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CHAPIER I

INTRODUCTION AND FORMULATION

1.1 INTRODUCTION. Within the structure of hypothesis testing

the experimenter would like to be able to judge which test one
should use for a particular class of problems. Towards these

ends several definitions of asymptotic relative efficiency of test
procedures have been used. [The major ones in use today are
Pitmann [9], Chernoff [4], and Bahadur [2].]

It would be desirable if one could unify the first two
within a common framework. Besides fhe obvious reasons that
the Bayesian framework is a natural one within which to consider
such problems, Lindley [8] also pointed out that there was
evidence that for a wide class of priors and loss functions
the Bayes decision rules asymptotically behaved like Maximum
Likelihood Estimators, which have several desirable large sample
Properties,

In an attempt to see whether one could obtain a tractable
measure of relative efficiency, within the Bayesian framework
Rubin and Sethuraman [10] defined Bayes Risk Efficiency (BRE)
to be the asymptotic relative sample sizes needed to obtain equal
expected risk and considered the problem of the test of location.

More specifically, they considered the question
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where ® is an N-dimensional parameter space. In order to state
Rubin and Sethuraman's results we define a constant loss, B,

for the type I error and a type Il loss of
A
ne@/foD[llef]]™ ., A>-1.

Here we define |\\e|\lk as sqme norm of 6 and require that
h(e/\el) is slowly varying.
Furthermore, we shall require a prior probability P, that

& = 0, and (1-po)P(9), a prior distribution over {6:9 # 0}.
Finally, if we let fi(xle) be the distribution function of the
test statistic, we may state the expected risk for the ith test
statistic as
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where Sx’ §% are the critical region and its compliment. Rubin

and Sethuraman showed that in the finite dimensional case, for

A . s
a large class of statistics, one may ignore Rl since
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This, along with an asymptotic expression for the type II risk

. i . .
enabled them to invert R2 to obtain an expression for
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the relative sample sizes needed to obtain equal expected risks.
for two different tests. More specifically they showed that if,
for a particular test statistic thefe existed-an "a" such that
the probability of the probability of the type I error was of

the form
P(El) = @(n,a)n-a/2 s

with @a(n,a)/@(n,a) = o(log n) and the asymptotic boundary of
the almost-sure acceptance region in the parameter space was

of the form
%
{e:||e|| > (a g(e/lel)ﬁﬁ—’—‘) } ,

then R2 ~ (log n)Rl, and
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(see [9], Theorem 1). Since this expression is asymptotically

invertable they'obtained the result that
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Ei = {9=||9l|i < |gi(9/|e\)|%}, i =1, 2 [see [10], Theorem 21.



Another important result which they obtained was that "in

all regular problems in which the Pitman efficiency is usually
obtained, the BRE coincides with the Pitman efficiency." While
this result was not proved rigorously, it was shown to be true for
several examples which were presented.

One fairly large class of tests which was not covered by
their results was the case in which the parameter space is
infinite dimensional, i.e., N = ®, Clearly, (1.2), (1.3) do
not hold in this case. An example of such a problem might be
the following:

Let Xl, X2,...,Xn be the infinite dimensional elements of
the power spectrum of a sample of size n taken from the output
of a data channel (before clipping has occurred). Under the
conditions of no noise (6=90, © is infinite dimensional) and
normal attenuation due to transmission channel characteristics,
these elements have a distribution which we shall define as
f(X|6=GO). Furthermore, under the null hypothesis we may assume
that each one of these samples is independent of the other.
Suppose further that, based on previous experience we have a
prior probability P, that there is negligible noise on the channel
and (1-pO)P(6) that there is more than a negligible amount of
noise where P(®) is a probability measure which is obtained
from prior experience with the frequency of different kinds of
noise which occurs on the chanmnel. Now, if I make a type I
error (guess B # 90 when in fact 0 = 90), then I would shut the

channel down when in fact it is still profitable to operate it.



A natural form of loss for this type of error would be one which
would be a constant (per unit time) whose value would be determined
by such factors as capital depreciation of the channel and loss

of some fraction of the customers who would transmit the data by
some other means.

The loss associated with a type II error_(guessing B = 90
when in fact it is not) means that we would be transmitting data
over a channel which was to some extent faulty. Since some data
may be transmitted over such channels, a natural means of defining
this loss would be 9'AO, where A may be determined through an
analysis of the frequency of different kinds of customer use and
an estimate of the reliability required for each of these uses
(in other words, some customers may not care that they have only
received 99% of the data transmitted while others will demand a
retransmission of the data).

A more general application of the infinite dimensional case
is in testing of whether a sample of size n has been drawn from
a population with continuous distribution function F(x). If
one uses the Cramer-Von Mises Statistic Wi for this test it can
be shown [see [12], pP. 153] that this statistic may be represented
as an infinite dimensionai chi-square variable which is not
asymptotically normal.

The question that was raised in this thesis was whether
results similar to that of (1.1) and (1.2) could be obtained for

the infinite dimensional case. Because of the difficulties



created by working in a non-finite dimensional space, the loss

function was simplified to the case A = 0, constant loss, and to

[le]]" = e'ae ,

the case of quadratic loss. The case of constant loss is considered
in Chapter II. The case of quadratic loss is considered in

Chapter III. In both cases it was found that while the type II
risk, R

always dominates the type I risk, R,, the domination

2’ 1’
is not strict [see Theorem 2.1 and 3.3] and that for some cases,

cited in Section 2.4, R, and R2 are asymptotically proportional.

1
In the constant loss case an asymptotic expression for Rl’
useful for moderate sample sizes (n > 32) was obtained.
In the more difficult quadratic loss case, a two stage
asymptotic technique was required in order to obtain an expression
for R1 for the case Tr[A] < ®, an upper boundvfor R1 was also

obtained for a more general case of quadratic loss and some

examples of solution considered.

Finally the reader should be forewarned that in the introduction
to both the constant loss and the quadratic loss cases, symbolic
expressions for infinite dimensional distribution functions, such
as f(xle), are used. In order to correctly evaluate these symbolic
functions one must evaluate the expression for a finite dimensional

parameter space and then take limits.



CHAPTER 1II

CONSTANT LOSS

2.1 INTRODUCTION. Let X', X%, ..., X® be infinite dimensional

independent normal variables with mean vector € and covariance
matrix I,

Let the null hypothesis be © = 0 and the alternative 8#0. Let
Py = prior probability that 6 = 0
(1-py) p(®) = prior distribution over {6:0 #£ 0}

where p(8) ~ N[0,Z] and

and we shall assume that

(2.1) 20‘1* <,

The constant loss associated with the type I and type II errors are
respectively B and A, In this paper the asymptotic relationships

between and asymptotic expressions for R, and R

1 99 the type I and type

IT Bayes risks, ave developed,

Definition. When we write Fn is asymptotic to fn’ Fn “’fn’ we mean

Fn/fn - 1, If we write Fn is order-asymptotic to fn we mean to say




that the asymptotics are not quite as good and that we only have
log Fn/log fn — 1. Furthermore we say two results are asymptotically
comparable if both are asymptotic, or order asymptotic.

The Finite Dimensional version of this problem, ci = 0Vi>N
was "asymptotically” solved by Rubin and Sethuraman in [10]. In Section
2.2 it is shown that the results obtained in[10] for the finite
dimensional case, namely that Rl log n ~ R2, is not always true in
the infinite dimensional case (the case in which ¥ N such that
o5 = 0vi > m).

The theorem presented in Section 2.2 gives asymptotic expressions
for R, and R, and demonstrates that in general

1 2
R

i

5 O(Rl log n)

R

1 O(Ré) .
The asympbotic expressions for Rl and R2 which are obtained in

this paper are as accurate as those which were obtained in[10] for the

finite dimensional case.

In Sections 2.3 order-asymptotic examples are worked out for

2

special cases of ¥, namely, o, =

/12" & > 0,and ot =1/a', a> 1.
In Section 2.4t some exact results are obtained and a numeric
comparison of exact, asymptotic and order-asymptotic results are made
for the case in which UZ? = ch-l = l/i2. For this case one begins to

obtain useful accuracy for sample sizes as small as 32.

Furthermore, in the cases considered, the predicted asymptotic
relationship between Rl and R2 is also obtained for relatively small
sample sizes thus eliminating the necessity of calculéting both Rl and

R2'



In Chapter 3 of this paper it is shown that the results obtained
in this chapter for the case of constant loss can be used to oﬁtain
order results for the case in which one has quadratic loss for the
type II error of the form 8' A 6 and a not necessarily diagonalized
covariance matrix ¥. This extention motivates Sections 2.3 and 2.4 of
this chapter in which the accuracy of the asymptotic risks are
considered.

While the results presented in this chapter are new, similar
techniques have been brought to bear in other fields. In particular
the theorem stated in Section 2.2 has a parallel in Chapter 5 of the
book by Hirschman and Widder [5] and in a paper by Hsu [6]. In our
case, however, the results were obtained using a different technique
in order td permit certain needed generalizations. Furthermore, since
one of the subclasses of the kernel considered is the class known as
the Polya frequency function, some of the examples and ideas used in
the Exact Evaluation section of this paper, Section 3.k, were obtained>

from Chapter 7 of [13].

2.2 ANALYTIC RESULTS. ILet X = (Xl//n, Xz//n,...) be the mean vector

of xl,..., X*. Then xiNNE/n ei,J.], i=1,..., and X ~ N[08,I/n]. We
shall use f(xle) to denote the density function X. Furthermore since

th

the 1™ mean, Xiﬁfh, is sufficient for ei, we may determine the Bayes

procedure by finding that set of x such that Ll(x) = Lz(x) where
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f(x|6=0)poB
Ll(x) =
£(x|6=0)p_ + (1-p)|2(x[0)p(0)a0
and
A(1-p,)] £(x] @ )p(e a0
L,(x) =

pof(x|9=0) + (l—po)ff(x|9)p(e)d9

are the posterior risk when X = x is observed. Since the denominator

is the same for each term, the problem may be reduced to finding

{ £{x|6=0) (l-po)A 1
X = = =
jf(x|9)p(9)de p B /X

o}

This, in turn, is equivalent to the problem of finding

. -1
2.2) {x:exp(-Lalx|?) = L[ exp(-50'28 + n(x0)'(x-8))de
@2 {xsers(4alx®) - 1] P }

Note. that (2.2) and other subsequent expressions of this form must

be treated as symbolizing limits which are taken in terms of the
dimensions of the parameter space [ie |2n2| = 0]. Now if one evaluates
the integral on the right hand side of the above equation and takes the
log of both sides, straightforward caléulations show that we will

accept HO if X satisfies the relationship

2
Y o[oL 2
(2.3) ) |:l+nc2 - 1] ol <,
i=1 1
~no?

where the constant Uh = log [K H(lﬁfmi) e 1] and Xi.~ ND/BQi,l] .
i
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The infinite sum obtained in (2.3) can be shown to be a random
variable for fixed n by a straightforward application of Kolmogorov's
three-series criterion in conjunction with Chebychev's inequality.
This result holds for all values of ©.

