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CHAPTER 1

ON A MATHEMATICAL THEORY OF QUANTAL RESPONSE ASSAYS

1. INTRODUCTION. Consider the following biological phenomenon.

At time t = 0, each member of a group of hosts such as animals is
injected with a dose of a specified virulent organism such as

viruses or bacteria, which elicit a characteristic response ffom the
host during the course of time. This response may be death, develop-
ment of a tumor or some other detectable symptom. If n(t) denotes the
number of hosts not responding by time t, the plot against t of either
n(t) itself or of the proportion n(t)/n(0) is known as the time depen-
dent fesponse curve. These response curves differ with the dose and
with the type of the organism. However, generally speaking, the larger
the injected dose, the sooner the host responds. About seven years ago
Professor Puri sought to explain these observed response curves through
a suitable stochastic model. Upon a search of the existing literature
at the time, it was found that most of the models considered until
then, were based on the hypothesis of existence of a fixed threshold.
This hypothesis postulates that while the organisms are undergoing a
certain growth process within the host, as soon as their number touches
a fixed threshold N, the host responds. In [39], this hypothesis was

abandoned; first because this hypothesis is not strictly correct,



“~second, it is not clear what value one ought to assigﬁ to N in a
given situation, and third because the threshold hypothesis necessi-
tates consi&eration of first passage time problems, thus making the
algebra unnecessarily intractable. Instead an alternative hypothesis
originally suggested by Professor LeCam was adoptéd._ Here, unlike in
the threshold hypothesis, the connection between the number Z(t) of
organisms in a'hostlat time't and the host's response is indeterminis-
tic in character. More exactiy, it is assumed thaf the value of Z(t)
(or possibly of a random variable whoge distribution is dependent on the
process {Z(t)}) determines not the presence or thé absence of response,
but only the probability of fesponse of the host. Mathematically, this

~ amounts to postulating the existehce of a nonnegative risk function

f(x,t) such that

P (host responds during (t,t+1)|not responded until t and Z(t) = x)

= §f(x,t)t + o(1) ,

where § > 0 and f satisfies certain mild regularity conditioﬁs. Sto-
chastic models based on this more appropriate alternative hypothesis
have been explored with a reasonable amount of success in a paper which
appeared in the Fifth Berkeley Symposium [39] and again in a later paper
connected:with bactefiophage reproduction (see Puri [40]). In fact in
[39] , it is assumed that the risk function f depehds not only on Z(t)
but alse 6n.the integral ft Z(t)dt. The latter integral is interpreted
as a measure.of the amountoof toxin produced by tﬁe live bacteria

during the interval (0,t) assuming, of course, that the toxin excretion

rate is constant per bacterium per unit time.



e The above models (see [39], [40]) apply to the situations where

the response causing agents are self-reproducing such as virusés,
bacteria etc. A natural question which arises is how a similar model
based on the alternative hypothesis would behave iﬁ situations where
the agent is not self-reproducing. Such would be the case where, for
rinétance,_the agent is a chemical poison, insecticide or drug. This
type of situation is encountered in what is commonly described as

Quantal Response Assays. The classical 'theory of quantal response

assays has been develbped by Finney [15}, [16]), Bliss [8], and others.
One of the purposes of this theory is-to estimat¢ the relative potency
of one drug against another by using measures such as E.D.50, the dose
which is just about enough to cause response among on the average about
50 per cent of the subjects. Here, typically the experimenter chooses
a set of doses of each drug and tests each dose on a batch of subjects.
At the end of the test, the experimenter records how maﬁy of the sub-
jects responded. In order to analyze the data so obtained, it has been
‘ﬁcustOmary to make the following assumptions:
(i) For each subject there exists a tolerance 1imit or a threshold
level T. -This limit for a subject'is the dose which will be just
sufficient to produce the reéponse, so that the subject will respond
if z > T and will not respond if z < T, where z is the ddséninjected.
(ii) The threshold level T is assumed to be a random variable varying
over the population of subjects, with a common distribution. Thus the
probability that a randomly chosen subject responds after receiving a

dose 2z, is given by

P(z) = P(T < 2)



It is a common practice with the experimenters to use log dose or
x = log z, known as the dose metameter of z. Now if g(y) is a proba-

©o

bility density function so that f g(y) dy = 1, the form of the distri-

-00

bution of log T typically can be represented by the density
dQ(x) = ng(y+nx) dx ,

where vy and n are the usual location and scale paraméters respectively.
With this, one easily cbtains

v+n log z
(1.1 P(z) = [ g(y) dy .

In practice, the choice of g(y) and hence of the distribution of the
tolerance limit T is rather arbitrary. Some of the choices of g(y)

that have been used in the literature are given below.

/

-1/2 1 2 '
(1.2) gly) = (2m) / exp(- 7 ¥); -w <y <o
4
sin 2y 0<y<m/2
gly) =
| 0 otherwise ,
1 2 ‘
(1.3) gly) = 5 sech™ y, ‘ -® <y < @,

The last one has been used by Berkson in his well known work in this

area (see [7]), and leads to the following form of P.
(1.4) P(z) = exp{2(y+nlog z)}[l+exp{2(v+nlog z)}]_1 .

Although the above classical theory has been found useful and is

still being used, there are certain unattractive features in it that



" make one feei like giving it another look. Some af tﬁeSe are as
follows: First, there is the same objection of assuming £he existence
of a toleraﬁée limit or a thresheold level for each subject even though
the random element is introduced only through allowing this limit to
vary randomly from subject to subject. Second, the model as it stands
.does not lend itself to the consideration of any biological mechanism
going on within the host leading to its response. And third, it does
not allow the consideration of the time when the response actually
occurs if it does; all it comsiders is whether the response daes or
does not occur within a fixed length of time. These same features
also underlie the more recent work of Ashford [Zj; Ashford and Smith
[3] and Plackett'éﬁd Hewlett [34], [35], in the case of mixture of
drugs. | .- { ¢

In thi$ chapter we give the classical theory of quantal response
assays a fresh look and construct new stochastic models whiﬁh attempt
to eliminate the above objections. This has been achieved by adopting
the alternative approach of the nonthreshold type as discussed above.
For the biological phenomenon under consideration, a typical stochas-

tic model of the present type would involve the consideration of the

following three main components.

(A) THE INPUT PROCESS. This describes the manner in which the drug

is introduced into the subject. We call it the 'Input Process'. One
could visualize, depending upon the.situation in question, several

- possibilities of inputs such as a}coﬁtinuous time deterministic input,
discrete time deterministic input or a random input according to some

random mechanism.



\“(B) THE RELEASE PROCESS. This describes the manner in which the

subject attempts to reduce the level of the drug within its body.

This may bevcarried out either through the process of direct elimi-
nation of the'drug through natural means or by changing the composi-
tion of the drug itself through biochemical processes. We shall call
this the 'Release Process'. In principle, this would involve the
mechanism going on within the body of the subject.which takes into
account the manner in which the subject copes with the drug. In experi-
mental situations, the input process is generally controlled by the ex-
perimenter. The release process on the other hand‘is,much more involved,
and a detailed understanding of it requires a great deal of experience
and knowledge of the biological system on the part of the experimenter.
This in turn involves, in general, a considerable amount of experimenta-
tion probing into the nature of the release mechanism. There has been,
in faéf, much work done in the past in an attempt to describe this
mechanism for certain situations. For instance, the compartment models
of, among others, Sapirstein et al [49], Bellman [4], [5], are attempts
towards a better understanding of functioning of specific organs and of
various biological systems. Unfortqnately not too many of these models
are stochastic in nature. Again the models in dam theory (see Moran
[32], Gani [17], and Prabhu [37], to cite only three references from
this vast literature) could be found suitable for combining the aspects

of both the input and the release processes.

(C) THE RISK FUNCTION. The most important aspect which appears not to

have been considered before in the context of the classical quantal



response asééys is the consideration of a risk function which ties
up the input'and the release processes of the dfug-to’the causation
of the subject's response. Whether, in any glven 51tuat10n, the risk
functlon depends only on the level Z(t) of the drug at time t, or on
some other factors character1z1ng the biological mechanism going on
within the.body of the subject, would entail a considerable knowledge
of the biological system. |

In the next few sections, we shall attempt fo incorporate the

three aspects listed above into a stochastic model. Although, this

‘has been done here under rather simplified assumptions, the results

do‘indicate that there is something to be gained by approaching this
problem from a structural point of view. In this context the reader
may also find, aﬁong others, the work of Neyman and‘Séott [33] of
great intérest. Here the response causing agent is Urethane, while

the response is the appearance of a tumor in the lungs of mice.

2. A STOCHASTIC MODEL BASED ON A QUANTAL RESPONSE PROCESS.
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2.1. ASSUMPTIONS AND NOTATION. As'a first attempt, we consider here

~ L e R R L R

a simple stochastic model along tﬁe lines discussed above. Followiﬁg
the lines of classical quantal response assays, we assume that for . |
each subject the experiment starts with the administratiohf(input) of
a single dose Z(0) = z at time t = 0, with no other inputs thereafter.
Thus if Z{t) &enotes the amount of drug present At time t in the body

of the subject, it is evident that with probability one Z(t) is non-

increasing with t. The release process is assumed to have two



xbomponents. The first one determines how often and at what times the
releases occur, while the second one associates with each such occur-
rence a nqnﬁegative random variable Y denoting thé amount of the drug
to be released if available. More specifically, if N(t) denotes the
number of reieases.occurring during (0,t], we assumé, for simplicity;
that N(t) is a Poisson process with parameter p > 0. Also, given
N(t), let YI;Y"""YN(t) denote the random amounfé to be released if
available, at the release time points as determined by the Poisson
process. In ﬁarticular, it is\assumed thaf conditionally given N(t),
Y

the random variables Y are independently distributed with

1’ 2""’YN(t)
a common distribution having the probability density fucntion

/

B exp('B)’): }’ > 0’
(1.5) ' h(y)=¢

0 elsewhere ,

\
where 8 > 0. Of course, if at any time, the random amount Yi is
greater than the amount actually available, all the available amount

is then released. From the above construction, it follows that

N(t)
(1.6) Z(t) = max (0, Z2(0) - i Y.); t>0
: . ,=0 J —
. J
where, by convention, YO = 0. Under the Poisson process assumption,

it is clear that how often and at what times the releases occur is not
influenced by the changes over time in the amount of the drug actually
present. This however may not be realistic in certain situations. In.

Section 5 we shall briefly consider a more general model incorporating



-fhis dependénce in an appropriate manner. Finally, we consider

the risk function. Now Z(t) as defined constructiveiy above is

a continuous time stochastic process defined, say, on the proba-
bility spéce (2,G,P) with Z as its state space. Let f(x,t) be a
nonnegative bounded function defined and continuous almost every-
where on fhe product set Z x[0,»). We require this function to be
such that for the given process Z(t), the existence and finiteness

of the integral ft f(zZ({t,w),t) dt is guaranteed for every t > 0 and
for almost all reglizations w of the process Z(t). For a given sample
path w of the process Z(t) we denote the state 6f the process Z(t) at
time t by Z(t,w). The function f is the risk funétiqn in (C) above.

This function relates Z(t) to the process {X(t); t > 0} , the Quantal

Response Process, which we now introduce.

