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* 1. INTRODUCTION. In two recent papers Hasofer ([3] and [4]) studies
the content Z(t) of a reservoir with infinite depth. In that model
instantaneous inputs occur at random times such that the number,

N(t), of these inputs in the interval (0,t] for t > 0 is a Poisson
process with parameter A > 0. The inputs form a sequence of independent
random variables {Xn}, which are independent of N(t) and have a common
distribution B(y). There is continuous release of one unit of water
per unit time. The reservoir has capacity h and is therefore full

when Z(t) = h for some t > 0. If an input at time T, say, of random
amount X exceeds h - Z(T),.the deficiency of the reservoir, an
instantaneous overflow occurs and the deterministic release

continues immediately from the time T of input. Hasofer obtains

the Laplace transform of the content distribution for an initially

full reservoir (in [3]) and for an arbitrary initial content (in [4]),
and their inversions. These distributions, it is shown, tend as

t @ ® to a limit independent of the initial conditions. The distribution
of the time until first overflow is also found. Hasofer's model is |

characterized by a deterministic release (demand) rule. 1In certain
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situations, though it is not a demand of a deterministic nature

that characterizes the process but rather a demand of a random

nature with either random or deterministic input. An example of a
situation with random demand is that of é wareho;se'of capacity h.

At regular intervals the level of stock in the warehouse is observed.
Let the level of stock at the end of the nth period be Zn. During
the nth period a demand Xn is made upon the stock in the warehouse.
When Zn falls to or below some prespecified reorder 1evei, an order
is placed to replenish the stock. Various reorder schemes are possible,
and a realistic scheme will include some random delay in replenishing
the stock. During the time when the warehouse is empty additional
orders are not refused, but kept on record and filled as soon aé the
stock is replenished. Thus Zn can also be thought of as taking
values in (-*,h].

Karlin and Fabens [5] studied a discrete version of the warehouse
model above where demands possess a semi-Markov structure. A search
of the literature reveals a gap concerning continuous time models
in which not only inputs but also releases are allowed to vary in
a random manner.

In this paper we fill this gap by considering a continuous time
dam theory model in which occurfences of inputs and releases form
a Poisson process.

Let {Z(f), t > 0} be a stochastic process which represents the
content of a reservoir with infinite depth. That is, Z(t) takes values
in the interval (-<,h], and we may think of Z(t) as the content of

the reservoir at time t, measured from an arbitrary point of reference.



The process Z(t) is defined constructively in the following way.
Initially Z(O) = z. Z(t) remains constant at the level -z for a random

length of time, whose distribution function is

l-exp{-(p)t}, £ >0
H(t) =

0 ,» £<0

where A, > 0. At the end of this random length of time the process
Z(t) jumps to a new level. We shall say that such a jump is, with
probability A/(Mu), an instantaneous input, X, to the reservoir and ‘
is, with probability u/(Mu), an instantaneous release, Y, from the
reservoir. The reservoir is full when Lhe content attains the value
h. If the input, X, exceeds h-z, the deficiency of the reservoir,
an instantaneous overflow occurs, so that Z(t) takes fhe value h
until the occurrence of a release. The process confinues in this
manner, the waitiﬁg times between jumps of the process all following
the same distribution H. We assume that the sequences {Xn} and {Yn]
are independent of each other and of the waiting times. The Xn are
assumed to be independent nonnegative randomléariables with common
distribution function B(x). The Yn are assumed to be independent

nonnegative random variables with common distribution function D(y).

2. THE PROCESS Z(t).
2.1 AN INTEGRAL EQUATION FOR THE PROCESS Z(t).

A~~~ WNWW\IWMN~

|
We introduce the following notation.



P(z(t) < x|Z(0)=2z) = W(t,z,x), x <h

$(0,z,x) = I exp(-9t)W(t,z,x)dt, Re(8) > 0
0

1 for x > 0.

