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A Semi-Markov Storage Model
By

Jerome Senturia* and Prem S. Puri**

1. INTRODUCTION. In recent years a great variety of models in

storage theory have been studied‘rrom one point of view or another.
Unfortunately, there have been relatively few of these where both
.inputs and releases are considered random. Such mode!s have arisen
in the past in economics and business admin;stration. A review of
 these mddels.has-heen given‘by Ganj, [13], [14]. Arrow,»Karlin and
~ Scarf [2]—haveJetudied‘such models along'wrth eerteio optimization
probleme; In.the present paper ve consider a storage model where
both inputs and releases, while being random vatiahies,:proceed
according:to'en underlying seqi«ﬂarkov process. Sueh:e structure
appears to oeulaeking in most of=tﬁe storage modele considered
"thus-farvih the-literature. In the present case the authors were
vuled to such a model by a somewhat different motivation which is
discussed briefly belou. |

In [30] the authors presented a fresh epproach'to the classical
.theory of quantal response assays as developed by Finney ((11], [12])
and Bliss [4] _among others. The classical theory is based essentially
on the hypothesis of existence of a tolerance limit (threshold) for -

each subjectf(see Finney [12]). A new non-threehold type model was

-
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developed in_t30] by the authors following the 1ines;of Puri
([27], t28])._ The new model is based upon a mechaniém by which the
test subject ?eleases the drug according to a random prbcess,
follbﬁing an initial fixed single dose, the.qnly input. However,
situatiohs suchfgs exposure to natural radiation or'ﬁo'specific
chemicals encouhfered as part of certain occupatioqal ﬁazards,
call for arﬁodel where not only teleises are random but sb also
are the inputs. The present storage model is a ﬁo@ééé'attempt
in this direptipn.

A cléss of continuous time storage models which;in some
.:eépgc;s :eéeﬁﬁles the one introduced here was cons;de#éd by Gani
and Pyke {15J;  This class of mo@elslis suph'thﬁt, for_every t >0,
tﬁe net input in the interval (O,t)‘is‘répxésentable as a difference
of two indepeﬁdént nonnegative infinitely diQis;ble processes, More
épecifically these authorsvconsidered'a separable, centered
infinitely diviéiblé process {Wt; t 2 0}, and.defiﬁed‘ébnstructively
-the level Zt;of-thé d&@ with net inputgldesétibed by'the ﬁrocess
_[Ht}. _Ganifand Pyke studied the distributions ofbthe total fime
-iﬁ (0;t>'ddr1ng ﬁhi¢h the dam 1é-n9nenpty and empty,

vséveral other models'of interest to>the problémﬂéf quantal
_response as&#yé and its extension wgre fdﬁnd in thé_Vast literature
of the theéry of'stQtage systems.' One early cpnt:ibution to»this
theofy was é’papet on finite dams by Moran (221, _Tﬁe'inputs flowing
into these dams during consecutive in;etvals.wete.assumed to form
a sequence df‘iﬁdependent identically distriﬁuted fandom variables.

Our model retains this characteristic.



In a recenr paper [26] Prabhu studied a storage modcllin which
the input X(t) to a dam with infinite capacity during the interval
(0 t) is a stochastic process with stationary and independent
increments. . The- release from the dam is continuous and is at a
unit rate except when the dam is empty. The net input, orninput

“minus the anountldemanded; is given by Y(t)=X(t)-t. Prebhn finds,
.under the conditions E(X(t)) = pt, 0 € p <, and Var X(t) < =,
that the net inpnt process Y(t) has an asymptotically.normal

distriBution. Otherilimit distributions he deriveseare-related to

the normal in.much the same way as the limit results of Section 6.

iBrief mention could be made of the models of Hesofer'([16]; (17D
~ and of Karlin'end Fabens [18j., The former model, along with that of
Gani and Pyke served as a starring point for the present model.v The
latter paper ‘describes a discrete time inventory model in which only
releases proceed according to an underlying semi-Markov structure.
However in both of these models the level of the process takes values
in'rhe'intervel'(~¢;h]; and therefore their applicability to the.
'.ﬁenental-responSe.assay problem is questionable. With this we tnrn to

the semi-Markovian model.

2. THE MODEL.

~ A e

In orderitq set forth a constructive definition of the process
.{Z(t)}.for our model, we first introduce sone euxiliary processes.
Consider a double sequence of random variables {(J T ), n=0,1,...}
| taking values in the state space % x(0,2) with % = [1 '2]. The process

{(J ,T )} is defined on a complete probability space. (9,G,P) such that



T0 =0 a.s., P(J =1i) = a;, i= 1,2; a;.+ a, = 1, and

: = i = E < = i)
PU_ =3, T <x|To,J Tpodpseees Taopdan i) = B3 =3, T, < x{g__ =D
= Qij(x).= Pi Hi(x)

'fét.i,j'= 1,2, xe(-®,®) and n = 1,2,.... . The Qij(’) are nondecreasing
and right continuous mass functions satisfying (i) Qij(X) = 0 for

x <0, (ii) ?P_'ij = 1, where pyy = @, (+=). Thus H,(t) = EleiJ.(t).

It is assumed that Hi(0+) <1, 1 = 1,2, and that
o

= j (1-H, (u))du < =, § = 1,2,
O‘j“' ‘

o

1t 15 aéSﬁméd;that 0 <‘pij <1, i,j = 1,2, The ma?gipal seqyence'

. {J#; n>0} is a}twd state Mg;kov chgih with‘P(Jn#j]Jh_1=i) = Py

-Giﬁen the ch;in {Jn} the random variables Tn‘aré ¢ohdi£iona11y _ |

‘independeng.. Ihe matrix z's (pij).is a stochastic‘m#tgix and:for

this reason we shall hereafter drop the subscripté on the p's and

set l-p = pll; ﬁ =.p2i. Ve assume further that p’hnd.q are independent
, o N : , _ ;. | |

E: Ti’ ns= 0,1,2,..... We define the intéger-valued

i=0 ' o

fl

of time. Let,Tn

stochasticfp:oéessgs {N(t);t 2'0] and {Vt;t >0} as N(t) = sup(n:n >0,
tn <), Njfﬁj.é number of times Jk = j for 0<k< N(;) + 1, and
vvc = JN(t)'. The process {Vt} is the ordinary semi;ﬂafkov process of
Pyke [31]. |

Let state 1 denote the input state, and state 2 the release state.

Now we introduce the independent identically distributed (I.1.D.)

nonnegative :andom;vgriables xl,xz,... and, 1ndependent of the X's,



the I.1.D. nonnegative random variables Yl’ YZ"" .. The random
variable Xi,represents the amount of an instantaneous input to the
reservoir, the random variable Yi an instantaneous release from the

reservoir. Let B(x) and D(y) denmote the common distribution functions

of thé Xi's and of the Y
' 2
1

We define the process {ze)} cbnstructively as followé. _For

i

's respectively. We assume B and D are such

that Exf <, EY? < ®,

k+1

0<t<T, 2(t) = 2(0) and for k 21, and T, S t <7

Z2(T MK, iE£V, =1
z(t) =

: max(O,Z(Tk~)-Yk), ifV, = 2;

.H¢r¢ itjis*ﬁssumed that the sample pathsvof the prbcéSS (J,T) are |
right continuous, Thus_the process Z(t) is almost éurely continuous
. from the right. The ﬁrocess [Vt},and hence‘{Z(t)] iéNSeparabIe ’
becau§¢ of the cpngtructive'way each is defined., If #t any time
the fandom‘amoﬁht Yk is‘gréatet #han the amounc'actQaliy avail#ble,
" only :he.aQailgblg'amount ié reléased and the levei'remains at zefo
 uht11 the next input. The distribution of the.waiting tiﬁe Tn+1
depends‘only.op the value of Jn.; .-
.From Byk§ [31j Lemma 3.1 we know that the two diménsional process
(J,T) is a ﬁafkﬁv process, and the J process is a‘Mérkbv chain. Then

since % is finite, it follows (see’Pyke [32],-L¢mﬁa 4.1) ﬁhat
P[N(t) <=, for all t > 0] = 1.

REMARK In tgrms of the model debc;ibed above net_input in the interval

(0,t) may be expresséd as




Nl(t) ' Nz(t)

W = ) X e ) Y
j=1 j=1

It can be shown that when H, = H, =H is a negative exponential’

’idistribution w1th parameter m > 0, and when Py = the present

P22
'model becomes a special case of that considered by Gani and Pyke

[15]. However, the model of Gani and Pyke does not cover the

present more general case in which the sequence of inputs and releases

is structured through a semi-Markov. process.

