_. Let
n 1 2 n n n
a(x) = t2d¢(t;0,1) for x > 0. Then, it is obvious that
t([>x .
2 2 2
0 < a(x) = 2 / t2et /zdt f_—z—-e-x /4 j'xtze_t /4 dt
Vin X V271
2e"‘2/4 [ .2.-t%a -x%/a
- — ‘ _tTe dt = 4/2 e .
V2

Then, it follows that a(x) &nf&n x 5_4/7 nin x/exp(x2/4) + 0 as

X+ o j.e. a(x) = o((znlnx)_l). It follows from Feller [16] that

P(U, > /i d(n) i.0.) = 1 if, and only if § S0 exp(-a®(n)/2)

diverges.

Or, equivalently, P(Vn >d(n) i.0o.) =1 if, and only if

-

Z (d(n)/nv2n o) exp(-dz(n)/4n02) diverges. According to R3,

P(N<ew =2 ) P(S;, - Sy 2 d(m)) > P(S; - S, >d(n) i.o0.)
n=1

= P(Vn > d(n) i.o.). This proves the lemma.

Theorem 1.3.2 Let £(V(n)), B and IN be defined by (1.3.1) through

(1.3.3). For given p*(% < P*< 1), if d(n) satisfies
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(1 Z (d(m)/n v2n o)exp(-dz(n)/4n02) diverges
n=1

@ 1 [£@ @)/85°n?)]! < 8 for some ny > 1.
n=n

‘ 0

Then, using RS(nO’ N, d(n)), we have

(a) PN < =) =1

(b) P{CS|R.} > P*

(c) P{IN 3 O[R]} > 2P*-1

where 2(n) = (a/vn) & L((1+P*)/2) for iN.

Proof: It suffices to show (a). (b) and (c) follow from (a)
and Theorem 1.3.1. To show (a), we consider the following cases.
(i) Q= 90 z {6, 8 ,..., 8); 0 € R} .

For any fixed i (1 = 1,2,...,k) let Ni denote the stage at which

m; is rejected. Then P(N, < =) = Y P( max (sjn -5,) > d(n))

n=1 jsTn_1
3_P(.€$ax (Sjn - Sin) > d(n) i.o.)
J€ih1
Z-P(Sjn - Sin > d(n) i.o.)
=1 (by assumption (a) and lemma 1.3.1).

Hence, Ni <o WPl fori-=1,2,...,k.

Hence, N < N1 + N2+...+Nk < o WPl

i) a-=4a, = {(6, 92""’°k)_I 0111%9%217  Oey < OLes1) T

9[2+2] =,,.= O[k] for some 1, 1 <2 <k-1}



We consider = )-first where "(i) is associated

1) @) e
with O[i]’ Let d'(n) and T; be respectively associated with

d(n) and when our present k = L. We note that d'(n) is
the same as d(n) and thus assumption (1) is satisfied. Let N'
denote the stopping variable for selecting 1) "(2),.i.’ HOR

Then, by (i), N' < « WP1l. Furthermore, for any i < 2, we note

N

that ") is rejected at stage n if

(1.3.8) S,.., < max Sjn - d'(n), where S is associated

(1)n - jET' (l)n

n-1
with n....

(1)

By noting the fadt that

‘(1.3.9) {S(i)n < max Sjn -d'm)} < (s n < max Sjn—d(n)}

(i)n — .

JeTn_1
We conclude that in a finite stages at most one population of
' "(1)"'“’"(2) is left. Same treatment cén Be'applied to these
populations “(2+1)’ "(2+2)""’“(k) which are associated with
9[2+1]f 9[z+2],...,9[k] respectively.

The only thing left to be considered is the case that "(i)

and ™) (i <2 < j) are left. This case is considered in the

following.
iii) when k = 2, 0 <9 .
(ih) 1 < °rz) |
Let 0[2]-0[1] =€ > 0. It follows from the strong law of large

numbers that
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Sin/n -+ Oi WPl asn-> = i=1,2. Assume 02 = 9[2]‘

Then, there exists nl(e) and nz(e) such that

S.
p(|.7119.- 0, | <e/4 n >n(e)) =1, i = 1,2.

Let n(e) = nl(e) + nz(e). Then, for n > n(e)

S S S S
2n. In _ "2n 1n
n " n - 9 - - 0)) + (8, - 8))

>e - ¢e/d - €/d
= ef2 WP1.

Hence, S2n - S1n > ¢/2n WPl for n > n(e).

The convergence condition of (2) implies that the order of d(n)

is less than n. This implies that
S2n - Sln > d(m) WPl for n > n(e)

i.e; P(N 5_n(e) < w) =1,

(iv) k = 3, 9[1] < 9[2] < 9[3].

21°%2"

"Without losing generality, we may assume 9[1]=91, O[

Consider m and T, and we note that

{8, < Sy - A} S (S, < max (S, )-d(m)}..

1eTn_1

Similarly, for the case of m, and =, or m, and n;. By this

fact and the conclusion of (iii), we conclude that P(Nb< =) = 1.
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(v) For any configuration we may have is included in one of
the above four cases or some combinations of the cases given.

The proof is thus compléte.

Remark 1.3.2; Similar results can be obtained for the'case of

binomial populations.

C. Asymptotic Bounds on the Expected Sample Sizes of Rules.

In this section we compute some asymptotic bopnds of expected
sample sizes of the Paulson procedure (P-procedure) [41], Bechhofer-
Kiefer-Sobel brocedure (BKS procedure) [6] and R3 v) =

L 1
Ry(ng,ny; d(n)) with d(n) = n/2*Y, 0 <y < 1.

We describe briefly the BKS-procedure and P-procedure. Let

. n
xij be the jth observation from =., Define Sin = jzlxij' Let

5[1]n 5-8[2]n < e 5-s[k]n be the ordered values of S, ,...,S, .

Define Dinv='s[k]n - s[i]n for i = 1,2,...,k-1. Under the formu-

lation = Q(d), the BKS procedure, which will be denoted by ROO’
is defined as follows. |
- k-1 2 '
.Define'wn = ) exp{-d D,n/0°}, m = 1,2,,... At each stage,
i=1 -

one observation is drawn from each 7, and continue sampling until
for the first time, say at stage n, that W < (1-P*)/P*, We

select the population associated with S[k]n'

The P-procedure which will be denoted by R, is as follows.
For a preassigned A, (0 < A < d), define a = (az/(d-x))log a

(a=(k-1)/(P*-1)). Then R0=R3(1,m1; d(n)) with d(n)=a;An and



m = [a/x]+1 where [-] denotes the largest integer.

Let Nri denote the number of observations needed to
eliminate v, using R_ where r = 00, 0, 3 where R, = RS(Y)'
It should be pointed out that the choice of RS(Y) in the
class of R3 proposed in Theorem 1.3.1 is by no means good in

the sense of minimizing its asymptotic expected sample size.

Theorem 1.3.3 For g = Q(d), let 0, - Oi = hid (hi > 1) for

k
i=1,2,...,k-1. Also let h' = min h,, h"= max h..

Then, we have the following asymptotic bounds.

(la) As d + 0
(2anaP*)/ (h"d?) +0(1/d%) < E(Nyy;) < (a“enaP*)/ (h'd%)+0(1/d%)
(1b) As d > 0 and then P* > 1 or é* »> 1 and then d +'0, we have
(% ana/h"a?)+o (2na/d?) < E(Nyy,) < (o°tna/h'd?)+o(ena/d?)

when hi =1, i.e. the slippage case, we have equality.

(2a) As d~+ 0
a £ a
aP*/A(1+zh,)+0(a/A) < EQp;) < (1-P%) 2 +aP*/afiegh )0 (D)

(2b) As d + 0 and then P* »> 1 or as P* > 1 and then d -~ 0, we have
E(NOi) = a/A(1+;hi)+o(a/A)

where a = (02/(d-k))£nu and ¢z = lim (d/A) > i.-
' d-»0
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We note that a/A-Z_azzna/dz.

(3) Asd->0

2/1-2y 2/1—2y)

E(N5;) < (1-P*)(1/d) + o((1/d)

Proof: (la) NOOi is the smallest n such that

(1.3.10) Wn < (1-P*)/P*,
By the strong law of large numbers we can show that

(1.3.11) Din/n - 0 -0 WP1.

[k] [i]
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1
(0 <y <3).

By Egoroff's Theorem, for § > 0, there exists A and B such that

E=AUBand P(B) < 6§ and Din/n converges uniformly on A, where

(E,8,P) is the underlying probability space. Hence, there exists

n(8) such that for n > n(§) we have

n(O[k]-Q[i]-é) f-Din f_n(Q[k]-Q[i]+6).

It follows then that for n > n(§)

k-1 5 k-1 )
(1.3.12) izl_exp[-dn(O[k]-Q[i]-G)/o 1> W = 121 exp[-d D, /o°]
k-1 >
3’121 exp[-dn(O[k]~9[i]+6)/o ].

It follows from (1.3.10) and (1.3.12) that

k-1

2 *1/P*)1 >
(1.3.13) an{ )} exp[-d Nooi Ox1-0[i778)/0"1} 2 an[(1-P*)/P)] >

i=1

k-1
En{_Z

1 exp[-d NOOi(o[k]-o[i]+a)/oz]}.



We note that

k-1
(1.3.14) ln{.

I espl-d NOOi(Q[k]—O[i]+6)/oz]}

| v

gn{(k-1)exp[-d NOOi(h"d+6)/02]}

h'de+s§) /o> .

en(k-1)-d NOOi(

Similarly, we have
k-1

(1.3.15) ln{'

2
L exp[-d NOOi(g[k]_g[i]_G)/c 1} < an(k-1)

2
-d Nooi(h'd-d)/o .

It follows from (1.3.13), (1.3.14) and (1.3.15) that

(1.3.16) n(8) < [0°/d(h"d+6)][2n(k-1)-2n((1-P*)/P*)] < Nyo. <

[62/d (h'd-6)] [2n(k-1)-&n ((1-P*)/P*)]

when d sufficiently nears O.

Let C = (N < n(8)} NA.

001

Then, we see from (1.3.16) that

(1.3.17) 1lim P(C) = 0.
d-+0

We have thus

(1.3.18) E(Nyg;) = [NggidP *+ [a-Mo0idP * [gNooidP -

It follows from (1.3.16) and (1.3.18) we have
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(1.3.19) [02/d(h"d+8)][&n (k-1)-2n((1-P*)/P*]]P(A-C) < E(Nygs) <

[02/d(h'd-6)][An(k-1)-in ((1-P*)/P*)]P (A-C)+P(B) -K

+n{8)P(C) , for some constant K.
By (1.3.17) and definition of A we note that

(1.3.20) 1im P(C) = 0 and 1lim P(A) = 1.
d+0 §->0

It follows from (1.3.19) and (1.3.20) that

E(N...)
lim lim — 001 <1
§+0 d»0 [0“/d(h'd-8)]2&n(P*a)

similarly, we have

E(Ny: )
lim lin —s 001 > 1.
6+0 d»0 [0°/d(h"d+6)]n(P*a)

This shows (la).
Divide each side of (1.3.19) by 2n a and take d ~ 0 and then
P* + 1, we have

E(MNgp;) > (02tna/h"d?)+o((ino/d®)) and

E(Nggy) < (o%tna/h'd®)+o((tna/d?)).

This shows (lb)‘ .

(2a) According to RO’ NOi is the smallest n such that

(1.3.21) max(SJ.n-Sin) >a-mA, l<nc<m

where a = [0°/(d-\)]tn a, 0 <A <d, m = [3]+1.
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Let E0 = {nk is selected} , E, = E - E

1 0’

By using the strong law of large numbers and the Egoroff's

Theorem and similar arguments in (la), we have for & > 0

there exist Aj and Bj such that
(1.3.22) E = Aj U Bj and P(Bj) < §
and there exists n(8§) such that on Aj and n :.n(é)

(1.3.23)  n(8;-0;-6) < S5 -§;, < n(0;-0; ;*6)

=

(1.3,24) Lét no(a) = m?x nj(ﬁ), B = jgl Bj’ E2 = EO - B.