Thus the type I Bayes Risk, R,, may be expressed in the form,

1’

@ 2
X, 9
(2.4) R, = Bp P =— - 1)not - U_> 0]8=0].
1 o 2 i n
. +no .,
i=1 i

In order to obtain the type II risk we must evaluate

-1
—n/2(2-8) "' (Z-8) - %0's Yo,
(2.5) R, = A(l-p) ” = dzdg
° S 21T 3 %
=5 fonz]

where S is obtained from (2.4) and can be expressed as

{(ez) z[ - ]noﬁ-unzo,eaévo};

1+n0'

straightforward computations can be used to reduce (2.5) to
(2.6) A(1-p)P[>:(w -1)0-?’“50],

where Wi are independent N[0,1] random variables. Now let

2
2.7) ( - 1) nd,
Z 1+nG t

and

_ 2 2
(2.8) v, =Z (wi - 1) oy -
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The Laplace transforms of (2.7) and (2.8) are defined respectively as

(2.9)

and

(2.10)

@l(v-%) = E [

1

— 2 ] 2
) -Nno.
[I(14no. )e
-(v-%)yl i( 1)
e ] = 5 s> 0<wv
‘ o -2ani
Ll:I(l+2V1’lO'i)e _
i
1
- 2
-SY
- 2 1
<§2(S) = E(e ) = 5 > S '%_ .
5 250,
II(l+2scri)e

Now in order to state this chapter's main result, Theorem 2.1,

some technical lemmas are needed.

First, let us define

(2.11)

Furthermore let v = Vl(n) be the solution to the egquation

(2.12)

[oe]
. 2
u, + ZZnO'j C,J.(n,vl(n)) =0,
J=1

where Uh is the constant defined in'(z.h) and the infinite sum in

(2.12) converges by (2.1).
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Lemma, 2.1. For each K > O, where K is defined in (2.2), there exists

an N such that for n > Nk’ vl(n) exists and 0 < vl(n) < i,

Proof: For convenience let L(n) = U, and

2
R(n,v)m leEnc g (n,v) = JE l:1+42n.c;3v- ncﬂ .

Clearly, for 0 < n<wo and 0 < v< i L(n) and R(n,v) are
continuous in both n and v. Furthermore since log (1+a) > a/(1+(a/2))

for all a > O, we obtain that
(2.13) 0 = R(n,0) > L(n) - log X > R(n,%) .

Thus for K = 1 and any n > O, there exists vl(n) € (0,%) which
satisfies (2.12). Now if K # 1,then we must note that since L(n) - ~»,
there exists Ni such that for n > Ni , we have that R(n,0) > L(n).

Furthermore since, for all a > O,
5= [1og(1+2) -a/(14(a/2))] > o,

it follows that R(n,%) - L(n) » ». Hence there exists 1\]2 such that
for n > NI2{, L(n) > R(n,L). Letting N, 1\1’-L N ) we have the
desired result,

It is not hard to show, using the techniques employed in Section
2.3, that the choice c = (i log 1) 2 (which satisfies Zob' < ») yields
v,(n) = . Furthermore, it is shown in Section 2.3 that in the
finite dimensional case vl(n) - 0. Therefore the result 0 < vl(n) <t

cannot be improved.
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Now in order to derive Lemma 2.3 we need the following technical

result which is stated without proof.

Lemma 2.2, If for o > O, U> 0, log (1+U) - U/(1+U) < O then for
0<W<U, log (LW) - W/(L+W) < 0.

This result is used to show the following.

Lemma 2.3. Without loss of generality assume oi {. Then

W = 0 (log n)

and therefore

lim nvl(n) =0
1o

Proof: Let Tn be the solution to the equation

max[0,1log K] + log (l+n032_/(l+2n0'iTn) =0 ;

then T ~ 1/(2 log n) and log (l+n0:2L/ (1+2nc:r:2L Tn) ) <o.
Now since ci < c‘? for i > j, we have from the preceeding lemma

that for each i

2
no.
i

log (l+nc§)_ - <0.

l+2no'? T
i™mn

Let us now subtract nci from the first term in the above expression
and add nci to the second term in the above expression. If we then

sum the resulting expression over i we obtain
L(n) - R(n,T_) < 0;

and since R(n,Tn) is monotone decreasing in Tn,we have that



15

>
v.(n) 2T

and therefore

(2.14) Vl%ﬂ = 0 (log n) .

Lemma 2.k, vl(n) is monotone decreasing inn .". & le[O,%)E vl(n)lvl.

Proof: Holding vl(n) fixed and differentiating L(n) - P(n,vl(n))
with respect to n we obtain

o

35 [1(n) - Rla,vy ()] = 2nvy ) ( )> 03

5=1 l+nc
thus, for any n
L(n+l) = R(n+l,vl(n)) >0,

and since R(n+l,vi(n)) is monotone decreasing in vl(n) we have that
vl(n) is monotone decreasing in n.

Now let us define kh(v) by
(2.15) k (v) = log 2, (v=}) + (v-3) u, -
Then its second derivative k"(v) is

(2.16) K (v) = _zz [nc ] <o0.

Theorem 2.1 f 3

<eo,then as n = ®

1™
£
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(217) R, ~ 2 Bp, exp(k (v,)) o

=2k (v, ) (1~ Noon
2k (v, (1 2jrl)

it
o

, R, ~ Bp_ exp(k (v,))
(2.18) 2 0 n 17, o

/EEw) '
vy 2rrkn vy

and therefore

. R ~ (1-2v_) R
(2.19) S S S

2vl

where vy is a real valued function of n and satisfies (2.12).

The constant, CN’ that appears in (2.17) and (2.18) is equal to

1 for the Infinite Dimensional Case, N = =»,

In the Finite Dimensional Case, N < «®, we have that

Cy = S N(§-1)/2 o-(14v/2)

(2.20) =Y

Note that 1lim CN =1 .
n-m

Proof of (2.17): Since @l(s) is analytic to the right of s = -3 for all

n,we may use the ypper tail bilateral Laplace inversion formula

([71,p.242) to rewrite (2.4) as
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1
Bp = @l(s) sU Bp_ 1 ekn(S+§)
(2.21) R = 5= J s— e ds =5 I S ds
sl- o Sl-icn

where % < S, = vy- £< 0 (see Lemma 2.1).

- It is clear that @l(s) and its inverse exists if one recognizes
that |:¢>l(s):]2 is just the bilateral Laplace transform of a distribution
function of the Polya type ([7] p.333).

Now in order to prove that R, in (2.21) is asymptotic to (2.17)
we shall apply a slight variation of Laplacel asymptotic technique
(see[13] p.277 and [6]) .

Let us first make the transformation

- . . iv
S—Sl+lVlV —Sl(l+m)
‘ 5“ 2
2¥), €5

d

Sl«/g. 532'
T =/2 s/ -kﬁ(vl)

where

(2.22) 4(n) =2 —

gj = gj (n,vl) and (;J. (n,v) 1is defined in (2.11)

and k't;(vl) is defined in (2.15). Equation (2.21) may be rewritten as
® 1
(2.23) Bp_ J‘ exp(kn[sl(l + iv/4(n)) + 1]) .

R1= Err— dv

=00

4(n) + iv

Now the object of this proof is to show that Rl/dn - 1, or that
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[+

(2.2k4) j K (v) av =1,

<o
where d  is defined in (2.17) and

- ekh(sl[l + iv/4(n)] + 1)
(2.25) K (v) = —2 .

ar (4(n) +iv) - a_

Now at this point we must break the proof up into two cases.

(2.26) case'I: E N 3 Gi =0 Vi>N - The infinite dimensional case.

(2.27) Case II: ¥ N 3 Gi = 0 Vi >N - The finite dimensional case.

Case I will be proved using the Dominated Convergence Theorem. Case II
will be proved by a simpler argument. We begin by proving Case I.

Case I - The infinite dimensional case. From the definition (2.24)
and (2.25)

o]

%[j%wﬂ=q n=1,2...,

-0

we can obtain the result in (2.2L) from the Dominated Gonvergence

Theorem if we can show that for fixed vE€(-»,»o)

(2.28) tx (03 - £
2.2 Re[K -
e n v J 2‘/'1-?
and
(2.29) |k, (v)] <1/01 + vecljc2 ,

where c; and c, are non-negative constants. Now in order to prove

(2.28) we first note that kn(sl(l+iv/£(n)) + 1) may be rewritten as



k (s;(1+iv/2(n)) + 2) =

() - 3108 [ 1 W”J o [ 7]

/21;

lVV

/_[U +Zzg o’ 2 );

and using the definition of v, in (2.12) we have that the last term
in the preceeding equation is zero,so that

kn(sl(l+iv/£(n)) +1) =

(2.30)

k(vl>-210g[n[l+;i]e@[‘g = 1.

J

Now in order to prove (2.28) we need only show that for fixed v the

last term in (2.30) converges to (% /T) exp (-vz/h).

=iC.v

(2.31) Wj(n) =

Then for fixed v

To do this we let
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Now for the case under consideration, Case I, defined in (2.26), we
have the condition that, as n - o,

A

2 -
LEL” =
i
Furthermore since IC l < I for all j, we have the condition

that, for fixed v, Wj(n) convergent to zero wiformly, in j asn =« ,

These conditions are sufficient to prove the following.

Temma 2.5

8

W. 2
(1 - Wj(n)) e J(n) - e /2

= A

j:

Proof. The uniform convergence condition implies that given ¢ > O,

2 N, such that for n > N, max IWJ.(n)I < e. Hence for n >N,
J

st syt wwn - 3 ) [ 45 - 20T TR

3=1 3=1 k=2 5=1 k=3

But for k > 3 andn>ma.x[1\7€, Nl]

ZEW ()7 < &2 le (n)|®

J=1 - J=1

SO

2
IZ[logEl-W(n)J+W(n)]———|<[Z|W()IJ &

I-¢ = i-¢
=1 J=1

and since ¢ may be made arbitrarily small, the lemma is proved.
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Thus we have demonstrated equation (2.28).

Now in order to show that (2.29) holds we first note that

1
(2.32) K = [2@I/L T Qe m)* L) + 1T,
J

where W?(n) is defined in (2.31). Next we must apply the well known

result that if = ai < M and ai > 0, then

© M/max &,
it (l+ai) > (1+max ai) 1

1 i

2
Applying this result and letting a, = -Wi(n) we obtain that for all n,

& (0] < 1 - > >
o3 5 AV /(- min W (n))
[1+ (Z‘z’-ﬂ) ] [1 - m;n Wj(n):' 5 d
1
< 5 5 y
-4 min W,
[l ) mi.n W?(n)]v /( mgn J(n)

J
Now letting " !" denote monotone decreasing in n, we have that, for
fixed v and for all n,

max [=Wo(n)/v2]1 4 0 .
3 J

Thus we have that for fixed v and for all n >1

w2/ (-} min W3 2/(<k min W
(1 - min w?(l)] /¢ mi.;n Wy (1) <[1 - min W?(n)]v /( jn W (=)
! 3
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and the right hand side monotonely increases to exp(vz/ 4). Furthermore,

from the definition of W?(n) s there is a wnigue b such that for all n

Wi(n) = m.;n W?(n) .

Thus we may write

ve/ - ni W) = () e/ el
k

which implies that
(z Ci/ Ln;i) I n=1
Ik, (") < 1/L1-w§(1)]

.c2

= 1/l1e,]

where cy and ¢, are non-negative constants. Hence we have proved

(2.29) and thus we have that, for Case I, Rl/dn - 1.

Case II ~ The finite dimensional case. Assume that there exists an

N > O such that c? = 0, yi > N. Let us also assume, without loss of

generality, that O'? >0,¥Vi<N.

=

Under the finite dimension assumptions we no longer have 2(;? - @,
which enabled us to obtain asymptotic normality of the integrand Kn(v).