X(t) is defined as

/
1, if the subject does not respond until t

x(t)={

0, otherwise ,

\
where x(0) = 1. Also it is assumed that

(1.7) P(x(t+1) = O|x(t) = 1, Z(t) = x) = §£(x,t)t + o(1) %",
where § > 0. Using a standard argument it is easy to show that

t .
exp{-8f f£(Z(v,uw),t) dt} ,
0

(1.8) P(x(t) = 1|w)



“for a given realization w of the process Z(t). Fidm {(1.8) we obtain

the transform
_ . ot
(1.9)  E(x(t)-exp(-s Z(t))) = E[exp{-s Z(t) - 6§ [ f£(2(1),1)dr}],
: - 0
where Re(s) > 0. In particular, this yields
. . ot
(1.10) P(L > t) = P(x(t) = 1) = E[x(t)] = E[exp{-§ [ f(Z(),t)d7}],
. A 0

where L is the length of time the subject takes to respond. Taking

‘§ in (1.10) as a dummy variable, it follows that the response time
distribution can equivalently be studied by obtaining the distribution
of the integral ft f(Z(1),1)dr. The reader may find ‘this particular
connectionvexplorgd in detail elsewhere (see Puri [41], [42], [43],
[44]). Now L may not be a proper random variable, since the desired

response may never occur. In that case

P(L=w)=Ptno response)=lim E(X(t))=E(exp{-<Sf°° f(Z(7),t)dT}).
: tre 0 ,
Inasmuch as the classical theory relies so heévily onlthe threshold
hypothesis we_make the following remark in passing. Let ZL denote the
effective level of drug remaining at the time of response, given there

is a response. Then by the analysis in [44] the transform of the dis-

tribution of ZL’ given a response occurs, is given by

(1.11)  Efexp(-sz)|L < =] =

B ) ot
S[P(L < «)]" [ Eexp[-sz(t)-] £(Z(t),)dr]£(Z(t),t)}dt .
0 | 0 |
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Unfortunately this expression cannot be applied easily, even in the
special case of Section 4.

At this point,.we introduce the following notation:

Wl(t,z,x) = P(Z(t) < X, x(t) = ]-IZ(O) = Z, X(O) = 1):
W (t,2) = P(x(t) = 1{2(0) = z, x(0) = 1),
W (t,z,x) = P(Z(t) < x[z2(0) = 2) ,

¢1(9,z,x) = f exp (-0t) Wl(t,z,x) dt , . | )
. 0 ]
$,(0,2) = [ exp(-6t) W,(r,z) dt ,
0

o0

¢ (0,z,x) = [ .exp(-8t) W (t,z,x) dt ,
0 .
where Re(8) > 0, 0 < x < z, and R

w(tlo’x)

- W(t,z,z) = 1, for x >0,

W(t,Z,X) = Wl(t,z,x) =0, for x < 0 .

Here the'last line follows from the fact that zero is an absorption
state for the process Z(t).

In the next subsection, we shall attempt to 6Btain expressions
for.the quantifies defined above, through setting up the usual Kolmo-

gorov backward integral equations involving these quantities.
2.2. CERTAIN INTEGRAL EQUATIONS AND THEIR SOLUTIONS.

Unless mentioned to the contrary, we assume henceforth that the

risk function f does not explicitly depend on time t and depends only
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on the lével'Z(t). Moreover, it is assumed that f(x) is differen-
tiable fof,all_x > 0. |

By considering the moment of the first release during (0,t)
and the amount to be reieased, it is easy to estabiish the following
Kolmogorov backward integral equation for the probability Wl(t,z,x)
for.x < z. |

t ' zZ-X _
up foexP{—(u+6f(z))u}[f W (t-u,z-y,x)exp(-8y) dy +
0

(1.12) wl(t;z,x)

Z

[ W (t-u,z-y)exp(-y) dy +
Z-X

+

exp(-6£(0) (t-u)) [ exp(-By)dy] du.
Z

+

Taking Laplace transform of both sides of (1.12) we have for Re 0 > o,

. Z-X
(1.13)  (u+0+8£(z))¢,(0,2,x) = uB f ¢1(9,Z-y,X)éxP(—By) dy +
0 _

+

Z - .
ug [ ¢,(0,z-y)exp(-8y) dy +
Z-X

+

exp (-8z) [u/ (8+6£(0))] .
Simildarly, we have the corresponding equation for Wl(t,z) given by
. t '
Wl(t,z) = exp{- (p+8f(z))t}+u exp(-Bz)f exp{- (u+8£(z))u-8£{0) (t-u)} du+
. R o _
(1.14) : t z : N
+ ug [ exp{-(u+8£(z))u}f W) (t-u,z-y)exp(-8y) dy du,
.0 0
or equivalently in terms of its Laplace.transform, by

(1.15)  (u+@+8£(z))¢;(0,2) = 1 + exp(-62) [u/ (8+6£(0))] +

2 _
+ uB exp(-Bz)f exp(Bv)¢1(9,v) dv .
0 .
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Equation (1.15) can easily be converted into the differential

equation
(1.16) o1 + 6, [B+(8£'-uB) (ue0+s£) 1] = Qurossn) ™,

where ¢i and f' are the corresponding derivatives with respect to z.

Solving (1.16) subject to the initial condition
$,(8,0) = (B+8£(0))7"
we obtain
(1.17)  ¢4(8,2) = (0+u+6£(2)) " exp{-8f A(u) du} .
o _ 0
.1 z \'
- [A() ™" + 8] exp{s [ A(u) du} dv] ,
' 0 0 S
- where

AQu) = [0+6F(u)][0+n+sE@)] ™Y, u > 0.

f
]

§ubstituting (1.17) in (1.13) and solving (1.13) in an analogous
manner we have the solution for (1.13) given by

Z
(1.18)  ¢;(0,2,x) = (@+u+6£(2)) " exp{-8 [ A(u) du} .
: - 0

i

. X , X v .
[(A(O))-l-exp{sf A(u)du}+8f exp{Bf A(u)duldv] ,
0 0 0 "

where x < z. As a check, letting x > z in (1.18) and subtracting the

result from (1.17) we obtain, as expected,
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[ Pz(t) . ., x(t) = 1]2(0) = z,x (0) = 1) exp(-6t) dt
0 ' e

$,08,2) - 6,(0,2,2-) = (@+u+sE(z)) " .

The expressioné for the transforms as given by (1;17) and (1.18), in
principle, are sufficient for determining the joint distribution of
x(t) and Z(t). Unfortunately, to carry out the inversion of these
transforms in this generality is rather cumbersome. Later on, we
shall carry out their inversion for a special case. Again, if

f(0) > 0, using a Tauberian argument it follows from (1.17) that

P(L = »|Z(0) = z) = lim @ $,(0,2) = 0,
80 :

(1.19) ¥(2)

so that L is a proper random variable. In fact, using the relation

(-]

(1.20)  ¢,(0,2) = | exp(-0t) P(L >t) dt = 2 (1 - E[ (exp(-0L) 1)
| 0 o |

=

and (1.17) we have

. Z
7 (1.21) E[exp(-0L)] = 1 - (0+p+6£(2)) Yexp{-8 [ A(u) du} .
| 0

L Z \'
. [0(A(0)) Y+ B0 exp{Bf A(u)du} dv] .

il

One could now easily obtain moments of L from (1.21). In particular,

it follows from (1.20) that - .

(1.22) ' E(L) = lim ¢1(9,z) = ¢1(0,z) .
- e+0
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2.3. PROBABILITY OF NO RESPONSE FOR THE CASE WITH f(O)

_If £(0) > 0, this would mean that the responSe could be caused
even without the presence of the drug. However, in most practical
situations this appears unrealistic, except when thg response is the
death of the subject. Even in the latter case, one could define
response as the deafh caused by the drug and not.by other causes; or
as an approximation to the acfual situation one could ignore the other
causes, in which case f(0) = 0 would be a reasonable requirement. A
more realistic model of this lattér situation would_be the one which
incorporates other causes besides the one due to'fhe drug, since, in
principle, all these causes simultaneously compete agéinst each other
for the life of the subject. However, at presenf’we shall not venture
into thi§ refinement and instead assume f(0) = 0 in what follows.

With this assumption the random variable L is no longer a proper random
variable, since the probability that the subject never responds will be
positive. Again, in quantal response 'assays, where the actual response
times are often not reported, one is typically interested only in the

probability that the subject never responds. This is valid only as an
approximation assuming, of course, that the subject has been under ob-
servation for a sufficient length of time. Using (1.17) with £(0) =

" this probability, denoted by ¢(z), is given by

P(subject never responds|Z(0) = z)

v(z)

11m 09 (0 z) ,
e->0



and satisfies the integral equation
: z
(1.23) exp(Bz)[u+8£(z)1¥(z) = u + ugf exp(BVIV(V) dv .
' , 0

Differentiation of both sides of (1.23) with respect to z leads to

the standard differential equation

(1.24) BB L sy@e) ¢ £ @]

Subject to the initial condition ¥(0) = 1, equation (1.24) has a

unique solution given by
. . .
(1.25) 0(z) = u(u+s£(2)) lexpl-8) 6£(u) [ursf(w)]™t dul.
0

From (1.17) we may derive the distribution of the length of
time until the response is observed given that the response occurs.

For instance, from (1.19) and (1.20) it follows that

E(LI ) -3{8%,(0,2)}
(1.26) E(L|L < ») = p(L[i :) . aé 9=0 ’
P(L <oo)—.,

where in the event the left side is infinite then the limit on the
right hand side as @ -~ 0 is also infinite. The expression for (1.26)
derived using (1.17) is complicated. In Section 4 we shall give a
simplified expression for (1.26) for the special case there.

In theHnext section we exhibit a comparison of the classical
quantal recponse model with the present one through the use of the

expression (1.25).
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3, A COMPARISON OF THE PRESENT MODEL WITH THE CLASSICAL ONE.

It appears rather natural at this stage to look for some kind
of direct comparisor between the present theory and the classical
one. Unfqrtunately there does not appear to be any simple way of
making such a éomparison, mainly because the two theories are based
on entirely different points of view. However, if we insist on
making one, the only way which appears reasonable is to equate the
end result common to both the theories. More specifically, by equa-

ting the probability of no response under the classical theory,\namely

1-P(z) =P(T>1z) =] g(y).dy_,'
v+n log z
to the probabilityﬁéf no response under the presenf model, namely y¢(z),
we ask what risk function f(-)'of the present model‘ﬁopld correspond to
a given density function g(y) used in the classical theory. To this

23
end, one can easily solve (1,2§j for £(z) in terms of ¢ yleldlng

(;.27) §£(z) = [w(z)]'lexp(-ez)[u{l-w(z)exp(ez)}+uefoexp(ev)w(v) dv].

Now by replaéing y(z) with 1 - P(z), one obtains the desired risk
function f corresponding to a given density g of the classical model.
For instance, the risk function corresponding to the normal density

(1.2) is given by
(1.28) §£(z) = u exp(-Bz)[1 - H(y+n log Z)]_l[i-exp(ﬂz)-

Z .
. (1-H(y+n log 2z))+8[ exp(Bv) (1-H(y+n log v))dv],
R



- -1/2 1 2 |
where H(x) = (2w) f exp (- 5T ) dt. Similarly for the density

function of (1.3), we have

a

u exp(-8z) [1+exp{2(y+n log 2)}] - {1 -

(1.29) 'Gftz)

exp (Bz) [1+exp{2(y+n ;og z)}]_1 + ,'.

+

z .
Bf exp (Bv) [1+exp{2(y+n log v)}]-1 dv}.
0 .

As expecfed, since P(0) = 0, we have £(0) = 0 in_the above formulas.

Similar expressions can be obtained for f that corréspond to ofher
densities often used in the classical theory. Unfortunately, as is
evident, all such expressions will usually be complicated, so that
there appears to B;.no rationale for choosing one ér-the other form
of the risk function in practice. In the next section, we consider
the simplest form of the risk function, namely the linear function
6f(x) = &x, Which appears reasonable at least as é'first approxima-

tion. The results obtained by using this simple risk function are

then applied to some observed data.