Then, on E2 for n > n(§)

max n(QJ -9.-8) < max (S. ) < max n(GJ -9, +6)-

n
jeT,. Tser,, ™ & 3Ty

T is not eliminated on E, , we have thus

(1.3.25) n(Ok-Oi-G) < max (sjn'sin) :-n(ok’gi+6) .

JeTn_1

It follows from (1.3.21) and (1.3.25) that

-1 -1
(1.3.26) a(Ok-Oi-G-A) Noi g_a(ok-91+x-6) r+l .

Let E, = {N,. <n,(8)} .

Then,

(1.3.27) E(Ny;) = jE Noi dP*fE No dp+jE ESNO dP+ [ N,.dP
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It follows from (1.3.21), (1.3.26) and (1.3.27) that
a(hid-a-_x)‘lp(sz-es) < E(N;) < (a/2) (1-P*)+ng (8)+ (aks/2)

+ a(hid-6+k)'1P* .

Hence, we have

P(E,-E.) E(N,.) n,(6)
(1.3.28) , d ‘ 2 63 - _<_ aOi f_ (l_p*) + . Oa -+ kG
[(Ph+ #4117 @ Y

P*
+ " g
[h, - 3 +1]

we note that A(d-A) < A d < d2 by definition of A. Hence,

czzna ozzna

a
= YCSY > - dz . Hence»as d-+0, (XJ $ o,

a
x

>0

Let lim

=t > 1. Then, it follows from (1.3,28) that
d»0 _

. E(N,.)

P . 0i p*
< lim - < (1-P*) + k§ + m=—
f;hi-o-l) ~ a0 (%) - i;hi*'lv)

Since lim P(E3) = 0 and let § decrease to 0, we have
d+0

ap> a , a, . ap* a
PYerr v I o(7) < EMNy;) < A-PH () + \TTeghyy * o)

as d ~+ 0. This proves (la).

It follows from (1.3,28) that if we take P* + 1 and then d -+ 0,

we have

a a
E(Ny;) = pYerr: ) +
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By (1.3.28) if we take d » 0 first and then P* + 1, we obtain

the same resulf. This shows (2b).

(3) According to RS’ N, is the smallest n such that

3

(1.3.29) max (S..-S..) > nd(n) = n3/2-y (m, <n<m).
. ' jn Tin’ — 0 1
Js:Tn_1

Using same notations of (2a) and same arguments of (2a) we have
for § > 0 there exist Aj and Bj such that E, = Aj U Bj and

P(Bj) < § and there exist nj(s) such that for n Z.“j(G) on Aj

we have

n(9j~0i-6) <S8, -8

sn"Sin i_n(Qj-Oi+6) .

1]
m
1
-~}

Let no(d) =.m?x nj(s) and B = U Bj, 52 0" B

We can obtain that

(1.3.30) n(9k~91-6) < max (Sjn-S. )

. in
JeTn—l '

IA

n(9k~91+6) on E,.

It follows from (1.3.29) and (1.3.30) we have, on EZ'

3/2-y
NS(Ok-Oi-G) < NS < NS(Qk-0i+5)+1.

On EZ’ we have either

N3 5_n0(6) or

-Qf5+Y

o -1
(1.3.31)  (0,-0,+6)™" < Ng

-1
< (Ok-Oi-G) +1

(1,3.32) Define E3 = {N3 5-"0(6)}'
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-2
We note that ml'i [{d 1°‘7‘Y]] 0 < vy < %) with
m
! 2 2.2, -1 .
I [£(d"(n)/80"n")] * < B where f(x) and 8 are both independent
m
0 -2

. 1-2
of d. When d sufficiently nears 0, we can consider m = d 7oY.

Since
E(N;) = fEledP+fESN3dP+fE2_ESNSdP+IBNSdP
| o2
< m,P(E,)+n.(8)+m ké+(h.d-8)1"2YP(E,-E.)
I N EARL' 1 i 27°3
=2 -2
< d 173 (1-preks)+ (hyd-6) 172 +n (6)
122
noting no(d)/(%o 2 50asd+0 and
T
. d ‘ d 12 1,12
lim — —= G2 = (DT o,
60 o5 i i Y
(h.d-8)" <Y
1
we see that
E(N)
lim 1lim > < 1-pP*
§&+0 d+0 — ' .
1.1-2y
@

This shows (3).

Remark 1.3.2. Since a/i 3_022na/d2, when 02 is not big, ROO

» " - . *
is better than R0 in the sense that E(NOOi) 5-E(NOi) when P* + 1

and d - 0 in the slippage case.



1.4 A Class of Nonparametric Selection Procedures

In the field of nonparametric selection and ranking
problems, some results have been obtained. Barlow and Gupta
[2] considered the problem of selecting a subset containing
the population which is associated with the largest quantile
of a given order when the distributions of the populations
are not specified but belong to some restricted family of
distributions. Gupta and McDonald [22] considered the prob-

-lem of selecting a subset coﬂ%aining the population associated
with the largest parameter when the population belong to a
stochastically increasing family of distributions and the
selection procedures are based on ranks. Rizvi and Sobel [46]
‘considered the problem of selecting a subset containing the
population associated with the largest a-quantile when the
populations considered satisfy some indifference zone condition.
Other papers are: Lehman [36], Puri and Puri [45].

In this section we consider the problem of selecting a
single population with the distribution which is stochastically
smaller (larger) than the others when the distributions of popu-
lations considered satisfy some conditions which may or may not
depend on the parameters. The procedure is sequential and is

based on two kinds of ranks.
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A. Notation and Assumptions

Let my, Myy.ens Wy be k populations. Assume that n. is
distributed according to continuous cumulative distribution
Fi(x). The parametric forms of Fl(x), Fz(x),...,Fk(x) aré
not specified. We assume there exists one o unknown to the
experimenter, such that Fi(x) > Fj(x) for every x in R and
for all j # i. We assume that all Fj(x) haye same support.
Let (k) denote the populatiocn which is associated with the
above Fi(x). By a correct selection (CS), we mean ™ (k) is
selected.

Under the above assumptions, we want to sample sequentially
and base on some functions of ranks of observations, we want to

select the unique population in a finite number of stages of

sampling such that the P*-condition is satisfied.

Definition 1.4.1

Let xij denote the jth observation of M, 1= 1,2,...,k,
j=1,2,... . Let Rij(n) denote the rank of Xij among the
pooled observations when n independent observations
are drawn from each of k populations.

Let rij(n) denote the rank of Xij in the n observations drawn

from L For any i and j, we define
(1.4.1) dn(l,J) = max(ria(n)-rjs(n)+1,0) where the maximum

is taken over those o and B such that Ria(n) < R.

JB(n). For any

j, we define
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(1.4.2) D_(j) = max d_(i,j)-
" i=1,2,...,k "

i#j

B. A Class of Rules R4(m0;e(n))

Let m, be a positive integer and let {e(n),n=1,2,...} be
a sequence of positive numbers which are to be specified before
the experiment. A non-elimination sequential procedure

R4(m0;e(n)) is defined as follows:

(1) m, observations are drawn from each population. Compute
Dm (i), i =1,2,...,k. We consider ™ to be rejected if, and

only if, D (i) > e(m,) and we say w. is tagged.
m, — 0 . i

If at this stage only one population is left, stop sampling

and select this population as the best. Otherwise, draw one

more observation from each of k populations and consider only those
which are not tagged. If "j is not tagged in the first stage

and Dm0+1(j) > e(my+1),

we consider ﬁj to be rejected and "j is tagged at this second stage.

(ii) In general, at the nth stage, one more observation is drawn
from each of k populations. If LAY is not tagged in the preceeding

stages, we consider T to be rejected if, and only if,

Dm +n_l(i)'z_e(mom-l) and LA is tagged at this stage. We stop
sampling as soon as only one population is not tagged or as soon

as all populations are tagged.



In the former case we select the one which is not tagged as

the best. In the latter case we proceed as follows.

(iii) Let LR be the populations which are tagged
1 2 T

at the last stage and only at the last stage of sampling. We

select any one of them as best by a random mechanism.

Before giving the main result, we mention a result due
mainly to Gnedenko and Korolyuk [19]. Darling and Robbins [11]
also show it and give an upper bound for a certain probability

as the following.

Lemma 1.4.1 (Parling-Robbins) If F(x) < G(x) for every x ¢ R,

then
s (n')2 2
P{Sup (Fn(x)-Gn(x)) 3_;& 5_-5—43——-1 exp(-s~/n+1)
X (n"-s7)!

for s = 0,1,2,...,n, where Fn(x) and Gn(x) are, respectively,
the empirical distributions based on n observation from F(x)

and G(x), respectively.

Theorem 1.4.1 If

(1) e(n)/n tends to 0 as n » » and

2 3 eXp(-ez(n)/n+1) < (1-P*)/(k-1) for some my > 1
n=m
0

then,
(a) P(N < w|R4(m0;e(n)))=1
(b) P(CS|R,(my;e(n))) > P*

where N is the stopping variable associated with Ry-
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Proof: We may assume mo=m for convenience.

(k)
(a) According to the definition of (1.4.1) we can show that

(1.4.3) dn(i,j) > e(n) if, and only if Sip(Fin(x)-an(x)) >

e(n)/n

where Fin and an are respectively the empirical distributions of

Fi and Fj. By the well-known Glivenko-Cantelli lemma, we have

P{lim Sup (Fi(x)-Fin(x)) =0}=1, i=1,2,...,k.

n>e X

Since, for each fixed i (i = 1,2,...,k-1),

Sup (F (x)-F, (x)) ~ Sup (F, (x)-F, (x))
X

dki > 0, say, WPl

and e(n)/n tends to 0, it follows that there is some finite n, such

that

Sup (Fkn(x)—Fin(x)) > e(n)/n WPl for n >
X

According to (1.4.3) we have

dni(k,i) > e(n;) WPl

Hence, we have shown that

PO, (i) > e(n;)[R,(mj5e(n)))=1 for i = 1,2,...,k-1.
i ,

It follows obviously that

N < n,+n,+...+n < o WPIl.

mn, k-1
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(b) We note that

P{nk is rejécted|R4} = P{For at least one i (i=1,2,...,k-1)

there is some mi. My <my < such that Dmi(k) i_e(mi)}

< (k-l)P{dmi(i,k) > e(mi)}for some my < m, <, i#k

< &-1) ] PG5,k > em))

n=m0

< 1-p* (this follows from (1.4.3) and Lemma 1.4.1 and

Assumption a(2)). This completes the proof.