Instead, for the finite case we have

N
1im z I;i(n) =11§.

ooy
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Furthermore, it is shown in Section 3 that, for the finite dimensional

case,

1

V1~ ZIogn

or equivilantly, s, - 1. 'Therefore,

£(n) ~/N log n = o .

Also
W_(n) - :_ji)'_
J /N
so that
N W.(n) sv /T
I(L-w.()) ed4 -@+=F) ¢ .
1 J /N

Substituting into (2.23) and using the definition of d from (2.17)

we obtain
ﬁ }a ixx/"'/a
= ~
n e (12 )N/2 +ZCE)
(2.33)
;'f LJWT/2 /—N(N-l)/e -(1+1/2)
2o f_)N/z oW/2=1) p(yoy

which 1s just Cy as defined in (2.20). For the finite case we need
not show domination since the limit in (2.33) can be looked upon as
the pointwise convergence at the point x = /ﬁ/e of the weighted

sum of N+2 independent chi square distribution functions in which the
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coefficients of the first N variables become asymptotically equal
to 1/2 /N and the coefficients of the last two variables go to zero.
Hence we have proved (2.17) of the theorem for Case II, the finite

dimensional case.

Proof of (2.18): Now in order to evaluate R, we let s, = nv Then

2 2 1°

from Lemma 2.1 we know that s2€(0,m)'Vnd This enables us to rewrite
(2.6) in the form

s2+ico
_A(L-p,) 8, (w) exp((wU,)/n

(2.34) R, = =5 — f - dw

S.=i®
2

Now performing the transformation n(142s) = 2w we obtain from (2.9)

and (2.10) that

& _(s) .
(2.35) Q2[n(1-2!-2s):] _ 1 . ]

P -nag,
[H (l+nci) e 1]
i

N+

Using this we can now rewrite (2.34) in the form of (2.21), namely

S, +i® sU_+1/2 log K
A(l-po) 1 Ql(s) e B
(2.36) R2 = 5T J ) ds .
s =i s + 3
1

where K is the constant defined in (2.2). Here we once again perform

the substitution s = sl(l+iv/2(n)) to obtain

Bp, } exp (kn(sl(l+iv/£(n))+l/2))

2" Ve

i

dv ,
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where kn(v) is defined in (2.15). Moreover, for the infinite
dimensional case, we have that 5oth 2(n) and /Zg? become infinite
as n increases. Thus, the same reasoning that was used to obtain
the asymptotic type I risk may be used to obtain the type II risk,
(2.18).

The finite dimensional asymptotic R2 is obtained in the same

manner that the finite dimensional Rl was obtained.

2.3 SOME ASYMPTOTIC EVALUATIONS OF Rl.

2.3.1l Introduction. In this section the results obtained in Section

2.2 are applied to some special cases of the covariance matrix, Z.

In Section 2.3.2 Yorder™ estimates of R2 and "asymptotic® estimates

of the relationship between RI and R2 are obtained for the class

of priors for which the diagonal elements of the covariance matrix Z

are of the form o? = l/il/2+5, 8§ >0, 1 =1,2,.0« At the same time a

similar case, that in which Ugi = Ggi-l = l/il/2+6, § >0, 1 = 1,25000y

will also he considered. It should be noted that the low quality of
the estimates ("order" estimates) in this section is not due to a
weakness of the results in Section 2.2 but rather to the "rough"
integral approximations of sums that was needed in order to obtain
estimates for the whole class (i.e., § > 0). In order to

" heuristically® demonstrate that this is,>in fact, the case a

" best-~asymptotic® evaluation of Rl is obtained in Section 2.4 for

the special case in which Ggi = cgi-l = 1/12, i=1,2,ees The values

obtained from this particular evaluation of R2 compare favorably for

sample sizes as small as n = 32 with the exact evaluation of R2 which

is also obtained for this special case in Section 2.k4.
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2

In Section 2.3.3 the case of g, = = l/gal, a>1,

2
2i T %i-1
1i=0, 1, 2,..., which arises in Spectral Theory, is considered and

f"order-estimates ! of R2 are obtained.

Finally, in Section 2.3.4 results are obtained for the finite

dimensional case and compared with the results obtained in [10].

2.3.2 Asymptotic Evaluation of R2 and Rl/R2 for the Class of Priors

-+
Characterized by the (*'Single Roots ") c? = l/il/2 6, 6§ 20, 1 =1,2,0e4,

2 _ 1/2+
2i-1

i=1, 2,se.. In order that we may evaluate R2 we must first find a

value for vl which asymptotically satisfies (2.12). We shall break

up the solution for vl into two parts. First, v

and by the (''Double Roots") cgi = 1/i , 6 >0,

1 is obtained for the
case in which § > 1/2. Then an argument is made &hereby the solution
is analytically continued to the case in which 0 < 8 < 1/2.

For the case 8§ > 1/2 and for both the "single root® and "double
root " cases of I, (2.12) may be asymptotically reduced to the form

n
+2vl(n,6)

3 N
(2.37) £,.(6,v,(n;6)) = 2 155 - log I:E (l + ;ﬂ%ﬁ/ + log K
i

=0
where vl(n,é) denotes the solution of (2.37) for a particular n and §.

]

Now applying the results of Lemmas 2.1 and 2.4 we have that
vl(n,a) b v,(6), where 0 < v (s) <1/4, V6 >1/2. Furthermore,

q f(a,vl(a)) such that

fn(ﬁ)vl(n:5>) - f(GJVl(G)) .

Now since, from Lemma 2.3, we know that nvl(n,éj -~ o and Vl(n;é) is

bounded , we may use an integral approximatidn to show that
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[2vl(6)]'(25'1)/(26+llnn2/(1+6)

)
1/a+ +2v, (n,8)n) ~ (1/2+6) sin[2n/(1+25)]

(2.38) z n/(i

1

and that

2/ (1+28)
sin| 2r/ (1426 )]

i
(see [3], p. 118). Substituting these results into (2.37) we obtain

that for § > 1/2

TEEY) =0,

2/(1+28 )
£(8,7,(8)) = siZan/(1+2a)j <? -

so that clearly for § > 1/2

(2.10) v, (8) = 1(1/245)"(20¥1)/(26-1)

Now in the general case, 0 < &, (2.37) must be written in the form

2
2n vl(n,6)

) 1og[1<n(1+n/il/2+5) exp(-n/il/2+5 )] o

(E.Ltl)z (j_l/2+5 j_l/2+6
i

+2nvl(n,6))

It should be clear by inspection of (2.41) that for each n, vl(n,6)

is analytic y O < §. Furthermore, by Lemma 2.4 for fixed § > 0 & vl(é)
such that vl(n,é) ) vl(é). Finally, since vl(n,é) is uniformly -
bounded we have that vl(n,ﬁ) converges uniformly to vl(ﬁ) on every
compact subset of (0,»). Thus, vl(é) must also be analytic. But

now, since we have obtained vl(é) for § > 1/2 we may apply an analybic

continuation argument and claim that (2.40) is in fact the limit of
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. vl(n,é), the solution of (2.41), for all § > 0. It now follows

from (2.19) that

By (l-2vl) ) 5[1-(1/2+5)’(25+l)/(25'l)1

R

The special cases § = 1/2 and § = 3/2, which will subsequently be

considered, yield

R R
ﬁg - (e=1) and ﬁg - 3.
1| 6=1/2 1| 8=3/2

In order to evaluate R,, defined in (2.18), we must first
evaluate kh(vl) and kﬁ(vl), defined in (2.15) and (2.16). Substituting
the asymptotic expressions obtained in (2.38), (2.39) and (2.10) into

(2.15) we obtain

(2.12) k_(v)) ~ Céne/ (1+28)

where (2v1 )2/ (l+26 )

Cs = sin[2§7(1+25)] <&1 B 2 :

Next, using an integral approximation for the following sum, we

obtain for b_ = =,
n

SR
; l/(il/2+5¥b 2 2(25-1)nbn[ /(28+1)] |
i=1 n (25+1)2 sin[on/(26+1)]

Substituting this approximation into the expression for kﬁ(vl) we

obtain

(2.13) K (v, ) ,,Dénz/(25+l)
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where

D6 =

(26+l)2sin[2n'/(26 +1)]

Now substituting (2.42) and (2.43) into (2.18), the expression for

R2, we obtain '
2/(l+26)]

Bp, exp[Cyn _1/(2541)

(B Ry ~ +/=2D
1 ™%

If one substitutes the appropriate value of 6 into (2.4k4), the
following special cases, which will also be considered in the next

section, are obtained:

Case (a): cgi = °§i-1 = l/i2, i=1,2,...(6 = 3/2)
Bpoeamfﬁyhn-l/h
Ry ~ L

Case (b): ci = 1/:12, i=1, 2,...(6 =3/2)

Bpoedm/a/8n-5/h

a/z
Case (c): 02, = o° =1/i,i=1, 2 (6 = 1/2)
Lase (e): Tpy = 954 ’ > Sreee
Ry ~ BD_ /5 /e, -3/2

2.3.3 Asymptotic Evaluation of R, and R, /R, for the Class of Prior

2 2

Distributions Characterized by °2i = °2i-l

In order that we may evaluate R2 we must first find a value for A

which asymptotically satisfies (2.12) which in this case reduces to

i .
=1/2a”,a>1,1i=0,1, 2,...
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(2.45) log E/ﬁ E (l+n/(2ai))]~= £§ n/(2ai+2vln) .
i=0 1=0

Now using the Mean Value Theorem it can be shown that for any m > O,

and 0< b< 1,

J
log (1+mb) b log (1+m)
(2.46) m log (1/b S-? l+mbj gy log (1/b) °

Setting m = nvl and b = 1/a in (2.46) we obtain that

(2.47) X n/(23i+2vin),~ log n/2vl log a .
i=0

Furthermore, if we integrate with respect to n the three terms in

(2.46) between O and n, and set b, = 1/2a® we obtain the result that

log [/Kl.go (l+n/(2ai)ﬂ.~ log2 n/(2log a) .

Substituting thepreceeding equation and (2.47) into (2.45) we obtain

the result that

Vi~ 1/log n .

Applying (2.19) we have that

log n
Rom =2 Ry
Now in order to find an order asymptotic result for R2 we need to

evaluate kh(vl)’ which is defined in (2.15). For the problem under

consideration kh(vl) becomes
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il

~log T [1+2nv,/(2a")] + 2v, log (inf1m/(2a%)])

1

k (v

n l) 1

log2 (Enﬁl) 2v, log2 n

2log a * 2log a

-log2 (2n/log n) ,logn
2log a log a

Furthermore

-2 £ [n/(2at+evn))?
i

|:log (nvl) 1 1

~-2 +

2 2
vl log a vl log a

kﬁ(vl)

-2(log log n) log3 n

log a

Substituting these values into (2.18) yields

exp [-logef(2n[log n) . log n]
(2.18) : 2log a log a

~ Bp .
T2 © [k log n(log log n)/log a]l/z

2.3.4 Ihe Asymptotic Evaluation of R, and R /R, for the Case in which

c? =0, 1 >N,
1

In the finite dimensional case, the asymptotic solution of

N o N nci
log K 1I (1+ncri) = z ———
1 1 l+2noivl
is
v N
1~ N

2(log K + N logn + % log ci)
1
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R
1 2
“’§i3§-ﬁ = _I ~ logn,

the result obtained in [ 10].

C
(1og n)

R

1~ 12 172

2.4, EXACT EVALUATION OF SOME BAYES RISKS.