4, AN APPLICATION OF THE MODEL TO OBSERVED DATA.

We shall now restrict ourselves to the case of a linear risk

function with §f(x) = 6x. For this, we have from (1.18),

(0+u+62) 1 [C(2)] texp (-82) -

(1.30)  $;(0,2,%) -
. ‘ X

« [(1+u/0) - C(x)exp(sx) + 8] C(v)exp(8v) dv],
. : 0

where x < z and

18
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Cw) = [@+)/ (erursv) 1P, v > 0 .
Also the expression (1.17) now takes the form
(1.31)  6,(0,2) = [(@+u)/ (8+u+62)1[C(2)] Lexp(-B2)-
. Z
- [1/6 + {8/ (u+8)} [ C(V)exp(BV) dv] .
. . .

The transforms (1.30) and (1.31) can be easily inverted to produce
the expressicns for wl(t,z,x) and wl(t,z) respectively; for instahce,

when Bu/8 is not .an integer,

(32 W= T gr iy G - 162/ o)) explpddy o, (©

sHE62
+ ; (Bu/é)'(é/B)k d (z)wtkex>{-(u+5z)t}]
k- k+1’B ) p ’
where

. Ak(x) = x(x+1) (x+2) ... (x+k-1), g > 1; Ao(x) =1,

P/
’l

-and for a > 0,

X 0kak-l :
Jk,a(x) =1f0 —?Tij—-exp(-ay)dy;'k_z_1; Jo,a(x) = 17

It is easy to verify that by letting & tend to zero in (1.30) one

L

obtains

(1.33) lim ¢1(9,2,X)=¢>(9,z,X)=u[9(9+u)]'leXP{-BG(Gm)—l(Z-X)}; X <z,
§>0 .

a result for the process Z(t) alone without the consideration of the ‘

quantal response process x(t). Again, for the present case with



f(x) = x, we have from (1.25) the expression for_the probability of

no response, as given by
(1.34) . p(z) = exp(-Bz)[1 + g-z]"1+8“/6.

Given that a response does occur, we have in this case, from (1.26)

and (1.31)

A1, /s -1
(1.35) E(L|L < =] = u [Bf0[1+\’(6/u)] exp (Bv)dv-{z (Bu-8) (u+62z) " }1-

-[exp(Bz){lﬁrz(S/u)}1'43“/6-1]-1 .

Let ZO(E.D.SO) denote that dosage level which will produce a
response with probability one-half. From (1.34) we see that Z0 satis-
fies the relation
(1.36) | n L. BZ . + (BE--l) log[1+ §-Z ]

) : .2 0 § TR

The no;feéponse probability (1.34) and equation (1.36) are relevant
to the data usually available from a quantal response assay. The
expression (1.34) contains essentially two parameters, since p and §
always appear as u/8. However, for fitting the above formula to suit-

able data, it was found convenient to introduce the reparameterization

p = 6/u, A = p(B-p) ,

so that

k/p2 |
(1.37) V(z) = (1+pz) exp{-(p+A/p)z} .
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“From (1.37), it follows that Z,

satisfies the relétion

)\
(p+ 2 Z,, + ;7 sn (1+p Z)

(.38) in %.=
The formula (1.37) was fitted to the data based on a étudy of the
toxicity of an insecticide known as Deguelin. Thevdata are due to
Martin [29] and have also been used by Berkson [7] in an attempt to
fit the classical model of the quantal response assays. In the study
proper, concentrations at different dose levels ii of Deguélin were
prepared in an alcohol medium. These were then sprayed on groﬁps of
respective sizes n, of the test insects (Adult Apterous Female) Aphis
.Rumicis. These sprayings were performed in a carefuliy controlled way
uéing a special aféhizer. After spraying, the insects without further
handling weré placed in tubesiﬁith a small amount fobean foliage.

They were checked after about 20 hours for the number T, of deaths in

the ith group. These data are given in Table 1.

TABLE 1: MARTIN'S DATA ON TOXIC EFFECT OF DEGUELIN

Concentration
mg/litre 10.1 20.2 30.3 40.4 50.5

(z;)

Total'number '
(). 48 48 49 50 48

Number of Deaths )
(ry) 18 34 47 47 48
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The formula (1.37) was fitted to the above déta'by using the
standard method of minimum chi-square. The fit appéars quite satis-
factory, since the observed value of the chi-square is 3.69 (3 |
degrees of freedom), which is not significant at the 5 percent level
where the table value is 7.81. Also the method éf maximum likelihood
led to the estimates for the parameters p and u, along with their
standard errcrs, as given below. Using these and the relation-(1.38),
an estimate 20 of E.D.50 was obtained by using a computer search proce-

dure for finding the appropriate root Z, of (1.33). The various esti-

0

mates of the standard errcrs, as given here, are based on the standard

large Samp1e~formulas valid for the maximum likelihood estimates.

A

A = 0.00526, p = 0.02428, Y/

13.117

0

~

.- S.E(i) 1-4350

0.00102,  S.E(p) = 0.0143 ,  S.E(Z)

As a passiné\remark, it méy be appropriate to mention here that
we also fitted the fofmula (1.37) to data reported in [7] which pertain
"to responseé to certain bacteria. Here, as expected, the fit was
considerably worse. For the fouf degrees of freedom available in that
case, the observed chi-square was 12.9. This being significant indi-
cates the sénsitivity of the present model to situations where the
response céuéing agent is self-reproducing. The models appropriate
for such situations have already been dealt with elsewhere (see Puri-
[39], [40]). The present model is, of course, not designed for such |

situations.
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FHS. A MODEL WITH A GENERALIZATION OF THE RELEASE PROCESS.

In the release process as adopted in the above model, how often
and at what times the releases occur is not 1nf1uenced by the changes
over time in'fhe amount of the drug actually presenf in the subject.
"In this sectidn we modify the release process of the model in order
to take into account the possible effect of the chgnges over time in
the level of the drug on thé frequency of the relééses. We attempt
here to accomplish this’through a generalization of the Poisson process
of Section 2. Let u(z).be a nonnegative bounded function, which may be

called the risk function for the release, such that

P(a release occurs during_(t,t+r)|Z(t)=z)=u(z)f+o(r),
(1.39)

'P(more than one release occur during (t,t+T)‘Z(t)=Z)=0(T).

The random'ﬁariables Yl,Yz,..., denoting the amoﬁnts to be released,
ﬂif available, at the release points governed by (1.39), are as before
independently distributed with the common distribution given by (1.5).
Clearly, when u(z) is a positive constant we are back to the case of
the P01sson,re1ease process., All the other assumpt1ons of the model
as outliﬁed in Section 2 remgin the same with the-enly exception of
(1.39) and fhat we assuﬁe that £f(0) = 0. It may be remark;&'here that
there is no loss in generality so far as the distribution of the |
quantal résponse process x(t) is concerned, if we éliow u(0) to be

positive. In the latter case we can still fictitiously talk of the

releases, even though the level of the drug may be zero. Thus we



assume that u(0) > 0, for convenience. Let N(t) denote the number
of releases oécurring during (0,tj. Also we introduce the following
notation.

,
v, (k,t,2)

P(x(t)=1, N(t) = k|Z(0)=z, x(0)=1), k > 0,

(1.40) ¢ Vi(t,2) = P(x(t)s1]|Z(0)=z, x(0)=1),

P(N(t)=k|Z(0)=z),k > 0.

V(k,t,z)

It is not too difficult to show that the random variable N(t) is a
proper random variable for every t > 0, so that thé probability of
an infinite number of releases occurring during a finite time inter-

val is 2ero. As such
- vl(t;z) = 1 v, k,t,2) .
i k=0

Again taking into account the first release, if it occurs, it is easy

to establish the following system of recurrence relations for the V's.

(1.41) v, (0,t,2)=exp{- (u(2)+6£(z))t}.

: t z
(1.42) Vl(k,t,2)=u(Z)f exp{- (u(2)+8£(z))ul{[ Bexp (-By)V, (k-1,t-u,z-y)dy
. , 0 0o ,

+exp(-Bz)V(k-1,t-u,0)}, k > 1-,

Let

| exp(-8t)V, (k,t,2) dt ,
0 .

*
V.l' (k,Q,Z)

(1.43)

(-]

[ exp(-6t)V (k,t,z) dt ,
0

*
vV (k,0,z)
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~

where Re @ > 0. Then from (1.41) and (1.42) we have

(1.44) V] (0,8,2) = [O+u(z)+é£(z)]]

(1.45)  V(k,0,2) = u(2) [u(2)+6£(2)+0] - (exp(-82)v" (k-1,6,0)

+

z *
B [ exp(-By)V,(k-1,0,z-y)dy}, k > 1 .
0

Clearly

k
(1.46) vit,0) = LA o uon) |
so that

(1.47)  V (k,0,0)

OO R

Using this, one can solve the system (1.44)-(1.45) recursively.
However, our aim is to obtain ¢(z), the probability of no résponse.

To this end; adding (1.44)-(1.45) over the possibleIValues of k, we

,-
'l

obtain

(1.48) V] (0,2) = [0+u(2)+6£(2)] - [1+u(z) exp(-82){07 '

Z .,
+ Bf exp(Bv)Vl(O,v) dv}] .
0

We assume now, for simplicity, that besides f(z), the risk
function u(z) is also differentiable for z > 0. With this (1.48)

can be easily transformed into the differential equationm,

(1.49) 3v;/az+[u(sf'+so+saf)-u'(e+5f)][u(e+u+af)]’1v;=

= [B-G ' A ] [orrsE] ",



“where f' and.u' denote, respectively, the derivativeé of £ and u.

Here we haQe suppressed, for convenience, the argﬁments of all the
. functions such as f,u, etc. Equation (I.49j can bé easily solved
subject to the initial condition V;(Q,O) = 1/0, yielaing

u(z) (8+ny) uo
by veE () L BB(Z))[Q Oy

(1.50) V:(O,z)

[ Bu(e)u () Han(9)) Zexp (8B (s))ds]
0

where Mo = u(O) and

B8+8f (v)

B(s) = f srnvyreEv) O

Flnally, since w(z) = 1lim © V (9 z), it follows from (1.50), that
e-+0

| , . |
(1.51)  9(2) = u(z)[u(2)+6£(2)] expl-8f S£(v)[u(v)+s£(v)] 'av}.
. 0

This then is the generalization of the formula (1.25) where u(z) was
assumed to be a positive constant. <Fimaidy for the special case with
f(x) = x and u(x) = Mg * VX such that Hg + VX > 0 for 0 < X<z, we

have,

-2
_ -1+B8u, (§+v)
(1.52) y(z) = exp{- %gg z} [1 + ﬁiﬂ[l + 5;; z] 0 »2 > 0.

6. DISCUSSION. The present chapter is inspired by the need of giving
a fresh loék at the classical theory of quantal response assays (see
" Finney [16]), which appears to have certain unappealing features. Al-

though most of the mathematical models of random phenomena incorporate

assumptions which tend to simplify the real situation, by now it is



27

“evident that there are certain fundamental differeﬁces in the approach
adopted here from the one classically used. For-ihstance; the present
approach permits tfie consideration of the response time, while the
classical one does not. Unlike the classical approach, the present
one is based on a nonthreshold hypothesis which appears more appealing.

.Most importantly, however, the present model allows ample room for the
consideration of the mechanism of the causation of ﬁhe response, while
the classical theory does not. The mechanism inéorporated in the model
studied here may be oversimplified for certain situations. Hoﬁever,
this, in géneral, can easily be rectified by incorporating more com-
plicated yet realistic mechanisms info the present tﬁeory, usually,
of course, at thé!éost of making the algebra more involved.