Remark 1.4.1: If we change our sampling scheﬁe of.R4 to that
of R1 and use the same argument as Corollary 1.3,1 we obtain (a)
P(N < w|R4) > P* and (b) P(CSIRA) > 2P*-1 under the same assump-
tions (1) and (2) of Theorem 1.4.1. We note that the saméling

scheme of elimination type is better than that of non-elimination

type because the former saves the costs of sampling.
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CHAPTER 2
PARTITIONING OF k NORMAL POPULATIONS

WITH RESPECT TO A CONTROL

2.0 Introduction

In many of the experimental situations the experimenter 1is
confronted with the problem of partitioning k populations into two
classes. Usually one class is better than a control and the other
is worse. The terms better and worse are up to the experimenter
and depend on his particular goal. Paulson [40] made the initial
‘efforts in this direction. He considered the problem of selecting
the best one of k categories when comparing k-1 categories with a
standard control. He treated the case of k normal populations with
a common unknown variance and the case of k binomial populations.
He controlled the probability of selecting the standard as best when
other catégories'are equal to the standard. Later, Dunnett [14]
considered the same problem of normal populations. But his goal is
to select all those treatments which are better than the control.
He controlled the probability of selecting the control when the
treatments are all equal to the control. Gupta and Sobel [25]
considered a problem of selecting all populations (normal or binom-
ial) which are better than or equal to a control under arbitrary

configuration. Their procedures controlled the probability that
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all good (better than equal to the control) populations are
selected. Some of these results could be applied to several
other distributions in the Koopman-Darmois family. Lehmann [35]
considered some model 1 problems using a general decision theo-
retic approach and gave some criterions of selection procedures.
He obtained a minimax solution and illustrated some specific
examples. Krishnaiah [31] considered the problem of selecting

- multivariate normal populations better than a control on the basis
of the linear combihations of the elements of covariance matrices.
Krishnaiah and Rizvi [32] considered the problem of selecting
multivariate normal populations better than a control based on
various scalar quantities, such as linear combination of the

elements of mean vector , Mahalanobis distances of populations from

’
a cgntrol etc. Using various definitions of positive (good) popu-
lations and negative (bad) populations (which are earlier defined

by Lehmann [35]), they studied the probability of selecting all
positive populations, the expected proportion of positive popula-
‘tions in the subset selected and the expected proportion of

negative populations in the subset selected. Recently, Tong [54]
considered the problem of partitioning k univariate normal popula-
tions according to their location parameters with respect to a
control. The problem is set up in the indifference zone formulation.
He controlled the probabiljty of a misclassification. The problem

is investigated in terms of single-stage and multiple-stage proce-

dures. Some optimum and asymptotic properties are shown.



In this chapter, we consider the problem of partitioning k
normal populatibns into disjoint exhaustive classes with respect
to a given control. When the comparison with respect to the con-
trol is in terms of the location parameter, we consider the uni-
variate case using Bayes and empirical Bayes approaches. When it
is based on scale parameter, we consider the multivariate case
(p-dimensional) and control the probability of a misclassification

"in the sense of Tong [54] which will be defined later. When p=1
and p=2 we also investigate the sequential procedures. An

optimum property is also discussed.

2.1 Definitions and Notation

Let = be k+1 populations with parameters of dis-

0° 10Tk
tribution functions 90, 01""’9k’ respectively. For given values
0y and Py with Py < Py and a given function g defined on a subset

of R2 we define

(2.1.1)

D
]

o = (ny: 1g(8;,8))

lv

pl}

}

D
1

B {ﬂi: |g(Oi,90)

| A

)

®
1

& = {ﬂl, nz,...,nk} .

Based on n observations from each population (n > 1, preassigned),
we want to partition € into two disjoint exhaustive subsets, say,
SG and SB' SG and SB’ for example, might be subsets of good and

bad populations, respectively. Let Xi denote the sample space of
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L for i = 0,1,2,...,k and let X = Xo x X1 X,,.% Xk be the

cartesian product. Define

(2.1.2) K= {1,2,...,k}

SK

{s|sck}

We note that there are oK elements including empty set im SK. A
decision function d for our problem is a measurable function from
X into SK so that for an observation x ¢ X, if d(x) = S, we parti-
tion @ into S = {r.|i € S} and Sy = &-S;. Define

(2.1.3) Sy (%) = {nilie(d(x)rrOB)U((K-d(x))n €.}

where OB = {i | m.e 93} and OG = {j | " e €.}.

G

Definitionvz.l.l 1f ;€ SM(d,x), we say under observation of x,

L is misclassified by d. If SM(d,x) = ¢, the empty set, we say

d(x) is a correct decision (CD).

Definition 2.1.2 A loss function L(.,.) is a non-negative function

on SK x Q@ (2 denotes the parameter space of Ty nl,...,nk) such that

L(S,u_)) =0 if OGCSCOGUOI Y weQ.
We define

(2.1.4) Llics,w) =a if ic@y andi ¢S

B if i@y and i ¢ S

H]

= 0 otherwise
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1,;(S,u) = a(8,-8)) if i ey and i} S
= B(8,-60,) if i efpandicesS
= 0 ‘ otherwise

k

(2.1.5) Ly (S,w) = 121 L4 (S,w)
k

L,(S,0) = 121 L,; (8,0).

We use the above notation and definitions throughout this chapter

unless otherwise stated.

2.2 Location Parameter for Univariate Case

Let "0’ TyseeesM be k+1 univariate normal populations with
mean 00, 01,..,,0k and variances og, of,...,oiz respectively. We
define g(x,y) = x-y for x,y e R.

Tong [54] treat the case Py < Py and oi = cz, is= O,l,2,...,kb
for both known and unknown c?. In this section we treat the problem
for known qzrand Py <0y using Bayes approach.

Deely and Gupta [13] considered the problem of subsét selection
of normal populations using Bayes approach. Deely [12] also con-

sidered the same problem using empirical Bayes approach. We also

consider our problem using empirical Bayes approach.

A. Bayes Procedure

We assume Oi have a prior distribution each distributed accord-
ing to normal distribution with known mean Ai and known variance Wf
and we also assume ci are known for i = 0,1,2,...,k. Let the con-

be @ = {(goa e

0 M1t

figuration of = 1

.++,8.)| 6. € R} and G,
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denote the normal prior distribution of 9 and G be the joint
prior distribution on Q such that G is the product of Gi which

assumes known mean A, and known variance.¢§. Let Xi3 denote the
n

jth observation from w. and let X, = ) xij/n, the sample mean
j=1

of m for i = 0,1,2,...,k, j = 1,2,... .

Thgorem‘Z.Z.l Using loss functions L1 and LZ’ defined by (2.1.5),

-

respectively, we have Bayes procedures RlG and ch’ respectively,

defined by the following:

1) RIG; If S is a subset of {1,2,...,k} and s¢ is the

complement of S such that

o [ [1-003(x;5,0)] + 8 ] ¢W(x;.0,))
ieSc‘ jeSs

¢(J(§j,p2))}

= min {@ ] [1-003(x;,p,0)] + 8 ]
o jer

T<(1,2,...,k} ieTS

- then, we classify LAY in SG if, and only if, i ¢ S,
where X; denotes n observations from LAY 8 (x) denotes

cdf of the standard normal distribution and

. 2. 2,2 2. 2. . 2
J(x;:0) = [(ngy Xy*A500)/ (0g+npy) - (ng; X;+2;05)/

(of+n¢§)+p]/[(O§¢§)/(O§+n¢§)+(oé¢§)/(og+n¢g)]l/2

for i = 1,2,...,k.

(2'2'1) (11)_ RzG: Let fi=f(ﬂi,ﬁi.uo,80,pl) = [Bic(ai-pl'ei;

1/2

ao,Bo)/(Zw(80+Bi)) ]+ui-a0+H(ai,Bi;a0,Bo;1,pl)

-aiO((ao-ai+p1)/(Bo+8i)1/2) for i = 1,2,...,k,
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and gjsg(ujisj’uotso,pz) 2 H(ajnsj;aolﬂo; l’pz)

' ' 1/2 .
+aj°((ao-aj*pz)/(80+8j) )-BjC(aj-oz,Bj.ao.Bo)/

[2n(80+8j)]1/2 for j = 1,2,....k.

If S is a subset of {1,2;...,k} and st is the complement of S
such that

a ) fi +B) g min (@ ) fi+Bz 8j),
. oC

L. 8 F .
ieS jeS T<(1,2,...,k} ieTC jeT

then, "€ SG if, and only if,i € S, where

(2.2.2) C(a,85 v,8) = expl-(a-1)°/2(8+8)]
2.2 2.2
o = (nep; xi+aixi)/(ci+n¢i)
B. = uiwi/(o§+n¢§) for i = 0,1,2,...,k.

1

H(a,B;v,6; a,b) = [ x0(a,B;ax+b)de(y,8;X)

9(e,B;x) is the cdf of normal distribution with mean a,

variance 8.

Proof: Since the proofs of (i) and (ii) are analogous and compu-
tations for (i)are easier than (ii), we thus outline the proof of
(ii).

For a decision function d, the Bayes risk is given by
(2.2.3) R(d,6) = Eg{EL,(d(X),0)}

= [ d6(w)f L @09 w) £(x|w)dx .
Q X 2
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By Fubini theorem, we have
R(d,G) = fch(d,x)dx
where
(2.2.4) @g(d,x)= [oL,(d(X),w)£(X|w)dC(w) .

-To find a Bayes solution dG, it suffices to require

9g(dgsX) < 9g(d,x) for almost all x e X and sny d.

Hence, we need

(2,2.5) d.(x) = S such that ¢.(S,x) = min @.(E,x) for almost
G G EcK G

all x ¢ X, Now
9g(d,x) = X [oL 21 (d.w)f.(xlw)dG(w)

=a Z [ (8;-8))£(xX, |w)dG(w)+8 Z o, (8=8,)£(x; |w)d6(w)
jes® M jes ZJ T !
where d(X) = S and

(2.2.6) fy; = 1(8,0,,...,8,)]0,-0, > o}

1

91 = {89,0y5---,8,)18;-85 < p,}-

Let Gi and g; denote respectively the cdf and pdf of 0, - Then

(2.2.7) @g(d,x) = o 2 I f £(x; |06, (a)j [ (0,-0,)
jes® It = - 90+01

£(x, |8,)d6, (O)f(xoleo)dc (6) + 8] m f £(x,[0,)
8. +p jeS 1+J -
w 0 P2 |

dG, (o)f / (Oo-Oj)f(ijOj)de(O)f(xoloo)dGo(O

- 0. 00

o)
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We note that

(2.2.8) f £(x |o )dG, (0,)= j £(x; |9)g (o)de=j g CIE g, (x;)d0,
where

(2.2.9)  f£5 (x,)= f £(x |0)dG (0)
J -0

.(0]x.)=f 8)g.(0)/f .).
85 (01x;)=£(x;|0)g; (0)/ Gj("J)
Through some calculation it is seen that gj(9|xj) is a ﬁormal

density with mean “j and variance Bj which are defined by (2.2.2).

We also note that
-4 [-~] .
(2.2.10) Qf(inO)dGi(0)=f 0g, (0]x, )£, (x;)do
%*°1 %**1 17
Bi .1/2 2
", (%) (O 77 )7 Texpl- (89 -0y) /2810 [1-0((8p+p, -0;)/VB) )
where oy and 81 are defined by (2.2.2).

We have then

(2.2.11) fwf(xolgo)dco(oo)fg . of (x; |0)d6, ()
) 0"P1
5, ()G () (8,C(0; 7018, o 0280)/ [2n(B+8,)1 e,

-ai¢((ao-ai+pl)/(60*8i) 1/2 )}
where C(a,B;v,8) is defined by (2.2.2).

Similarly, we have

(2.2.12) f 0 f(xoloo)dG (oo)f f(xi|o)qsi(o)
%P1

*fg, (xy)Eg (xo) Leg-H(my 185 309,603 1,01 ]



where

o0

H(x,B;v,6;a,b) = | x¢(a,8;ax+b)de(y,8;X)

as defined by (2.2.2).

It follows from (2.2.11) and (2.2.12) that

oo

(2.2.13) Im o s (O-OO)f(xiIO)dGi(O)f(xOIOO)dGO(OO)
0" "1

~ . 1/2

-fGi(xi)fGO(xo){BiC(ai-pl,Bi,aO,BO)/[Zw(BO+Bi)] o,

-, d((a *+p - )/ (B,*+B )1/2) - a,+H(a, ,B.30,,8451,0,))
i 0"1 i 0 "i 0 i*Fi*orror Y

Similarly, we also have

- 99*°2
2.2.14) [ | (QO-O)f(xi|9)f(x0|90)dG0(90)dGi(9)

=fGi(xi)fGO(x0)[H(ai,Bi;ao,Bo;l,pz)—BiC(ai—oz,81;00,80)/

[2n(80+Bi)]1/2 + “iQ((“0’“i*°z)/(30+31)1/2)} _

It follows from (2.2.5), (2.2.7), (2.2.8), (2.2.13) and (2.2.14)

that (ii) holds. This completes the proof.