2.4,1 Introduction. In Section 2.3 the techniques developed in

Section 2.2 were used to evaluate the Bayes risk for certain classes
of the prior covariance matrix, ¥. Some of these cases were chosen
because their Bayes risk could be eveluated exactly, thus permitting
an assessment of the error introduced through the utilization of

Laplace's asymptotic technigque. Let us now perform these exact

evaluations.
In Section 2.4.2 we shall consider the exact evaluation of Rl’
; . . 2 2 _ -
R, and Rl/R2 for the case in vhich oy, =0y, ; = /i, i =1, 2,...

The numeric results obtained indicate that a careful application_of
the asymptotic technique yields useful estimates of the type II risk
for sample sizes as small as n = 32,

In Section 2.4.3 a technique for evaluating the type II risk for
the case ci = 1/i is considered.

In Section 2.4.4 corroborative results are obtained for the case
2 2

Opy = Opgq = 1/i and in Section 2.4.5 some exact estimates are obtained

for the case in which 02 2

i = Op3p = 1/2a™, a>1, i =0, 1, 2,...
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2

| 2 2
2.4.2 Exact Evaluation of R, and R, in the Case g,, =0, , = 1/i%,

i=1, 2,... Recall that

2
R, = BpoP[Yl > log K E (l+nci):|

1
where
2
Yl ; wix
i
2
e
A, =
T l+nc?
i
and
N[0,1]

Therefore, in this case

-sY /n(1+2s)
@Yl(s) = E< ) l> =1 [1+2sx ] Slnhnf_[ :h:/‘;%]

Furthermore, we know that the derivative of the Jacobi theta function

with respect to v is

.2 2 .
81(3/2,v) = -2 z (37n2)e™ T V(1))
' j=1

and satisfies the relationship (see [3], p. 77)

(<]

[ eMes/z,thar =~

0 siuy'v

Meking the appropriate substitutions we get

® ~y/2 2
3 (s) = I oSy ¢ eé(l/2>y/2n” ) sinbm/n a
Y - 2 v
1 2 w/n
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Hence the p.d.f. of Yi is

y/2,, 2
) = e/ 81(1/2,y/2m") Ly e ,
n 2nn2 wn

and hence, we may show that

.2
3 LUE stnm/m)/n/51™0 /7
l+n/j2

2Bp >
(2.49) R, = —=) (-1
* fﬁjzl

Using a similar substitution procedure we can show that (2.6) becomes

(2.50) R A(l-pO)P[E Wioi < (log Iﬁ'r(l+n0'§))/n]

il

Y g o
a(L-p )1 + zjzl(-l )J[/E_ETJTJ;:J___II_] ]

In order to obtain some idea of the sample size needed for
accurate asymptotic estimates and in order to observe the accuracy
of the "order-asymptotic" expression for R, obtained in (2.44), some

numeric calculations were made. 1In addition to numerically evaluating

the expression for R, and R,, obtained in (2.44), (2.49) ana (2.50),

2
the computer was also used to obtain numeric solutions for vl(n) in
(2.12). This value of vl(n) was then substituted into (2.15), (2.16)
and (2.18) in order to obtain what we define as the "best asymptotic
solution" for R,. These results are tabulated in Table 2.1, The
closeness between the numeric values for (2.50) and (2.18) should

give the reader some idea of how accurate the Iaplace asymptotic

solution can be.
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32

128

512

1024

Table 2.1, Values of Rl’ R, for c2i =0

Exact Rl

(2.49)*

3.1 x 10'2

8.8 x 10'3

1.2 x 10'h

1.8 x 10712

1.3 x 107

Exact R2

(2.50)

6.779 x 1072

2,048 x 1072

2.955 x 1o'h

4,982 x 10'8

3.493 x 107

2 2

Best

Asymptotic R2

(2.18)

8.003 x 1072

2.297 x 10'2

3.12h x 1o’LL

5.123 x 10"8

3.556 x 1071t

2
2i-1

*The number in parentheses refers to an equation.

= 1/i%, 1

35

Order

Asymptotic R

(2.4k)
1,6 x 10~
3.8 x 10
3.3 x 107

3.1 x 10°

1.7 x 107

1,2,000

3

M

6

10

13

2
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2.4.3 Exact Evaluationof R, for the Case in which ci = 1/12,

i=1, 2,... This problem can be shown to be identical to that of
finding the lower tail probability of the Cramer Von Mises statistic.

Using the results obtained in [1], p. 202, it can be shown that

(2.51) R, = z]

© oI +l

A(1= . -
i} (1-p,) Z<-l>3 <-1éz> (hj_'_l)l/Ze 162 {(Lpgﬂ)
WS

J
where o

log Kh(l+nci)

Z = 5
mn

and

o

S - t cosh® 12, /R et
+ = - e nh AL A, .
4 AP 1[ ) /z

and clearly this series converges rapidly as n — «. However, since
this problem is similar to that in the preceding section, no numeric
calculations were made. If, however, one approximates (2.51) with

its first term one obtains

R, N’Ce~m/578 . 3/16 ’

which is order-asymptotic to the expression obtained in Case (b) of

Section 2.3.2.

: o 2 .
2.4.4 Exact Solution for Rys By for oy, =0, ; = /i, i =1, 2,...

In this section we shall obtain the following:
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(2.52) R, = A(L-p,) expl-(T(rL)/RY ™) L a(1ep )e

2]

i/m
(2.53) R, = A(1-p,) exl ~(T (n1) /B ™ zLLﬂ)//']a .

Il+;]
Jj=1

Furthermore, since

° (O VEP Par _ 1
(ntj)e T el

(2.5k4) lim

n-m_l

we obtain that Rl/R2 - 1/(e-1).

Proof of (2.52): The cannonical product of I'(n+l) may be expressed

as

I (18) &V [ﬂmﬂ

1

where vy is Euler's constant. It follows that we may write (2.6) as

= A(l-p )P[Z (W '1)0 < n o8 [WT;I\

and letting

Y=% (Wi-l)oi
i

we obtain

-Y 1 2ys,.
f(e) = 57 - N(1s2s/i)e 2t A OR
But (see [ 5], p. 66)
[(254+1) = %J” o8 YHY) o o~ (YH/2)y ~(yt/2),

so it follows that the p.d.f. of Y is

f(y) _ %e-(v+y/2) -(Y*’.Y/E)]

exp[ ~e o<y < o,



And letting Z = v +12f- , we get the c.d.f. of Z

-z
F(z)=e-e o< 72 <@ ,

It follows that
" 1/n
R2 = A[l - pOJ e}cp_[.—rl&l).] ,
/K
the desired result.

Proof of (2.53): Since, similarly, (2.4) may be written as

-3eflr2 3 (]
Rl - BPOP[y 2 n 1og I'(n+1
where
.2
Y = Z(.—X—lg__l) ci s
1+no,
i
we obtain
ny -n/i
Y n(l * f) € n+2s
&(s) = H e = Sy exp (- =
m(L + ===) *
i
_ T(n+2s+1)
- ~28Y

I'(n+l)e

)

38
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[+]

-7
I (n+2s+1) _ J‘ o~2(z-y)s e"(n-lﬂl)Z e az
C(nt1)e ™Y ¢ I(n+1)

s0 Z = % + v has p.d.f.
-(n+l)z e-e"Z
f(Z) = & - <z L o,
I'(n+l)

| 1/n
Now letting h = [-%_—ﬂ)—]
- /K

we may write

=s]
Il

BpoPl:Z > -log h]

i

]

n
j =h
hJe
Bpo[l - z j!
J=0

]
==}
g

which on substituting the defining expressions for h and K reduces

to (2.53), the desired result.

Proof of (2.54): Since as n— ® h . n/e and
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we obtain

oyl S | o 9 ,
) s~ ) [Etaamh ) & = 2
Jj=1 J=1 J=1
Some numeric calculations were made to asses the accuracy of the
order-asymptotic estimate of R, obtained in Case (c) of Section 2.3.2.
The results are listed in Table 2.2. Once again the A, B, P, terms

have been ignored.

n Ry, (2.53) R, (2.52) Rys(Case (c))  R,/Ry,(2.52)/(2.53)

1 2.6 x 107t 3.68 x 1071 h.5 x 107t 718
16 7.0x 1072 1,11 x 1073 2.9 x 1077 632
128 6.1 x 10722  1.02 x 1072 1.6 x 1072% .595
Teble 2.2, Values of R, R, for 0.2 = 0> _ = 1/i, i =1,2
i 1> T2 21 ~ Teial T Mt BT LsSseees
X _ 2 2 i
2.4.4. Exact Evaluationof R, the case Opy = Ops_q = 1/2 27, a>1,

i = O, l’ Pees,

We may reduce (2.6) to the form
log K1 [l+nc§]

2 2 q. ]
= = < .
R, A(L po) ﬁ § Wy oy < ;
i

n

and letting Y = E: Wi ci , We get
i
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QY(S) _ E{e"Yﬂ - 1

m L ]
1'I<1+S—->
v=0 aV

Using residue calculus it can be shown that this is the generating

function of the c.d.f.

«® Y
V =3 X
F(x) = -C[e_x + E:ﬁ:%élii——-—] x>0
v=1 I (a*-1)
i=1

where

o]
c=0(-av)"t
v=1

(see [7], p. 350), and in our case

log fﬁﬂ ( l+nci )

-]
X = L = g-log\/f il <? + —Ei> .
n n .
i=0 2a

Thus: in this case we wish to evaluate
- -2a”
o (A T2 "
(2.55) = A(l~ )[1 - c[[ ; <? + .EL?H-Z/n+_;ﬂ i=0 2a ]]
. R2 - PO i_o 2aj/ [ 3 \V) i .
B T b=l M (at-1)
i=1

Using a similar procedure it can also be shown that

BpoPEZ“wixi > log K q(l+nq§)]

+ Vv
- -2/ w -2a_
mge V2020l oot ol -
/K n+2 v

(2.56) Ry

v=1l 1 (aj -1)(2 +-2)
J=1 a’
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For A=B=1,p = 1/2 and a = 2, some numeric calculations were
made. The results are listed in Table 2.3. Equation (2.48) refers

to the order-asymptotic result for R2 obtained in Section 2.3.3.

n  R,(2.56) Ry,(2.55) Ry/R,,(2.55)/(2.56) R,,(2.18)

81.1x10°F 2.0x 10t 1.85 3.8 x 107¢

198 4.7 x 107F 1.3 x 1073 2.78 0.2 x 1073

o048 1.0 x 1072 4,13 x 10~ L, 05 3.0 x 1072
Table 2.3 Values of R,, R, for oo, = 02 1/2at, a =2
. 1> B 10T Opy = Ops3 1 7 > &= &

1=0,1, 2,...



43

CHAPTER III

QUADRATIC LOSS

3.1 INTRODUCTION

Let us now extend our results to the case of quadratic loss,
Let Xl,..., X" be infinite dimensional independent normal variables

with mean vector © and covariance matrix I.

Let the null hypothesis be € = 0 and the alternative be 6 # 0.

Let

P probability that © = 0, and

(o}

(1-p_) ()

prior distribution over {0,6 = 0},

where
P(6) ~ N[0,=] ,

T = {oij} and i,j = 1,..., .

The losses associated with the type I and type II errors are

respectively 1 and 8'A0. It is also assumed that A and ¥ are

positive definite. In section (3.2) we assume

(3.1) Te[A] < © and Tr[2?] < ® .,

In section (3.4) the Tr[A] < @ condition is relaxed.
In the previous chapter we developed asymptotic expressions
for the type I and type II Bayes risks, R1 and R2 for the case of

constant loss. In this chapter these results are used to obtain
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similar results for the case of quadratic loss.