In the present model the.only input allowed i; at the start of thé
experiment. However, this can easily be extended to cover the general
case, where the input pattern over time is controlled and détermined
ahead of fime by the experimeﬁter (see Neyman and Scott [33]). Also
situations such as exbosure‘to natural radiation, or to specific
chemicals as part of certain occupational hazards, involve perhaps a
random mechanism for the input process. Such models involving more
elaborate input and release processes supply the inspiration for the
work in subsequent chapters of the thesis.

The classical theory of quantal response assays has been extended
to the case of multiple responses to one or several drugs (see Ashford
[2]) or to the case of a single response’'to mixture of drugs (see

Ashford and Smith [3]). It appears worthwhile to examine and extend
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p
" the present approach to cover these cases. Also, deeper models
along the present lines, while incorporating the role of the de-
fense mechanism utilized by the subject in order to cope with the
drug, are very much needed. This mechanism, of course, may vary
considerably from one situation to another. In several situations,
‘to gain knowledge of this mechanism itself would néed a considerable
amount of further experimentation.

Again, in many situations it may appear realistic to consider

-~

the risk function f not only dependent on the level Z(t) of th;
drug but also on some other relevant functionals of the process Z(t).
(See for'iﬁstance, Puri [39], [40], and the work done at the Statisti-
cal Laborafory, Uﬁiversity of California, Berkeley, to appear in the
Proceedings of tﬁe Sixth Berkéley Sympesium) . : { »

In the present model, a special form (1.5) bf the common distri-
gseres the amounts released, was assumed. This can be

generalized to the case with an arbitrary distribution function, say

- bution of Yl,Y

H(y), for the random variables Y's. One can easily set the integral
equations analogous to (1.13) and (1.15) for this case. For instance,

the equation (1.15) now takes the form
. Z .
(1-53)(u+9+6f(2))¢1(O,Z)=1+u(1-H(Z))(9+6f(0))_1+uf ¢1(Q,Z-Y)dH(y)-
. ' 0

Unfortunately, however, the solution of these equations becomes rela-

tively cumbersome.
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Finéily, it is hoped that, in due course, thé approach adopted
here will find its proper place in its usefulness in comparison to
the classiéél approach. This will emerge even more when the experi-
menter wishes to use the data on response times-ofvthe subjects for
an appropriate analysis, rather than only on whether the subject does

or does not respond in a given period of time.
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CHAPTER 1I

A NEW MODEL IN DAM THEORY

1. INTRODUCTION.

The process {Z(t)} of Chapter I may be thoﬁght of as the level
of a reservoir or dam. The initial injection serves as an input and
the subsequent reductioné in drug level serve as random releases or
demands on the reservoir supply. In this chapter we consider a dam
process {Z(t)} in which both inputs and releases-pfoceed according
to an underlying semi-Markov process. A semi Markovian structure
underlying the sequence of both inputs and releases appears to be
lacking in most of the reservoir and storage modelé that have thus
far been dealt with in the liferature. Also, in the context of the
problem studied in Chapter I, it is most natural to build éuch a
structure into the models for quantal response assays.

! A class of continuous time storage models whiéh in some respects
resembles thé one introduced in this'chapter was .considered by Gani
and Pyke [19]. This class of modeis is such that, for every t > 0,
the net input in the interval' (0,t) is representable as a difference
of two independent nonnegative infinitely divisible proceQSés. More
specifically those authors considered a separable,-centered infinitely
divisiblerprocess {W(t); t 3;0}, and defined constructively the level

Zt of the dam with net inputs described by the process {Wt}. This

they did in the following manner.
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“Set Zy=z > 0. Define the random variables

Tl_f inf{t > 0: W, + z < 0},
-Tl = su?{t > Ty Wt is nonincreasing in (tl,t)}.
Set ,
Wt'+-z ifo<t<n
Zt = < 0 ifr<t«< T1
hT +“WT - 1f t = Tl .
L 1 1

Now define recursively for each k > 1, the random variables

Ty = inf{t Z_Tk_l: Wt + ZT < 0},
k-1
T, = sup{u 2T Wt is nonincreasing in (Tk,t)},
and set
[ W-W, ifT, . <t<t
t T - k-1 k
Zt = ( 0 if Ty <t< Tk
W -W ift=T, .
\ Tk+ Tk- k

Gani and Pyke studied only the distributions of ﬁhé total time in
(0,t) during which the dam is nonempty and empty;

Several other models of interest to the problem of Chapter I
and its éXtension were found in the vaét literatﬁre of the theory of
storage systéms. One,pf/early contributionﬁ to fhisrtheory was a paper
on finite dams by Moran [30]. The inputs flowing into these dams\during

consecutive time intervals were assumed to form a sequence of



\independent identically distributed random variables. Models in
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the literature up to 1963 (see Prabhu [37] and Moran [31]) generally

retained, as does ours, the assumption of mutual independence of the

inputs. An initial attempt to consider correlated inputs was made

by Lloyd and Odoom [26]. In their paper a sequence of inputs during
consecutive discrete time intervals constitute a Markov chain with a

finite number of states. The levels Zt of a finite capacity dam are

observed at times t = 0,1,2,... . During the interval (t,t+1l) an
inflow X, is observed. The distribution of these inputs is assumed
to have a stable limit distribution. An inflow may cause the level

to exceed the capacity of the dam and result in an instantaneous

overflow. At the end of each interval, m units of water are instan-

taneously released, if there are present at least m units. These

authors studied only the stationary solution for the model as t » o,

They point out that the joint process {(Zt’xt)} is also Markovian.
From this the marginal limiting distribution of.levels is derived.
It is claimed that withdrawal policies of a random nature may be
easily incorporated into the model, but not much was achieved in
this directidn. Additional work was done by Lloyd and Odoom in
{27] on tHe stationarity for the probabilities of dam contents.
Ali Khan and Gani [1] studied the time dependent solution of
the Lloyd;Odoom model. They considered a dam of'infinite capacity
with initial content Z, =u>0at t=20. In thé'iﬁterval (t,t+1)

0

an input Xt flows into the dam where t = 0,1,2,..., and
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X, = 0,1,2,..., m < =, such that

P(Xt+1=jlxt§i) = pij (j_,j =0,1,...,m)

At each (t-0) there is a release of water from the dam such that

this is

1 if Z X 1

t-1"¢-1 7

if Z +X <1,

Ze 1% t-1"¢1 2

v

According to this release rule the dam content Zt at time t is given
by

Z, =12

t - t"I+Xt'1 - mln(Zt_1+xt_1) 1), t = 1,2,...

Ali Khan and Gani studied the transition probabilities

P(k,Jlu,l;t) = P(Zt=k,Xt_1=J|Zo=u,X_1=1)

where i,j = 0,1,...,mu > 0;k >0 and X

From this they derived expressions for the transitibn probabilities

is the initial input.

of the dam content at time t > 0.

In a recent. paper [38] Prabhu studied a storage model in which
the input X(t).to a dam with infinite capacity during the interval
(0,t) is'a stochastic process with stationary and independent incre-
ments. The release from the dam is continuous and is at a unit rate
except when the dam is empty. The net input, or input minus the amount
demanded, is‘given by Y(t)=X(t)-t. Prabhu finds that, under the |

conditions E(X(t)) = pt, 0 < p < », and Var X(tj < =, the net input
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\pr0cess Y(t) has an asymptotically normal‘distributién. Other limit
distributions'hé derives are related to the normal in much the same
way as the limit results of Chapter IV. |

As is'evident from the»above discussion and a review of the
literature, most of the models that have been considered up to this
time have either a random input process or a randdm.felease process.
There does not appear to be a model with both raqdom'input and random
release stfucfﬁred as in the model we introduce iﬁ this chapter.

Brief'mention could be made of the models of Hasofer ([201, [21])
and of Karlin and Fabens [23]. The former model, along with that of
Gani and Pyke served as a starting point for the p;eéent model. The
latter paper describes a discrete time inventory model in which only
releases proceed according to an underlying semi-Markov structure.
However in both of these models the ievel of the process takes values
in the interval (-=,h], and therefore their applicability to the prob-
Adem of Chapter I is questionable. With fhis we turn to the semi-

Markoyian model.

1.1. THE MQDEL. ‘ |

In order to set forth a constructive definition of thg process
{Z(t)} for_our model, we first introduce some auxiliéry pr&éesses.
Consider a‘doﬁble sequence of random variables {(Jn,Tn), n é 0,1,...}

taking values in the state space X x[0,») withZ = [1,2]. {(Jn,Tn)}

0

is defined on a complete probability space (Q,Q,P) such that T0 =

a.s.,
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P(J0=1) =a;,1is= 1,2; a, +a, =1,

1 2
and
PUJ =], Tn < X|Teud 0TI e T (00 =1)
| =P(J =i, T_ 5_x|Jn_1=i)
=Q;5 (1) = pj ;H; ().
“for i,j ; l,é, xa(-m,m) an& n=1,2,... . The Qij(‘) are nondecreasing

and right continuous mass functions satisfying

(i) Qij(x) =0 for x < 0
(2.2)
(ii) § Pjj =1, wherep;. =Q;;(+=) .
Thus Hi(t) = Z Qij(t). It is assumed that Hi(0+) <1, 1i=1,2. and that
- j
EHj = 1’0(1-1{:i (u))du < =, j = 1,2,

It is assumed that 0 < Pjj < 1, i,j = 1,2. The matrix P (pij) is a
stochastic matrix and for this reason we shall hereafter drop the sub-

scripts on the p's and set 1l-p = Pypp @ = We assume further that

Po1-
p and q are independent of time.
The marginal sequence {Jn, n > 0} is a two state Markov chain with

P(J_=j|J_ ,=1) = p... Given the chain {J_} the random variables T_ are
.Tn n-1 ij n n

conditionally independent in the sense that

] N xnIJO,Jl,... -
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Let T = '2 Ti’ n=20,1,2,... . We define the integer-valued
i=0 - ' '
stochastic processes {N(t);t > 0}, {Nj(t);t > 0} and‘{Vt;t > 0} as

N(t) = sup(n: n > O, 1 <t)
Nj(t) = number of times Jk=j for 0 < k < N(t) + 1,
Ve = I

The process {Vt} is the ordinary semi-Markov procé;s of Pyke [46].
Let state 1 denote the input state, and state 2 the release
state. Now.we introduce the independent identically distributed
-nonnegative random variables Xl,Xz,... and, independent of the X's,
the independent identically distributed nonnegative random variables
Yl’YZ"" . The random variable Xi represents the amount of an
instantaneous input to the reservoir, the randomvvariab;e Yi an

instantaneous release from the reservoir. Let B(x) and D(y) denote

We define the process {Z(t)} constructively as follows. For

0 <tc< Ty» Z(t) = Z(0) and for k :_}, and Ty <t< Tysl

Z('rk—)+Xk L if VTk f 1
Z(t) = ¢ U

max(O,Z(Tk—)-Yk), if VTk = 2.

Here it is assumed that the sample paths of the process (J,T) are

right continuous. Thus the process Z(t) is almost surely continuous

from the right. The process {Vt} and hence {Z(t)} is separable

the common distribution functions of the Xi and of the Yi respectively.
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because of the constructive way each is defined.

In the constructive definition above we may regard X, as the

k
input corresponding to the kth visit of the process Vt to state 1,
and similarly for Yk. If at any time the random amount Yk is
greater than the amount actually available, only,the-available
amount is released and the level remains at zero until the next
input. The distribution of ;he waiting time Tn+1 depends only on

the value of Jn.