B. Empirical Bayes Procedures

When the mean i, of the random variable associated with the
prior distribution Oi is unknown, the Bayes procedures R1G and RZG
are not available. This is most the case in practical situations.
However, the data itself reveals something about A - Robbins [48]
first proposed the idea of the asymptotic optimal rule which

achieves the Bayes risk as sample size increases to infinity.
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Deely [12] uséd this idea to treat subset selection problems in
Bayes formulation. He assumed Ai is finite but unknown while the
variance ¢§ of 9, is assumed known.

Here we treat the same problem in part A from an empirical
Bayes approach using loss functions L1 and L2 respectively. We
assume ), and ¢§ are both finite but unknown.

Let X be a random variable distributed according to cumula-
tive distribution function F(x;0) where 0 belongs to certain
parameter space, say, ® on which a distribution G is assigned, G
may or may not be known to us. Let d(.) be a decision function
and L(.,.) be a loss function defined on the sample space and
G x @ respectively (G is action space). Then the risk of d is

defined by
R(d,6) = [g [4L(d(x),0)dF(x;0)dG(8).
dG is called a Bayes decision rule if
R(dG,G) = igf R(d,G)=R(G), say.
We recall a definition of Robbins [48].

Definition 2.2.1 Let T={dn} be a sequence of decision functions

such that dn(x) = dn(xl,x ,xn;x) which is a function of x and

gre e

whose form depends on the preceding n observations xl,xz,...,xn.

Usually x is the present or new observation. Let

R (T,G) = fe [x E(L( (x;,%,,...,X ;X))dF(x;0)dG (6)



where the expectation is taken with respect to X oXoae e s Xy

If lim Rn(T,G) = R(G), the Bayes risk, we say T is asymptot-
n-ce

ically optimal (a.o.) relative to G. We call such a.o. proce-

dure an empirical Bayes procedure. Under the formulation and

notation of our problem, we restate a result of Deely [12] as

follows.

Lemma 2.2.1 (Deely) Let 51, §2... be independently identically
distributed random vectors with X. having density f(X|w) and
consisting of (k+l)-components which are independent random
variables. Let Gn be a cumulative distribution function on the
parameter space . Suppose Gn is a function of 51, §é,...,§n

and dG denote a Bayes solution with respect to G. If

(1) lim Gn(m;gl, §2,...,§n) = G(w) wpl for every continuity
) ) et

point w of G where probability is taken with respect to

Xys Xgseon X o
~17 =2 ’~n

(ii) L(S,w)f(§|w) is continuous in w and finite with respect to

G for every S C K and x € X.

(iii) IQ L(S,w)dG(w) < «» for every S € K. Then,

T = {dG } is a.o. relative to G.
n

n

Y x.. and

j=1 M

and Q(x;O,cz) denotes the cdf of a

We recall our notation that iin = ii =

S

2 _2_ 1 % . -.2
Sin‘si'ﬁfl‘.z (x5 57%;)

normal distribution with mean @ and variance 02. Under the formu-

lation of our problem we have



k
Lemma 2.2.2 Let G = I ¢(x 5 1, c§+¢i) and
X i=0
Cn= 1 ¢(x X S ) Then, the condition (i) of lemma 2.2.1
i=0
is satisfied where w = (wl,wz) with

2 2 2 2 2 2
ml = {(AO’AI""’Ak)’Ai € R}) w2 = {(00+(P0’01+CP1,---,Ok"'cp.k)}.

Proof: Firstly, we show for the case k=0. By simple calcula-

tion we see that XOi are iid with unconditional normal density

. . 2 2 . :
with mean Ao gnd variance og+qg. It is well-known that XOn and
2 . <
on T independent for every n and xOn > AO wpl and
Sgn + og+¢g wpl by the strong law of large numbers. We note that

{Sgn; n=1,2,...} is not an independent sequence of random

S

variables and the strong law of large numbers can not be applied

directly. Using the Helmert transformations we can achieve our

goal.
Let
. 2. 2.1/2 . _
Yoi = (X 0i~ 0)/(o +¢O) i=1,2,...

Then, {Y0 , i=1,2,...} are iid with standard normal density.

2 .1 7 2 .22 th 5 12
Also, Son = "T'iz (Xo3-Xop)” = [(og+og)/ (n-1D1 L (Yo;-Yon)
| 2 1 B o .2 )
= (°o*¢o)50n where So, = o717 Z Moi-Yon)

i=1

Define

U, = (Y01'Y02)/'/5

[ =
il

(Yo, *Y 2-2Y03)//€

1*'o
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U, = (‘{01+\<92+...+Y0i - (i-l)Y0i+1 )/ VI(i-1)

1

u, = (Y01+Y02+...+Y0n)/JE .

We see that
2 el oo o 2.
(n-1) SOn = 121 Ui where Ui are iid with E(Ul) = 1,
Therefore,
21 oo
Son = 7oT .1 Uj = 1 wpl by the strong law of large numbers.

i=1

This shows Sgn > og+¢g wpl. Since ¢(x;a,B) is a continuous

function of a and 8 > 0, we have then

- 2. 2
(2.2.15) 0(x; Xy, S5) * 6(x;hy, 05+pg) WRl VxeR.

Similarly, we also have

(2.2.16) o(x; X, , sfn) > 0(x;A;, oovgt) wpl yxeR, for i=1,2,... k.

in
Define
R -
H(xo.xl.-g-.xk) = jgo xj for x, 20, 1= 1,2,...,k.

It is obvious that H is a continuous function of each variable.
By usual (e,8)-argument and by (2.2.15) and (2.2.16) we can show

that

G_ = HE ;. G 1,...,Gnk) > H(Gy,6;,...,6,) = G wpl . .

n n

where

G.. = o(x; X

2 : 2.2 .
» in+ Sin) and Gy = #(xidy,0549), 1 = 0,1,2,.. k.

This completes the proof.



Theorem 2.2.2 Under the formulation of our problem, the

following rules R, and R2n’ using loss functions L1 and L2,

1n

respectively, are a.o. with respect to G where G is any normal

distribution with a finite mean and a finite variance.

~

(1) Rln partitions € into S. and SB such that

G

S¢ = {nilieS} and Sp = {"j|j¢5} for some S € K, where S

satisfies

a ] [1-0Q'(x;50] + B8 ] 03" (x430,))

ies® Jes

= min  {o ] [1-0('(x;50,0)]48 ) 003" (x;50,)) 1,
T(1,2,...,k}  .c jed I

where
L 2 2.- 29,02 .2 2
J! (51,0) - {[n(son'co)x0n+)‘000]/[00+n (Son'oo)]

- [n(Sin—o?)i

i in+Ai°§]/[°§+n(sin'°§)]+p}/

([0} (52 ,-0D) 1/ [ofen(sT,-00) 1+ [og (S -00)/

[og+n(Sgn-og)]}1/2.

-~

(ii) R2n partitions € into S, and SB such that

G

Sg = {wi|ieS} and S = {nj|j¢S} for some S C K where S

satisfies
a Z f. +8 2 g: = min (o z f. + B8 2 g.)
¢t jes?  1c(1,2 k} ¢t jer
ieS EERRRE ieT J

where

85
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fi = f(ai,Bi,ao,Bo,pl) and g = gomj.Bj.Gd,BO;DZ)
which are defined by (2.2.1) and (2.2.2) for i, j = 1,2,...,k,

and where

2 = G001/ [0 fom (6] o)

é. 2 2

i i( -0 )/[c +n(S 0 )] for i =1,2,...,k.

Proof: It follows from Theorem 2.2.1, Lemma 2.2.1 and Lemma
2.2.2 that it suffices to check the conditions (ii) and (iii)

of Lemma 2.2.1, It is obvious that

k+l

T(Ho ) <= VxeR"(k I)SCK.

i=0 !

Ly (S,0)£(xlw) < (a+B) (P)
[qly(S,0)d6(w) < a+p < =

fng(S.w)dG(w) < 2(a+8)Eg(|0]) < = since G, (0) ﬁas finite
absolute moment. Finally, we note that |

L (S,w)f(xlm) < (a+B) max Ioi-ool < = a.s. with respect to G.

1<i<k

2.3 Scale Parameter for Multivariate Case

Gnanadesikan [17] and Gnanadesikan and Gupta [18] consider
the subset selection problem of k multivariate normal populations
in ierms of the generalized variance. Their pépers study some
approximations to the distributions of the generalized sample
variance which are useful for our problem in this section. Here

we consider partitioning of k multivariate normal populations
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with respect to a control in terms of the generalized variance.
We treat the problem with single stage and multiple stage pro-

cedures.

A. Definitions and Notation

Let w be k+1 multivariate normal populations

0 Meecoo ™
such that N(§;yi,zi) is the pxp multivariate distribution of ™
where By and Zi are both unknown, i = 0,1,2,...,k. Let

g(x,y) = y/x for x > 0 and 0 < Py < 1, 0, > 0 and Oi=|2i|. Then,

according to (2.1.1) we have

(2.3.1) &= {ny | lzil ipllzol}

D
I

5= (r 1151 20,1500

D
i

;= {my | pllzol < lzil < pzlzol}.

Let §ij denote the jth random observation of m for ? = 0,1,2,...,k,
j =1,2,.,.,n for some preassigned n. Based on these (k+l)n obser-
vations we need to partition the k populations into two disjoint
exhaustive subsets S(;and SB with respect to a. control T in terms
of the generalized variance. For a preassigned P*((%Jk < P* < 1),
we require that the probability of correct decision is at least P*,

where the correct decision (CD) is defined by Definition 2.1.1.

Let I = {ZO, zl,...,zk}, o= {EO’ El""’Ek} and Q ={§,E}.

-~

Let Si denote the sample covariance matrix of n observations from

m, and ISiI denote the determinant of s; for i = 0,1,2,...,k.



B. Single Stage Procedure
For a constant C = C(n,k,P*,p) > 0, we define procedure

R4 = R4(C) as follows:

m. e Sg if |si| < clsol and

G

" € Sg if ISjl 2_C|SOI.

It is clear then that the worst configuration with respect to
R4 is Zo(q) (0 :_q < k, integer q) i.e.

(2.3.2) inf P{CD|R,} = inf P{CD|R,)
Q Zo (q)

where

Zy(q) = {lzirl = pllzol’lzisl = pzlzol; r=1,2,...,q, 8 =q+1,..