In Section 3.2 a two stage asymptotic estimate of R1 is

obtained.for the case in which Tr[A] <« and Tr[ZZJ <® ,

In Section 3.3 the asymptotic relation between R, and R

1

is developed. For the case Tr[Z] = o, the relationship is

2

asymptotically‘identical to that obtained in the constant loss
case (see Theorem 2.1). If Tr[Z] < «, relationships similar to
those obtained for cénstant loss are still obtained.

In Section 3.4 a good upper bound for R1 is obtained. This
upper bound is introduced because it is easy to calculate, and
requires Tr[AT] < @, Tr[sz < o , is derived using a clever technique
and, finally, will permit a subsequent estimation of the accuracy
of the two stage estimate of R1°

In Section 3.5 the asymptotic evaluation of the upper bound
for R1 is obtained for the case in which ¥ is diagonal and
Gi = 1/12, i=1, 2,..s. There are two cases of loss matrix considered,
one in which Tr[A] < ® and one in which Tr[A] = @, 1In each case
the asymptotic results differ but the order-asymptotic resulté are
those which were obtained in Section 2.3 for the constant loss case.

Let us now restate the problem for the case of quadratic loss.

Let X = (XlA/h, Xz//h,...) be the mean vector of Xl,.o.,Xn. Then
Xi ~'N[/hei,1j, i=1, 2,... and X ~ N[8,I/n]. We shall use f(x|6)
to denote the density function of X. Furthermore, since the ith

mean Xi//h is sufficient for ei, we may determine the Bayes

procedure by finding that set of x such that Ll(x) = LZ(X) where
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f(x\9=0)po
(3.2) Ll(x) = , and
p,£(x]0=0) + (1-p ) £Gx|0)P(0) a0
(1-p_)|8'A8 f(x|6)P(e)de
(3.3) LZ(X) = .
p £Gx[6=0) + (1-p )| £(x|©)P(0)do

Since the denominator is the same for each term, the problem

may be reduced to finding

f (x]|6=0) (1-Po) 1

N
/K f ’

i

r
(3.4) ‘i\x'.‘ r =
|6'40 £(x|e)B(6)de Po

This in turn is equivalent to the problem of finding

2 -1
_ [ m/2|x|" _ 1 P 9'AGexpl-3[0'Y "o+n(x-8)'(x-6)71d6 )
(3.5) SX = JLx.e l ‘ = ‘/-K ‘J
S

%
|2mz|*

ey

Next, before proceeding we shall simplify the quadratic loss
problem in the following manner. Since T is positive definite, one
may obtain an orthogonal G which has the property that ¥ = GDG,
where D is diagonal and the ith diagonal term of D is defined as
Gi [if ¥ is diagonal to begin with, then 0i4 = Gi]. If, for the
case in which ¥ is not diagonal, one replaces ¥ with D and A with
G'AG, it can be shown that the acceptance-rejection boundary obtained
in (3.5) will be identical to that of the boundary for the original

problem. Furthermore, since Tr[A] < ® we have that

el — = R AR A= 10 Ay

Tr[G'AG ] < ». Since this transformation will make

assume that ¥ is diagonal.

Lo
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One should also note that (3.5) must be treated as a symbolic
limit (since ‘ZﬁZl = 0). In fact, (3.5) is evaluated for a finite
number of dimensions and then a limit taken. The notation needed
to indicate this, however, is unnecessarily confusing, and hence

not used, Next, let

(3.6) A= nx(Tan) L.

Since we have assumed Y diagonal and positive definite, we also have
that A is diagonal and positive definite. We denote the ith diagonal
element of A by Aj-  If we define the norm |]Mll of a matrix M as
sup |xi|, where the Ki are the eigenvalues of M, then |‘A|| <1
fzr any n.

Finaliy, before proceeding with the derivation, one should also
note that the conditions assumed in (3.1) make it possible that
Tr[¥] = ®. This possibility also arose in the constant loss case
and necessitated the normalization of expressions containing T
with an exponential term; i.e.,, instead of writing |I+n2|, which

equals « if |Zl = o, one must write

-nTr[Z]] _ nZl.

3

lim[ | +nz|e | (T+az) e~

)
() denotes the limit is taken in terms of the dimension of the
parameter space.
Let us now continue with the derivation. If we make use of

the identity

'S Lotn (X-6) ' (X-8) = (0-AX) 'mA"T(8-pX) + nX'[I-ATK ,

and perform the transformation Y = /nX, we may evaluate the integral
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in (3.5) to obtain that the Bayes critical region is

3.7 s = {yic, < 2V L Gy ayymeiang] }

where
2
2, “M%.1
(3.8) Cn =n/K 1 [(1+ncyi)e i jz ;
i
and, since A is diagonal,
@

Thus, we may express the type I risk as

(3.10) R, = p PlYes|e = 0] .

Next, let us define

(e
I

(3.11) = Y'AY - nTr[%] , U > -nTr[z]

<
]

(AY) 'A(AY) , V>0

and

(3.12) S¥ = BKu,v):Cn < eulz[v+Tr[AAjj]ﬂ{u:u > ~-nTr[S]N{v:iv > 0}] .

It should be noted that even though U and V are dependent, the
infinite dimensional nature of Y and the assumption that A and

3 are positive~definite are sufficient conditions to guarantee that
the joint distribution of (U,V) actually has a nonzero p.d.f. for

all (U,V)ES?. We may now express the type I risk as

(GA
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*
R, = poP[(U,V) € %.Ie = 0].

Similarly, if we denote the complement of the critical region

by §, we may integrate out © and express the type II risk as

(3.13) R, = (1-p) J [ (Av) 'AAy)+Tr[ Ap] Jexpl (*%)v'[I-Ajv-nTr(Z)/Zjdy

[|2n(I+n2)| exp(-n Tr(Z))j%

The bivariate Laplace transforms that will be needed to obtain
the asymptotic risks are defined as follows. In order to obtain

R1 we shall define

(3.14) 8 (s,0) o"Us-Vt

E( |e=0)

esnTr(Z)

|z + 2s/+2tNAA| 2

where Re(s) <0, Re(t) <0

[The reader is reminded that for the case Tr(Z) = ® one must take the
appropriate limit in the parameter space in order to make (3.14) a
valid expression. ]

Next, in order to obtain the expression for R2 we shall define

the bivariate Laplace transform

8-t V(y)  -3[y'[I-Aly+n Te(D)]

(3.15) 8,(g,0) = | dy

(|2ﬂ(I+nZ)lexp[-n TR(Z):I);2

Here we require

Re(g) > 0 and Re(t) < 0.
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Note that by inspection of (3.14) and (3.15) we have the subsequently

useful result that

(3.16) 3, (g, t) =,§1(g-%’t)/cn

3.2 IWO STAGE ASYMPTOTIC ESTIMATE OF Rl.

We first apply a two dimensional version of Laplace's asymptotic
formula which was used in Chapter II Section 2.2. For the two
dimensional case we obtain

* I} .
t +iw sl+1Oo

(3.17) R, = J L f él(s,t)eSu+tv ds dt du dv.
1 -

-qoo -j oo
t -ie s -1
In order that the above integral exist we must impose the conditions

Sq> t1 < 0 and

(3.18) 0 < [|-2 s, & -28 am|] <1

The later condition is sufficient to guarantee that the path of
integration stops away from the singularities of Ql(s,t). The two
conditions in (3.18) are sufficient to guarantee a subsequently

required condition that 0 < ||ﬂt*AAA|| <1

Next we utilize the Fubini Theorem to show that it is possible
to interchange the order of integration.in (3.18) This procedure
was implicitly performed in the constant loss case and led to the
constant loss version of (3.17), namely (2.21). If we could continue
to fqllow the constant loss procedure, which lead to an asymptotic

expression for Rl’ we would next integrate over %% and then proceed to
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obtain a bivariate version of the asymptotic normal expression for
R (see (2.28) for the 1 dimensional version of this procedure).
This, however, will not work for the quadratic loss case due to the
fact that the integrand in the t direction does not become
asymptotically normal for the case in which Tr[A] < ® . Because

of this difficulty a simple bivariate asymptotic expression for

Rl could be obtained. Instead, Laplaces asymptotic technique,
which was used for the constant loss case, is only applied to the
integral over s. The integral over u is evaluated directly and an
asymptotic expression for the integral over v and t is obtained.
The main result of this section, an asymptotic expression for R1 is
stated in Theorem 3.1. While this estimate is only carried out for
the case Tr[A] < ® it is conjuctured that similar proceedures could
also be used to obtain estimates of R1 for the case in which one
only required Tr[AZ] < @ and Tr[sz < @, Let us now carry out this
program in detail. First let us justify the interchange of the
order of integration i.e., let us show that (3.17) is absolutely
integrable. To do this we first note that

*
s, +i® t +iw

1
J I I l@(s,t) e SUTEV dsdtdudv
%
S

J ate

s,=i® t -i®
1

1

s +i® t +ieo

.
_ [ L e Vdudv][ J j '@(s,t)ldsdt]-
s

. *
g, =i® ¢ -jo»
1 ' 1
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Now since Sl’tl < 0 we have that

slu+tA
I e Vdudv < =,

Thus in order to interchange the order of integration in

(3.17) we need only show that
s Hi% £ o
(3.19) f J |2(s,t) |dsde < = ,
sl-ioo t*—ioo
We shall show that this holds by finding an integrable

function which dominates the integrand of (3.19).

First, for reasons which will become subsequently clear we

choose s1 such that

(3.20) Tr[B;lA-nZ] 2 log [cn/Tr(AAA) + Tr(AA))]

(3.21) B I+2s. A +2(1+251)tAAA

t 1

Lemma 3.1 The wvalue of ) which satisfies (3.20) has the properties

that, given € > 0, for sufficiently large n,

(a) -4 < s < -% + ¢ and is monotone decreasing in n

(b) for n — =, (1+231)n t e

Proof: Tr(AA) = Tr(A), Tr[AAA] = Tr[A] < ©® and since all of the

matricies which occur in (3.20) are diagonal we may apply the results
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obtained for the bounds of s1 in the constant loss case [see Lemma
2.1, 2.2, 2.3, and 2.4]. The conclusion of these lemmas also

proves Lemma 3.1,

Corrolary 3.1

Condition (a) of Lemma 3.1 in conjunction with (3.18) imply

that given € > 0, for sufficiently large n,

%
Y+ 2¢> || -2epmnl] >0 .

Next let us perform the transformation

2t = (1+231)(t1+1T)
s = s1+iG v(n)
where
-1 L
v() = 2/[Te[ B 0177
1
and
B =
(3.22) £ I+ 231A+2(1+2s1) tlAAA .

Then we may rewrite (3.19) as

do _dT
1 3
2ifoP+1Q]|?

(3.23) An‘[ J\ B
o +

where



53

A = 2Y(n) < ®
n -n1%
(1+2s,)B_ e 7|
1"t
1
Sl - .
P = vY(n) Bt ‘A B 2
1 &
-1 -%
Q = (1+25 )B_Z\AN B "2

1 £y
For future reference we note that P,Q are symmetric,

=212 = 1, ||B||- 0

and Tr[B'lA]2 -
t1 n

Furthermore, using an unpublished result obtained by H. Rubin

[which is proved in the appendix| we obtain that

Tr[Ql = Tr[ (I+2¢, A )'1A]

1

and since we may choose a constant such that -1 < 2to “A||<2 t1”A||<0

we have that there exists a C' such that for all n, Tr[Q] <C'.,

Next, in order to simplify the argument, let us transform

the problem into polar coordinates by letting

Q
]

P cos ©

1]

p sin ©
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Then the integrand in (3.23) may be expressed as

(3.24) __—_‘B""""Z
| T+ipr(0) |2
where

R(©)

il

(cos 8) P+ (sin 9)Q

Clearly, for lpl <k <®  k uniformly bounds
(3.24). Thus we need only show that (3.24) is dominated by an

integrable function for large p.