I(x) = 0 otherwise

For x > h we have W(t,z,x) = 1. If we denote by N(t)_thé number of
‘jumps of the process Z(t) in the interval (0,t], then N(t) < ® almost
surely.v The forward Kolmogorov integral equation for W(t,z,x) is
then valid, and we may concentrate on the nature of the last jump

of the process Z(t) before time t. Either there is no jump at all |
in the interval (0,t], or the last jump occurs at some time 0 < T < t,
Z(T) < x~y and an input of size y occurs with no other jﬁmPS'in the
interval (7, t]}, or the last jump occurs at time T, Z(T) < xt+y and
a release of size y occurs with no other jumps in the interval

(T,t]. Adding up the probabilities of these three events over T
and y we obtain the following equation for W(t,z,x) for the case

x < h. T
t ' ©

(1) W(t,z,x)=I(x-z)exp{-(k+u)t}+kj exp{-(k+u)(t-T)}dTI'W(T,z,x,-y)dB(y)
0 0

ot h-x |
fujoexP{- (A+p) (£-T) }dT[_[o W(T,z,x+y)dD(y)+1-D(h-x) ]

Converting equation (1) into its Laplace transform we have, for x < h,
(2) @(9,z,x)(K+p+9)=I(x-z)+kj ®(9,z,x-y)dB(y)
. h-x 1 :
ol a6, zxey )+ (1-Dm-x) )
0

where Ré (® > 0.



The exiatehce and uniqueness of the solution of (2) is proved as
follows by use of the principle of contraction mappings. Let M be
the metric space of all bounded complex-valued functions defined on
-—2<x<h and'infegrable in any finite sub interval of -® < x < h.

Take as the matric for this space

p(f,g) = sup Ig(x)-f(X)l, f, geM.
: —o<x<h

Now define a mapping, A: M—M, of M into itself by the equation

AB () =1(x-2) (ebisk8) “2A Qrt®) 2] 2(x-y)aB(y) +
0

h-x ’
0w [ 2Gey) ap )+ (1-D -2 .
0

Then for all x <h

|ag, (x)»-Aél(x) | < || tp (3,,3,) Otp) .
Hence

p(A;,A2)) < | Aee] "L Owdp (2,8,

and since Re(8) > 0, A is a contraction mapping. By Theorem 1; page 73
of Kolmogorov and Fomin [6], A has a unique fixed point which is the
unique solution of equation (2). The solution of (2) éppears to be
rather complicated in the present general form. A tractable solution
is possible for the case in which

l-exp(-By), y =20
3) D(y) =
0 , y <0,

where B > 0, and we turn to this in the next sub-section.



2.2 SOLUTION FOR THE TRANSFORM %(©,z,x).

far oo d [asa o o ot o i o g

From now on we assume D has the form (3), and first exhibit the

solution of (2) in the case z=h.

THEOREM 1. For z=h equation (2) has the unigue golution, for x < h,

@) 5(8,h,%) = (B-y(8)) (88 "exp{-v(®) (h-x)},

with

) | exp(-06)2(z(er=h|z(0)=h)at=[1- (B-y(®)) 872072,
0

where v(6) is the unique root of

(6) (et 0) +uB (v-8) LA exp (~yy) dB(x)=0
. 0

with 0 < Re(y(8)) < B, Re(8) > 0.

Proof: We show that one solution of (2) 1s of the form $(8,h,x)=

C(®)exp(rx), where clearly in order that @ be a nonconstant bounded
solution of (2), r must satisfy Re(r) > 0. If we sﬁbsfitute this form
of the solution into (2) we obtain an identity in x. Comparing the
coefficients of exp(rx) and of exp(Bx) on both sides‘of this identity

we obtain the two relations

) (st @) +B (r-8) LA exp (-ry)aB(y)=0, 48,
. . |

and

(8) w8 LB (@) (x-B) "1 exp(zh)=0.