We introduce the following notation.
By (£,2,%) = PO < x|2(0)=z, Jp=0), 1 = 1,2,

for t 2,0,‘zn27O, # ¢[0,), and the corresponding Laplace'transtofms

, o
Qi(e,z,x)‘- IO exp(-Qt)Ri(t,z,x)dt, i= 1,2.
and
: a?(e) = I e*p(-ﬁt)dﬂi(t) , 1 = 1,2

0

'- where Re(8) > 0. We put U) =1 4f w > 0 and O otherwise.
Considering the first jump of the process, if there is one,

during (O,t];'and whether it is an 1nput:or an output, the following '

backward Kolmogorov integral equations can be easily established for

Ri(t,z,x).f_,‘.
: : S : te :
: (1;) Rl(t,z}x)su(f-z)(l-Hl(t))+(1—p)I°I0R1(t-T,zfy;x)QB(y)dﬂl(T)

. 't z .
.'l‘f‘Pjo[jonz(t'f.zfy,x)dD(y)+R2(t-T,O,x)(l-D(z))]dﬂl(T)



(1b) Rz(t,z,x)=U(x-z)(I-Hz(t))+qj j Rl(t-T,z+y,x)dB(y)dH2(T) +

+(1- q)j [I R, (t-T,z-y,x)dD(y) +

+R, (t-7,0,%) (1-n(z))]dn (1)
(1e) Rz-(v»t;O-,x)=(1-H2(t))+qJOJOR1(>t-T,y,x)dB(y)dH2(T)'.+
+(1-9) [ Ry (E=T,0,x)dH,(T)
‘ 0 S
for t'_>’ 0, z >'(.),.x 6[0,00),

In this generality these integral equations are difficult to
solve explicitly. As such we shall attempt, iﬁ Secéions 3 and i,
to solve equafions (1), respectively for the_following'fwo tractable
spec1a1 cases.. |
e (A) B apd D are “both negative exponential, while Hl and H, remain
arbitrary.. ' '

1, Hz and B are negative exponential, vhile D remains arbitrary.

(B) H
In Section 5 for these special cases, we also study the distribution
ofztime'to firs; emptiness. Later in Section 6, we shall consider the
‘asymptotic behavior.of the process Z(t), without any festrictipns on

the form of the distribution funetionsiul, Hz, B and D.

3. THE CASE (A) WITH EXPONENTIAL INPUT AND RELEASE DISTRIBUTIONS

~ Mwwm NS PPt PSPPI PP

In this sectioh we treat the caSebwhere both “1 and Hz remain arbitrary
and B is a negative exponential distribution with parameter « >0

and D is a-negative exponential distribution with parameter B >o0.



The Laplace transforms of equations (1) with B and D in this form

are given below for z > 0, Re(8) > 0.

() 2,(0,2,%)=0(x-2) (1-H}(8))8”"
4 a(1-plexp(an)BH(0) | exp(-av)d, (8,v,0)dv +
. )d

2 v
+ exp (-Bz)pﬂ’i‘(e) [Qz(e,o,x)+ﬁj exp (Bv) 42 (8,v,x)dv]
. 0 ) :

(2b) @z(e,z,i>=U(x-z) (-5 @)07! +

+aqexp(az)H*(e)]"exp( av)¢ (e,v,x)dv+
*exp( Bz) (l-q)H*(e) [¢ (9 0 x)+8f0exP(Bv)fb (8,v,x)dv]

(20 8,(8,0,%)=(1-H5(@))8" +aqu*(e)j exp(-ay)® (8,y,x)dy +

} From now on we shall suppress the argument ® of both Laﬁlace transforms
and OQhei fghc'_t:lc;ns:éf ® except wbezfe its presencéi :l.s'f'-deemed necessary.
_ : The ex_istenée alnd- unliqqeness éf aybon‘md,ed soluﬁio_n to équations

h (2 ) éa_n be es_taﬁiiéhed by standard fechniques. All ﬁhé necessary

| détails. are. gfiven in [34] to which the interested réade‘: is re_ferred.

'lEOREM 1. The un;gue bougde solg;; n of ;ji_ gggations (2) is
g;xg_gforke(e)>0_1 ' o

(38) (0,2, x)=exp(r,2) (a-r,)[oBOgHS (r,-r) 171,

. igxp(-rzx)[ (fz-rl) aq‘!l;-v {rf-ﬂ‘l-[_l-q]ﬂ’i) } {?2+B(1-H§) 1]



N + exp(?rlx) {t2+8(1§!l§) }[rz*B(l-[l-q]ll"z")Jtl/tz}- z>x,

(3b) QI(O z,x)we L exp(et,x) {t +ﬂ(1-ll*) }[aaeqa*(:z r )] "1,
{exp(rlz) (a— )[t +B(1-[1-q]ﬂ*)]

-exp(r z)[r2+ﬂ(1-[1-q]ﬂ*)]rllrz}. o . 0<zsg :_:.'

(3¢) QZ(O,z.x)-exp(r z) (B+r,) {59[1;3 9(1-[1-q]!2)](rz-t )]'11,
+{exp(-r %) [(r2~r1)aqu~-{r s801- ll-qlﬂ')}{rz*ﬂ(l-ﬂ*)}l
+exp(-r x)[t2+ﬂ(1-ll*)3[t S(I-Cqu:ll!*)]rl/rz}, 2 >x,
L »(5d)v "2(§.z.x)f9";fe§p(-rii) {:faﬁi(x-.n;),} {Fa,(ti'ti)'j-?'_'»_
- _9_{gxp(t1¢) B+ 's.m(_:za)(pﬂzn‘l/:z}; 0 osesx
mrl Mrz mmmmmmmﬂm by
| -'_“’5 | r,(°>._ xz(_ﬁ) -wo) + ’5[ (4(9)) A n(e)J"
| _,]_A’(é) - S-ora(1-pB{-8QL-08; .
() c o - | -
o | 8(9) - as{-(l-u*) (1+u*[q+p-1]o+q(n*.u*)]

| m B(O) my be expreaaad in nnothcr my n S o

AL 3‘°> - -aﬂilg(x-gp‘(;»-n;_*rqu?;?n;(;fnp}{'-- "



- 10

from which-iﬁ;follows that Re(A2-4B(6)) >0, It'folloos'in turn

from this that Re(rl) > 0 and Re(t ) <0. It can be-sﬁoﬁn in addition,
- that Re(rl) { @, ‘and that -Re(rz) < B, Two limit properties of r,
“which willbbe used later on aie, for Bq < a p,

(7) 3:3 (x, (&) {r2(9)+a(1-n§(e))}-q(aE“1+BEH2)a _[EH2p+gEH1] ,

and

8 1im rz(e)ﬂ'O'B[E (prq)+q(E '-sﬂ- )Bq-apl. .
e P e T

,;ggg gg THEOREM 1.

It can be seen that %,(8,z,x) and 8, (9 z,x) are dlfferentiable
with reSpect to 2, Diffetentiating each of (2a) and (2b) twice with
respect to- z, and collecting tetms we obtain the following two second

order oifferential_equations
(9) - E48[B-0-B(1-qHs 1+, [aB(1q)H}-0B)

| =-aqn§[§i+s¢1],gae’?(1-u3)0(x-;),

‘(_'10-) ,» "fiﬂi[ﬂ-w«(l-p)u’{]ﬂl[aa((1-,,)w{-1)]
"=3pﬂf[¢5-a§2]4aﬂ6'1(i-n;)u(x-z).

'Here Q' Q" and Q"' ‘are corresponding first, second and third order

oartial derivatives with respect to z, On eliminating $, and its

2
derivatives from (9) and (10) in a standard manner, one obtains

(11) ?‘1'.'+@'1'[zﬂ-aka(l-p)ﬂf-B.‘(l-.q)Hg] +




11
- +8;Blof- (119 (4B (qrp-1))+q(iE-BD ] +
+B-ara(l-p)f-B(1-g)HE) -

-08%%, [ (1-H3) (148§ (q+p-1)) -q(H5-15) ]
. =;e‘la52u(x-z)[(1-ng)pu;¢91-H;)(1-(1-q5H5)].

Equation (ll)fiS'aochird order differential'equafion'with‘constaht
ooefficients.‘ For b é @1 = 9'1 io a‘particular solution of (11).
- The homogeneous equation associated ‘with equation (11) has auxiliary
‘equation whose roots are -8, rl, T, the last two are deflned by (4).

Similarly_eliminatlng ¢ from (9)»and (10) we obtain tbe equation

12 @;;+§§[Brza+a(1-9)ﬂf'5(1'§iﬁ§] + |

| :40@2[Bk-(1-ﬂg)(L+Hf(q+P'1)+q(Hff“§)).'
.Bfa-a(l-p)ﬂf+5k1;q)H§] -

B Qa s[ (1-u*)(1+u*(q+p-1)+q(“*'“*)]°

7 -azst<1-u*oqu (1-u*>((1-p)u*-1)JU(x-z>e 1,

, r@king into oongidorotion'the,signs of Re(rl) and Ré(:z),and the
range of z in éach case we can express the general solution to equations

(2) as
(léa) ?;(9';"_2,_"__':‘;)=Coexp(-Bz)‘fclexp(rz_z) B | L z>x

(l§b)‘ _QI(G,z,x)=Czexp(-Bz)+C3exp(tlo)icaexp(rzz)fQ'l" » 05z <x,



and

(13¢) @2(9,?;x)=caexp(rzz) ' ‘ : ; z > x

. , " |
(13d) 02(ef;,x)=CsexP(az)+C6exp(t1z)+C7exp(rzz)+9 , 0.< z < x,

'while.Qé(Q;O,x) is described by equation (2c). In order to determine

the desired ¢onstants Ci, i=0,1,00e, 8 we proceed'aé'f0110ws.'

From (2a), when z > x,
z . , o v - ‘ -1
(18) [ 2,(8,v, %) exp(Bv) dveexp(B2) (BpH) 12, (8, 2,1)-2,(8,0,0087" -
0~ _ ‘ ,

-a(l-p)H{exp(az)jbexp(-GV)Ql(Q,V.x)dv]
z *) :

and when 0 < z < x.

(15) I exp(Bv)@ (e,v x)dv-exp(ﬂz)(ﬁpﬂ*)-l[Q (e,z, x) -

-,(8,0,x)8" -(1-n*)6 1
-a(l-p)ﬂfexp(az)I'exp(-dv)él(e,v,x)dv].