Lemma 3.2  There exists an N, o > 0 such that for n > N
1

= 0 i
P

First, noting that P,Q are symmetric we define Irk(e)| to

(3.25) ’ -

1
| T+1pR(0) | ?

Proof:

be the kth largest characteristic root of R(®) in magnitude. Since for
1
all n, Tr[Q]l < C , there exists a 0 < C < ® guch that
2 2 .
Tr[Q]° < ¢ and HQ||< ¢ . Next we break the proof up into two
mutually exhaustive cases and prove the lemma for each case.

Case (a) {6:] sin®| > 1/(&U+e)) ],

Since Tr[Q] < ® for all n, and converges to the finite trace
of a positive definite matrix, we have the result [assuming that
the rank of A is greatef than 5] that there are at least 5 %
which must also converge to positive limits., Thus we may choose

a q > o such that for all n,



qo Ay
I?ll = 5@e <smo

Now by consideration of the four cases cos 0 z 0, sin © z 0

it can be shown that
(3.26) 2@ | 2 lsin o] q- ll2ll

Thus for case (a) we have the result that

1 EQ qo =
‘rkl S [qk E 2] S >0

But then

5
[T+ pr(®) %] > +PpD* |

Thus, for case (a) we have demonstrated (3.25) (o= %).

case (b)  {0:]sin 8| < 1/ (1+e))].

Using considerations similar to those needed to obtain

(3.26) it can be shown that
(3.27) lir(ey || < |sin of llal| + 2]l .

Next, using the property that ”P|l = 0, we choose N such

that for n = N
el < 1/(8C+e))

Thus for n > N we obtain the result that



56

c 1 1
”R<e)|l5 4 (1+e) + 8(1+c) = 4

Next we note that if lsin 9| <1/ (1+c)) < %, then

|cos 9|2 >1 - [%]2 .
From this it follows that

Tr[R(e)]z sin29 + Tr[Q]2 + 2sin © cos © Tr[PQ]

+ cos2 8 Tr[P]2
/ 2
[] cos el/&r[sz - lsin 6| VTrlQl? ]

> [1-1/16 - ¢/ (4 (1+c)) 12

v

>9/16

But now we may utilize the matrix form of the result that was

applied in the preceeding chapter subsequent to (2.32) namely,

Iz + ipr(® %
ipR(8) ||

= y
T (1+p?r) ()
k=1

, , RO/ ¢ lr@ ] %)
> (+p” |[R®) || D)

9
z (1+p2/16) b

Thus for case (b) we have demonstrated (3.25) (o = 5/2).

Thus we have proved Lemma 3.2. Thus the order of integration

in (3.17) may be interchanged.
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We may now state the main result of this section.

Theorem 3.1 If Tr[A] < ® and Tr[sz <®, then as n = <«

c [1+2s.] 2s

R, ~ &(s,,0) [-Z L ] 1

1 1’ yTey - d.

C is defined in (3.8), s, satisfies (3.20) and

p =5 SeLHneC A e
-1 -2-%
(3.28) L(n) = 2 [Tr[BolAJZJ2 - o
B is defined in (3.21).

Furthermore, if

(a) (1+2s1) - 0, then d = V/1/2 (%) Tr[A]

Zsloo -251
(b)  (1+2s)) + 0, then d = V/7/2 [-slj I[2v+(1+2s1)Tr[A]] dF (v),
(o]

where dF(v) is the pdf of the random variable 3X'AX, and X ~ N[0,I].

Proof:

In order to determine the asymptotic expression for R, we

1
first integrate (3.17) over u to obtain

ata
W

t +i® s, +i®
© 1

tv 2s
> I J J @(S £) [ dsdedv .
) , v+Tr (AN)
t ~joo sl-lOo

1 (2ﬂ1)

Next, performing the substitution

]

(l+231)(t1+iT)
v/(1+2s1)
+i o/4(n) ,

<
1t

S

[}
I

1
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where £(n) is defined in (3.28), we obtain

«w o o

(3.29) R1 = Arl I j [ Hn(\)) Jn(T,\)) Sn('r,v,cr) dTdodv

0 ~® -®

where
Zsl
[Cn(1+251)] @(sl,O)
A= T
1
-231
H (w=[ + (1+2s))Te[ar]]
n 1
V(t, +iT)
(3.30) I (T,V) = = e
. ) - - 1
n 2 |12 (1425 ) (e +i7) B Lyan|?
o]
1 eﬁ(o,T,v)
Sn(T’V’G) T Tom 1+ic/(slz(n)
®(s,+i0/4(n), (1+2s.) (t.+iT))
: 1 ’ 171 B
L(o,T,v) = 1°g[ ®(s., (1+2s,) (£, +iT)) J
1 171
Cn(1+251)

+ 2<S"sl) log[V+(l+251)Tr(AA) :

Thus we have reduced the proof of Theorem 3.1 to showing that

[ee) (e o] x

f J JH (v) J (t,v) S (7,v,0) dTtdodv
n n n

lo) =00 -0 End d

To do this we shall use the dominated convergence theorem.
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First we show domination. In order to do this we write

(3.31) |5 () 3 (1,v) s (T,v,9)|
n n n

~-2s

_ o1 [vk(1+2s ) Tr[An]] 1 . .
(em? [1+[0/ (s 4 @) P10 (s ) || HiomrrQ) |7]
vt1 -231
e [v+(1+2s1)Tr[AAJ]
= A
n

|| 7+ (oP+TQ) |;§|
Here An is defined in (3.23).

Now, clearly, the domination argument that was used to
show that the order of integration could be interchanged can
now also be used to show that the (0,T) variables can be dominated
by an integrable function. Next, in order to dominate the v
variables, we note that since TelA] < = we may choose t1 so that

it is bounded éway from zero. Let t, = sgp(tl) < 0. Next, recalling

that 8y is monotone decreasing in n we define S0 = 51ln=n ° Thus
o

since Tr[AA] 1t Tr[A] we have that

vtl -251
(3.32) e [v+(1+2s1)Tr[AA]]

vt
< e ° [v+(1+250)Tr[A]] .
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But now combining (3.31) and (3.32) we have dominated the integrand

in (3.29) and need only show that it comverges to a limit.

Lemma 3.3 For fixed T, v and O,

~o?/4
(a) 8 (T,v,0) »~ S——=5()
v (t +iT)
3 ( LLle - = 3(7,v)
(b) n T,\)) T - sV

|I+2(tl+iT)A|%

(c) case (1) (1+Zsl) -0
H (v) = v = H(v)
n
(c) case (2) (1+Zsl) + 0

-251
B () = [V+(1+251)Tr(A)]

Proof: (c) is obvious. In order to prove (a) we shall show that

(3.33) 4 (o, T,V»)

[4(c,T,v) - Z(G,itl,v)] + £(G,itl,v)
-~ 0 _0-2/4

3

4(c,T,;v) defined in (3.30), we must first show that £(n) — ®, where
4(n) is defined in (3.28). Now since A is diagonal and n(1+251) - o

we may write o

-1.~2 2 .
Tr[Bo Ale = . [xi/(1+2s1ki)]

i=1

= z [nci/(1+(1+231)n0§)]2

i=1
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Thus 4(n) - =,
Next let us show that
(3.34) 0(o,it,,) = -0*/4

To do this we first write

B (s +1G/£(n) 0) C (1+23 )

40, it V) = 1og[ @(s ] + z(ﬁs/z(n))log[ v (1425 )Tr(AA)

Next, noting that
3(s +10/4(n),0)/2(s;,0) = 1/|T+(210/4(n))B] "A|?

we obtain

ﬂ(o,itl,v) =é%10giE [1-Wk(n)]exp[Wk(n)]]
, . (1+2s )
io
T 4() L Tr[B A nt] Zlog[ v+(l+Zs )Tr[AA]]]
where
A
~-21iC0 k
=T 1+2s, A
and
2 2
W (n) = -07,
K k

But if we substitute in the 1 condition defined in (3.20) and

follow the procedures of Lemma 2.5, we obtain, as n = ®, that



£60,16,) = - ¥log TT1-0, ()] exp 3, (1]

v+(l+231)Tr[AA]
Tr[AAA]+(1+2s1)Tr[AA]

02/4 .

210
e, 1°g[

Thus we have proved (3.34).
Now we shall demonstrate that for fixed O,T, and v
(3.35) £©,T,v) - £(0,it;,v) = 0

In order to show this we first note that

L(C,T,v) - Z(o,itl,v)

= 4(,T,Vv) - z(c,itl,v) - £00,T,¥) + z(O,itl,V)

s.+ic/4(n) ¢t +iT

1 1
= I J Est(z,w)dzdw,
il ty

-t0

£(n) J J 4 (Sl z( ) 2 tl+nit)dndk ,

where
-1, -1
4 (z,w) = (1+2s,)Tr[B ~AB ~AAA]
st 1 W w
and
B = [I+2zA+2(1+2sl)wAAA].
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Now for fixed oO,t and 0 <A <1, 0 <T <1, if we can show that
(3.36) zst(s1+iox/z(n),tl+ﬂit)/z(n) -0,

we will have shown (3.35).

Since (1+231)n - @ we have the result that

2 T
(14251) £(n) —'ZL(1+ZS ) E:1‘:1+(1+Zs )n02] ]

Thus, if we can show that & 0 < M < ®, such that
(3.37) \(1+2s1)zst(si+xlc/z(n),t1+n1t)| <M, Vn,
then we are done. But
(3.38) \ﬁst(si+1oh/£(n),ti+ﬂ1t)\ < (1+2sl)£st(s1,t1)
-2
- Tr[ (I+2t1A) A]

The convergence to a uniformly bounded limit in the above state-
ment is obtained using the same procedure that was used subsequent
to (3.23) to prove that Tr[Q] < C'.

So now we have proved (3.35), and hence have proved (a) of
Lemma 3.3. |

Finally we must prove (b) of Lemma 3.3.

Let us now define Q' as Q' = (1+2$ )B 2 NAAB “ .,
n
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Now since the.square root of the positive operator B0 is a self
adjoint positive operator we have that QA is self adjoint.

Therefore, using the procedure of Theorem A-1, it can be shown that
Tre[Q!] ~ Tr[A] < =,
and that q?, the eigenvalues of Q, are real, converge to qj the

eigenvalues of A, But these are sufficient conditions to guarantee

that for tixed T, t

1°
(3.39) |I+2(1+2s1)(t1+i¢)B'1AAA| = I (+2(t +i¢)q?)
© i=1 1 J
- I (I+2(t +iT)q.) .
i=1 b

Thus we have completely proved Lemms 3.3.
Finally, in order to show convergence for the whole integrand
in (3.31), we note that for fixed o, T, and y the three variables

in the limit H(-), J(+), S(.) are bounded. Thus, since
JsH-JSH| <[Js | |HE-H|+ |HI_| |s -s| + |sH| |J -J]
S nnn nn n n n n
-0,

we have the desired result.
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3.3 THE ASYMPTOTIC RELATIONSHIP BETWEEN R1 AND R2£

Using the results obtained in (3.16) that @z(g,t) = @1(g-%,t)/Cn

we may rewrite the expression for R2 obtained in (3.13) as

s +io t_+ic

-2, ; 2, (s, t) [z+Tr[An]] o (s wttz
R 2 J I I C dwdzdsdt
(21m1) 3 e it ooim N
1 1
where

(3,41) S = {(W,z):anew/2 [z+Tr[AA]j}n{W:W>-nfﬁ:(2)}[7{2:2 >0} .