It can be shown by Rouche's theorem that (7) has a unique root r=vy(8),

in 0 < Re(y(8)) < B for Re(8) > 0. Once y(6) has been determined (8)



then yields the term C(8), which in trun yields (4). The uniqueness
of solution of (2) guarantees that (4) is the only solution for the

case z=h.

Finally, since

(-

[ exp(-ee)p(z(t)=h|z(0)=n)at=0
0 |

1 iim &(8,h,x),

xth
(5) follows.

We shall next prove a lemma which is essentialvin the case
z < h. Let H be an arbitrary function, defined on tﬁe.nonnegétive
half of the real line, which is integrable in every finite subinterval
of that half line and which can be expressed as thebdifference of two
monotone nondecreasing functions. Let aisb

©

© ue) = ) 8% (o,

k=0

where

s
H(k)(s) = I H(k-l)(s-u)dH(u), 0<s < h-z, k=1,2,... .
0 o

o)

H (s)

i
[
o

IA

s < h-z.

LEMMA 1. (i) The Volterra Equation

g
(10) F(§)=a+I F(E-y)dH(y), 0 < E<b <™
_ 0

in F, where H is given and has the properties listed above and a is a

given constant, has solution given by

(11) - F(§)=aU(§)



and this solution is unique, provided U(§) converges uniformly in

0<E<b<o=

(i1) Let B be such that B(s)/s <A <= for 0 <s < ¢, for some € >0

and some constant A > 0. Then for

a2 H()=[AB(s)+u(1-exp (Bs) 1ot ®) 1, 0 <6 < bz,

where z is fixed but otherwise arbitrar ,» U(s) exists and is finite

for 0 < s < h-z.

Proof: The assertion follows first by a substitution of (11) into

(10). Then the interchange of summation and integration operations

is justified since the series U(E) converges uniformly in 0 s E<b <=,
Also since |U| < ®, for a fixed ¢ > 0, there is an ﬁo=n0 (e,s)

such that |H(n)(s)| < ¢ forn> n,. Now consider the difference, V,

of two solutions of equations (10). V satisfies V=H*V, where * denotes
the convolution operation, and hence V=H(n)*V for all n. But thé
remark above indicates that H(n)(s) = 0 for all s as n = =, andvhence
V(s)=0. The solution of (10) is thus unique.

(1i) Let

M= | a8 | "L AA+ Bpexp (h-2) B} 1.

It can be shown that B(s)/s < A <= for 0’< s <€, € >0 implies
B(s)/s A< - for 0 < s < h-z where z is fixea but otherwise arbitrary;
and A is used in a generic sense here. |

Thus M is finite. The assertion of the lemma now follows from

the fact that |U(s)| < exp(Ms), which is proved below by using an



induction argument.
H((_)) (s) =1
[5® (8 | < |Mwe8] L0 Mastpu(exp (Bs) -1) ]
| .
‘ _

< |Mpt8 |'1D\A+u.Bexp{ (h-2z)B}]s=Ms,

where in the first inequality we have used the fact B(s)/s < A<=
for 0 < s < h-z. Suppose IH(k) ()| < Mk-lsk-]'/ (k-1)! We have shown

this to be true for k=2. Then

s : s
s |89 )| < w0 2] 1% (mw) [aB@)+n] (5D (o-u) |afexp (Bu)-11)
0 0
S 8
< |)\+|.|,+9|-]"Mk-1[ (k-l)!]-]'[)\J. (s-u)k-ldB(u)ﬂj,Bj (s-u)k-lexp(ﬂu)du].
: 0 L 0

Two successive integrations by parts of the first integral on the

right hand side of (14) yield
189 (0) | <7 e-1) 117 A+t I NA+uBexpl (he2) 8) 1"/ = MEs*

It follows by induction therefore that

(15) | 1% (o) | <¥6/kt, k=0,1,2,...
Thus
| | ZH(k) ()| z IH(k) (s)| < zwsk/k! = exp(Ms) < »
k=0 k=0 k=0

for 0 €< s < h-z, which proves the lemma.