From Pyke [46] Lemma 3.1 we know that the two dimensional process

. —l—t'\év'\
(J,t) is a Markov process, and the J process is a Markov chain. -Also;

Ho
since X is finite, it follows (see Pyke [47], Lemma 4.1) that

N

P[N(t) < =, for all t > o]_Tg l}

»%@f‘i:k,x, _
REMARK In terms of the model described above net input in the interval

(0,t) may be expressed as

Nl(t) Nz(t)

W(t) = X, - Y, .
jz1 J jZ; J

It can be shown that when H;= = H is of the form

1.2

‘l
’ ’ [

1 - exp(-nt) , t>0

H(t)=
0 , t <0

\

where n > 0, and when Py; = the present model becomes a special

Py
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T case of that considered by Gani and Pyke [19]. However, the model
of Gani and Pyke does not cover the present more general éase in
which the sequence'of inputs and releases is structured through a
semi-Markov process.

We introduce the following notation.
R, (t,2,x) = P(Z(t) < x[2(0)=z, Jg=i), i = 1,2,

for t >0, z >0, x ¢[0,2), and the corresponding Laplace transforms

\

¢.(0,2z,x) = [ exp(-8L)R. (t,z,x)dt, i = 1,2
1 0 i
and
o
H*(9) = [ exp(-0t)dH, (t) ,i=1,2
1 0 . i \

where Re(0) > 0. We put

/

1 ifw>0

U(w) = <

0 ifw< 0.

\
Considering the first jump of the process, if there is one,
during (O,f], ahd whether it is an input or an output, the following
backward Kolmégorov integral equations can be easily established for

Ri(t,z,x).

«©

o . t
(2.4a) Rl(t,z,x)=U(x-z)(l-Hl(t))+(1-p)f [ Ry (t-7,2+y,x)dB(y)dH, (1)+
00

: t 2z . g
+pf [f Ry(t-7,2-y,x)dD(y)+R,(t-7,0,x) (1-D(2))]dH, (v)
0 0
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- t o
(2'4b) Rz(t,Z,X)=U(X-Z) (1'H2(t))+QI I Rl(t'T,Z+}’,X)dB()’)dH2(T)+
: 00

t 2z
+(1-0) [f Ry(e-m 20y, 00D ()

+R2(t-T,0,x)(l-D(z))]de(T)

(-]

t
(2.4¢) R,(t,0,x)=(1-H,(t))+eq [ Ry (t-1,y,x)dB(y)dH, (1)+
: \ 00
. .
+(1-q) [ R,(t-7,0,x)dH, (7).
0
for t >0, z > 3, x ¢f[0,=).

In this generality/these integral equations are difficult to
solve explicitly. As such we shall attempt, in the next few sectionms,
to solve equations (2.4), in some tractable special cases. In Section
2 we examine the special case where both B and D are negative exponen-
tial distribution functions. In Section §; it is assumed that
H.=H ”E H is a negative exponential distribution function, and B is

12

assumed to be negative exponential while D remains arbitrary.

2. THE MODEL WITH EXPONENTIAL DISTRIBUTION FOR EACH INPUT AND EACH

L R XY

In this section we treat the case where both H1 and H2 remain

arbitrary, and

: 1 - exp(-ay) , y>0
(2.5) B(y) = j
0 » Yy <0
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1 - exp(-By) , y>0

(2.6) D(y)#j
0 . Yy <0,

\
where o, B > 0.
The Laplace transforms of equations (2.4) under the assumptions

in (2.5) and (2.6) are given below for z > 0, Re(8) > 0.

(2.7a) ¢1(9,z,x)=U(x-z)(l—Hi(@))0-1+

+u(1=p)exp{az)ﬁi(@}f exp(-av)@l(G,v,x)dv+
z _

z .
+exp(~82)pH;(9)[¢2(9,0,x)+6f exp (Bv) 9, (6,v,x)dv]
Y 0 . .

s
i

(2.7b) ¢2(9,z,x)=d(x-z)(1-H§(o))9”1+

-]

+aqexp(az)H§(0)f exp(—av)@l(g,v,x)dv+
A

- z
+exp (-BZ) (1"1)H§ (Q) [@2 (Q,O,X)'*'Bf €xp (BV)‘I’Z (9 ,V,X) dV]
0

=]

(2.7¢) ©,(9,0,%)=(1-H5(8))8™ +aqH} (0)  exp(-ay)e (8,y,x)dy+
0 |
+(1-q)H3(0)2,(8,0,x) .

From now on we shall suppress the>argument @ of botﬁ Laplace transforms
‘and other functions of @ except where its presence is deemed necessary.
With regard to the existence and uniqueness of solutions to equa-
tions (2.7}‘we shall construct a solution by converting equations (2.7)
~into two tﬁird order differential'equatibns with constant coefficients

(see‘(2.22) and (2.24) below). A solution to each of these equations
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exists (cf. Ince, [22], p. 73). The uniqueness of a bounded solution
of the equations (2.7) may be shown in the following way. Let
(br,¢2),-(51,52) be two bounded solutions of (2.7). The difference

pair Vl ='§1-¢1, V2 = &,-%, satisfies the two equations

vy a(l-p)exp(az)H;(0)fz§xp(~av)\/1(v)dv

+

' B/
8p exp(-Bz)HI(Q)foexp(Bv)Vz(v)dv

<
]

aqH3 (9) [ exp (-av)V, (v)dv

+

z .
- B(1-q)exp(-B2)H5(8)] V,(V)exp(Bv)dv ,
0

where Re(0) > 0.

Let sup|V,(2)| = M, , sup|v,(2)| = M,.
z>0 20

It then follows that

v, ()|

A

|1y @) [ [(1-pIM +pM, ], -

|/\

for every z > 0. Hence

]

A

(2.8) My < |Hi (9)|M2

2.9) M

A

RO
But (2,8) and (2.9) together imply

(2.10) M, < [HX(0) |[HE(O) M, -
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 Since Re(8) > 0 implies [#5(0)| < 1 and [HE(0)] < 1, the only way

(2.10) can be satisfied is if M; = 0. This in turn implies by (2.9)

that M2 = 0 and hence (@1(2), ¢2(z)) and (51(2), 52(2)) coincide for

every z > 0. The solution to equation (2.7) is thus unique.

THEOREM 2.1. The unique bounded solution of the equations (2.7) is

' given, for Re(8) > 0, by

(2.11a) ¢1(g,z,x):exg(rzz)(amr2)[asgqug(rz-rl)]‘l- |
'{exp{mrzx)[{rzmrl)ﬁqﬂg—{r1+8(1-[l-q]Hgﬂ{r2+B(1—H§)}]
+exp(-r1x){r2+8(1-H§)}[r2+8(1-[llq]HE)]rl/rz},z > x

(2.11b) ¢1(9,z,x)=9'1-exp(-r,k){r2+8(1-H3)}[ageqﬂgtrznrl)]'l-

~{exp(r, z) (o-r) [r)+8(1-[1-q]HS)]
-exp(rzz)[r246(1-[1-q]H§)]r1/r2}, 0 <z <x
(2.11c) @2(e,z,x)=exp;r2z)(s+r2){89[r2+e(1-[1-q]H§)](rz-rl)}'l-
' ;{exp(-rzx)[(rz-rl)BqHE-{rl+B(1—[I-Q]Hz)}{r2+6(l-H5)}]

¥exp(-r1x){r2+B(1-H§)}[r2+8(1-[1—q]H§)]g{r2}, z > X

(2.11d) ¢2(O,z,x)=0—1-exp(-r1x){r2+8(1-H§)}{Be(rz-rl)}-1-

'{exp(rlz)(B+rl)rexp(rzz}(6+r2)rl/r2}, 0 <z <x,

where



(2.12) 1y(0) = - 2A0) LA ?-4 B(0)]%/2,

(2-13) 1,00 = - 3 A@) - J{a@)? -43@1Y2,

and

H]

© A(©) = B-a+a(1-pIH}(0)-£ (1-q)H5 (0)

B (@)

aB{-(l-HE)(1+Hi[q+p—1])+q(Hi—H§)}.

REMARK B(B) may be eapressed in another way as : \

(2.14) B(9) = -ae{(l-H;)(1-H§+qH§)+pH;(1-H§)},

from which it follows that Re(A2—4B(9)) > 0. It follows in turn
from this that Re(ri) > 0 and Re(r,) < 0. Itcéan be

‘shown in addition, that Re(rl) < a, and that —Re(rz) ; 8. Two limit
properties of T, which will be used later on are, for Bq < o p,

: -1 -1 -1
(2.15)  lim (r,(0)) "{r,(0)+B8(1-H%(0))}=q(cE, +BE, )a " [E, p+qE, 1,
oo 2 2 2 H, " °H, Hy" Hy

and
; "
(2.16) lim r!(8)=aB[E, (p*+q)+q(E, -E, )1[Bq-op].
o0 2. H, H) H |

Proof of THEOREM 2.1.’

It can be seen that ¢,(0,z,x) and ¢,(0,z,x) are differentiable
! 2 0. 2.7%
with respect to z. Differentiating each of (Z;Lré) and gg,lfﬁ) twice

with respect to z, and collecting terms we obtain the following two

second order differential equations



(2.17) o+e)[B-a-B(1-q)H;]+¢,[aB (1-q)HS-aB]

=-aqH§[¢i;B¢l]-aBO-l(l-HE)U(x—Z),

(2.18) oy+¢;[B-a+a(l-p)H}]+0, [aB((1-p)H}-1)]

=6pHt [04-a9,]-a80" ! (1-H1)U(x-2).

Here ¢i, @; and @;' are corresponding first, second and third order

partial derivatives with regpsct to z. From (2.18) it follows that

(2.19) 03-a0,= (BpHY) "' [011+0] {B-ava (1-p)HE}+o aB (1-p)HE-1)+

+aeef1(1-ui)U(x-z)] .

Differentiating (2.19) with respect to z we obtain

(2.20).¢5-q®é=(BpHI)-l[@T'+®g{8-a+a(1—p)Hi}+¢iaB((l-p)HI-l)],

and differentiating (2.18) with respect to z we get

(2.21) ¢Y'+¢T{B-a+a(1-p)ﬂi}+¢ias{(1-p)H;-1}=BpHI[¢é-a¢2].

Direct substitution, of (2.20) for ¢3-a¢é and then of (2.21) for

¢é-a¢2, into the left hand side of (2.17) yields, after collecting

terms,
(2.22) ¢¥'+®¥[28-a+a(1-p)Hi-B(1-q)H§]+

+018 [al- (1-Hy) (1+H] (q*p-1))+q (H{-H3) }+

(continued)

44
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+B-a+a(1-p)Hi-B(1-q)H5]-
~a8%e [ (1-H8) (1+H3 (q+p-1)) -q (HY-H3) ]
=-0" 282U (x-2) [ (1-H§)phs+ (1-HY) (1- (1-q)HS)].

Equation (2,22) is a third order differential equation with constant

coefficients. For x > z 9, = 0_1 is a particular solution of (2.22).

The homogeneous equaticn associated with equation (2.22) has auxiliary

equation given By _ '
(2.23)  r°+[28-ora(l-p)HE-B(1-q)H3lr s
v+rB{a[f(1-H5)(1+Hi(q+p-1))+q(HI-H§)]+
+e-a+a(1-p)ﬁ;=s(1-q)ﬂg}- | “
-qBZ[(l-Hg)(1+H§(q+p-1))-q(H;—B§)]=o.