Now once again Fubini's Theorem can be applied to show that the order
of integration in (3.40) may be interchanged. We shall now break
up this development into two cases. In the first case, Tr[Z] = @,
a rather elegant transformation permits us to obtain the relationship
in a simple closed form. In the second case,Tr[Zj < @ the result
is asymptotically the same as that of the first case and can be
proved in a straight forward,albeit messy, manner.

For this reason the case Tr(X) <« is omitted and only an

outline of the necessary steps presented.

Theorem 3.2 If Tr(%) = <, then

-251

2 251+1

(3.42) R Ry

where sy satisfies (3.20).

Proof: For the case Tr(X) = ®, (3.41) reduces to
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E; = {(W,Z):Cn > ew/2 [z+Tr[AAjJ}[W{z:z >0}.

Next, interchanging the order of integration and performing the

substitutions
1
(3.43) [z+Tr[AA]] e(S+2)W/Cn =%V,
z = v,
we obtain the remérkable result that
1
J [z+gr§AA2j e(s+2)w+tz dwdz -
3 n
Sm
_ (=s) J SUFtV, o
(S+1/2) *
Sl
Here Sf is defined in (3.12). Thus we may rewrite (3.40) as
t1+1oo sl+1oo
R, = —15 I JI I (;il/) 2. (s,t) StV gcdtdudy.
(Zﬁi) % : 00 . 2
S t1 1 sl i®

This, of course, is almost the expression for R, obtained in (3.17)

1
except for the modification introduced by (-s/(s+%)). Furthermore, since
s/ (s+%) is slowly varying with respect to the rest of the integrand,
we may apply the procedure used in Theorem 3.1 to obtain (3.42).

In order to sketch the proof of Theorem 3.2 for the case Tr(Z)<® we

first note that the acceptance region, defined in (3.41), for

the case Tr(Z) < ®,is a compact set whereas for the case Tr(¥) = @
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it is not (see Section 4.2). Therefore when one performs the

k.

transformation defined in (3.43) one does not convert S into SI but
rather a subset of it. It turns out, however,that Theorem 3.2 is
still asymptotically valid since the region in which the transforms
differ (for the cases Tr[Z] = ® vs., Tr(Z) < ) is probabilistically
negligible. Thus the proof for Tr(X) < ® consists of making the

transformation defined in (3.43) and then showing that the excess

region obtained in the transform is negligible.

3.4 AN UPPER BOUND FOR R Now if the boundary of the (u,v) region

1°
defined in (3.12) were linear, then because of the natﬁre of (u,v)
we could reduce our problem to one which could be solved by
asymptotically inverting a univariate Laplace transform.
Fortunately, the best linear approximation to this (u,v) region,
which we shall now develop, enables us to do precisely this.
Consider the region An(aO defined by a hyperplane which supports

the (u,v) region at the point v = o Tr [AA]. Elementary calculations

show that this may be expressed as
o+l n
(3.44) An(ao = {(u,v):v + ( 5 ) Tr(AM)u > an} {(u,v):u >0 and v > 0},

where, in order to remain on the curved part of the boundary defined

in (3.44), we shall require that 0 < o < En/Tr[AA]-l. Now we define

il

(3.45) a Tr[AA] (et (o1)D )

o
il

= 1og[Cn/((a+1)Tr[AA])].
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(3.46) R, = p_PL(U,V) €5 |6 = 0]

o

10 ¢ >0 .

<p PLUY €A (0] =R

Thus we have for each n the upper bound for Rl’ namely

o C

L_ o s oeg® ={._n___ S 1
R1 = p inf R1 > 4 a'Tr[AA] 1>a0> OJ .

RN

The univariate Laplace transform needed to obtain the upper
bound can be derived from (3.14). To see this, we first note

that if we let Za =V + [(#1)/2]Tr[AA], then we may write

(3.47) RY = P[z >a |6=0].
1 o n

Thus the univariate characteristic function needed to obtain

an asymptotic expression for R? is

=qZ -
@T(q) “E % = E[e q[((a+1)/2)Tr[AA]U+V]le _ 0] .

But this can be directly obtained from (3.14) if we set

s = q[ ((a+1)/2)Te[AA]] and t = q. Doing so, we obtain

nTr[Z](ggl)qTr[AA]

(3.48) @?(q) = —= T
| T+q (Co+1) Tr{AAIA+20AA |

Next, let us define

= @Ol .
(3.49) kn(q,a) log 1(q) + qa

Then, using the same reasoning that was used to obtain (2,21)



in the constant loss case, we rewrite (3.47) to obtain

o, .
q1+1<30
P exp(k_(q,a))
@ _ _o n o
(3.50) | Rl = omi j dq , 4y <0,
Ao
4

and q? is to the right of the singularities of @T(q).

Next, let us define

(3.51) B = (o+1) Tr[AAJA+2A0AA

and note that

d
M =i|:~1/Tr[(I+ B) " !B- (eA+1)nTr[AA]Z] + a ]
d(iq) 2 d n
(3.52)
0k _(q, -
— L = el aram | >0 for TRIT <a <0
% (iq)

Furthermore, if for —1/||B|| < g < 0 we also have that
azkn(q,a)/az(iq) — @, then for any o and q such that

akn(qa,a)/a(iq) = 0 we will have the result that

o
PoexP(kn(q , Q)

RY ~
1 <-sl>/-zﬁk;<q°‘,a>

where Co is defined in equation (2.20).

04

Now if in addition to obtaining R1 we also wish to choose

that o which will give the best lower bound of Rl,Ri , then

we must simultaneously maximize kn(q,a) with respect to both

q and «.



Now if it can be shown that there exists a (ql,al) which

for all n satisfy (3.49) and also satisfy the relationship

d ok
akn(q1’ 1) n(qual) _ o

du B aq
then we will have that

Theorem 3.3

Ral o poexP(kn<q1’al)) .
_ Vi D
1 ( Sl) 217 n(ql’al) N

where CN-EE defined in (2.20).

Proof: Differentiating kn(q,a) with respect to o we obtain

akn(q,a) -1
(3.53) =g - -%qTe[AA]Te[ (I+¢B) “A-nz] + qbn >

where b is defined in (3.45).

Next, in order to show that the unconstrained (ql,al)
exiét for all n we shall obtain an upper and lower bound for
: al. The upper and lower bound for oy is then used to obtain

a lower bound on q which satisfies (3.49). Then, we can

simplify the existence proof by rewriting (3.52) to obtain

70
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akn(q,a') i -1
(3.54) ———s—g""= (a+l)Tr[AA](bn~%Tr[(I+qB) A-n%])

- Tr[(1+qB)'1AAA] + oTr[AA]

Now, let us assume that we may choose (ql,al) such that

o) 9
kn(ql,dl) ) kn(ql,dl) .
aQ/’ - aq - :

Then (3.53), (3.54) may be reduced to

(3.55) Tr[(1+qlB)'1AAAJ = oTe[AM]
(3.56) %Tr[(I+qIB)_1A-nZ] = bn .

Special cases of solutions of (3.55), (3.56) for (ql,al) are
presented in Section 3.5.
Let us now prove that (ql,al) which satisfy the requirements

of (3.52) and (3.44) exist.

Lemma 3.5. There exists an Nz,(qlal) such that for n > NZ’ (qlal)

simultaneously satisfy (3.55), (3.56), and.(3.50). In addition oy

has the property that

e-Tr[A-nZJ/Z

Te[AaA] .
(3.57) 0 < To[AA] < oy < TeTAL] - 1.
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The preceeding condition on «, clearly satisfies the restriction

1
placed on o in (3.44).

Proof: The easiest way to show that the lemma is valid is to
consider the coordinate system whose axes are « and qllB\l. Now
in order that qllBll = 0 for ¢ > 0 we must have q = 0. From this

it follows that (3.56) intercepts the o axis at o, where

o = Cnexp(-Tr[A-nZ]/Z)/Tr[AA] - 1.
u

Furthermore, for -1 < o < o, the value of Ql|Bl‘ which satisfies
(3.57) is finite, continuous and a(qllB‘l)/aa > 0., Next, since
Tr[AAA] < llA“Tr[AA] < Tr[AA], we have that the o axis of (3.55)

has the property that

0 <o = Tefaan]/Telan] <1

and that for « > o4 and fixed n the value of ql|B|‘ which satisfies
(3.55) is finite, (3.55) is continuous, and 3(q||B||) /3 < 0.

Now we must show that there exists an N2 such that for all

n > N2’ o, has the property that o, >1> o . First, by inspection

of (3.9) we see that Tr[AA] = o(n). Thus, if we can show that

eventually
n/K
. > -
(3 58) Olu Tr[AA] 1,
then we will have shown that eventually ah > 1 . 1In order to

demonstrate (3.58) we note that since, for a > 0,

log(l+a) > a/(1+a) ,



we have that for all n

Tr[A-n¥] > -210g[;§%] .

This condition is equivalent to (3.58). Thus we have the result

that the wvalue N2 defined in the lemma is

N2 = {n:n/k/Tr[AA] = 2}

Finally, in order to complete this proof of Lemma 3.5, we

must show that the value of q which satisfies (3.55), (3.56)
also satisfies the requirements of (3.50); i.e., we must show
that qq is to the right of the singularities of @Tl(q), that is

we must show that there exists a qq with the properties that

(3.59) -1 < qlllBlll <0,
OZ=O(1

and satisfying the relationship

=

(3.60) %Tr[(l+q1B)'1B] = a_
- 1

Now, since we don't know «, precisely but do have an upper and

1

lower bound for it, we shall show that for o, in this range q;

1
does indeed satisfy (3.59).
We begin the proof by noting that if al satisfies (3.58),

then for n > N2

(3.60) : b = Tr[A-nZ]/2 .

Next, we note that for 1 € (-1/|18]],0),

73
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—%Tr[(I+qB)_1B-(a+1)nTr[AAjZ]
is continuous and monotone in q. Furthermore, since

lim Tr[ (T+qB) " 1B~ (1) nTr[ANIE] = © > a,
4
q

where £ = [-l/llBll], and

) Tr[AA ] Te[A-nE H+Tr[AAN ]

ol
( 2

3T (T+qB) "B~ (o+ D nTr[ AN ]E] '
q=0

Tr[AA][(ggl)Tr[A-nZ]+a]

IA

IA

Tr[AA][(a+1)bﬁ+a] =a ,

we must have a unique q which satisfies (3.59).

Thus we have completed the proof of te@ma 3.5, and hence,
Theorem »3 .3. -

Thus in this section we have obtained an asymptotic estimate
of Rl. If one compares this quadratic loss estimate with that
which was obtained for the constant loss case, it can be seen
that the order results are the same,

In the next section an upper bound for R1 is obtained.

While it has not been done in this thesis it would be Wofthwhile
to compare the asymptotic results which are obtained for the

more easily derived upper bound with those asymptotic results

which were obtained in the preceeding section.
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3.5 ASYMPTOTIC EVALUATION OF UPPER BOUND FOR Rl.