Without loss of generality we may assume

(2.3.3) Iy = {|z,] = p1|20|,|zj| = p,]Z5l51=1,2,. 00005041,

1

we have then

(2.3.4)  P{CDIR,, £y (@)} = P{[S,] < chO|,|Sj| > cls,l,i=1,2,...

j = qfl,...,k|zo(q)}

. s, | p N o 181 p
{T):;T m-1)F < c-p—l—r,:;r (n-1)P, Tfj—r (n-1)

15,

1770 P . .
20— (n-1)", i =1,2,...,9, j = q+1,...,k}
Py %] |
=Hk<CiA,A>CiA,MﬂJw”%j=wLW
i oy 0 j p2 0

for 0 < q < k,
where

88
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Is. | P
A, = 1 (n-l)P has the same distribution as I xz(n-j) where
b | =1

xz(n-j) is chi-square distributed with d.f. n-j and
xz(n-l), xz(n—Z),...,xz(n-p) are independent. We note that

AO’Al""’Ak are iid. This leads to the following

Lemma 2.3.1 - Inf P{CD|R,} = min P{f. < A,g; <A,
1 J
Q 0<q<k
i=1,2,...,9, j = q+1,.,.,k} where

/2

- 1
(2.3.5) A= (pz/pl) > 1, f1=A1/A0

and gj = AO/Aj’ where Ar are iid, each being the product of p

independent factoré, the jth factor being distributed as a chi-
square variable with (n-j) degrees of freedom, r = 0,1,...,k,

i=112,...,p.
Proof: It follows from (2.3.2) and (2.3.4) that

inf P{CD|R,} = min P{CD|R,,Q =I,(q)}
1747 7 4 o'd)
a "~ 0<q<k
. 1 1 1, . .
= min P{fi <C—~, —>C—, 1i=1,2,...,q; j = q+1,...,k}
0<q<k 1% P2

1/2

where f, andvgj'are defined by (2.3.5). Take C = (py0,) and

1/2 then, the result follows.

define A = (pz/pl)
We note that n is involved in the degrees. of freedom of the
product factors of Ai'
In order to satisfy the P*-condition of the probability of

correct decision, there are two approaches. The first one assumes

n fixed and Az = pz/pl changing. For givén n, P*-condition can

84
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always be satisfied by increasing A. However, this does not
satisfy our formulation. For fixed Az, we need to find the
smallest n so that the P*-condition is satisfied.

We need a lemma which dues to Anderson [1] and Cramér [10].

Lemma 2.3.2 (Anderson-Cramér) /n [(ISi|/|zi|)-1] is asymp-
totically normally distributed with mean 0 and variance 2p.

It followsvfrom lemma 2.3.2 that as n is large

& 18l o ISl cva
PACD R, Eg(@)I=P{= (o7 -1) < == (g1 -1*
4o /g 1 0,72p Tl " o/

oo 15l e ISl
- (pi7 b > e D —
pz',ii; 0 92"2‘; '/i_p-

/5B VY

i=1,2,...,q, j = q+l,...,k}

/n(C-p,) -avn(p,-C)
z P{Xi-AXO < - , AXj-Xo > , ,1=1,2,...,q,
2p o, Y2p o,

j = q+l,... Kk,

where X,,X;,...,X, are iid with standard normal cdf and

A= (pz/pl)u2 > 1. Let Zi = xi—xxo, Zj = xo-xxj, 1 <ic<q,

q+*l < j <k and.take C-= Jplp2 .

Then, when n is large, we have

Theorem 2.3.1 inf P{CD|R4} * min P{Z. </=> (A-1), i=1,...,k}
i 2p
, Q 0<q<k _

whereZi are identically distributed with common cdf ¢(0,1+A2) such



2

that Cov(Zr,Zs) A" for 1 <r, s <q, Cov(Zr YA ) 1 for

q*l < r,s <k, Cov(z ,Z)) =X 1<t <q,q+l <s

| A
o
-

or equivalently, we have

1nf P{CD|R,} = min | "o% (s / (-1))[1-0¢F + MO-1) k-4 4y
0<q<k - Aep -

Proof: The proof is obvious and thus omitted.

91

Remark 2.3.1 (i) Since A > 1, it is conjectured that minimum value

attains at q=k.

(ii) when p is large, the approximation is good. When p is small,
we have the following exact and conservative results.

(1) Case p=1

A, = ’(m-1) for i = 0,1,2,...,k .

It follows directly from lemma 2.3.1 that

(2.3.6) 1nf P{CD|R,}= min [ Gq L0 [1-6_ D] k-qg o (0dx
0<q<k 0 "

where Gn-l(x) and gn_l(x) are respectively the cdf and pdf of

xz(n-l).

(2.3.7) Let I(n;p)

P n-1 -x . .
| x ‘e "dx be the incomplete Gamma function
0

and

J(n;p) = I(n)-I(n;p).

Then
n-1

I(—Z— ; %‘)/T(D'%l)-

Gn_l(xx)



Hence, we have

K- n_l(x)dx
(2.3.8) 1nf p{CDIR } = min | Iq(———- ——JJ "= 2 ; ZA)—__E?T__Y
0<q<k 0 [Fr(=7)]

Since I(n;p) and J(n;p) are increasing and decreasing in p

respectively, it follows thus

x .
0 o
(2.3.9) inf p{CD|R,} = min (f +f 13 EsL; A% gk (—;-1-; =)
4 2 2 2’ 2X
Q- 0<q<k 0 X0 :
) 8.1 (X)dx
-1,k
[r (591
* g () - . 8 (x)
n- Ax, °n-1 k n-1 X, °n-1
| U6 D e el 78 k-1 o
W %0 Z
where Xg is uniquely defined by
AX X
n-1, O, _ ,n-1_70
(2.3.10) | 155 =50 = IG5 37 )-
Define
k. n-1, Ax '
(2.3.11) L{k,n,A,x;) = - (——){fo I" (5= =g, (X)dx +

kn-1 x
+I IS 57 8, (M)dx}
X
0
where Xy is de_fined by (2.3.10).

Let s = s(n) denote the unique value such that

(2.3.12) I(——, s) = % (——;—1-). Then, since A > 1, we see that

1 n-1

n-1 2 -1 -1 .
J(-T; Uy -A—s)) = J(Ez——; A—;) _>_J(——2-—, s) = I(D-z—-; s).  This shows
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that Xq > %-s. On the other hand, we see that

n-1, 1 sy _ 7en-1, n-1 .2, _ ;mn-12A .
J(T, Z—A_ (ZAS)) = I(—Z'—,S) < I(-—z—-, A S) = I( ) (2>\S)). This

shows that Xy < 2As. Hence, we can conclude that

(2.3.13) Xy e(%-s, 2Xs) where Xy and s are defined respectively

by (2.3.10) and (2.3.12).
(2) Case p=2

A, = X (-1)x°(n-2) for i = 0,1,2,... k.

1/2

It is well-known that 2Ai is distributed according to the law of

the cdf of x2(2n-4); Therefore, it follows from the Lemma 2.3.1 that

. . ® k-q
(2.3.14) inf P{CD|R,} = min [ G}  (/Ax)[1-G, (-] %, . (x)dx
0 47 geqe o 204 2n-4"72 2n-4

where G2n_4(x) and gzn_4(x) are cdf and pdf of x2(2n-4). Using
same definitions of I and J, we can conclude that

© ; . 8o L (x)dx
(2.3.15) = inf P{CD|R,} = min [ 1%n-2; 1; x)3¥ "9 (n-2;—%)-2n-4

2 0<q<k 0 2/% r¥m-2)

Z_L(k,Zn-S,A,xl)

where L is defined by (2.3.11) and X is defined by

/Xkl X,
(2.3.16) I(n-2; ) = J(n-2; ). It is shown by (2.3.13) that
2 2VX

(2.3.17) x e(-% S)» 2/% §)) where S satisfies I(n-2;5,)=3T(n-2).
A
It follows from (2.3.6)-(2.3.17) that we conclude in the following
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Corollary 2.3.1 Let C = (plpz)l/z and A = — .
1

(a) When p=1, the infimum of the probability of correct selection
is given by (2.3.6).

If n is the smallest integer such that L(k,n,A,xO)i_P* then,

inf P{CD|R,} > P* where L(k,n,},x;), X

9]
(2.3.10), (2.3.12) and (2.3.13).

o are defined by (2.3.11),
(b) When p=2, the inf of PCS is given by (2.3.14).
If n is the smallest positive integer such that L(k,2n-3,A,x1) > P*,

then, inf P{CD|R,} > P* where x
Q

1 is defined by (2.3.16), (2.3.17).

(3) Case p > 3, Hoel [28] suggested approximating the distribution

of Ai/p by the disfribution of Y having density
 1/2p(n- -p)-1} -
(2.3.18)  g(y) = nt/2P(@-p) [1/2p(n-p)-1], V/rEm-p)

where n = (p/2)[1-(p-1) (p-2)/2n]*/P.

We see that when p=1 and p=2, the approximations are exact.
Gnanadesikan and Gupta [18] made a study of this approximation by
generating random samples from the Gamma distribution and comparing
the distribution of the variate A;/p generated from these samples
which obey the distribution law of (2.3.18). They found that the
Hoel's approximation decreases in accuracy as p increases. When
p=3, they suggested using F-distribution. The approximation is
found improving with n. Thus, when p=3, we have

(2.3.19) inf P{CD|R,} = min [ G o(3/AX)[1-Gg

(x)
Q 0<q<k 0 5n-9

o (1" %G
33

where Gy o(x) is the cdf of x’(3n-9).




When p is bigger than 3, it is favorable to usc the approxi-

mation given by Theorem 2.3.1.

C. A Minimax Property of R,

Let Rp denote the p-dimensional Euclidean spaceé and R;+1 denote
the (k+1) product space of Rp' For ¢ > 0, we define a transfor-

. k+1 . k+1 . _
mation TC from Rp into Rp such that a point §-(§0,§1,...,§k)

in Rk+1 is transformed into T_x = (CX.,CXy,-..,CX, ) in Rk+1 where
P c = ~0’ 1 ~k p

Xs is in Rp (i=0,1,...,k). By defining the usual operations on

the set of all Tc’ G = {Tc; ¢ > 0}becomes a non-trivial group.

Let IZI = (|Zo|,|21|,...,|£k|) denote the vector value of the

generalized variance of k+l multivariate normal populations. Then,

G induces G, a group of transformations on the R;+1,(the positive

quadrant of (k+1)-dimensional Eucleadian space) such that, for

PR 2 2 2
T.¢G, chlzol,lzll,...,lzkl) = ("zylse DA PPN 1z, .
Define R, = ISi|/|SO|, for a fixed sample size n, where S, are
sample variance for i=0,1,2,...,k. Then, the vector

R =_(R1,R2,...,Rk) is maximal invariant with respect to G and
also @ = (|21|/|zol,|22|/|zol,...,|zk|/|20|) is maximal invariant
with respect to G. Therefore, it follows that (see, for example,
[33 ]) the distribution of R depends only on 8. Furthermore

(see, for example, [33 ]), each rule in the class of all invariant

decision rules under G must be a function of R and thus its dis-

tribution depends on |20|,|21|,...,|2k| only through 9. Let

(2.3.20) 0, = |z;|/]z,| and ¥ = {e|e

(91,92,...,9k)}.
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Define loss functions Li by

Li("') 1 if ﬁi is misclassified

0 otherwise

for i =1,2,...,k.

Then, the risk function r is given by

-

k
(2.3.21) r(S,w) =E ] L.(S,w) = } P{n, is misclassified IR,)
i=1 i=1

where w = {Z,y} and S € K such that i ¢ S implies m, ¢ Sg- By

Lemma 2.3.1, we see that

(2.3.22) r(S,w) :_k[l-H(l,n)]
where |

H(A,n) = min P{fi < A,g: < A, i=1,2,...,9, j=q+1,...,k}
0<qz<k )

which is defined by (2.3.5).
We note that the equality of (2.3.22) holds when Oi is either py OT
pz(because of (2.3.2)). We define a prior distribution Q on V¥

(which is defined by (2.3.20)) such that

(2.3.23) Q= lesz...ka, a product probability -measure of each
Q. with Qi({pl})=Qi({p2}) = 1/2. Then, it is obvious that

QUe}) = (/2% veey,, where

(2.3.24) ¥, = {90190 = (6,,0,,...,0,), 0; is either o, or p,}.
Then, wo C ¢ and Q(IPO) = 1 and
r(R4,w0) = k[1-H(A,n)}] Z_r(R4,w) for any w, where

wy = {wo,g}. Therefore, we have
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(2.3.25) r(R = Sup r(R4,m) V woedy with Q(wo) = 1.

»Wn)
4’70 W

Then, it can be concluded (see, for example, [34]) that

Theorem 2.3.2 R4 is minimax in the class of invariant rules.