The roofs of (2.23) are'-B, Ty T the last two are defined by (2.12)

and (2.13).
Proceeding in the case of ¢2 exactly as for ¢1 we arrive at the

following differential equation.
(2.24) @3'+¢§[B-2a+u(1-p)H;-B(1-q)H5]+
+a®) [ (- (1-HY) (1+H] (q+p-1)+q (H}-H3)) -
—B+a-a(1-p)Hi+B(l—q)H§]-

-a?8[- (1-Hg) (1+H3 (q+p-1)+q (H}-H3) 19,

=28 (1-H{)qH,- (1-H3) ((1-pIHE-1)]U(x-2)07 .
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For x > 2z ¢, = 9—1 is a particular solution of (2.24). The correspond-
ing auxiliary equation is
3.2

(2.25) 17+r [B-2a+a(l-p)H;—B(l-q)H§]+
+ur[8(_(1_H5)(1+Hi(q+p'1))+q(ﬂi'ﬂ§)'

-3+a~‘a (l-p)ﬂi;a (l—q)HE] -
-a®6[- (1-H3) (1+H] (q+p-1)) +q (H}-HE) ]=0.

The three roots of {2.2%) are a, Ty and T,. Taking into consideration

the signs of Re(rl) and Re(rz) and the range of z in each case we can

express the general solution to equations (2.7) as

(2.26a) ¢1(9,z,x)=COexp(-Bz)+Clexp(r2z)' | s 2 > X

‘ -1
(2.26b) . ¢1(9,z,x)=C2exp(esz)+C3exp(rlz)+C8exp(r2z)+9 » 0 <z <x,

and
(2.26¢) ¢2(Q,z,x):C4exp(rzz) , 2 > X
-1
(2.26d) ¢2(9,2,x)-CSexp(az)+C6exp(rlz)+C7exp(r22)+O » 0 <2 <x,

while ¢2(9,0,x) is described by equation (2.7c¢). In order to determine
the desired constants Ci’ i=0,1,...,8 we proceed as follows. From

(2.7a), when z > x,
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, ,
@27 [ ¢2(9,v,X)exP(BV)dV=exP(BZ)(BpHI)'1[¢1(G,Z;X)-¢2(9,0,XJB'1-
0 _

o«

-a(l-p)HIexp(az)[ exp(-av)@l(e,v,x)dv]
z

and when 0 < z < X
(2.28) f exp(8v)$,(8,v X)dv*exp(BZ)(BpH* [@ (0,2,x)-

-1 -1
~2,(0,0,x)8” - (1-H])0™ -

0

=a(1-p)Hiexp(az)f exp(-av)¢l(9,v,x)dv].
z

Substituting the appropriate forms from (2.26) for oy in the right
‘hand sides of both (2.27) and (2.28); differentiating each of the

resulting equations with respect to z; and collecting terms, we find
-1 ' : o

(2.29) ¢2(9,z,x)=C1(B+r2)(BpHI) exp(rzz)[l—a(l-p)Hi/(a—rz)], zZ > X

and

4

l(’z 30 9,(8,2,x)=exp(az) (a+B) . (1-p) (sp)'1 [exp{- (a*B)x} (€,-Cy) (a+8)_1-
| 'exP{(TI'G)X}CS(rl-a);1+exp{(rz-a)x}(Cl—Cs)(rz—a)'1+
vexp(-ax) (60) 11+
+exp (r,2)C4 (8+7;) (BPH]) H1i-a(1- p)H*(a )" e
+exp (T, z)C (B+r2)(BpH* [1 -a(1-p)Hj (a-T ) 1] +

+971 _ , 0 <z <x.
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Comparing the coefficients of exp(rlz), exp(rzz), exp(az),. and the
constant term in (2.29) with those of (2.26c) and in (2.30) with

those of (2.26d), it follows that
C,=C, (B+,)) (BpH*) "L [1-a(1-p)H* (a-1,) ']
¢ 4T 2/ PP Py 2

Co= (aB)a (1-p) (8p) " [exp’ (- (w+B)x} (C,-C,) (0+8) ™"

+

+exp (~0x) (a9)'1¥C3exp{ (r;-a)x} (rl—cx)-l
(2.31)¢ ]
+(C1-C8)exp{(r2-a)x}(rz-a) 1] |

-1

celes
Cy=Cy (B+r)) (BpH}) ™ [1-a(1-p)HY (a-1) ]

\ c7=c8(s+i2)(spﬂg)'l[1~a(1-p)H;(a-r2)'ll-

~ The expression forvéz(e,z,X) folloﬁs directly once‘ye have found the
solution for ¢1(e,z,x}. That is, we have only to detérmine the con-
stants CO’ Cl’ C2, C3 and C8 now. To do this we substitute the general
form of ¢1 and ¢2 as given in (2.26) into equations (2.7),Comparing the
coefficients of exp(az), exp(Bz), exp(rlz), exp(rzz), and the constant

term in each of these equations, we arrive at the relations,
_co[l-a(l-p)ﬂi-(a+g)'1]-pAH§ =0
.- . -1 * =
Cz[l-a(l-p)HI (a+B) ]—pBH1 =0
(2.32) aqugco(a+s)'1+(1-q)H§A =0

c5[1-(1-q)BH§-(a+e)'fpaqH§E =0

| aqHzcz-(a+3)‘1+(1-q)H53,

}
. O
-
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1

6,(0,0,x)=[1- (1-0)H5] "1 [(1-Hg)0™ vaqhi{ (s0) T +E4C, (avd) s

+c3(a-r1)'1+nca-r2)'1}],

where
A=¢2(9,0,x)+B{C5(exp{(a+8)x}-1)(a+B)-1+C6(eXp{(r1+8)x}-1)(r1+8)-1+
f[C7(ekp{(r2+6)x}-1)—c4exp{(r2+B)x}](r2+8)-1+

«(exp(Bx)-1) (883713,

REPUSE SRS | -1 -1
B=¢2 (Q,O,X_) "B{ '\B"-%) *CS ‘\“4'*&} +C6 (r1+6) +C7 (I‘2+B) }’

and

E=(C0-C2)exp{-(a+s)x}(a+e)_1—csexp{-(a-rl)x}(a-rl)-1+
+(C,-Cg)exp{- (a-T,)x} (a-1,) " -exp (-ax) @) L.

Solviﬁg the system (2.32) with the help of equations (2.31) we obtain

(2.11a) and (2.11b). The aigebra, although tedious, is straightforward

and hence we omit it. Equations (2.31) together with the solution to

(2.32) for ¢, yield (2.11¢) and (2.11d) for ¢,. //
We proceed now to obtain transforms of the (first two) moments

of the process Z(t). We .shall need the following lemma, which follows

itself from a well known result in renewal theory given as Lemma 2 in

the Appendix.

LEMMA 2.1. In order that E[Z(t)] and E[z2(t)] exist and be finite it

is sufficient that both H1(0+) <1 EEQ_H2(0+) < 1, and both E(X) <

and E(XY) < =
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Applying Lemma 3 of. the Appendix to the process {Z(t)} for

v=1o0r 2 we find

E[Zv(t)] = v! xv—l[l—P(Z(t) f_x)]dx;
0

By Lemma 2.1 the right hand side integral is finite. Now, taking

Laplace transforms, we get

f exp[—@t)E{Zv(tzdtzvf exp(«at)f xV-IP(Z(t) » x)dxdt.
0 0 0

The integrand on the vight hand side above is positive. By Fubini's

theorem then

[+

[ exp(-0t)E[Z°(t) Jdt=v] x¥71f [1-P(2(t) < x)]dedx |
0 0 0
ey | xval[g-lef exp (-8t)P(Z(t) < x)dt]ldx .
0 0 - .

By the above reasoning, the desired Laplace transforms

r
l’

gi(9)=f exp(-8t)E[Z(t)|Z(0)=z, J=ildt, i = 1,2

h, (6)=/ exp (-00)E[Z° (£)|2(0)=z, Jy=ildt,i = 1,2
o |

1

defined for Re(9) > 0, can be thained to yield 3

(2.33) gi(9)=e'1[r2(9)+8{1-H§(9)}][anH§(93r1(Oj{rz(e)—rl(e)i]'l'
'{exp{rl(O)Z}(d-rl(g))[r1(9)+8{1-(1'q)H§(9)}] |
~exp{r, (0)2} (a-7,(0)) [, (8)+8{1- (1-q)IH§ (©)ry (0) (r, ()™}

and
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(2.34) hi(9)=9_l[T2(9)+8{1—H§(9)}][anHE(Q)(rl(Q))z{rz(O)-rI(G)}]-1'
{explr; (0)z} (a-1,(0)) [r, (8)+8{1-(1-q)H5 (O)}]
explr, (8)2} (a7, (8)) [, (0) +6{1- (1-q)H3 (8) Hx; (0) (r, ()™}

for i = 1 or 2. The inversion of transforms (2.11), (2.33) and

(2.34) would yield the desired results. Unfortunately, fhe inversion
process appears quite cumbersome. This is due, primarily, to the rather
complicated dependence of T and r, on 0, the parameter of the trans-
form. Even in the simplest special cases the inversion is algebraically
involved. Instead, we proceed now to examine the limiting behavior of

the process {Z(t)} and the asymptotic behavior of its moments.

£
THEOREM 2.2. Z(t) ~ Z, as t » o,
where P(Z = =) = 1 if Bq > ap
P(Z < =) =1if Bq < ap,

with the limiting distribution given' by
0, " Bq > ap
(2.35) ¢, (2) =

-1 e
l-eXP{[Bq-ap]x}(aEH1+BEH2)qa [EH2p+qEHIT . »Bq<ap,

for i = 1,2 and x > 0.

Proof: Let wi(x) lim @ ¢i(9,z,x), i = 1,2. By the standard

e-0

Tauberian Theorem 1 of the Appendix wi(x) = lim Ri(t,z,x). The result
Tt

follows upon application of this theorem to (2.11). - //
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In the subcritical case, Bq < ap, the limiting distribution function
is a negative exponential with a poéitive probability mass at zero.
The interpretation of the criterion for the existénce of a proper
limiting distribution for Z(t) is straightforward. When average
inputs per unit time are less than average releases per unit time,
Z(t) has a nondegenerate limiting distribution. When average inputs
are equal to or gréater than average releases Z(t) tends to infinity.
This same condition will appear again in Chapter III in the study of
first emptiness properties. It seems reasonable therefore to dis-
tinguish formally between the following three cases. Borrowing
terminology from branching processes, we shall talk of subcritical,
critical and supercritical cases according as qa_llis less than,
equal to, or greater than pB—l.

We shall study now the asymptotic behavior of the firét two

moments in the critical and supercritical cases.
-1 -1
THEOREM 2.3. If qa = > p8 ~, then

(2.36a) E[Z(t)[Z(O)=z,JO;i] ~ klt (t » )

1 2

(2.36b) - E[2°(t)]2(0)=2,dj=i] - 27 kft (t + =)

and iﬁ_qa_l = pe_l, then,for i = 1,2,
-1/2 1/2t1/2

(2.37a) E[Z(t)|2(0)=2,0p=i] ~ 2(m) k, (t + =)

(2.37b) E(Z° (1) |2(0)=2,0 =] - k,t (t + =) ,

ST e
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where
(2.38) " k,=(Bq-o )(ae)’l{E +qE }*1
(2.39) k2=aB{EH2p¥qEHl}.