:Substituting the approptiate for-a from (13) for @1 in ‘the right
hand sides of both (14) and (15); differentiatiﬁg each of the resulting

equations with respect to z; and collecting terms, we find for z > x,
¢ I
'(16) | 2(9 z, x)-C (B+r )(BpH*) exp(r z)[l-a(l-p)ﬂ*/(a- )]
and for 0 < 2-5 X, o - "f%

an  3,(0,z,00=exp(en) (@ Ba1-p) (Bp) " Lexp(- (8)x}(C,-Co) (a4®) ™!

-exp{(rlianlcj(tl-OO'1+exp{(r2-o9*3(cl-cs)(rz-a)'l
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+exp (~ax) (08) 1] +

+exp(r,2) Gy (Brr)) (BptH) " [1-a(1-p) iy (a-r ) 71] +

+exp (r,2) Cg (Br,) (Bpht) " 1-a(1-pIE (e-r,) 1] + 871

Comparing the coefficients of exp(rlz), exp(rzz), exp(az),'and the
'constant term in (16) with those of (13c) and in (I?)-with those

of (13d), it follows that

([ c,=C, (B+r,) (Bottp) "M[1-a(1-p)Hf(a-r,) ]

Cy=(@+B)a(1-p) (Bp) " Lexp{- (a+B)x}(C,=C ) (atB) ™!
+exp(-dx)(ae)’1-C3exp{(r1-a)x}(rl-qo-l +

(18) J A

+(Q1-08)exp{(r2-a)x}(r2~a‘ ]

Cg=Cy (B+r,) (Bplp) H1-a(1-p)if(a-r )]

\ c7.c8(e+r2)(ap#f)‘lt1-a(1fp)nf(a-r2)'1].

Thg express1§p.fop Qz(e,z,x) EOIIOWS‘difectly onée we.have found the

solution for Ql(e,z;x).»‘That is, we have only to determine the

-constan;s C.; Cl’ CZ’ C3 and C8 now. To do this we substitute'the

general form of %, and @2 as givén in (13) into equations (2).

Solving the ;gsulting system with the help of equations (18) we obtain

‘equations (3). The algebra, although tedious, is straightforward

and hence is omitted. - l "o
We prqc¢éd now to obtain transforms of the (first two) moments

of the procéss_Z(t). We sﬁall need the following lemmé, which‘follows

;tself from h well known result in renewal theory (seé Prabhu [24],

p. 155).
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LEMMA 1. In order that E[Z(t)] and E[z2(¢)] exist and be finite it

r——

is sufficient that both H (0+) <1 and H,(0+) <1, and both E(X) <«

and E(x?) <,
- Applying Lemma 1, p. 148 of Feller [10], to the .process {z(t)} for

v =1or2we find
a9  E2®] - vj " 1-Pz(0) < %] ax.
. 0 .

By Lemma 1 the right hand side integral is finite. -Now, taking
Laplace transfdrms, we get
o ' ' 0o ) vl . .
J exp(-Bt)E[Zv(t)]dt=vI exp(-9t)j x" TP(2(t) > x)dxdt.
0 I 0o 0 ' B '
The integrand on the right hand side above is positive. By Fubini's

theorem then

\ j exp(-0t)E[2Y(¢) ldt=v x,v-l‘!‘. exp(-0t)[1-P(Z(t) < x) ldtdx
0 S - Y0 0 ' o

g

=V xv-;[S'l-I exp(-08t)P(Z(t) < x)dtldx .
0 0o o .

By thé above. reasoning, the desired Laplace transforms'
) _ S
8, ®=] exp(-00)E[2(0) |2(0)=2, Jgmildt, 1 = 1,2
0 ) .
hy @)= exp(-00)ELZ% (1) |2(0)=2, J=1)de, i = 1,2
0 _

 defined for Re(8) > 0, can be obtained to yield



. 15
(20) g, (®)=8" x, (@)+8{1-15(8) }[aBghy (®)r, (®) {r, ®) -z, 117",
p{exp{rl(e)z](a-rl(3))[r1(9)+3(1-(1-q)ﬂg(9)}]

-exp{r, (©)z}(@-r, ()L, (O)+B{1- (1-)B5(®) }r, (8) (r, () "'}
and

21) b, (=07, (@)+8{1-R5(0) }I[oBqhs (8) (x, () {x, (&) -z, ()17
{exp{r, ®z}(a-r, () [r, (O)+8l1-(1-9)B5(D)]]

 -explr, ()2} (or, () [x, ()+8{1- (1-)E5(®) }r, () (=, 1)1}

Unfortunatély, the inversﬁon,of transforms(3),(18):and:(19) appears
quite cumbeisome. This is due, primarily, to the raﬁherfcomplicated
dependence of ry and r, on 6, the patametef of the transform. Even
in the siuplest‘speéial c##es the invefsion is_algebrgically involved.
Instead, we proceed now tb‘eiamine the limiting behlviéf of the
process {Z(t)] and the asymptotic behavior of its moments. The
following theoiém can be ?stablished by dppiication dfoq étandard

Tauberian thebrem‘(W1ddeﬁ"[38], p.192) to (3).

e————

DEREN 2. Lin P(2(t) < x2(0)=z, 3y=0) = ¥(), with the Liniting

t—m
distribution ¥ givep for x > 0, by
0, | B qea L-gt > 0
(22) ¥(x) =| S

1-explUBa-aple) oty +By )™ [k praty 17, qtper ™67 50
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In the case, q(pd)-l < B’i; thé limiting distribution function is

a negative e#ponential with a positive probability ﬁass at zero,

The interpretation of the criterion for the existence df a proper
iimiting distribution for Z(t) is straightforward. When average
inputs per unit fime are less than average releases per ﬁnit time,

Z(t) has a nondegenerate limiting distribution. When_a?erage inputs
are equal to or greater than averége releases Z(é) tends to infinity.
It seems reaﬁohable to distinguish formally between.three cases.
Borrowing terminology from branching processes, we shéll talk of
subcritical; criticial and supercritical casés according as q(pa)"1 is
less than, equal to, or greater than B-l. Let a =.q(p00-1- B-l.
We shall study now the asymptotic behavior of the’first two

moments in the critical and supercritical cases. |

THEOREM 3. If a > 0, then
(232)  E[Z(6)|2(0)=2,3 =1] ~ kgt

~ (23b) B2 (1) |2(0)=z, 3 =1] ~ 27lk2¢? (t = =)

——

and if a=0, 'gen, for i = 1,2,

(24a) E[z(c)lz(o)=z,JO=1] ~2m 7B (e @)

246)  E[2%(6)|2(0)=2,3,=1] ~ Kyt (t = =) |
vwhere
(25) k1=(3q-0p)(dB)-l[EH2p+qEHE'1

(26) k2=dﬁ{EH2p+qEH3.
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Proof: Conside: first the supercritical case, a » 0, From (20)

it follows that

@n . . Lim 8% (8)=k .
60

For the second moment, from (21) we have

(28) 0 1m @@=k,
60 \

The result for the éupercritical case follows upon apﬁlication of a

Tauberian theorem to both (27) and (28). In the critical case, since

(29) o 1in e3/2gi(e)=k§
and
(30) | Lim 8h, (8)=k,,
| 6~0
the same the@rém yields the desired result for i = 1,2, R/

In the special case where.H1=H2_E H and 1-p=q the underlying
structure is tﬁat"of a renewal process. Moreover,_ét,each renewai
point with the same probability p an input is observed and with
probability.(l-p) a release is observed. Results are kﬁown for
discrete versioﬁs of this problem, as reported in Takacs [37]; for
example, and for the continuous time case as examinéﬂrﬁy Erdos and
Kac [8]. For tﬁis special case the solution to the integral equation

(2) takes the relatively simple form (cf. (3))

Q(9,z,x)=exp(r2z)r1(r2+ﬁ)[dBG(rl-rz)]_1.

AexpC-rym) (@or)-expCrym) (erdd 2 >x
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¢(9,z,x)7—'9-1—exp(-r1x) (c':t--rl)[otﬁe(rz-rl)]-1
-[exp(rlz)rz(r1+ﬁ)-exp(rzz)rl(rfﬁ)}, 0 <z <x,
ﬁhere Re(e) >0 and

-1 -1

. L - X
r, (@)=-2"tcr2 Ir.2.4a7%, r,(®)=-2"lc-2 12 447,

and

=B (1-H*(8) p)+al (1-p)E*(8) -1}, d=-0B(1-H*(8)).

4, THE CASE (B) WITH GENERAL RELEASE AND EXPONENTIAL INPUT DISTRIBUTIONS.

~ WMMWWMW ““‘~

It is naturgl to ask what generalization can be made of the .
model treated in Section 3. Specifically, we are interéstéd in freeing
that model from ﬁhe restriction of exponential dist?ibutions for both
inputs and reléases. In this section we examine an initial attempt
to consider more general distributions B(x) and b(y). 'As mentioned
in Section zﬂwith both B and D general a,solution,‘if it exists, is
very difficult to generate, by use of transforms or other means. The
price of generalizing even one of those d1str1but10ns is the
sacrlfice of the semi-Markovian structure of the underlylng process.
Therefore in this section we abandon the underlying'sgmi-Markovian
structure and set H1 H2 = H, a negative exponential distribution
function with parameter A+p, where l-p=MA/(At+p) and'q=u/(k+u),
and A,p > 0., Thus the underlying process is Markovian, a fact
which allows us to consider not only the backward Kolmogorov integral
equations bpt also the forward integral equations. In the present
case equations (1) reduce to a single equation. A solution of the

backward equation, the minimal solution, can be constructed using
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successive approximations. This minimal solution satisfies also the
forward equation and is minimal for the latter. Since N(t) <e®,
almost surely, here the forward version of equation (1) is valid and
can be-established by considering the nature of thevlast jump of -the
process Z(ﬁ) befofe time t. Considering the last jump of the proce#s
(O,t], if there is one, and whether ig is an input or a ;elease the
following forward Kolmogorov integral equation can be established
for | |

R(t,z,x)=P(Z(t)Sk|Z(0)=z) for the case z'2 0.

(31) R(t,z,x)=exp{-(k+u)ﬁ}U(x-z) +

. t _ X ’
+XI exp{- (Mp) (£=7) }dT| R(T,z,x-y)dB(y)
0 A -

+f expli ) (e=m) Jar] RCT,2,09)8D(5),
0 P E 0o Co
where now z.is fixed. Tﬁe Laplace transform,df (31)lfor Re(0) > 0'13

(3) 808,220 Otpr)=UCx-2)4A] $(8,2,x-y)aB(y)+u] 8(8,2,x+y)aD(x).
0 R

The uniqueness of the éolution of equation (32) is proved by

use of the principle of contraction mappings, in exactly the same

19

manner as employed by Haéqfer in [16]. A tractable solution to (32),"

presented in Theorems 4 and 5 below, is possible for the case in which

B has negative exponential distribution with parameter ﬁ while the

distribution D remains arbitrary subject to the conditions D(0)=0

. : o
and that its first moment ED-J ydD(y) <« ,
T I
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THEOREM 4. For z=0, equation (32) has the unique bounded solution

(33)  2(6,0,5)=8" 1= (a-v(8)) (¢8) "texp(-y(8)x), x = 0, Red > 0
with

(38) | exp(-80)P(2(£)=0|2(0)=0)at=y(®) (@& 1,
0 . .

where y(8) is the unique root of

o]

S T
(35) A+ut-8-on (a-r) l-ul exp(-ry)dD(y)=0,
. Y0

with 0 < Re(r(0)) < c.

We need first the following lemma, which follows by an application

of Rouche's theorem.

LEMMA 2. For o, A, W all positive, Re(8) > 0, equation (35) has a

unique root r(8)=y(8) in 0 < Re(r(®)) < 0-6, where § > 0 is small.

Moreover 0v<“y(6)| < o (5+8) / (Mut8) | .

Proof of THEOREM 4. We show that the solution of (32) is of the

fqrm
(36)  #(8,0,x)=6"+C(8)exp(-rx).

We know Q(G,Q,x) - 6-1, as x @ ©, Now this is possible only if Re(r(8)) > 0.
Furthermore, from (34) we require that |Y(9)‘ <'a."so the only values

of r(8) in which we are interested are those for which 0 < Re(r(8)) < o .
Substitution of (36) into (32) yields an identity in x. Comparing the
coefficients of exp(rx) and of exp(ox) on both sides of this identity,

we obtain (35) and the relation

(37) e he@ @0t = o,
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By Lemma 2 equation (35) has a unique root r=y(0) in

0 < \r(G)‘ <‘dlifﬁ%5‘ < @, Re(8) > 0. Once y(8) has been determined

(37) then yields the term C(8), which in turn yields (33). The
uniqueness of the solution of (34) guarantees that (33) is the
only such solution. Finally, (34) follows since

[ exp(-8)P(2(£)=0|2(0)=0)de=1im 2(8,0,x). I
Yo x~0+ -

Let H be’an_afbitrary function, defined on the nonnegative half
of the real line, which is integrable in every finite subinterval of
that half line and which can be expréssed as the difference of two

monotone nondecreasing functions.

Let also

(38) k) = ) 8@,
k=0

where

| » S |
1O =1, 1) = [1*V warw), 0 s g2, k= 1,2,
L 0

THEOREM 5. Suppose D(s)/s < A <® for 0 < s < ¢ for some € > 0,

A > 0. Then for z > 0, equation (32) has the unique solution

(39)  8(8,z,%x)=8" F-exp(~v(8)x) (@-y(9))

z ) .
L(@®) "5 (u150) | exp ()R (z-u) du, 2z
0

and for 0 £ x < z,

———r— w———

40)  8(8,z,x)=0" L= A+pt8) "L K(z-x) - (a-v(8)) exp{-y(®)x}.

Z
.[(ae)'1+(x+u+e)'1j exp(QU)K(z-u)du];.
0 ,
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where K 15 givén in (38) and
(41) ‘H(s)=f'uD(S)+h(1—exp(ds))](l+u+9)-1, 0<s <z

‘Proof: Let

ene—————

n

‘é(e,z,x) Ql(e,z,x) for 0 <x <z

il

@(é,z,x) QZ(G,z,x) for z < X.

Equation (32) may then be broken into the two parts: for 0 < x < z,
(42) Ql(e,z,x)'(l+u+9)=exp(-oa=) At Ql(e,z,v)exp(w)_d_v
. 0 ' a
z=X * :
wl] 8@,z xn o] 4@ zxmdm],
0 z-'x .

and for x 2z,

@D 800,50 O] 8, (8,2,x+y)dD()*
o 4,
k4 ) ' X .
vexp(-a) oAl [ explav)e (8,2, vdv + [75,(8,2,mexp(on av).
. _ 1 fa 8

Now when z=0 we saw that @2 had the form:
(44) QZ @,z,x)=e-1+We,xp(-rx), x > z Re(r) > 0.

We‘shall construct a solution of (32) this time by putting QZ as

in (44) and setting
43) ,@1(6,z,x)=9-1+Wexp(—rx)‘+vg.(9,z,.x). 0gx <z

where g(8,z,x). is a function to be determiﬁed. Substitution of (44)

into (43) produces an identity in x. Comparing the coefficients of
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exp(-rx) and exb(-ax) on both sides of this identity we obtain the

relations
(46) A+u+e-ak(a-r)-1-uj exﬁ(-ry)dn(y)=0, r *.a,
. 0
.and
G7)  explaz) (@8) 1-J(8,2)H expl{(@-v)z}@-n) "0, o 4 r,
where
. Z )
48)  3(8,2)=] expan)?, (8,2,v)av,

By Lemma 2 we can determine a unique root, r=v(®), from (46) which
satisfies 0 < Re(y(8)) < o with Re(8) > 0, Straightforward substitution

of (44) and (45)-into (42) leads to the following integral equation.

. s
(49) g(e,z,z~S)(h+u*9)=-1+uj g(8,2,2-st+y)dD(y)-
5 - Y0 - :
s ' S
-alj g(8,z,5+z-s)exp(aB)dS.
o .

Here we have made the change of variable s=z-x, 0 < s £ z. Setting

r(e,s)=g(®,z,z-s), we see that equation (49) becomes

‘ ' 1 8 .
(50) T(8,8)=-(M1ut®) 4] T(8,5-y)am(y),
0

where H is defined in (41). Equation (50) is a Volterra type

equation. It is shown in the appendix that in this case this equation

" has the solution

T'(8, s)=- (WHut8) "1K(s) .
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Converting from I' back to g we find @l(e,z,x) in terms of W by means

of (45). Then using (47) and (48) we obtain:

. | .
(51) J(9,z)=exp{(a-Y)z}[(exp(az)-l)(00)-;-(k+u+9)”lf exp(av)U(z-v)dv],

In turn, thérefbre, from (47)
(52) W=exp{-(q~Y)z}(a-Y)[-exp(dz)(ae)-1+(exp(az)-1)(ae)-1 -
-10%
Ot®) " exp () U(z-v)av],
0

From (44) aﬁda(45), equations (39) and (40) now follow. 0
We shall now investigate the limit behavior of Z(t) as t = =,

T§ this end wé must investigate the behaviof of y(6) as 6 =~ 0. By

an applicatiqn.sf Rouche's Theorem-we saw that equatibn (35) haé,

for fixed ©, a unique root r(8)=y(6) such that 0 < | Y(G)l < dl(w+9)/(x+w+9)l.

We now state the following lemma which can be proved by exact}y the

same technique as employed by Benes in [33.‘ |

LEMMA 3. For © >0,

0 | | if auA'IED <1

lim v(8) =
olo | |
o[1-Ap-01 1] if aul-lED >1,

where C iS the least nonnegative root of the eguagion E=%(E), 0 <E <1,

_§(§)=D*(a[1~l{k+u(1f§)}.1]), D*(r)=J exp (-ry)dD(y),
-0

o
ggg_ED=ondD(y).



REMARK. Here the root { exists, and the reader may find its
————

properties discussed on p. 274 of Feller [9].
Lemma 3 and a standard Tauberian argument (Uidder [38] p.192)

can now be used=to obtain the following theorem,

THEOREM 6. Under the conditions Qg Theogem 5

1im P(2(t)<x|Z(0)=2) = Y, x>0,
e

independent of the value of z, where the distribution ¥ is given for

[1-(e-y9a lexp(-v40), By > M) ™!
Voo =f
0 R )'.(am)'1

shere v*=at1-x{x+u(1-c)} 19 and € s 2s in Lempa 3.

Once again we see that if average releases per unit time exceed
average inputs per unit time, then Z(t) has avnondegenetace limiting
distribution-~an exponential with positive mass at zero,

From Theorems 4 and 5 we can derive the moments of the process

2(t). Since zZ(t) is a nonnegative random variable Laplace transforms
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" of the first two moments of Z(t) are readily obtaiped. The complicated

expressions for these transforms are givem in full detail in [34].