D. Sequential Procedures (fbr p=1,2)

Finally, Qe treat the problem formulated in 2.3 for the
case of univariate and bivariate normal populations by using
truncated (closed) sequential procedures. These procedures con-
trol the probabilities of misclassification and possess the

monotonicity property which will be defined later.

Procedure R5 (moéml; m,,My; An,Bn; A)

. 1.k :
For glyen po(po < 1), pl(pl > po) and P* ((70 < P*¥ < 1), let
A be a value such that 1 < A< min(pf, l/pg) and let

al/n-l

a = (1-P*)/2k and let B, = (n > 2).

Define

(2.3.26) A= 0;(AB_-1)/A(A-8_)

o0
1]

L= PIA(A-B_)/ (A8, -1)

mo = [#n(1/a)/anr] + 2
m(A) = ¢n(l/a) ]+ 1
2n(A(pf+1)/(A2+Di))
m(B) = [ in(l/a) 1+ 1

zn((x+pgx)/(pgxz+l))
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where [x] denotes the largest integer not exceeding x.

(2.3.27) m = min{m(A), m(B)}
m, = min{nlAn > B for m; <n < mgl
my = max{m(A), m(B)}.

For convenience, we use RS(A) instead of.Rs(mo,ml;mz,ms;An,Bn;k)-

RS(A) is defined as follows in two cases:
(i) when m1=m(A)
(1) We note that on each stage of sampling, one observation is

always drawh from My Draw mg observations from each of k popula-

tions. If

S? <A s » put m, in S

0 0 G

2 .
If §. >B S put m. in S..
jmg my Omo’ j B

If all k populations are classified, stop sampling and the disjoint

exhaustive classes S. and SB are obtained. Otherwise, draw one

G

more observation from those populations which are not yet classi-

fied. If w, is not classified in the first stage and S?. <
1 1m0+1

A S2 » classify . in S or if S2 > B S2

m0+l 0m0+1’ i G’ im0+1 m0+1 0m0+1’

classify i in § Otherwise, continue sampling on the third

B
stage. This procedure continues until all populations are

classified.
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(2) On stage (ml—m0+1), take one more observation from these

populations which are not yet classified. If ™ is sampled on

. 2 2
this stage and Sim < SOm

2 1 2 1
in SB if Sim >’Bm Som .
1 1 1

(3) If all k populations are not yet classified after the stage

, classify s in SG and classify T

(ml-m0+1), take (mz-ml) observations from these populations which

. pu . . . 2 2
are not classified. Then, classify m, in SB if Sim2 > Bm2 SOmz'

Same sampling procedure stated in (1) continues until

at stage (ms-mo+1).

(4) On stage (ms—m0+l), one more observation is drawn from these

populations which are not yet classified. Then, classify ™ in
co 02 L o2 .

SB if Sim3 > SOms’ otherwise, classify ™. in SG.

(ii) When m, = m(B)

(1)' This part follows (1) of (i).

(2)' At stage (ml-m0+1), take one more observation from these

which are not yet classified. Classify m. in 8§ if

B
2 2 ' . . s o2 2
iml > S0m1 and classify m. in SG if Siml < Am1 SOml.

(3)' If sampling procedure does not stop after (ml—m0+1)th stage,

S

take (mz-mo) observations from those which are not classified.

Classify m, in S¢ if Sfmz < Am2 ngz. Same sampling procedure

stated in (1)' continues until the stage (m3—m0+1).

(4)' At stage (ms-mo+1), one more observation is drawn from those

which are not classified. Classify n. in S. if S? < S2 .
i G img 0m3

otherwise, classify ™. in SB’
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According to the preceding sampling procedure, we have

the following

| , .22
Theorem 2.3.3 Let p=1 and A satisfies 1 < X < m1n(p1,l/p0L

(a)  P{CD|R; (M)} > P*.

(b) (Monotonicity property) If o. < o,

2 2

j < Pg9> then

P{n,eS.|R. (A)} > P{m.eS.|R.(\)}. Also, if o2 > o
185G IRg ()} 2 PimseSiRs (M) ). » 1t o5 29y

§ 2
i P19

then,

P{m eSg[Rg (M)} > P{wjeSBIRS(X)}.

Before we prove this theorem, we state a result due to Cox [9]
and Paulson [40].

r(n-1) f(“'z’;/z 1
n_

@l e e,

Lemma 2.3.3  (Cox-Paulson) Let gn(f|¢2)=
the density of f. Then, for y > 1,

P{

2
g, (£149)
5= <o for at least one n, n = 2,3,...} < a.

g, (£16°/7°)

Proof of Theorem 2.3.3. (a) We give a proof for the case ml=m(A).

The proof for the case m1=m(B) is analogous. According to RS(A),
2

. . . o . . 2
‘a population m. is misclassified if (i) nieﬁG and Sin >B S, for

some n, where either m

2 2
Sin < An SOn

Sms<moorm, <n<m,, or, . (ii) "iEOB and

2 2
, Oor Sin :_Bn SOn for

0 1

for some n, where m

2

<nN-<nm
— —

0 1

all n, m,<n<m We see that

3
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2
(2.3,28) P{Si >B S2 for some n, my < n <myporm, <n §_m3l02<p000}

n noOn
(S? /ag) o? O?
P{—aP 1 .(<1)>B_ for some n, my<n<m, Or My<nzm |= < pg)
<2 /60 o2 ™ P Po= T ez 0
on’ "0 0 0

jp{f(n-l,n-l) > Bn/p0 for at least one n, n=2,3,...1}

<o (By taking,¢2=po and y=A and using (2.3.26) and

Lemma 2.3.3).where f£(n-1,n-1) is F-distributed with

d.f. n-1, n-1.
(2.3.29) P{S2 < A 52 for some n, m, <n <m,, Or S2 < B 82 for
cere in n ~0n s Bo -7 —=71° in — mn On

2 2
alln, m, <n _<__m3|oi > 0,0}

’0
(Sin/ai) ci .
=P{ 53 ‘(—50 < A_ for some n, my <n <MW or
(s¢. /05) o n- - -
*“on’ "0 0
2 2 2
(Sin/93) %

2, 2
135—7;7; (02).5 B, for some n, m, <7 < mgloi/ag > Py}
“Oon’ 0 0

:P{f(n-l,n-l) <A /o, for some n, m <n<m

psn<m, oF m,<n<m;}

<P{f(n-1,n-1) < A /p, for some n, n=2,3,...}
< o (by noting that B < A, for m, < n <My and

1 <A< min(pi,llpg) and using Lemma 2.3.3).

It follows from (2.3.28) and (2.3.29) that



P{CDIRS(A)} =1-P{n. is misclassified for i=1,2,...,k|R5(A)}
k -
1-121 P{r; is misclassified [Rg (1)}

fv

1-2k «

fv

1-(1-P*)

= P*,

Finally, we note that An and Bn are respectively monotone

increasing and decreasing functions of n and also Am < 1 and
0
Bm > 1. Hence the definitions of (2.3.26) and (2.3.27) are
0
well-defined. _This completes the proof of (a).

(b) It suffices to show the case o:i') < oJ? < poog since the

proof of other case is quite similar. For the case m1=m(A)', we

note that
2 2 2
P{wjeSGIRS(A), 05 295 < 0gog}
e . 2 2 2
= P{Sjn < An SOn for some n, Mg <M <m, or Sjn < Bn SOn for
2,2 2,2
every m, m, < n f-mSIDO > cj/o 3.01/00}
_ 2,2
= P{f(n-1,n-1) < An(co/oj) for some n, m o <n < m, or,
02 02
' 2,2 0 _ 70 1
f(n-1,n-1) < Bn(oo/oj) for every n, mzf_nf_mslgz—i 0—2-1 %}
i j

Ia

2,2
P{f(n-1,n-1) An(co/oi) for some n, m <mng<m, or,

A

A

2, 2, .
f(n-1,n-1) Bn(oo/oi) for every n, my < n < mg)

_ 2 2 2
= P{nieSGIRS(A), o) 205 < Po%}

This completes the proof of (b).

102
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When p=2, we note that A, _ =(Is2 1715, h -1

1/2
in

2

=x2(n-1)x2(n-2) and 2AL/2 = y%(2n-4). Hence, (|sin|/|s§n|)1/2x

1/2 _ ,1/2,,,1/2_ i ,
(zol/1e, D75 = 2a3; /284 £(2n-4,2n-4), the random variable

distributed according to F-distribution with d.f. 2n-4, 2n-4.

Define

f =
(2.3.30) An = A

2n-2
By = Bon-2
mb = [¢n(l/a)/%n)A']+2 where 1 < A' < min(ol, %a)
, _ n(l/a)
m'(A) = [—Wgr:l—)']*‘l
n ()
A T+p
1
n (B) = [—risdya
2“(—;—2——-—)
A p0+1
m = min{m' (A),m' (B)}
my = max{m' (A),m' (B)}
mj = min{nlAﬁ :-Bﬁ’ m<m :_mé} .

Instead of Szn used in case p=1, we use |S§n|, the generalized
sample variance, for our case p=2. For convenience, we use

] ) 1 1. 1 1. ] te)? 3 :
RS(A ) to denote.Rs(mo,ml, m),Mz; An,Bn,A ). Then, it follows
from Theorem 2.3.3 and (2}3.30) that we have an immediate result

as follows.
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Corollary 2.3_.2 ' (a) For bivariate normal populations, we have

P{CD|RL(A')} > P* where 1 <! < min(p;,1/04)-

(b) (Monotonicity property) If IZiI < |}:J.| <0, |z then

o)
P{nieSGIRé(Ai)} > PlnseSglRgADI. Also, if
|Zi| 2 lle > f |ZO|: then,

P{ﬂieSBIRg(A')} > P{ﬂjeSBlké(A')}.
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CHAPTER 3

SELECTION APPROACH TO A K-ARMED-BANDIT PROBLEM

3.0 Introduction and Summary

Robbins [47] proposed a finite memory sampling scheme
for tossing one of two coins sequentially. For his scheme
the average number of heads tends to the largest probability
of a head of the two coins when the length of memory tends to
infinity. L#ter, many authors studied this two-armed-bandit
problem extensively and thoroughly. Smith and Pyke [50] con-
structed a class of rules for this problem. They considered
the problem from a more general point of view and gave an
insight iﬁto the possible constructions of optimal rules. All
these rules treat the case of infinite tossings. Bradt, Johnson
and Karlin [7] considered the problem of finite tosses of two
coins assuming a non-trivial prior probability on the parameter
space} They showed some optimal properties and discussed some

applications.
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In this chapter we study a problem of the k-armed-bandit
in a more general formulation by using selection approach. We
investigate a maximin procedure for finite numbers of sampling
of k populations without assuming prior distribution. We also

show an asymptotic optimality of the maximum procedure.

3.1 Notatioh and Formulation of the Problem

Let = be k populations such that s has cdf

1’ ﬂz,..., wk
F(x;oi) for i

1,2,...,k. Let Q denote the parameter space of

e = (91,92,...,Ok). For d > 0, we define Q(d) =
{e =(°1’°z""’°k)|°[k]'°[k-1] > d}. Let X, denote the jth
n
independent observation from L and define Sin = ) xij’ for
: i=1
J

i=1,2,...,k, n=1,2,... . Let W(k,n; X;,X,,...,X ) denote a
statistic depeﬂding on XI’XZ""’Xn which are random observations
from the k populations.
For a given positive integer n, we need to draw n samples
from the k populations. On each stage one sample is permitted
to be drawn from any one of the k populations. When n samples
are drawn,vsay, X)sXyseorX 5 @ reward W(k,n; xl,xz,...,xn) is
obtained where the function W is defined before the experiment.
The problem is how to design a good sampling scheme so that the
expected reﬁard, EQW(-) is maximum when 0 is the true configuration.
When n < k, it is reasonable to take one sample from each of
any n populations since we have no information about its distribu-

tions at all. We therefore confine ourselves to the case



n>k+ 1. We also restrict ourselves to the case where the

mean of each population is finite. We confine ourselves to

the case where W(k,n; xl’XZ""’xn) = iglxi.