REMARK. In the case B has a density the condition, B(s)/s <A< »
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for 0 <s <¢, some € >0, A >0, is satisfied and the lemma holds.
The .condition.. (15) guarantees, by the Weierstrass M-test, that

U(E) converges uniformly.

THEOREM 2. Suppose B(s)/s <A< o for 0<s <« for some € >0, A >0.

Then for z < h, equation (2) has the unique solution, for z < x < h,

(16) 5(8, 2, x)=exp{Y(8)x} (B-y(8)) exp{- (v (&) -B)b}.

: h
Lexp (-B0) (80) "+ (41149) [ U(v-2) exp(~Bv)av]
k4

+ Oprt8) "YU (x-2),
and, for x < z,
(17) 8(8,z,x)=(B-v(8)) exp{y(®)xJexp{- (y(8)-B)n}.

-1 -1 h
-[(B8) ~.exp(~-Bh)+(A+ut+6) I U(v-z)exp(-Bv)dv], ~
.
where U is given‘ig (9) and H by (12).

Proof: Let

Ql(e,z,x) for z<x<h
?(e,z,x) =
' @Z(O,z,x) for x < z

Equation (2) may then be broken into the two parts.

, -z o
(18) Ql(e,z,x)(k+u+9)=1+hfjx Ql(e,z,x-y)dB(y)+I. Qz(e,z,x)dB(y)]
0 X%

h v ‘
+Mexp(5x)[exP(-Bh)9-L+BI Ql(e,z,v)exp(-Bv)dv], z<x<h
x - .

and, for x < z,
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19) @z(e,z,x)(k+u+e)=xj 8,(8,2,x-y)dB(y) +
. | 0

z - pah
+uexp(Bx)-B-[J ¢2(9,z,V)exp(-Bv)+f @1(9,z.V)exp(-Bv)+exp(-Bh)(BG)'IJ. ’
X z

Set
(20) J(e,x,h)=Jhexp(-ﬁv) Q1 (e,Z,V)dV,
z

which is independent of x. Now when z=h we saw that@2 had the form
(21) §2=A exp(rx), x <h, Re(r) > 0.

We shall construct a solution of (2) this time by putting QZ as in

(21) and setting for Re(r) > 0 and z < x < h,
(22) 2, (8,2,%)=A exp(rx)+K(8,z,%),

where K(8,z,x) is a function to be determined. Substitution of (21)
into (19) produces an identity in x. Comparing the coefficients of

exp(rx) and exp(Bx) on both sides of this identity we obtain the relations
(7) and

(23) ' J+(59)-1.exp(-8h)+A(r-ﬁ)-l.exp{(r+B)z}=0, r$B.

Equation (7) has a unique root, r=y(®), in 0 < Re(y(6)) < B for
Re(9) > 0. |

Straight substitution of ¢, as in (21) and &, as in (22) into

equation (18) leads us to the following integral equation

g 13
(24) K(9,z,§+z)(l+u+9)=l+lj K(G,z,§+z-y)dB(y)-uBI K(6,z,&+z-T) exp (By)dT.
, 0 0 ,
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Here we have made the change of variable € = x-z, 0 < E < h-z.

Now let L(6,E) = K(6,z,§+2). Equation (24) then becomes

L&
(25) LD = e joue,g-y)cm(y),

where H is defined by (12). Equation (25) is a Volterra type equation,
so that from Lemma 1 it follows that L(0,E) = (k+u+6)-lU(§).
Converting from L back to K we find Ql(e,z,x) in terms of A by

means of (22). Then using (20) and (23) we obéain
. B N
(26)  I=A(-B) " (exp{ (v-Bh}-exp{ (y-B)z]) + | U(v-2)exp(-Bvav,
2 ,
and hence, by (22),

(27) A= (B-y)exp{(B-v)h}-[exp(-Bh) (86) "L+ IhU(v-z5exp(-Bv) dav].

z

From (22) and (21) equations (16) and (17) now follow.