5. DISTRIBUTION OF TIME TO FIRST $HPTINESS.

~ Pl P O

It 1a reasonable to ask, "how long does it take before the

dam becomes empty for the first ti-e, given that Z(O)sz is positive’"
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In this sec;ibn we shall attempt to answer this question for the two

speciai casés'(A) and (B) of the model considered in,Sections 2 and i.
Let Z(O)=z be strictly positive. Let T, be the time until the

~ dam first bécames empty. That 1s,'TE-1nf{t|z(:)-o, t>0}. In addition,

thtoughdut'this section, we shall use the notatiom

E;(t,é?x)=P(Z(t) <x, T > t'Z(O)éz,Joii), i=1,2,

R (t,z,%)=P(z(t) 5,x,'rE > t|z(0)=z),

1-F (6)=P(T > t|2(0)=2), 1-F ()=P(Ty > t|2(0)=z,3=1), 1 = 1,2,
for t 20, x >0, Let 3;(9,z,x); F;(G), i ?>1,2,'316,z,x), and
F*(€) be, for Re(8) >0, the Lﬁplace transforms of g;(t,z,x),

Fi(t)’ i =1,2, R(t,z,x), and F(t) respectively.

S.1. CASE (A).

By considering the first jump, if there i# oﬁe; of the process
Z(t) in the interval (0,t], along with the size and nature of that
jump, we can gstablish in a straightforward manner the following

bgckward Kplmogorov integral equations fbt ;;(t.z,k)_fOt\z > 0.
(53) Rl(t,zsx)=U(x-z)(I-Hl(t))+a(1-p)exp(az)f { exp(-av)kl(tet,v,x)dvdHl(r)
o . o _ Y | B
+pBexp(-8)] | exp(BR, (-1,v, x)dva, (7)
pPexp{-pPz exp(Pv t-T,v,x)dvdll, (7),
0’0 2 e
L - o
(54) 'Rz(tgz,x)—u(x-z)(I-Hz(t))+oqexp(¢z)j I exp(-av)Rl(t-T,v,x)dvdH (™)
' _ , . _ 0'z C ' 2

| +(1-q)5exp(-9z)I I exp(ﬂv)Rz(t-T,v,x)dvdﬂz(T).
0’0 SR
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In terms of their Laplace transforms, (53) and (54) take the

following form for Re(8) > 0.

- (55) gl(e,z,x)ﬂu(x-z)(i-Hf)B-L+a(1-p)exp(az)H{ exp(-av)gl(ﬁ,v,x)dv +
. _ z

. . z ~ .
+pBexp(~Bz)Hf ,exp(Bv)Qz(O,v;x)dv»

(56)  #,(8,2,x)=U(x-2) (1-1§)8 "+aqexp (az)h§| exp(-av)?; (8,v,x)av +
- o | , z
+(1-q)Bexp(-Bz)H} Qz(ﬁ,v,x)exp(ﬁv)dv‘
- 0 o

2

We have the following

THEGREM 7. The bounded solution of equations (55) and (52) is unique
and is given by o |
(670 30,z 0mexp (e (o8 (xy ) T 11y or T
. f{exp(-rlx)(a-rl)[l-a(l-p)ﬂf/(a-rl)J[a(1~H{)-t2]‘-'
sapﬂf(r1~rz)-exp(-rzx)(d(l-nf)-:1]£d-r2fa(1-p)ﬂf]}.v» X,
(57b)’;;(Gf?;g)-e'L+exp[(;-x)r1}(r1~aD[a0(r1-rz)]-ltd(l-ﬂf)-rzl +
 texp(z, ) [00(r -r) T 10 (1-p)BY/ (@-r 17T,
 i‘:-{exp(-rlxj(a-rl)[l-a(l-p)nf/(a—tl)][&(lfﬂf)-rzl -

epmi(rery),  osex,
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(582) 2,(0,2,x)=exp(r,2) (B+r,)[Bpadiit(r, -x) 1.
+fexp (£ (@ [1-0(1-pIRY/ (@) M1 v, ] -

’-ap(rlfrz)Hf-exp(-rzx)[a(l-ﬂf)-ri][aeré-a(lfp)ﬂf]},» z>x,

(58b) Ez(e,g,g)=e'1+exp[(z-x)rl}(rl-a)(ﬂ+r1)[a(1-Hf)-r23.
[1-0(1-p)H, / (a-r)) 1 [eBBp (r, - JH$1™ +
'+exp(rzz)(B+r2)fdaepﬂf(r1-r2)]-I{exp(-rlx)(afrl).

-[l-a(l-p)H’f/ (or-rl)_][a(l-Hf) -rzl—wﬂfkrl-rz) 1, 0<z<x, |

where Re(9) > Obggg r; (6) and r, (6) are given by ). " The technique
of the proof is ‘exactly the same as that of Theorem 1. The proof
therefore is omitted.

The distribution of time to first ~emptiness istgirenvin‘terms of
~its Laplace transform in the theorem below. The prebf of this theorem
is omitted as it follows from (57b) and (58b) by letting x — o,

while keeping the signs of Re(rl) and Re(rz) in mind.

e to

THEOREM 8. The Laplace transforms of the distribgtion _; ti
: g;;;; ggg;iness are given by

Ff(e)sexpixz(e)z}paf(e)[e(1-a(1-p)u;(e)/(a-rz(e))}l'l, 2 >0,
'F*<e>éexp£r2<e>z}<a+x2<e>>(ae)"1, - Cz>0,

m;_ ry (9) (9) are given in (4).
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We haveiseen in Section 3 that fhe behavior of Z(t) and of E[Z(t)j,
for large t, is different for the three cases, subcritical, critical,
and superctificél. A similar behavior is indicated below for the
random variaBle=Tﬁ. Let ¥ (2) = P(TE=m|Z(0)=z), Wi(z)'% P(TE=m|Z(0)=z,
J.=i), i = 1,2. Application of the relevant Taubefiah theorem and

that TE is a nonnegative random variable yields the_foliowing theorem,

THEOREM 9. (A) The limiting distribution, as t = ©, of Tp is given by,

0, | o a<o0
V() = o
e expl - (Bq-ap) 2}[1-a(1-p) {0 (Bq-ap)} 11, 2 > 0
and .
(o, - a<o
*2(2) =  _
1-expl-(Bq-op)z}{B-(Bq-ap)}8™" ~  ,a>0
(B) E[TElz(0)=z,Jo=1]=w, i= '1,2, z > 0; if a=6_, Qg ifa<o0
E[TE-l-z(6)=z,J =1]=p-1{EH1-(akl)_-ll:l-pﬂxzp]}‘,
and N

BT |2(0)=2,3=2]= - (1+82) (B T, (e < 0O,

for z > 0 where k, is given in (25).
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5.2. CASE (B).

f"M‘ L e aron o o ot o

In thisiSub¥section we study the distribution §f TE’ the time until
first emptiness for the model of Section 4. As in Section 4 attention
_wiil be focusedvbn a forward rather than a backwardrKélmogorov integral

equation. Considering the last jump of the process.Z(t) during
0,t], if there is one, and whether it is an input or a release,
subjéct to the,édditional condition that the dam isﬂnét:yet emtpy
5: time t, Ehé fo11owing forward Kolmogorov integral equation can be

established for ﬁ(t,z,x), for z > 0.

(59)  R(t,z,%)=U(x-2)expl- ()t} +
‘ nt X . Co
-~ +\| exp{- (M) (£-1) }dT| R(T,z,x-y)dB(y) +
!0 . lno
ot 3 |
+u| exp{-(p) (£=-7) Jat| R(T,z,x+y)dD(y) -
‘0 ‘o ,
et > -
-W exp{-(k+u)(t—7)}d7‘ R(T,z,y)dD(y).

.0 0 .»
The corresponding Laplace transform of (59) satisfies, for Re(8) > 0,

~ (60) Q(G,zsx)(l+u*9)=U(x-z)+hJ ®(8,2,x-y)dB(y) +
+ul| 80, z,xt9) a0 (-] 8,2,y aD(x)].
0 o

It can be éhoﬁn; by exactly the same argument used iﬁ Section,é,
that (60) hé§ avunique bounded solution, which unfbftunately is
difficult to‘obtain in any closed form in its present generality.
However, aé bgfore for the case (B) the solution 1Su£féctab1e

and is given below.
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THEOREM 10. Given € > 0, suppose D(s)/s <M < @ for,0;< s < e,

for some ¢, M >f0, Then the unique bounded solution g£7equation (60)

ig given by

| (61) 3(ﬁ,z,x)=9f1+C(9,z)+A exp(-Y(e)x)f(k+u&9)-1K(z-X), 0<x<g¢g
62) - ¥(0,2,x)=0"14C(8,2)+A exp(-y(®)x) Lx2e

where

C(8,2)=68"1u[1+6  u{1-D*(y) (Q!-Y)d-l}]'l.
o . -1 R
L0 LR () (e e ) L[ K(zmy) any)+
- o

z
+I exp(av)k(z-v)dv}],
0 : o

.. z”. '
A=-af1(a-v)c<e,z)-<a-y>[<ae>‘1+<x+u+e>'1f exp (av)K(z-v)dv],
| | 0o

. e
D*(Y)éI exp(-vy)dD(y), and y=Yy(0) and K are as in Section 3.
0 S ~

We omit thé proof of Theorem 10. It follows élong the same
lines 53 thatﬁqf Theorem 5 and employs the exact samettechnique
except that we start by constructing a solution of (60) by putting

3;=9-1+C*(6,z)+A*exp(-rx), X > z,
-and

§1=Q*1+C*(6,z)+A*exp(hrx)+g(9,z,x), 0 <x< ;, 

where g(8,z,x) is a function to be determined, and 0 < ?e(r(e)) < a.
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We now have the distribution of TE given in the following
theorem which follows from (62) by letting x — ® and keeping in mind

that Re(y(8)) > 0.

THEOREM 11. ‘The Laplace transform of the distribution of TE is given,

for Re(8) >0, and z >0, by

F* (8)=[ 8+ {1-D* (v) (e-y)o 1171,
,‘ . o102 z o
‘[1-p (A+u+8) [I K(z-y)dD(y)-I exp(dv)K(z-v)dv}].
| ] 0 0 |

Analogous to the result in Section 5.1 we give without proof

~e~

- THEOREM 12. (A) The limiting distribution of T., as t ~ ©, is

given 91_
o . , if (Ma) < Epp
¥(2) =  “
' -1 -1 -1--1 .
| _1-[1+u(E.D+a ) (@ A-pE) 1 7-8(2) , if (M) > Equ
where .

s@=La -iEp) Egra™ - () L[ Rz an(y) +
- 0 .

2 o _
+a{ exp(ay)K(z-y)dy}].
0 .

(B) E[TElz(0)=zJ.; @, if (Ma) > uE

E[TEIZ(0)=z]=#'1[1-D*(Y*)(a-y*)a'l]'IW(z) , Lf (Ma) < uEj
where

WGz = [L-u) ] K-y ann+] exp(awIrG-mavi],
L . 4] exp avll,
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and - y*=lim vy(8) (cf. Section 4).

6. LIMIT RESULTS (GENERAL CASE),

~ PN TNI

6.1. THE APPROACH AND SOME NOTATION.

lar o an ol Lo o o d [ e an Al e o8 o F o ™

In order to obtain exact and explicit re;ults we considered,vin
Section 2 and i; the two special cases (A) and (B) in which the.
random variables determining the amounts of inputs, fglegses, or both
were assumed-to be exponentially distributed. Howeﬁef»in this section
wé shall stu&y the limit behavior of the process Z(t).without making
any assumptipﬁ.ébout the forms of the input, release or Qaiting time
(sojourﬁ) distributions.

A standard:approach to this problem would be to 1oéate first a
suitable sequence of points of regeneration of the process such as the
time points qf;first emptiness and subsequent returns té:emptiness in
ithe present case; .Theh, conditioning on the number and location in
time of the points in this sequence, partition.the time.intgrval under
éonsideratioﬁ into its component parts and study tﬁe‘corresponding co@ponents
of the procegsESeparately. It turns out, however, that:this standard
approach, alfhough attractive, is ﬁOt the most fruitfulione in the presént
case. Insteédjwe find it more convenient to consider the sequencé of:
points of refurﬁ.to the release state, which, in genér;l, are not
regeneration points of the process Z(t). This'considéfation leads to
- the representation (65) which expresses Z(t) in terms of an auxiliary
process assoaiaéed'with this sequence. If is this reﬁrésentation which,
when suitably exploited, leads to the main results presented in this

section.
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We intrqduce some additional notation. Let pl,pé,pB,..., be
the sequence of lengths of time between successive returns to state 2

after time t =50, these lengths being I.1.D. random variables. Let

‘po = 0, and O = E:p , n=0,1, . Clearly for‘k=0,1,2,...,
N (t) =k if and only if Gk <t< °k+1' Again, © N (t) denotes

the time of the last release, if there is one, before time t. Let

us suppose J, = 2 and let Vj denote the number of inputsioacurriné in the

interval (ojél’oj> for j=1,2,... The j-th release'must,vby definitionv

ef pj’ occurxat_oj. 21 is thds (starting from state 2) ehe number of

visits to sfate 1 (input) until the first return to.Stafe 2 (release).
We pdt, by convention X0=YOEO. Let the random Yafiebles Vj’ be

defined by

) (D) ) I
(63) vJ -.x1 R, xvj Yj R 3—1,2,...,

Vo being an afbitrary nonnegative random variable. The v., j=1,2,...
are independent of the X's and Y's, are mutually 1ndependent and

vfollow a common d1str1bution, namely that of v Consequently,

1°
j’ J=1,2,...: is a sequence of I.1.D. random variebles. Finally,

define the fdllowing sequence of random variables reCuESively.

(64) -no - Vos 'ﬂn+1 = max(o,Tln+vn+,1), n=0,1,2,...

This sequenee hes been studied. extensively, more reeently by Takacs [37].
Again Né(t):is almost surely finite for all t 2 0; which in turn

implies that tnere is a last release before time t end_that the random

variables vj,fj=1,2,... are also elmost surely finite. Thus, by the |

above structure and the constructive definition of the process Z(t)
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it is evident that
= >
(65) Z(t) Tluz(t) + z xj, t>0,
=0 ,
holds, almost surely, where It denotes the number of inputs occurring
' | c .
during ( Nz(t)’ F]
In the next section we examine more closely the components
comprising the representation (65).

6.2. SOME PRELIMINARY RESULTS.

fa o o a - o Y o ) fara ana e 2V VN

[

Unless stated otherwise we shall take Jo = 2 thfoughout this

'section. It can then be established that

P(p; <%, vy = 0) = (1-q)H,(x)

(66)

“1) = q1-p* Tomy 1 G0 1 2 1.

Blpy =%, vy 58

From this it follows that

) Rl $x = Q-BGopatgy ) [a-pm@I*Y,
| ’ k=1 . -
; and

(68)  B(v, = 0) = (1-q), B(v, = k) = pq(1-p)*"}, k > 1.

These, in tirn, lead to the following two theorems.

THEOREM 13. I_ has the following distribution for t > 0.
(69) B(I, = 0) =f(1;u2)*U(t)

= »i»v(x = k) = q(l-p) n *nz(k Vs(1-n )*U(t) k>1,
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. . - - . <
where - U(e) = >_JP(p0 + Pyt = t).
k=0

Proof: Since P(Nz(t) < ®) = 1 we have

-p(It = Q)'= P(It =0, Nz(t) = 0) + ZP(It =‘Q, Nz(t) = k),
. e k=1 '
or equivalently,
P(It = 0):(1-H2(t)) + E: Io(l-Hz(t-x))dx P(p0+p1+...+pk < x) |
' k=1 - :

_'=(1-H2)*U(t).
For k >1 wévgef, by the same argument,

P(I, = k) = ) B(I, =k, Ny(t) = )
3=0

B ;= q(l_p)g-lﬂ s (k1)

ol *(l-Hl)(f) +

+ q(l-p)k IHZ*H{k 1)* E: Io(l-ﬂl(tfg))de(po+pI+..;+pj < x)

i=1
= qep e rue),
: 21 1
which is the desired result. | - I
It

. L B
THEOREM 14.  lim B( ) Xj <x) = V(x), for every continuity point of V,
—————————— t—’m . )

- §=0 :

where ¥ is a proper distribution function, with Laglace transform given

-by (74).

£

I
-t

Proof: The Laplace Stieltjes transform of the random variable ZJ Xj

is given by
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I
t

(70) Elexp{-s E: xj}]= (1-H,))*U(t) +
3=0

k k-1, .. (k-1
+ E:[YI(S)] q(1-p) Hz*Hi )

k=1

*(1-H ) *U (L),
where s > 0 and yl(s) = Elexp(-sX)]. From (67) and an application of

the monotone covergence theorem

o

1 2 1

T ‘ k-1 -1

: = - = <

(71) E(pl) EH2+ EH Pq k(1-p) EH +p q EH ©
. k=1

Now by the Kevaenewal Theorem (cf. Smith [35], ﬁ. 15), ‘it follows

that, in the nonlattice case,

“72) Lin (1-H,)%0(t) = Ey il

I 2

where p = E(pl).' Also by the same theorem

1im H *H(k'l)

= -1 i (k-l)* "] -
Lin B, *(L-H )0 (E) = b JOHZ*HI g1 H)) (w)du.

Analagous results hold in the lattice case. It can be shown that

(k-1)
1 H,’

*(1-H,) (u)du = E k>1.
1 1

(73) H_*H
[m

Using (72) and (73) in (70) it follows that

It .
(74) iiz Elexp{-s E: Xj}] = u-lEH2+qY1(s)EHI{u[l-(l-p)Yl(S)]}-1
j=0 ' '
= h(s), say.