Proof: Consider first the supercriticallcase, Bq > op. From (2.33)

it follows that
. 2
(2.40) lim 67g. (8)=k,.
i 1
8->0
For the second moment, from (2.34) we have
(2.41)  1im 0°h, (8)=Kk°.
i 1
e-0
The result for the supercritical case follows upon application of
Tauberian Theorem 3 of the-AppendiX'to both (2.40) and (2.41). In

the critical case, since

*(2.42) lim 93/2g.(9)=k1/2
. i 2
60
and
. 2
(2.43) lim © hi(9)=k2, '
8-+0 g
the same theorem yields the desired result for i = 1,2. e //

In the special case where H1=H2 = H and 1l-p=q the underlying
structure is that of a renewal process. Moreover, at each renewal
point with the same probability p an input is observed and with

probability (1-p) a release is observed. Results are known for
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discrete versions of this problem, as reported in Takacs [52], for
example, and for the continuous time case as examined by Erdos and
Kac[12]. For this special case the solution to the integral equa-

tion (2.7) takes the relatively simple form (cf. (2.11)).
-1
¢(9,z,x)=exp(r2;)r1(r2+8)[aBQ(rl-rz)] .
-{exp(—rzx)(a—rz);exp(—rlx)(a-rl)} s zZ > X
6,2,x)=0" " ) 0 -1
Q( ,Z,X)— 'eXP('Tlx (a—rl)[aB (rz'rl)]
'{exp(rlz)rz(r1+6)—exp(rzz)r1(r2+6)}, 0 <z <x,

where Re(8) > 0 and

1

r, (0)=-2"ter2 2412,

rzt@):-z—lc—z—l[c2-4d]1/2,
and

c=p (1-H* (8)p)+a{ (1-p)H* (0)-1}
=-aB (1-H* (6)).

3. THE MODEL WITH GENERAL DISTRIBUTION FOR EACH RELEASE AND EXPONENTIAL
It is natural to ask what generalization can be made of the model
treated in Section 2. Specifically, we are interested in freeing that

model from the restriction of exponential distributions for both inputs
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and releases. In this section we examine an initial attempt to consider
more general distributions B{(x) and D(y)} As mentioned in Section 2
with both B and D general a solution, if it exists, is very difficult
to generate, by use of transforms or other means. The price of
generalizing even one of those distributions is tﬁe sacrifice of the
semi-Markovian structure of the underlying process. - Therefore in this
section we abandon the underlying semi-Markovian structure by setting

H1=H2 Z H, and by assuming that

l-exp{-(A+w)t} , t >0
H(t)=
0 , t <0,

where 1-p=)/(A+u) and gq=p/(A+u), and i,u > 0. Thus the underlying
process is Markovian, a fact which allows us to consider not only
the backward Kolmogorov integral equations but also the forward
integral equations. In the present case equations (2.4?3 reduce to
a single equation. A solution of the backward equation, the minimal
solution, can be constructed using successive approximations. This
minimal solution satisfies also the forward equation and is minimal
for the latter. Since N(t) < «, almost surely, here the forward
version of equation (2.45) is valid and can be established by consid-
ering the nature of the last jump of the process Z(t) before time t.
Considering.the last jump of the process (0,t], if there is one, and
whether it is an input or a release the fcllowing forward Kolmogorov

integral equation can be established for

TN Ca o A R S AT R P P T B



R(t,z,x)=P(Z(t)§;|2(0)=z) for the case z > 0.

(2.44) R(t,z,x)=exp{- (A+p)tIU(x-2z)+

t X :
«1[ exp{- (A+n) (t-1)}dtf R(7,2,x-y)dB(y)
0 0
t -3
+uf exp{- (\+u) (t-1) Y[ R(t,2,x+7)dD(y),
0 ' 0
where now z is fixed. The Laplace transform of (2.44) for Re(8) »
is |
X
(2.45)  ©(0,z,x) (A+u+0)=U(x-z)+1[ ©(8,z,x-y)dB(y)+
‘ 0
+uf @(0,z,x+y)dD(y).
0

The uniqueness of the solution of equatioen (2.45) is proved as
follows by use of the principle of contraction mappings. Let M be
the met;ic space of all bounded complex-valued functions defined on
0 < x <= and integrable in any finite subinterval of 0 < x < =,
Take as the metric for this space

o(f,g)=sup|g(x)-£(x)| , f,geM.

x>0
- @

Now define a mapping, A: MsM, of M into itself, by the equation
-1 1
A®(X)=U(x-2z) (A+u+8) T +A(A+u+0) [ @ (x-y)dB(y)+
0
. —1 (o)
(A +u+0) [ e (x+y)dD(y).
0

Then for all x > 0

IA@Z(x)-A¢1(x)|5JA+u+9|'1p(¢1,¢2)(x+u).
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Hence we have
-1
p(A®),A0)) & [A+u+0] ™" (A+)p (91,9,

Since Re(8) > 0, A is a contraction mapping. By Theorem 4 of the
_Appendix A has a unique fixed point which is the unique solution of
equation (2.45).
A tractable solution is possible for the case in which
l-exp(-ay) , y >0 .

B(y) =
0 s Y <0,

where o > 0, while, the distribution D remains arbitrary subject to

the conditions D(0j=0 and that-its first moment EDﬁf ydD(y) < =.

/

From ncw on we assume that B has the above exponential form

and present the solution, first in the case where 2z=0.
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THEOREM 2.4. For z=0, equation (2.45) has the unique bounded solution

(2.46) ¢(9,0,x)=9_1—(a-y(9)j(aQ)_lexp(-y(Q)x), x>0, Re® > 0

with

(2.47) | exp(-eé)P(Z(t)=o|2(0)=0)dt=Y(g)(ao)’l,
0 .

where y(0) is the unique root of

[=o]

(2.48) x+u49-ax(a-r)’l-uf exp(-ry)dD(y)=0,
0

with 0 < Re(r(8)) < a.

We need first
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LEMMA 2.2. For o, A, u all positive, Re(8) > 0, equation (2.48)

has a unique root r(8)=y(8) in 0 < Re(r(8)) < a-§, where § > 0 is

small. Moreover 0 < |y(9)| 5_a|(u+@)/(x+u+9)|.

We prove Lemma 2.2 at the end of this chapter.

Proof of THEOREM 2.4. We show that the solution of (2.45) is of the

form
(2.49) ©(0,0,%)=0"1+C (@) exp (-rx).

We know ¢(0,0,x) - Q'l, as x » ». Now this is possible only if
Re(r(8)) > 0. Furthermore, from (2.47) we require that Iy(g)i < o,
So the only values!bf r(0) in which we are interested are those for
which 0 < Re(xr(8)) < «. Substitution of (2.49) in£d>(2.45) yields
an identity in x. Comparing the coefficients of exp(rx) and of
exp(ax) on both sides of this identity, we obtain (2.48) and the

relationﬁ

(2.50) o-tec (o) (o) ! = 0.
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AL
By Lemma gx4/equation (2.48) has a unique root r=y(8) in

0 < |r(e)] < ol

0
kE;+9| < a, Re(0) > 0. Once y(0) has been determined
(2.50) then yields the term C(0), which in turn yields (2.46). The
uniqueness of the solution of(2.47) guarantees that (2.46) is the

only such solution. Finally, since

[ exp(-0t)P(Z(t)=0]Z(0)=0)dt=1im ¢(0,0,X)
0 x+0+

(2.47) follows. I /!

We shall next prove a lemma which is essential in the case z > 0.
Let H be an arbitrary function, defined on the nonnegative half of the
real line, which ig‘integrable in every finite subinterval of that
half line and which can be exﬁressed as the differehcg of two ﬁonotone

nondecreasing functions.

Let also
(2.51) K(s) = ) 1) sy,
k=0 \
where
. s '
1) ()= n&-1 s_nydn), o <s <z, k=12,
. 0
H(O)(s)=1 , 0 <s <z,

LEMMA 2.3. (i) The Volterra equation

< ©©

A
o

£
(2.52) F(E) = a+/ F(E-y)dH(y), O <.
_ 0 :
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where F is the unknown function, H has the propertiés listed above,

and a is a constant, has solution given by

(2.53) F(E) = a[l+H(E)+HxH(E)+HrHsH(E)+....]

a K(g),

and this solution ig_uniqpe; provided | K(£)| converges uniformly in

0 <& <b <=

Here (*) denotes the convolution operation.

ig_small. Then for

(2.54)  H(s) = [uD(s)+A(1-exp(as))] (Arus®) ™1, 0 <'s < 2,

where z is fixed but otherwise arbitrary, K(s) exists and is finite for

0 <s < z.

N’
I’

- Proof: (i) The assertion follows first by a substitution of (2.53)
into (2.52). Then the interchange of summation and integration opera-
tions is justified since the. series ]K(é)l converges uniformly in

0<g<b < . Also since | kK| <, for a fixed ¢ > 0, there is an
n0=n0(€,s) such that IH(n)(s)I < ¢ for n > n,. Now consider the
difference, V, of two solutions of equation (2.52). V satisfies

V=H«V, and hence

veiMuy  for all n.



Eut the remark above indicates that H(n)(s) -+ 0 for all s as h -+ o
and hence V(s)=0. The solution of (2.52) is thus unique.

(ii) Let
(2.55) M= | a+p+0] ~L [uAvarexp (0z)].

It can be shown that D(s)/s < A <o for 0 <s < e, g > 0 implies
D(s)/s <A< for 0 <s <z where i is fixed but otherwise arbitrary,
-and A is used in a generic sense here.

Thus M in (2.55) is finite. The assertion of the lemma now
féllows from the fact that |K(s)| < exp(Ms), which is proved below by

using an induction argument .
10 (s) =1
. |
[H1) (s) | < [r+ueo] "t {uAs+A (exp (as)-1)]

:_|A+u+9]—1[uA+aAexp(az)]s=Ms,
‘where in the first inequality we made use of the fact that

k-1 k-1
s

D(s)/s <A <o for 0 <s < z. Suppose ‘that }H(k)(s)l <M / (k-1)!

We have shown this to be true for k = 2. Then
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(2.56) 1% ()]

| A

s o
|A+u+9[-1{uf |H(k—1)(s—u)|dD(u)+
0

[ .
+Af lH(k_l)(s-u)|d{exp(au)—1}}'
0 : ,

I—le-l

| A

S
A+1+0 -1 117 ) (s-w)* ap(u)+
_ . | |

ver [ k-1
axf (s-u) exp (ou)du] .
0

Two successive integrations by parts of the first integral on the

right hand side of (2.56) yields

|H(k?(5)| j_Mk—l[(k—l)!]_1|k+u+9|-1[uA+uAexp(az)]skk-1

= Mksk/k!

It follows by induction therefore that
2.57) E® )| < MK, k=0,1,2,..5 0 <5 <z

Thus | X H(k)(s)l j_ 2 |H(k)(s)| < 2 Mksk/k!=exp(Ms). | //
k=0 k=0 k=0

REMARK. In the case D has a density the condition, D(s)/s < A <= for

o

<s < g, is satisfied and the lemma holds.’ The condition (2.57)

guarantees, by the Weierstrass M-test, that K (¢) converges uniformly.

THEOREM 2.5. Suppose D(s)/s < A < « for 0 s <« for € > 0. Then

for z > 0, equation (2.45) has the unique solution

(2.58) #(8,2,x)=0" -exp (-y(8)x) (a-v(8))

-, ‘
-[(ag)-1+(k+u+9)-1f exp(au)K (z-u)du], x>z
0
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-and

(2.59) ©(8,2,x)=0" - (A+p+0) 1K (z-x)-

-exp (-y(8)x) (a-y(8)) -

Z

-[(qg)—l+(Xfu+9)_1f exp(au)K(z-u)du], 0 < x < z.

0

where K is given in (2.51) and H by (2.54).

Proof: Let

n

%(8,2,x) @i(g,z,x) for 0 < x < z

(0,z,x) ¢2(9,z,x) for z < x .