Let R be a selection procedure for selecting the unique
population associated with Q[k], the largest parameter, when
Q = Q(), d > 0. Then, we define a random variable 7 (R;m),
which takes value in {1,2,...,k}, such that n(R;m) = i means
™ is selected based on m observations of each population using

rule R. Let yi(m) = P{r(R;m) = i}, i = 1,2,...,k. Define

y(m) = inf P{CS|R}. Without loss of generality, we assume
2(d)

to be O, .

%x] K

3.2 A Maximin Strategy
By a test block U(m) we mean a sequence of random outcomes

X X R 4

{xll’ X21""’Xk1’ X12’ X22""’Xk2’ m* *om’ } where

km
Xij is the jth independent observation of T i=1,2,...,k.

By a trial block V(i,m) we mean a sequence of m random outcomes
of "i’ i.e. {xil’ XiZ""’xim}' For a given integer m,

0<m :_[EJ, a UV(R;m) scheme is a strategy of sampling which

follows a test block U(m) first and then follows a trial block

V(r(R;m),n-km). Let W(UV(R;m)) denote the reward function using

the UV(R;m) scheme. Then, it is obvious that W(UV(R;m)) =

: n
ileim+s"(R;m),n_kn. Let X = {0, 1,2,...,[;]} and Y = q(d) for
given d > 0. And, for given R, let G(x,y) = EyW(UV(R;m)) for

XeXand y ¢ Y. Now if we consider a zero-sum two person game

107
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such that a statistician (player 1) plays a game against nature
(player II) with reward G, then, following the UV scheme, we have
a game (X, Y, G). In this game, player II tries to minimize the
reward while player I Qants to maximize the reward. Hence, a

- good strategy for player I_is a maximin strategy, i.e., player I

needs to choose m* = m(R,k,n) € X so that

(3.2.1) G(m*,0) = max  inf EQW(UV(R;m)).
osm<[F] e (d) |
It is obvious that a maximin strategy always exists for our
problem.
Accordihg to our notation we see that
k

leim * Sn(R;m),n-km]

(3.2.2) G(m,0) = EN(UV(R;m) = E

9[.
i

k k
m } t(0,)+(n-km) ] v, (R;m)t(0,),
i=1 i=1

where Eg Xil = t(Oi) for i =1,2,...,k. A§ a special case,
i

when Xi1 is unbiased for Oi, we have
k k
(3.2.3) G(m,0) =m ] 0.+(n-km) } v, (R;m)o, .
- . 1 . 1 1
i=1 i=1
Let

(3.2.4) L(R;m) = md+(n-km)y(R;m)d and

U(R;m)

where 0, = (0,0,...,0,d).

md+ (n-km)y; (R;m|9=0,), 8

Then, if Qi > 0 and t(Oi) = Oi for i = 1,2,...,k, we have
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(3.2.5) max L(R;m) < max inf G(m,9) < max U(m

,8.).
meX meX OQeY meX =0

. Let X* denote the convex hull of X. Then, if [E] = L,
X* is a closed convex subset of Rz. Let y(R;m) = (YI(R;m),

Y,(Rsm), ...,y (Rsm)) and £(Q) = (£(8),t(8,),...,t(8,)).

Then we have the following theorem:

Theorem 3.2.1 If Q(d) is a closed bounded convex subset of

k . . . . .
R™ and Yi(mIQ) is continuous in 8 for each m, t(z) is convex

and continuous in z and t(8- yR;x) is convex in 9 for each x, then,

(X*, @(d), G) has a value and player II has a good puré strategy
and player I has a good strategy which is a mixture of at most

min(k+1,%) pure strategies.

Proof: For x ¢ X* and 8 ¢ Q(d), there exists a = (ao,al,...,uk) such

that a; > 0, } a;=1 and x = ] ia;. We note that G(x,9) =
1} i=0 i=
( z iai)( Z t(Oi))+ z (n-kiai) Z Y.(iailg)t(g.). Hence, we see
i=1 i=1 =0 j=1 7 3 ’

that G(x,8) is continuous in x and convex in 6. It

follows from our assumption and a result of Game Theory (see, for
example, Blackwell and Girshick p. 53) that the theorem holds.
Here we extend the discrete variable m of yi(R;m) to a continuous
variable by the polygonal interpolation. This completes the

proof.
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Definition 3.2.1 A selection procedure R is monotonic if

v(R;m) is monotone increasing with respect to m such that

lim y(R;m) = 1.
m>-co

Definition 3.2.2  (Hall [27]) A selection rule R is most

economical if, for any rule R',
y(R;m) < y(R';n) implies n > m.

Let C1 denote a non-empty set of all monotonic rules

for some selection problems and let C, denote the set of all
most economical rules. Let C =C; N C,. Then, it is clear
that in the indifference zone formulation, the Bechhofer type

>procedure is in C It has been shown in Hall [27] that R

1 SH’
the Sobel-Huyett procedure [51], and RB’ the Bechhofer procedure,

are both in C,. Hence,

2 and RB are both in C.

Rsu
Let t(0) and L(R;m) be defined by (3.2.2) and (3.2.4). A

most economical rule has the following property:

Corollary 3.2.1 If t(0) = @ and R ¢ C,, then, for any R',

2’

(3.2.6) max L(R';s) < max L(R;s)+min{né(K;e),ky(R;e+1)}d
0<s<® 0<s<®

where 2 = [EJ and §(R;2) = max {y(R;m+1)-y(R;m)}.
0<m<®
Proof: Since R ¢ C2’ for any R', we have

y(R';m) < y(R;m+#1) for m = 0,1,2,...,% .
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tience,
(3.2.7) max L(R';s) <md + (n-km)y(R;m+1)d for some m, O<m<y.
s
On the other hand, we see that
max L(R;m) > (m+1l)d+[n-k(m+1)]y(R;m+1)d for some
m

0 <m< 2-1. Or,

- e

(3.2.8) max L(R;m) > [md+(n-km)y(R;m+1)d]+[d-ky(R;m+1)d]
m _

for some 0 <m < g-1.
It follows from (3.2.7) and (3.2.8) that
(3.2.9) max L(R';s) < max L(R;s)+ ky(R;2+1)d
s

S

since R ¢ Cz.

Furthermore, we note that

max L(R';s) < md+(n-km)[y(R;m)+8(R; ) 1d for some
S

m (0 < m <f)where §(R;n) is defined by (3.2.6).
Hence, we have
(3.2.10) max L(R';s) < max {m'd+(n-km')dy(R;m’ }}+(rn-km}s(R:2)d
s m’

for some m .

It follows from (3.2.9) and (3.2.10) thar

max L(R';s) < max L(R;s)+min{n§(R;1) kFy(R; 2+11d
s s

this completes the proof.
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Henceforth we confine ourselves to C whenever it is
non-empty.

To find an infimum in Q(d) there is no general rule to
follow since it depends on t and y . However, we have the
following sufficient conditions for the solution of the least

favorable configuration when k = 2.

Corollary 3.2.2 Suppose t(x) is twice differentiable and

yl(R;m) is also twice partially differentiable with respect to

01 and 92.
Define
: 45! .
(3.2.11) A(91,92) a mt (91)+(n-2m){56; [t(Ql)-t(Oz)]+y1t (01)}
] aYl 1]
B(0,,0,) = mt (92)+(n-2m){33; [t(Ol)-t(Oz)]+(1-Y1)t (6,)}
32Y1 37y
C(ollgz) = mt"(gl)*(n-Zm){ 2 [t(Ol)-t(Gz)]-*Zﬁ—; t'(gl)+
20
1
R CP)
2
9 Y1 ayl
D(glloz) = (n'zm){a—glﬁ'z' [t(gl)'t(oz)]+ 391 [t'(gl)'t'(gz)]}
2 | |
. 9 Y
E(0;,0,) = mt"(0,)+(n-2m) {(— [(0))-t(0,)]+(1-v)t"(8,)-
20
2
Byl ' :
-2 -a-b—z-t (92)} .

If Qf = (0,,0,) satisfies |91-92| > d such that

2
A(0,,0,)=0, B(0,,0,)+0 and C(0,,0,)E(9,,0,) > D (8,,0,),



then, 8% is the least favorable configuration.
Proof: The proof is straightforward.

Corollary 3.2.3 If k = 2 and F(x;Oi) = ¢(x;9i,1), the cdf

of a normal distribution with mean Qi > 0 and variance 1, and
R = RB’ then, 8* = (0,d) is a least favorable configuration and
m* (0 < m* < [Eﬂ ) 1s a maximin strategy for player [ if m = m*

maximizes (n-2m)de (v

Proof: Let 8 = (9,9+d') with @ >0 and d' > d, Then, we have

Y, (Rpim) = [ e(x+v/m d')d¢(x)=¢(/7-;‘: d'} and

EW(UV(Ry;m)) = (20+d')m+ (n-2m) [y, 0+ (1-v, ) (6+47) ]

n9+(n-2m)d'y2 +md’.

This is a monotone increasing function of ¢ and d’. LLetting @ + 0O
and d' ¢ d, we have the result. This completes the proof.

m* of Corollary 3.2.3 is tabulated in tablec I ot the sud of
this chapter.

For k = 2(1)7, the maximum value m* for L defined by (3.2.4)
for binomial populations is also tabulatad in tahle 2.

It is natural to ask how good is the maximin strateg, when n
increases to infinity. We have the following result to see its

asymptotic behavior.
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Lemma 3.2.1  If {n.;n=1,2,...} and {m.;i=1,2,...} are monotone
1ncreas1ng sequences of positive integers such that n, *> e,

m, > = and m, = O(ni) as i + », then, EW(UV(R;m, ))/n -+ max

. 1_J<k
t(Oj) VReCas i w,
k
Proof: We note that EW(UV(R;m,)) = m; jth(ej%(ni-kmi).
k
) y.(m.)t(O.). Hence,
j=17 %
EW(UV(R;m;))/n; = X t(8;)+ (1-kr;) Z v; (Rim;)t(0,)
=1 j=

where r; = mi/ni. Since r, > 0 and yk(R;mi) > 1,

yj(R;mi) > 0as i + » we have thus
EW(UV(R;m, ))/n + max t(0.) as i + =,
1<j<k

This completes the proof.

Corollary 3.2.4 Under the same assumptions of Lemma 3.2.1

W(UV(R;m, ))/n + max t(0;
1<J<k

;) Wl VReC.

According to the UV scheme, we note that

W(UV(R;mi))/ni = (S, +S

1m, *Som, ¥+ *Skm, )My ¢
1 1 1

S_ v /n.
w(R,mi),ni-kmi i

. s
jmg  my w(Rimgdn,-kmg g -kmg

1 mi ni ni-kmi ni
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By the strong law of large numbers we see that

S
Iy

-+ t(oj) a.s. as i » », By our assumption we have
i _ '

mi n. -km.
—— > 0 and
n. .

i i

+ 1 as i + », This follows that

W(UV(R;mi))/n.1 - t(Oj) a.s. for some j as i + =,

If t(0.) # t(Ok) = max t(@.), this comes to a contfadiction
J 1<j<k
with Lemma 2.3.1. The proof is thus complete.

Let [“i; i=1,2,...) be a strictly increasing sequence of
positive integers. For a given R ¢ C, let {m;; i=1,2,...} and
{9;; i =1,2,...} be respectively the associated maximin strategies
and least favorable configurations. Then, we have the following

theorem.