By Theorem 2, p. 408 of [10] h(s) is the transform of a possibly

defective distribution F and the convergence in law holds.
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Since Yl(O) = 1-it follows from (74) that h(0) = 1, which establishes

the theorem. - ' /

The following lemma, which will be essential for the

limit results in Section 6.3, is given here without proof.

~~~

LEMMA 4. Lef'{ut} be a sequence of random variables defined on

P), T an almost surely finite

appropriate probability spaces (Qt,Gt,

random variable defined on (£,G,P) such that lim P(Ut>5'x) = P(T < x)
t—’m

for every continuity point x of the distribution function of T.

Suppose also that g is any function such that g(t) —* ® as t — *.

Then

P
(75) | : [Ut/g(t)] -~ 0, as t = .

Considering the random variable Vj we observe that E(Vj) exists,

is finite and is given by

(76) : ’E(Vj) = E(X) E(vj) -E(, j=1,... ..

It follows from (76) and (68) that E(V,) = E(X)qp 1- EC(Y), j = 1,2,...

In a similar manner it can be shown that

Var(vV) = ap EGOE® P2 (1-p)-qlap”? B IPHEWD), 5= 1,2,...

We set a = E(X)qp_1 - E(Y), (=EVj), the same as in previous sectionms,

and b

ae G 28 )+ 2lE 0 g (1-p)p7l + B, (EVD).

The sequence ﬂn employed in the representation (65) has the following

property which we shall find useful.
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(77). ﬂn = max(Sn-Sn, Sn-Sn_l,..., Sn_sl’sn)’ n ='1’2’f"

n
where Sn = E:Vi (cf. Takacs [37], p.‘344). A sequence of random
i=0 ‘

variables closely related to the ﬂn and also essential in the

analysis of the limit results for Z(t) is the following.
* - 0 C. ) = 0,1,2
(78) T]n = max( ,gl’ 2’--~, Cn s n = ’ ’ vy

where gn = anVO.‘ The exact distribution of ﬂ: is cofe;ed by the
 well known Spitzer identity [36]. 1f ﬂoé(), ﬂn and ﬂ: have the same
distribution. 1If ﬂo is an arbitrary nonnegative rapdom variable, the
distribution of ﬂh is coVeréd by Takacs [37]: Let

(79) = sup (S_-V)

The random variable 1| isénonnegative and possible infinite. We exclude
the case P(Vn=0)=1 since 'in that case the independence of the X's and
é's is violated when B and D are nontrivial. Consid§r fﬁeh the caser
P(Vn=0) <1l. We summarige some known limiting results for ﬂn and ﬂ:.
(R;) (Takacs [37],p.35@jﬁif5aé 0, then P(Tik®)=1. On the other hand

if a > 0, then P(Tl=x)=1. :

(Rz) (Lindley [19], p. 281; Takacs [37jp.345). If P(Vn=0) < 1, then we
have

lim P(N <x) = P(M<x) ,

n—o

regardless of the distribution of ﬂo. As a consequence of the proof
of Lindley's result we have that ﬂn and nn have the same limit’

distribution.
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(R3) (Erdos and Kac [8]). If a =0, E(Vi) = 1, then

(80)  lm R f<w = L),

n—e

where L is given by

28(x) -1 forx>0
(81) L(x) =
0 for x < 0,
and %(x) is the standard normal distribution functioﬁ.’

(RA) (Chung [5], p. 1163; also a shorter proof by Puri [29]). If

: * -
a >0, then ﬂ; n 1 a.8- a, as n — @, If moreover Var Vh=1, then
. | . .
(82) lim P((T]n -an) n * <x) = &(x).
n-—hoo

We remark here that, starting with JO = 1, we could go through

exactly the same analysis as we did for JO 2 in this section. The

limit results for the case a 2 0 are independent of the value of JO.
However, the limit results for the case a < 0 will;'in‘general, dépend
ﬁpon the value of JO. As was observed for the cases (A) and (B)

(see Sections 2 and &), in the subcritical case the process Z(t)‘tends
in law to a'proper random variable as t =@ ®, While this seems to be
true in the present general case as well, we shall, however restrict
ourselves in thé next section only to the critical an& supercritical

cases.

6.3 THE LIMIT RESULTS.

Lo o T i

First it is essential to state an important limiting property of

Nz(t), the number of releases in the interval (0,t]. Since N2(t) also
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represents the nﬁmber of visits of the Markov chain'{Jn} to the state
2, it could be visualized as a renewal process (cf. Cinlar [7],vp. 125).
-Denote the disfribution function which induces this renewal process by
: ©
F. We have p = E(pl) = JO(I-F(u))du < o from (71). The following well

known result is stated without proof (see Chung [6], p. 127).

THEOREM 15. Let N,(t) denmote the number of renewals in (0,t] of

the renewal process induced by F. Then

-1 P -1
(83) Nz(t)t “u >0, as t @,

We turn firét to the critical case, where a = 0. 1In pfoving
the following limit theorems we employ the approach used by Renyi
in [33] where he studied the asymptotic distribution of the sum of

a random number of independent random variables.

THEOREM 16. Let a = 0, b < ®, Without loss of generality we take

b=1. Then

lim P(Z(t) t 2 <x) = L(xu%)_,

e

where the distribution function L is given by (81).

Proof: Using the representation (65) we have
It

-1 . -%
84 Z(t) t ° = 2+ZX.t2.
(84) (t) LRCE it

§=0

Theorem 14 and Lemma 4 together allow us to focus attention on the
first term on the right hand side of (84). 1In view of Theorem 15,

there exists a sequence €_ > 0, with €, { 0 as t ? ®, such that .

t
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(85) P(lNz(t) -t >t €, t) < Wt e,

Define the set,At = {w: ‘Nz(t)-u-ltl < etu-lt}, t > 0.
We thus have

: o -1
(86) . P(At) SH e,

where Kt denotes the complement of At' Let now
-1 -1 -
n, (t) = [(l-et)u t] and n,(t) = [(1+et)u t] ,

where [,...] denotes the integral part of the number in the brackets.
For convenience the arguments of n, and n, will sometimes be suppressed.
Both nl(t) and n2(t) = ® a5 t < ®, Moreover, on At’ nl(t) < Nz(t) <

nz(t). We can now write

-%_ -% 5.
(87) nNz(t)t'_fnn n, [nlltj IAt+ M

TR
. -ﬂnl}nl [nl/t] I, +

N, (®) ¢

-1
ZI_,

+M t
Nz(t) At

where T is the indicator function of the set (. By (86) it suffices
to consider the first two terms on the right hand side of (87). From
(83) it follows that nl(t)/t i u-l, as t @ ®. Further, it can be shown

using

1>(11:;:n'”]55x,(vo+gn)n'15 < x)< P(Tlnn-%s x)< P(ﬂ:n-%g x), all x>0

X\

and a similar argument to that in proof of (R2) Section 6.2 , that ﬂnn-

I~~~

* - :
and ﬂnn % have the same limit distribution. By (R3) Section 6.2 the

o~

o -5
first term on the right side of (87) tends in probability to p *E,

and thus it suffices to show that



-
‘nNz(t)-nnllnl Iy, 70, as t==

Now fix an € > 0. Then

%)

| Zuenl

X .
P<|“N2<t)'“n1|IA >ef ) <P sup \nj-nnl

<i
t 1 nngb

The form of the.iimit in (81) allows us, for § > 0, to choose a point

A = A(8) of L, so small that P(§ < A) < 6/8. Now, from (80) there

exists a tl(é) such that for t > t1(6)

| |P(ﬂn1 < An?) - P(E < a| < 5/8.
Hence
(88) - P(T, < An?) < 6/4 for t >t (6)
Now

' 5 5
(89)  P( sup lﬂj-ﬂn \>en?)=P( sup |ﬂj-ﬂn |>en’, ﬂh1>An1)

<3 i<
nl‘Jng 1 n1<I_'|_n2 1

1 . L
- >en <An?).
+P( sup lﬂj nn l enl,ﬂnlfAnl)

<
ny thz 1

By (88) the second term in (89) is less than §/4 for t 2> t1(6).
In order to consider the first term on the right hand side of (89)

we set ¢'=min(e,A). Choose t > tl(é). Since

L
{ sup lﬂj-ﬂn |>€'n?, nn > ernf]

0 <isn, 1 1
- ]
c : ' "
S { suwp | v, |>e'nil
n =iz, f=n +1

it follows by the Kolmogorov inequality (Chung [6], p. 109) that

43
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% 1
(90) P( sup |N-M [>enf, M > A
n,<j<n, ° M 1 1
1=
< P( sup | E; Vi\>e'n{) < (nz—nl){(e‘)an}' .
R B

The right hand side of (90) tends to zero as t = ©. Letting &6 — O,

-X P '
we conclude that-‘ﬂ -N_ |n;%1, — 0, completing the proof. /
: : Nz(t) n, 1A .

Consider now the supercritical case, where a > 0.  We first prove

THEOREM 17. Let a > 0, b-a2=1. Then

(91) lim P((nn-;m)n'lE <x) = 8(x) as n — =.

ne

Proof: By the definition of ﬂn we can write

|

-%_ _ R -%
(92) (nn an)n —[max(Sn Sn’Sn Sn-l""’ Sn Sl’sn) gn]n

R -
=[max(—Sn,-Sn_1,...,-Sl,O) n 2+(Sn-an)n 2.

The first term on the extreme right of (92) tends fo'zero in
prcbability_bykLemma 4. For we use the fact that max(O,-Sl,-Sz,...,-Sn)
corresponds to a subcritical process by replacing Vn's by -Vn's.' It
follows from»(Rl) and (RZ) of Section E;i that max(O,-Sl,...,-Sn)

tends in law to a proper random variable. Finally, by the central

limit theorem-(Feller [10], p. 187) the second term on the extreme
right of (92) converges in distribution in the desired.manner.

This completes the proof. C /

Immediately from Theorem 17 follows the



COROLLARY 1. Let a >0, b-a2= 1. Then

P
M oa -

a, as n — «.
n 1

Finally, we have for the supercritical case,

' 2
THEOREM 18. Let a > 0 and b-a =1. Let Nz(t) be as defined in Section

2. Then

lim B((2(t) - aN,()E? <) = 8 (xp?) .

t'—m

Proof: We write, using the representation (65),