Equation'(2.45) may then be broken into the two parts

- X
(2.60) ¢l(e,z,x)(x+u+e)=exp(-ax)xaf 9, (6,2,v)exp(av)dv
| 0

=]

Z-X . .
sulf 0 (8,z,x+y)dD(y)+[  ©,(0,2,x+y)dD(¥)],
0 Z=X
and

’ z
(2.61) ¢2(Q,z,x)(A+u+9)=1+exp(-ax)ak[ f exp(av)@l(GQZ,v)dv
0

. .
+f ®2(9,z,v)exp(av)dv]
z

<

+uf ¢,(0,z,x+y)db(y) , x>z .
0 .
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bNow when z=O we saw that ¢2 héd the form
(2.62) ¢2(9,z,x)=e'1+w exp(-rx), x > z Re(r) > 0.

We shall construct a solution of (2.45) this time by putting @2 as

in (2.62) and setting
(2.63) '¢1(9,z,x)=9_1+w exp(—rx)+g(9,z,x), 0 < x <z,

where g(8,z,x) is a function to be determined. Substitution of (2.62)
into (2.61) produces an identity in x. Comparing the coefficients of
exp(-rx) and eXp(—ax) on both sides of this identity we obtain the

relations
(2.64) A+u+9—ax(a—r)-1-uf exp(-ry)dD(y)=0, r # a,
0 :

and
(2.65)) exp(az)(ag)-l—J(O,z)+W exp{(d-r)z}(a—r)_l=0, a £ T,
where

z
(2.66) J(Q,z):f exp(aV)@l(Q,z,v)dv.

0
By Lemma 2.2 we can determine a unique root, r=y(9),from (2.64) which
satisfies 0 < Re(y(8)) < o with Re(8) > O. Straighthrward substitution

of (2.62) and (2.63) into (2.60) leads to the following integral

equation.

S
(2.67)  g(y,z,z-5) \+u+8)=-1+uf g(0,z,2-s+y)dD(y)-
S o
-ar] g(8,z,£+2-s)exp (ag)dE.
0
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Here we have made the change of variable s=z-x, 0 f;s < z. Setting

. T(0,s)=g(0,2,2-s), we see that equation (2.67) becomes

L S
(2.68) T(0,)=- (\+u+0) '+[ T(8,5-y)dH(y),
: 0

where H is defined in (2.54). Equation (2.68) is a Volterra equation, .

so that from Lemma 2.3 it follows that

-r.(e,‘s)=- O+u+0) 1K (s) .

\

.Cbnverting from T back to g we find @l(G,z,x) in terms of W by means
of (2.63);‘ Then using (2.65) and (2.66) we obtain

. Sl 1R
(2.69) J(0,z)=exp{(a-y)z}[(exp(az)-1) (aB) ~-(A+n+0) f exp (av)U(z-v)dv].

In turn, therefore, from (2.65) , 1-7

(2.70) W=exp{—(a—y)z}(u—y)[-exp(az)(uQ)—1+(exp(a2)—1)(aG)_l-

| -(A+u+9)—lfzexp(uv)U(z—v)dv].
0

From (2.62) and (2.63), equations (2.58 and (2.59) now easily follow.//

We shall now investigate the limit behavior of Z(t) as t + ». To
this end we must investigate the behavior of y (@) as 6+ O. .Knowledge
of this behavior will then allow us to apply the Tauberian Theorem 1
of the Appéndix to ¢(8,z,x). By an applicatioh of Rouche's Theorem
we saw thatvequation.(2.48) has, for fixed 0, a unique root r(8)=y (8)

such that 0 < ly(9)| j_al(u+9)/(k+p+9)|., We now prove the following

"lemma.
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LEMMA 2.4. For @ > 0,

0 if auh B, < 1
lim v(8)= e
vg+0 a[l-k{x+u(1-c)}_1] if auk-lED > 1.,

where ¢ is the least nonnegative root of the equation E=9(&),

o

0 <&<1and@is such that ¢'(g) > 0, @"(£) > 0. Here ED=j ydD(y).
. 0

REMARK. The root ¢ exists and its properties are discussed on p. 274
of Feller [13].

L7 '
Proof gf_LEMMAEZ:ST Consider, instead of vy, the function £ of vy

defined by y=a[1-A{A+u(1—£)}_1], whence

€={ua-(u+X)Y}{p(a-y)}_l'and since 0 <Rey(8) < a,VOf_Re(£)< 1. Set
¢(€)=D*(a[l—A{A+u(1—£)}-l]), where D*(¥)=fmexp(—ry)dD(y). The function
®(€) generates a discrete probability distgibution wi?h mean auA-IED,

‘and satisfies the conditions of the theorem. Equation (2.48) may then

be rewritten as

ou Leg=0(E)

The proof from this point on is due solely to Benes [6]. This suggests
that as @ ~ 0 along the real. axis, & approaches a root of the familiar
equation from branching processes, £=0(£). We now show that £E(@) » ¢
aé 0 >~ 0 along the real axis. If @ is real then so is £. Also if

0‘> 0, then £ < ¢, because 8 > 0 = ¢(§) > £, and in 0 < & < 1 this is
possible only if £ < ¢ since ¢(0) > 0, and £=¢(£) has at most two roots

in (0,1) one of them being 1. To show that 0 < 8 < 8' = £(8) > £(8")
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.write €=€C9), £'=£(0'). ThenQ < 6 < 9' and £ < ¢, E' < ¢ imply
¢(E)-0(&') < E-€'. Now @'(y) is steadily increaéing in 0 <y <1
("(y) >0, 0 <y < 1); so if for some u we have both u < ¢ and
¢'(u) > 1, then &(u) > u and $(1) > 1, a contradiction to the fact
that ¢(1)¥1. So ¢'(y) <1 for y < g. Now if £ < &', this would
imply @(£')-2(£) < &'-& < 2(£')-9(g), which is impossible. Hence

E > &', » | |

It remains to show that, given u < ¢, there exists a 8 > 0

v such that £(0) > u. The equation
X = A[eu)-u] , i.e. xk_1+u=¢(u)

~uniquely determines an x > 0, and for this X we must have £(x)=u
or else equation (2.48) does not have a unique root (contradiction).
If now 0 < @ < x , then £(0) > £(x)=u, as was to be proved. It

followé,that as 0 »~ 0 along the real axis

o

1 if or(l) <1

r if #'(1) > 1 .

From this the desired result follows. : //

We now use Lemma 2.4 to prove the following theorem.

THEOREM 2.6. Under the conditions of Theorem 2.5

Z(t)a;Z as t > e,

where
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P(z==)=1 if Ej ¥ A(an)

‘p'(2<§»)=1 if E _;;A(au)

©

independent of the value of z.

The distribution of Z is given for x > 0 by

| 1-(a-y*)a_1exp(—y*x), Ep > A(au)—l
(2.75) P(Z < x)= |

0 LBy <A,

Proof: By the Tauberian Theorem 1 of the Appendix

P(Z < x)=1lim 6¢(6,z,x), for x > O.
640

Applying this argument to ¢ first in (2.46) andlthen in (2.58) we
arrive at (2.75) with the aid of Lemma 2.6. Thusbthe limit is inde-
pendent’of.the initial condition Z(0)=z. ' //
Once again we see that if. average releases pér unit time exceed
average inputs per unit time, then Z(t) has a nondegenerate limiting
distributioﬁ—f an exponential with positive mass at zero.
From Theorems 2.4 and 2.5 we can derive the moments of the proces§
Z(t). Sihcé.Z(f) is a nonnegative random variable Lemma 3 of the Appen-

dix provides us with Laplace transforms of the first two moments of

Z(t). From (2.58) and (2.59) it follows that
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[v]

°(2.71) / exp(-gt)E[Z(t)lz(b)=z]dt
0

, ) VA
Lo=¥(0)) ¢ 40y Le (aepr0) "1 K(z-u)exp (au)du)
- y(8) 0 :

1.2
- (+u+8) " [ K(z-x)dx
0

and

o

(2.72) J exp(-ot)5[22(t)]Z(O)=z]dt
0 '
-2 -1 .12
=2 (a-v (@) [y (@)1 “(a8) "+ (A+u+8) [ u exp(au)K(z-u)du}
0

-2 (A+u+8) f x K(z-x)dx.

Finally, we prove Lemma 2.2 which is stated on page 58.

j . . _ o
Proof of LEMMA 2.2. Let f£(r)+g(x)=)+u+6-ax(a-1) '-uf exp(-ry)dD(y),
0

— o

where £ (r)=2+u+0-ai (a- r), g(r)——uf exp(-ry)dD(y). Consider the contour

C con51st1ng of the following parts

Cl: r=it,~-c<t<c; C2: r=t+ic, O<t<a
CS: r=t-ic,0<t<a; C4: r=g+it, §<t<c

. : i¢ v
Cs: T=a+it,-c<t<§; C6: T=8¢ ', T/2<¢<37/2,

where ¢ > 0, § > 0 and 6 is small. Both f and g are analytic inside

and on the closed contour C. Now on C we have |g(r)| < u, and it is
not hard te show that on Cl’ C2 and C3 Ig(r)l < |f(r)| provided

| ¢ > a/2. Consider now C4 and CS' We wish to show that

|A+p+9—ax(a—r)_1| > § on C4 and C5.- But we have




Re(x+u+9-ax(a-r)'1)'> u
s Re(A[1-a(a-1)"11) > 0

© Re(a(a—r)_l) <1

Set T = x+it. Then we have
] -1
Re(A+u+8-ar(a-r) ) >y

& o(o-x) :_]a-rlz .

4

which is always true.

But on C, and C5 x=a so that the above condition becomes 0 f_ltzl,
Finally, consider C6: Pick ¢ > 0 small enough that the point
t=0(u+0)/ (A+u+8) is contained in C and

]ax/(a—r)l > u+|x+u+9|-for r=6ei¢,n/2 < ¢ < 3m/2.

~

Then on C6

|A+u+9—uk(d-r)~1| i!llk+u+9l—|ak/(a—r)|| > U.

We have shown that |g(r)| < |£(r)| on C. Hence by Rouche's theorem
(listed in thé Appendix) f(r) and f(r)+g(r) have the same number of
zeros inside C. However f(r) has exactly one zerovinside C, namely
r(9)=a(u+9j(x+u+9)—1. This proves the uniqueness and that

0 < |Y(9)I < al(u+0)/ (A+u+0)|. //
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CHAPTER ITI

DISTRIBUTION OF TIME TO FIRST EMPTINESS

1. INTRODUCTION AND NOTATION.
It is reasonable to ask, "how long does it take before the
dam becomes empty for the first time, given that Z(0)=z is positive?"
In the context of the quantal response biological assay problem this
question might be rephrased as, "how long does it take the subject to
reduce the residuéi 1eve1 of drug to zero, and thus, from that point
on, escape the risk of death f?om the drug?" In this/chapter we shall
attempt to answer such questions for the model-presented in Chapter II.
Let Z(0)=z2 Be strictly positive. Let Tg be the time unfil the

dam first becomes empty. That is,
T =inf{t]|2(t)=0,t > 0}.

In addition, throughout this chapter, we shall use the notation

> t|2(0)=2,J=1), 1

Ri(t,z,x)ﬁP(Z(t) < X, TE = 1,2,
R (t,z,x)=P(Z(t)5x, TE > t[Z(0)=z),
1-F, (t)=P(T > t[Z(O)=z,JO=i) I i=1,2,

1-F (t)=P(Ty > t]Z(0)=2),




Cfor t >0, x> 0. Let & (0,2,x), F¥(0), i = 1,2, $(9,z,x), and
F*(8) be, for Re(®) > 0, the Laplace transforms of ﬁi(t,z,x),

Fi(t), i=1,2, R(t,z,x), and F(t) respectively.

2. THE MODEL WITH EXPONENTIAL DISTRIBUTION FOR EACH INPUT AND EACH

T e T T T e I T e I o R

In thié section we consider the model of Section 2.2. The next
section deals with the model of Section 2, 3.

By considering the first jump, if there is one, of the process
Z(t) (cf. