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Abstract

X is a nonnegative random variable such that Ext <o for 0 <t <X <o,

The (l-s)-quan;ile of the distribution of X is bounded above by [e-l EXt]l/t.

We show that there exist positive e, > e, such that for all 0 <e <€ the

1—-"2 1’
Ext]1/t

function g(t) = [t—:"1 is log-convex in [0,c] and such that for all

0 <e<e, logg(t) is nonincreasing in [0,c].
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Introduction

Let X be a nonnegative random variable such that Ext < o, for

0 <t < <o, Throughout this discussion, ¢ is a number such that

0 <c <A, and X is not identically zero. The classical Markov inequality

states that for all a > 0, P{X > a} j_a—t EXt, for 0 <t < A. The upper
bound a't EX* does not exceed a given ¢ > 0, provided a is not less than
1/t

[e EX ] The object of this note is to examine the behavior of this
bound on the (l-e)-quantile of the distribution F(-) of X, as a function
of the order t of the moment used.

We shall consider the functions

(1) £(t) = log EX',

g(t) = [a X/t

h(t) = log g(t) = t"1[£(t) + log A] ,

where A 1is a positive constant. We recall the well-known results that £(t)
is a convex function of t in (0,A) and that for A = 1, g(t) is nondecreas-
ing in (0,2), [1]. Furthermore, a function is terméd log-convex in an interval,

if and ohly if its logarithm is defined and convex in that interval.
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Main Results

Lemma 1

The function £(t) has continuous derivatives of all orders in any
interval (0,c].

The Mellin transform EXt is strictly positive for _0 <t < A and may

be written as

2 ' Xt = e™dew ,

-0

where G(u) = 1-F(e'u). Since this bilateral Laplace-Stieltjes transform
converges for 0 < t < X, it is analytic and hence continuously differen-

tiable of all orders in (0,c]. [3].

Theorem 1
For every c, with 0 < c < A, there exist positive constants
<
A1 —-AZ
that in addition, for all A E.Az ‘the function h(t) is nonincreasing in

such that g(t) is log-convex in [0,c] for all A 3_A1 and such

[0,c].
Proof

The first two derivatives of h(t). are given by

(3) R'Ct) = t™2 [t £1(t) - £(t) - log A,

h*''(t)

t73[62 £1o(t) - 2t £1(t) + 2£(t) + 2 log A]

£31e2er1 (1) - 262 nr(0)]

We define A1 and A2 by



2
(4) log A, = max [t £'(t) - £(t) - t—z £ )],
O<t<c
log A2 = max [t £'(t) - £(t)]

O<t<c

Since f£''(t) > 0, it follows that A, <A Moreover the derivative of

1-"2°
t £'(t) - £(t) is t f£''(t), which is nonnegative for 0 <t<c. It

follows that

(5) A2 = exp[c £'(c) - £(c)] .
t2 ; tz
The derivative of t £'(t) - f(t) - ei-f"(t) is given by - _i'f"'(t)’ 7o)

that the value of A may be determined by examination of the third derivative

1

of f(t). Clearly for A > A h(t) 1is convex and for A z_AZ, h(t) is

1,

in addition nonincreasing.

Remark
By replacing A by e-l, we immediately obtain the appropriate state-
ment for the bounds induced by Markov's inequality. The following weaker

result can be proved without relying on differentiability properties.

Theorem 2
Let k(t) be a bounded positive, log-convex function defined on the
interval [0,c], then there exists a positive constant A.0 such that for

all A>A the function g(t) defined by

0’
O g(t) = [Ak)1YE

is log-convex on [0,c].

Proof

Set 1log k(t) = f(t), then since f(t) is convex, there exists for every



with 0 <t

to 0 XS a linear function a(to)t + b(to) such that
(7 a(to)to + b(to) = f(to) s
and

a(to)t + b(to) < (1), for 0 <t<c

We may add a constant log A to both sides of the inequalities in (7) and

divide by t, to obtain

b(to) + log A
®  alty + -

<H® s log A yop a kMt

for all 0 <t <c, with equality holding for t =t Since the function

0.
f(t) 1is convex, the intercept b(tO) of the supporting line a(to)t + b(to)

is nonincreasing in [0,c]. We choose A0 such that 1log A0 + b(c) >0,

then for any A > A the function a(to) + [b(to) + log A]t-1 is convex

0,
in (0,c]. It follows from equation (8) that for A > A, the function

1/t has a supporting family of convek functions for all 0 <t <c,

log [A k(t)]
and is therefore itself convex. We note that if f£(t) is differentiable at
t = ¢, then the smallest AO which validates theorem 2 is equal to A2 de-

termined in theorem 1.

Corollary-l
Let S(Q,u) be a finite measure Space and ¢ a function from S to
Rn, which does not vanish almost everywhere with respect to wu. Let k(t)

be defined by

‘ n
) k(W) = f )



for 0 <t <c and assume that k(c) < ». It is then well-known that
log k(t) is convex in [0,c]. Theorem 2 implies that for all A suffi-
ciently large, log [Al/t||w||t] is convex in [0,c], where ||w'||t denotes

the usual Lt-norm of .

Corollary 2.
Let S(Q,u),¥, and k(t) be defined as in corollary 1 with

f(t) = log k(t). In addition let k(t) be continuously differentiable for

1/t

0<t<c. Then log [A ]|w||t] is convex and nonincreasing if and only

if A Z.Az where A2 = cf'(c) - £(c).

Proof.

The definition of A, and corollary 1 together yield corollary 2. We

l/tl

2
need only observe that log A

H% log Al/tllwllt <0 for all t e [0,c]. cf. equation (3).

|#]], is nonincreasing if and only if

Applications

The Markov bounds on the tail probabilities of a random variable X are
generally crude. However in some applications, it is possible to compute a
large number of moments of probability distributiohs of interest, while the
computation of the distribution itself may remain a laborious task. An example
of this is the computation of the distribution of the busy period in queues of
MIGII type. Klimko and Neuts [2] have shown that moments of order up to order
forty may be readily computed by using the functional equation for the moment

~ generating function. The computatioh of the busy period distribution itself by
iterative procedures.requires the knowledge of an upper bound on the (l—ej-
quantile of the distribution. The bounds‘induced by the Markov inequality are
appealing because of their easy computability in terms of the moments. For the

values of ¢ which occur in practice, one is usually in the case where the



logarithm of the Markov bound is convex, but not yet monotone decreasing.
This implies that in such cases there is a smallest Markov bound for the
(1-e)-quantile, but this bound need not correspond to the highest avail-

able moment.
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