I
t
' =3 B g 1
(93 (@O -aNy ) =Ty () ey (D) oL ) X1
| o

By the éame arguﬁent set forth in the proéf of Thebrem 16 it suffices
tobshow that the first term on the right hand side of (93) converges
in distribution to @(xu%) for every x. In vieﬁ of Theorem 15 define
{et}, nl(t), nz(t)_and At in the same way as in the proof of Theorem

16. Then we can write

(ony = TR
o8y ()2, () =(1, -any)n; (/0% +

-% %
+{T]N2(t)-Tln1-a(N2(t)-n1)}n1 (nl/t) .

By Theorem 17 and the definition of nl(t), the firsf ﬁerm on the right
of (94) converges in distribution to @(xp%) for every x. By (86)
it suffices to show therefore that |

P

-y s .
-a(Nz(t)-nl)}n1 IA 0, as t @,

Al -1
Ny (£) 'my t
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Now
‘{nN (t)-n- ‘a(Nz(t)‘nl)}IA ni%\ < sup |h.-ﬂn -a(j-nl)lnil72
2 M t n, <j<n 1
' 1 2
< {max(-s_ ,-S_ -5,,0)-max(-S -S 0)}n-% +
-— n 3 n‘_l"' b 1, n,"" 1, 1 v B
2 2 1 _
3 )
+ sup | ZJ (Vi-a)lnl2 .
0<I= jen 1

[

By the Saﬁé'reasoning set forth in proof of Theorem 17 both

- -3
-S )n,? and max(0,-S,,...,-S_ )n,° can be shown
n, 1 1 0y 1

to tend to zero in probability as t — <. Moreover, by'the Kolmogorov

max(O,-Sl-Szg..f,

inequality, for any arbitrary constant 6 > 0, we have,

3 ,
S 1 -1
95) B( swp | ) (W2 |280D < (aymap 677
<j<n * 1
M2 d=ng 41

The right side of (95) tends to zero as t = ®. This completes
the proof. . _ ' /

As a cohsequence of Theorem 18 we have

COROLLARY 2. Let a > 0, b=a2=1. Then, as t — @,

P
Z(t)t-1 - au-l.

7. A FEW CONCLUDING REMARKS.

A e I

We end by making the following remarks. Models in the literature
up to 1963 (see Prabhu [25] and Moran [23]) genérally retained, as does
ours, the aséumption of mutual independence of the inputs. Aﬁ initial
attempt to consider correlated inputs (but with deterministic release)

was made by Lioyd and Odoom [20]. In their paper a sequence of inputs

during consecutive discrete time intervals constitute a Markov chain



with a finite number of states. The levels Z't of a finife capacity dam
are observed at times t = 0,1,2... . During the intérval (t,t+l) an
inflow Xt is observed. The distribution of these inputs is assumed
to have a stable limit distribution. An inflow may‘cause the level
to exceed the capacity of the dam and result in an instantaneous
overflow. At the end of each interval, m units of water are instan-
taneously released, if there are present at least m units. These
authors studied the statiohary solution for the model as t — ©.
Théy point out that the joint process {(Zt,Xt)} is also Markovian.
From this the marginal limiting distribution of 1eve1§ is derived.
It is claimed that withdrawal policies of a random nature may be
easily incorporated into the model, but not much was achieved in
this direction. Additiénal work was done by Lloyd and Odoom in
[21] on the statiomarity for the probabilfties of dam contents.
Ali Khan and'Céni [1] studied the time dependént solution of the
Lloyd-Odoom model.

In thevcontext of the quantal response assay ﬁrdblem mentioned
in the beginning of this paper, it would seem desirable to introduce .a
similar type of dependence, perhaps a Markovian one to begin-with, intb
the sequence of inputs and releases. Moreover, as was done in [30],
it would be appropriate to incorporate an element of dependence of
_ the waiting times between inputs and releases on the level of the
process Z(t).H This is so in view of the fact that‘many biological
mechanisms are known to become active only in responsé to changes in
the level of fhe stimulus. The analysis of the models incorporating

these features will be the subject of a future study.
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APPENDIX

We demonstrate here the proof of the lemma necessary for the

proof of Theorem 5.

LEMMA (i) The Volterra equation

g
(96) F(E) = at| FE-y)aH(y), 0<E<b<e
. |

in F, where H is given and has the properties stated before Theorem 5,

and a is a given constant, has solution given by

(97) F(E) = al 14H(E)+H¥H(E)+HAHAH(§)+....] = aK(E),

and this solution is unique, provided K(§) converges uniformly in

0<E<b <=

(ii) Let D be such that D(s)/s < A <*® for 0 < s < ¢, for some ¢ >0

and some constant A > 0. Then for

H(s) = [pD(s)+M(L-exp(@s)) 10tm®) ™1, 0 < s < 2,

where z is fixed but otherwise arbitrary, K(s) exists and is finite

for 0 < s < z.

Proof: (i) The assertion follows first by a substitution of (97)
into (96). Then the interchange of summation and integration operations
is justified since the series K(§) converges uniformly in 0 < § < b < =,

Also Since |K| < ® for a fixed € > 0, there is an n0=no(€,s) such

that |H(n)(s)| <e¢ fornm=>n Now consider the difference, V, of

(n)

0"
two solutions of equation (96). V satisfies V=H*V, and hence V=H' "*V

for all n.



But the remark above indicates that H(n)(s) - 0 for all s as n — &,

and hence V(s)=0. The solution of (96) is thus unique.

(ii) Let
(98) M= | 8| T At adexp (a2) 1.

It can be shdwn thét D(s)/s S A <® for 0 <s < g, e:_.> O.implies
D(s)/s <A <® for 0 < s < z where z is fixed but éthefwise arbitrary,
and A is used iﬁ a generic sense here. |

Thus M in (98) is finite. The assertion of the lemma now
follows from the fact that |K(s)| < exp(Ms),.which ié proved by a

straightforward induction argument, i.e., that
(99) 1% )| < xr, x=0,1,2,..., 0 < s < 2.
REMARK. ' In-the case D has a density the condition, D(s)/s <A<

for 0 < s < ¢, ié»satisfied and the lemma holds. The condition (99)

guarantees, by the Weierstrass M-test, that K(§) converges uniformly.

49

"



[1]
[2]
[3]

f4]

[5]

6]
£7]

£8]

(9]

[10]

[11]

[12]

[13]

50
REFERENCES

Ali Khan, M. S. and Gani, J. (1968). Infinite dams with inputs
forming a Markov chain. Jour. Appl. Prob. 5, 72-83.

Arrow, Karlin, S. and Scarf. (1958). Studies in the Mathematical
Theory of Inventory and Production. Stanford University Press.

Benes, V. E. (1957). On queues with Poisson arrivals. Ann. Math.
‘Stat. 28, 670-677. ‘

Bliss, C. I. (1952). The statistics of bioassay, with special
reference to the vitamins. Reprinted, with additions, from
Vitamin Methods, Volume II, pages 445-628. Academic Press,
New York. o

Chung, K. L. (1948). Asymptotic distribution of the maximum
cumulative sum of independent random variables. Bull. Amer.
Math. Soc. 54, 1162-1170. :

Chung, K. L. (1968). A Course in Probability Theo;jy Harcourt
Brace and World, New York.

Cinlar, E. (1969). Markov renewal theory. Adv. in Appl. Prob.
1, 123-187.

ErdSS, P. and Kac, M. (1946). On certain limit theorems of
the theory of probability. Bull. Amer. Math. Soc. 52,
292-302. ~

Feller, W.  (1957). An Introduction to Probability Theory and
its Applications, Volume I. John Wiley and Soms, Inc.,
New York.

Feller, W. (1966). An Introduction to Probability Theory and
Its Applications, Volume II. John Wiley and Somns, Inc.,
New York.

Finney, D, J. -(1947). Probit Analysis. A Statistical Treatment
Of the Sigmoid Response Curve. Cambridge University Press,
Cambridge.

Finney, D. J. (1952). Statistical Method in Biological Assay.
Charles Griffin and Co., London.

Gani, J. (1955) Some problems in the theory of provisioning and
of dams. Biometrika 42, 179-200.



[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

52

Puri, P. S. (1971) . On the asymptotic distribution of the
maximum of sums of a random number of I.I.D. random
variables.  Department of Statistics, Purdue University
Mimeograph Series number 265. '

Puri, P. S. and Senturia, J. (1972). On a mathematical theory
of quantal response assays. To appear in Proc. Sixth Berkeley
Symp. on Math. Stat. and Prob. (Biology-Health Section) held in
June 1971.

Pyke,vR. (1961) . Markov renewal processes: definitions and
preliminary results. Ann. Math. Stat. 32, 1231-1242.

Pyke, R. (1961) . Markov renewal processes with finitely many
states. Ann. Math. Stat. 32, 1243-1259.

Renyi, A. (1957). Om the asymptotic distribution of the sum
of a random number of independent random variables. Acta.
Mathematica Acad. Sci. Hung. 8, 193-199.

Senturia, J. (1972). On a mathematical theory of quantal response
assays and a new model in dam theory. Ph.D. Thesis. Purdue
University. '

Smith, W. L. (1955) . Regenerative stochastic proéésses. Proc.
Roy. Soc. A, 232, 6-31.

Spitzer, F. . (1956) . A combinatorial lemma and its application
to probability theory. Irams. Amer. Math. Soc. 82, 323-339.

Takacs, L. (1970). On the distribution of the maximum of sums
of mutually independent and identically distributed random
variables. Adv. Appl. Prob. 2, 344-354.

Widder, D. V. (1941) . The Laplace Transform. Princeton University

Press, Princeton.