3.5.1 Introduction. In this section the results obtained in

Section 3.4 are applied to the case in which the diagonal terms
resulting from the orthogonal decomposition of the positive
definite matrix T are of the form o, = 1/i2, i=1, 2,... 1In
order to siﬁplify this application we have also assumed that the
positive definite quadratic loss matrix A is diagomal. Thus

ai >0, i=j

(3.61) A= {aij}i,j=1 and aij = { 0, i # i

In Sections 3.5.1 and 3.5.2 asymptotic expressions for R1 are
respectively obtained for the cases in which Zai < ® and a, = 1,
i=1, 2,...

The reader should note that these asymptotic evaluations are
only being carried out to demonstrate a solution technique. For
this reason the estimates for R1 and R2 will only be of order
accuracy, i.e., the approximation will only be accurate up to the
coefficient of the exponential rate of decay of the risk. More

precise asymptotic solutions may be obtained with a computer.

3.5.2 Asymptotic Solution for R

1 for a Case in which Tr[A] < o,

In order to obtain an expression for R1 we must first obtain
a simultaneous asymptotic solution (qz,a) to the set of equationms

(3.55) and (3.56). Now using the fact that A is diagonal we may

reduce equations (3.55) and (3.56) to the forms
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A,
i

Ly
(3.62) 5 /L

= 1oglD /((er+1) Tr(an))
i1 1+ql((a+1) TrlAN] Mg+ 2x§ a, o8-/ ) TrisA))]

and
® )\.jz_ ai
(3.63) ) = = o Tr{AA]
: o1 l+ql((a+l? Tr[AA)] Mt 2N 8y
Tr[3]/2
where Dn = Cnen r(zl/ nd

TrlAA] - Tr[A] .
Now since @ > Q0 we may write that for all i

2
(o) Tr(AA} M > AL a; .

Therefore we may make the following approximation of the left hand

side of (3.63):

2

o
o A’i ai

l+ql((a+l) Tr[AAJ Mgt zxf‘ai

)
i=1

}' i i
~

i l+ql(a+l) Tr[AA] Mg

~ rlal/(1+q) (o41) rrlal).
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Thus (3.63) reduces to

(3.64) 1 ~ O
1+ql(cx+1) TrlA]

Now in order to reduce equation (3.62) +to a solvable form we
first note that its left hand side may be reduced as follows.

First, applying the asymptotic technique of Section 2.3 we obtain

L
2

o
|1

n I (1+n/i%)
i=1 -

1]

Ij%N/sinzngn /ﬁ? o /572

and therefore

log [D /(g+1) Trlar]]l ~ m/n/2 .

Finally, using the result that

@

| }jl/(je+ %) = [ coth (mx) - 1/x7/2x
J=1

~ T/2x
we can approximate the right hand side of (3.62) to obtain

1

5 Tr[[I+qlB3-l A7 % Zki/(l+q1(a+l) TrlA7 hij

= % n/(i2+n(l+ql(a+l) Tr{A]))

e
78
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1{_m:[(1+q113)"11\] ~ T /1/ (4 _\/:l+q_l((y+l) Tr[A] )

Combining the above results, we may now asymptotically reduce

equation (3.62) to the form

(3:65) 1 ~ 1l .
' 2 /1+ql(o,+1) Tr(A)

Solving (3,65) and -(3.64) simultaneously we now obtain that
o b
q, ~3/( 20 rlal)

We can now use this "approximate-simultaneous-asymptotic-

solution® to obtain a rough expression for Rl' First, since

ql(a+l) Tr(A) ~ - 3/4 we may reduce @g(ql), defined in (3.47),

to the form

o .1
§%(g,) = I (1+q (o41) Tr(ah) A+ 2% a,) 2
11 . 1 i i 1

J_:l .

© i

~ (l+qln(a4l) Tr(A)/(i2+ n)) 2
i= .

]
I'EI
[

Furthermore we may approximate 4y 8y by 9 &, ~'qfrr[Aj(a*l) log Dn

~ - % (n /572) .

¥
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Finally, since we are only concerned with obtaining order

asymptotics we may approximate (3.60) with

. o .
inf RT o (
nf By exp(kn(ql,al))

= exp(ic (a),0)) ~ e " P/E

3.5.3 Asymptotic Solution for R, for a case in which Tr[AJ = ®,

1

Let us now consider the case in which A, the quadratic loss

matrix is diagonal and 8, = 1, 1 =1,2¢es. In this case

Tr(AA] = Tr(A)

NTT\/D. .
2

Using these results, plus the fact that for all i, hi = 0((or1) Te[A DN,
we may approximate:the left hand side of (3.63) with

o

Z >~i2/(l+q:L (o+1) TrlA] Myt exf)

i=1

©

~ ) /(g (on) Al )

i=1

@©

- 1 o1 n
ale+l)  q(e#1) Trlp) iZl 154 n(l+q (o*1) Trlal

~ = [0 - 3/arq (o) TIA) ]

Qi(wl)
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Thus in this case (3,63) asymptobtically becomes

(3.66) S [1 - Y/Tra(en) Tr[Aj] o @ Tr A
q.l(a+l) ) ’

By a similar argument we may asymptotically simplify (3.62) to

obtain

1 ‘
(3.67) ~1,

2 V1+q, (a+l) TrlA]

which we may write as

q, (%+1) TrlA] ~ - iz .

Simultaneously solving (3.67) and (3.66) we obtain

o~ 4/3

ay ~ -9/(28 Tr[A]) ~ -9/(1k 7 /E) .
Following the procedure of the previous example we obtain
1 m Vo/k
$
L) ~e

and

e, ~ Tr[Aj(d+l? login ~ -3 m /n/8 .

Ignoring the non-order terms, we obtain

ine B o o” T VR/8
ol
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Hence, for the two cases considered, we have shown that the

upper bound for the type I risks obtained for the quadratic and
the asymptotic evaluation of the constant loss are of the same
asymptotic order., Differences between the case for non-finite
and finite A begin to appear in the "non-order" asymptotic terms
which may easily be obtained from "expansions'" used in the theory

and by computer solution.
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APPENDIX

In this appendix we shall state and prove an unpublished
result due to H. Rubin. In doing so we shall use the notation

of Section 3.2 except as noted.

Recall that

1
1

AAA

o
|

= (1+2s1) Bt

(1+25,) € +2s1A+2(1+2s1)AAA)-1AAA .
Theorem A-1

1f -t, ||A|| uniformly bounded below 1 and above 0

then

Te[Q] - Tr[(1+2t1A)’1A]
n

n
._’ P ’ .=1,2,.ouo .
qJ n 9 ]

Here we define q? to be the jth largest eigenvalue of Q and

1 to be the jth largest eigen value of [(1+2t1A)-1A] .
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Proof:

Let us define the projection

E = [_m- 1 m=1,2,...,
m 0 0~

where E 1is infinite dimensional-and Im is the m dimensional
m

identity matrix., We also define V. = E Al
mn m

Definition A.1 If Cn is positive definite and symmetric then we

define C = C to mean (a) Tr[Cn] - Tr[C] and (b) the ith largest
characteristic root of Cn converges to the ith largest characteristic
root of C. Now in order to prove the Theorem we need the following

lemmas.

Lemma A,1. Clearly

Here, since we are dealing with compact operators we may still use
llAlI to denote the largest eigenvalue of A as well as the norm

of the operator A. Next we must show
Lemma A.2

V AV =A[ as m,n ~ ],
mn mn

Proof:
Let us define the ith largest eigenvalue of R=V AV gas
mn mn

r,. Then we may apply the well known result that for R, real and

symmetric
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(1)

o~
l—l
1l
5
fob]
i
N
b
e

1<k<n

where the max is taken over the set of all k orthonormal vectors

[see [3], p.77]. Now since Tr[R] < Tr[A]

k k
max E:(X(i)'Rx(i) < max E: X(i), Ax(i)
i=1 ) i=1

X(l)..X(k) X(l)..X(k

k
- ) a,
1

i=1

we need only show that for eack k, given € > 0, we eventually have

that
k k
(A.1) Zr. >z a, - €,
i i
1 1
k k
But having shown that E:ri 1 E:ai t TrlA] < » vk
1 %1 K

we will have shown that R = A.

Now in order to show that (A.1) holds we let Xi be the eigenvector

associated with a.. ie AX, = a . X,.
i i ii

Next, given § = {8:6 = 5||A” [6+2]} and for m,n sufficiently large

we have that

llvmnxi-XiH <6 ,i=1..k

which implies that
lav_x -4 |l <llalle

X.
1
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But then it follows that

X' V. AV X, - X' AXi
1 mn mn 1 1

1] 1
= |(Xi an - Xi)(A an Xi - Axi)

+ 2D Ax, = Ax)]
1 mn 1 1
< 8 ||a]| [6+2] = ¢ . Thus (A.1) holds.

Thus we have demonstrated lemma (A.2).

Next, if we use the fact that the eigenvalues of the real

-1

matrix [I+2¢t AV ) Y AV are the same as those of the
mn mn mn

1 an

AV ]fl \Y A one can use
mn

1
real symmetric matrix A%V [T42t
mn mn

v
1 mn
the proceedure which was used to demonstrate the proceeding Lemma

to show
Lemma A.3

[I+2t Aav 11y av = [T+2c. A1 1A,
mn mn mn 1

v
1 "mn
We are now in a position to begin the proof of the theorem.

First we note that for any symmetric matrix S we have the result

that
(4.2) E[ESE + «(I-E)) P E <35 ado

* m m m m ? g
Furthermore since $; < 0 and A-I < 0 we have that

(A.3) I+Zs1 A+2t1(1+231)AAA = (1+2s1)(I+2t1AAA) + Zsl(A-I)

> (1+251)(I+2t1AAA)

Now if in (A.2) we let ao=1, S= I+ ZSlA + 2t1(1+251)AAA and
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combine the result with (A.3) we obtain

-1
(A.4) Em(I+231 an + 2(l+231)t1 an A an) Em

-1
< (I+231A + 2t1(1+Zsl)AAA)

< (1+2s1)'1 (I+2tlAAA)'1.

Finally, since the eigenvalues of Q are the same as those of

1 - 1
D= (1+231)A2 A(I+231A+2(1+231) AAN) 1 AA® , let us consider

the inequality

1 -1 1
2 2
A%V (I-+2s1 \Y N + 2(1+2s1)t1 an AV ) vV A

D = (14+2s
m 1 mn m mn mn

N

> - £ L o
<D < A% A(T+2t AAM) Lpa% = 5% [I+2t1A] La

which follows from Lemma (A.3) and (A.4) . Now if we can show
that the eigenvalue of the left and right hand side of (A.5) are
asymptotically equal then we will have proved the theorem.

In order to show this we first note that applying lemma
A.3 we have that given € > 0 Hbmo’no such that for all (m,n)
m > m_,n > n we have the condition that for all i ‘ai=bﬁmn < e

1
V AV _)?V A
1 mn mn mn

o

i
where b, is the ith eigenvalue of B=A®V (I+2t
imn mn

Furthermore, since meEm — 0 we have that for fixed m
n

|d?-b?l <|lp-Blj= 0, i=1,2...
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. . . m . m
More precisely, given ¢ > 0 if n > nl(m) then |di-b.i| <e.
Now since there exists an m* such that for m > m¥ n, (1) < nl(m)

we may state that for n > max[no,nl(m*)j we have that lai-blzl <2e¢?®

ldi-q, | < 2e, 1=1,2...
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