Theorem 3.2.2 If {9%; i = 1,2,...} is bounded in R¥ and £(0r.) s

bounded for each j = 1,2,...,k and i = 1,2,... where 9; =

{9;1, 9;2""’9;k}’ then, there exists a subsequence {nii;3=l,2,...}
of {ni} such that '

G(m;_,g)/ni._+ max t(Or) as j > » Yo e Q(d).
] jooIsrk

n,
Proof: (i) Let % = [—%ﬂ for i = 1,2,..., . We are going to show

that {m¥; i = 1,2,...} is unbounded. Supposs there is some integer

M such that m; <Mfori=1,2,..., then, we note that for
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mf <M < 2, for sufficiently large i,

s
[y

fl 1% 0 R

it

G(m¥,0*) < G(M,0*) if n. >
1 -1 1 ,

de

Since t(G;j) is bounded for all i and j, it is easy to see that
there exists some i, such that G(m* ,0* ) < G(M,0* ). This con-
0 i)’ -1
0 70 0
tradicts the assumption that m; is a maximin strategy.
0

(ii) Suppose m*i'/ni +a (0<ac<l). If Y does not tend to

a limit, we can choose a subsequence {g; ,3 = 1,2,...} of {Q;}
j

such that g; + 0*, say, since {9;} is bounded. Then, t(O;) is

3

finite where 0* = (9;,95,...,0;). Then, the associated subsequences

{m; } and {n; } satisfy m} -+ « and m} /ni +o0 (0 <a<1). We
j j j i 73
note that

k
G(m;j,gf)/nij_+ a 121t(9§)+(1-ka)t(9i)’ assuming

t(8}) = max t(0%), as j » =, since mf > ©and R ¢ C. Since

1<j<k j
K Il

a ) t(93)+(1-ka)t(0i) is a decreasing function of a (0 < a < 1),
j=1

hence, we can conclude that o = 0.
(iii) 1If m;/ni does not tend to a limit, we can choose sub-

sequences {mi*; j=1,2,...} and {ni ;3 J = 1,2,...} such that
i j

m; /ni +8 (0 <8 <1), since 0 :_mi/ni < 1 for each i. Again, we

i 7l
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can choose sequences {m; i j=1,2,...Yand {n, ; j=1,2,...1}

j j
which are subsequences of {mi*} and {ni }, respectively such that
j J
m* > o and m* /n, -+ B and the associated {@% } satisfies
¥ 450 =i,

9; + 0%, say. By the same argument of (ii), we can show that

It follows from (i), (ii) and (iii) that there always

subsequences {ni } and {m; } such that mf - = and m} /ng > 0.
j j j i 7]
It follows from Lemma 3.2.1 that

G(m* ,0)/n., ~ max t(0 ) as j + = V@ e Q(d).
1j = "71) 1<r<k T

The proof is complete.

Corollary 3.2.5 Under the same assumptions of Theorem 3.2.2, we

have

W(UV(R;m$))/n, > max t(9,) WPl if Re C for 9 = Q'
lfjfk

+
where @ = {8 = (9,,0,, --.Qk)lo[k] > g[k_l]}

Proof: When @ € Q(d), the argument is the same as that of
Corollary 3.2.4. Since our arguments in Theorem 3.2.2 do not
depend on d, hence, the whole arguments hold as long as

O[R]-g[k—l] > 0.



Let {ni;iél,z,...} and {mi;i=1,2,...} be two sequences
of positive integers such that kmi <ny for every i and as
i+ o m, -+ « and mi/ni + 0. Let R be a monotonic selection
procedure. By a Uivi(R;ni’mi) scheme we mean a procedure which
follows a sequenée of test blocks Ui(R;mi) and trial blocks

Vi(ﬂ(R;mi), ni—kmi) and they are ordered by Ul’vl""’Un’vn"

Theorem 3.2.3 Following the Uivi scheme we have

EQW(Ui\g)/(n1+n2+...+ni) -> t(Ok) as i » > 0 € Q(d)

where W(Uivi)"denotes the total sum of observations up to V..

Proof: Let Ts denote the total sum of observations in the first
2s blocks. Then, we have

PPt

s
xij + 'Z Sﬂ(R;m.)n.—km.' It follows that
i=1 i771 i
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k s
() > ET/(ny*ny+...+n)) > [( ] tcoi))(gzlmi)/(n1+n2+...+ns)]+»
1=

i=1

S
RICw)
i=

1y(mi)(ni-kmi)/(n1+n2+...+ns).

By our assumption that mi/ni + 0, it is easy to see that

k
(]

s
t(0.))( I m.)/(n,+n, +...+n_) > 0 as s + = for any arbitrary
i i jo1 & 172 S

1

fixed 8. Since y(mi) + 1, for 0 < g < %3 there exists an
10=10(e) such that for 1 > 15, y(mi) > 1-¢ and m < en,.

Then we have,
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y(mi)~(ni-kmi) > (l-e)(ni-keni) = ni(l—c)(l-kc)

Hence, for s > iO’ we have

5 i0-1 S 3
izl Y(mi) (ni-kmi)/(nl+n2+...+ns) = (i=1 +izi )Y(mi)(ni—kmi)/(gni)
i 0
0 s
> [_zlY(mi)(ni-kmi)/(§ni)]+(l—e)(l-ke).
i=

Letting s + = and then € - 0, completes the proof.
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Table 1
m*-value for Normal Populations When k = 2
d\x 0 1 2 3 4 5 6 7 8 9
0.01]1(2) 3(6) 9(6) 15(6) 21(6) 27(6) 33(6) 39(6) 45(6) 51(6)
0.05{ - - - - - - - - - -
0.10| - - - - - 27(7) 34(6) 40(6) 46(6) 52(6)
0.20} - - 9(7) 16 (6) - 28(6) 37(7) 41(6) 47(6) 53(7)
0.30| - - - - 22(7) 29(6) 35(7) 42(7) 49(7) 56(8)
0.50) - 3(7) 10(7) 17(7) 24(7) 31(8) 39(9) 48(9) 57(9) 66(11)
0.70| - - 10(8) 18(8) 26(10) 36(10) 46(13) 59(13) 72(16) 88(18)
0.90f - 3(8) 11(8) 19(11) 30(13) 43(17) 60(20) 80(24) 105(33)138(40)
l1.00f - - 11(10) 21(12) 33(16) 49(20) 70(29) 98(36) 135(49)185(16)
2.001 - 3(17) 20(48) 69(132)
3.000 - 3(65) 68(133)
5.00f - 3(198)
7.00)] - -
m*
d 10 11 12 13 14 15 16 17
0.01 | 57(6) 63(6) 69(6) 75(6) 81(6) 87(6) 93(6) 99(6)
0.05 - - - - - - 93(7) 100(6)
0.10 | 58(6) 64(6) 70(6) 76(6) 82(7) 89(6) 95(6) 101(6)
0.20 | 60(7) 67(6) 73(7) 80(7) 87(7) 94(6) 100(7) 107(8)
0.30 [ 64(7) '71(8) 79(7) 86(8) 94(8) 102(8) 110(9) 119(8)
0.50 | 77(11) 88(11) 99(12) 111(14) 125(14)139¢5) 154(16) 170(17)
0.70 106(20 127(22)150(26) 177(23) |
0.90 178(23)
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Table 1 (cont'd)

m* _
d 18 19 20 21 22 23 24 25
0.01} 105(6) 111(6) 117(6) 123(6) 129(6) 135(6) 141(6) 147 (6)
0.05] 106(6) 112(6) 118(6) 124(6) 130(6) 136(6) 142(6) 148(6)
0.10} 106(7) 114(6) 120(6) 126(6) 132(7) 139(6) 145(6) 151(7)
0.20] 115(7) 122(7) 129(7) 136(7) 143(8) 151(7) 157(8) 166(7)
0.30) 127(9) 136(9) 145(9) 154(10)164(9) 173(10) 183(10)193(8)
0.50| 187(14)

m*
d 26 27 28 29 30 31 32 33
0.01{ 153(6) 159(6) 165(6) 171(6) 177(6) 183(6) 189(6) 195(6)
0.05] 154(6) 160(6) 166(6) 172(6) 178(6) 184(6) 190(6) 196(5)
0.101 158(6) 164(6) 170(7) 177(6) 183(7) 190(6) 196(5)
0.20] 173(8) 181(8) 189(7) 196(5)
(i) A dot indicates the same value as above

(ii) For d = 0.05, m* = 20 the entry 118(6) in the table, shows
that for n from 118 to 123(=118+6-1), the m*-value is 20.




Table 2
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Maximum value of m for L of (3.2.4) for binomial populationsusing R=RSH

For k = 2, d = 0.20, m*

6 the entry 36-41 in the table,

shows that for n from 36 to 41, the m*-value of L is 6.

K =2

:
A 1} 2 3 4 5 6 8 9 10
0.05| 2-8 9-14 15-20 21-26 27-32 33-38 39-51 52-57 58-60
0.10] 2-8 9-14 15-20 21-26 27-32 33-39 40-52 53-59 60
0.20] 2-8 9-14 15-21 22-28 29-35 36-41 42-60
0.30] 2-8 9-15 16-22 23-31 32-40 41-47 48-60
0.50] 2-9 10-19 20-32 33-49 50-60
0.80| 2-15 16-54 55-60

K =3

AN 1 2 3 4 5 6 7 8 9 10
0.05| 3-8 9-17 18-29 30-38 39-47 48-55 56  57-74 75-83 84-90
b.10] 3-8 9-19 20-29 30-38 39-46 47-55 56-75 76-84 85-90
0.20] 3-9 10-20 21-29 30-39 40-48 49-57 58-81 82-90
h.30| 3-9 10-21 22-31 32-43 44-53 54-62 63-90
D.50| 3-10 11-24 25-40 41-61 62-89 90

.80] 3-16 17-63 64-90




Table 2 (cont'd.)

K =
E;Qii 1 2 3 b 5 6
io.osi 4-11  12-19  20-31 32-49  50-61 62-72
10.10]  4-11  12-19  20-37 38-49  50-60 61-71
0.20)  4-11  12-20  21-37  38-49  50-61 62-71
'0.30]  4-11  12-23  24-38 39-52  53-66 67-76
0.50|  4-12  13-29  30-48  49-72  73-103  104-120
o.so, 4-18  19-70  71-120
3 3 8 9 10 11
0.05 73-98 99-109 110-120
0.10 72-96 97-108 109-119 120
0.20 72-101 102-114 115-120
0.30 77-120
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Table 2 (cont'd.)
K =5

\;“m* 1 2 3 4 5 6
1 0.05| 5-14  15-24  25-33 34-52  53-75 76-88
0.10| 5-14  15-23  24-34 35-59  60-73 74-86
0.20| 5-14  15-22  23-41 42-59  60-73 74-85
0.30 | 5-13  14-26  25-45 46-61  62-77 - 78-90 |
'0.50 | 5-14  15-31  32-55 56-82  83-116  117-141
'0.80| 5-19  20-76  77-150
S 8 9 10 11
.0.05 89-120 121-134 135-148 149-150

0.10 87-117 118-131 132-145 146-150

0.20 86-120 121-136 137-150

0.30 91-140 141-150

0.50 142-150
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Table 2 (cont'd.)
K =
T .
R 2 3 4 5 6
0.05] 6-17  18-29  30-40 41-51  52-84 85-103
0.10/ 6-17  18-28  29-38  39-57  58-86  87-100
0.20f 6-16  17-27  28-41 42-68  69-85 86-98
0.30| 6-16 17-26  27-51 52-70  71-89 90-103
1 0.50| 6-16  17-33  34-62 63-92  93-129  130-156
1 0.80| 6-21  22-82  83-180
U 9 10 11
0.05 104-143 144-160 161-176 177-180
. 0.10 101-138 139-154 155-170 171-180
1 0.20 99-140 141-157 158-176 177-180
£ 0.30 104-159 160-180
0.50

157-180
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