From Theorems 1 and 2 one could derive the moments of Z(t).
Let us éssume h=0. We can do this without loss of generality,
for such an assumption requires only a éhange of origin of Z(t).

Let, for Re(s) > 0,

[+ ]

. : 0 '
c(t,x) = I exp(sx)de(t,z,x)==1-sj exp(sx)W(t,z,x)dx.

-0

Then _
© . 1 0 (-] .
I exp(~0t)c(t,x)dt =6" -sj exp(sx)I exp (~0t)W(t,z,x)dt dx
0 - 0

by virtue of the integrability of W(t,z,x) and Fubini's theorem.

From both (16) and (17) it then follows that
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e} \ -1 h
(28) I exp(~9t)c(t,x)dt=0 -sj. exp (sx)U(x-z)dx
0 z

' h
s exp{ (Bra)h} (y+) 1L (B0) "eexp(Bh) | exp(~BvIU(v-z)av].
. 4
Thus

(29) Ioexp(-et)E[Z(t) IZ(_O)-szt =a—a$ { JoexP(-et)C(t’s)dtHs=0

h -
=1y Lexp (B[ (80) "Lrexp(Bh) | exp(-B)U(v-2)dv]+ .fh U(x-2) dx]}
z Z

and similarly

(30) [ exp(-00)E[2(8) |2(0)=zlat
0
=2{exp () v 2[ 1-vh1l (Be)-1+exP(Bh)_fh’exp(-BV)U(v-‘fZ)dv-ﬁ:U(x-z)dx}-
4 : z

In order to investigate the limit behavior of Z(t) as f*w we
must investigate the behavior of y(0) as 6= 0. Knowledge of this
behavior will then allow us to apply a standard Tauberian argument
to %(6,z,x). | By an application of Rouche'vs theorem equation (6) has
a unique root r(€)=y(6) such that 0 < Iy(e)l fa |‘(u+'6)/()\+u+9)|. The
following lemma can be prove&' by means of ‘the exact séﬁe technique

employed by Benes in [1].

LEMMA 2. For 6 > 0,

H

0 if B < w/BA
(31) limy(e) =
840 1
BlL-w{iA(1-)} "]  if E; > u/BA,
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where { is the least nonnegative root of the equation &=4(§), 0 < § <1

and $(£)=B*(B[1-u{wHh (1-6)} 1) B (x)= ] exp(-ry)daB(5), and EB=IOydB<y).
’ 0

Remark. The root { exists. Its properties are discussed on p. 274

of Feller [2].

We now use Lemma 2 to prove the following'theorem-.

THEOREM 3. Under the conditions of Theorem 2

lim P(Z(t) < x) = ¥(x), x > 0,

independent of the value of z, where the distribution ¥ is given for

x 2 0 by

(B-v*)B "exp{-v*(h-w)}, E, > /A

(32) Y(x) =4 :
- 1 » Eg S WP,

where 'y*=_B[1—u{Q+?\(1-C) }-IJ, and { is as in Lemma 2.

Proof: By a standard Tauberian argument (Widder [9],p. 192)

¥(x) = 1im 6%(0,z,x), for x >0.
640 ’

Applying this argument to & Ifirst in (4) and then in (16) we arrive at
(32) with the aid of Lemma 2. Thus the limit is independent of the
initial condition Z(0) = z. -

The interpretation of this limit is straightforward. If average
inputs per unit time exceed average releases per unit time, then Z(t)
has a nondegenerate limiting distribution.' Otherwise Z(t) degeneratés

to -»® as t— o,
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The important aspect of the model presented here is the random
nature of the withdrawal process in addition to the random input procéss
as opposed to a purely deterministic withdrawal process and random
input process. The authors became interested in the present model
while formulating a new approach to the mathematical theory of
quantal response assays (see [7]). The analogous model for Z(t)

assuming values in (0,®) is studied in (8].
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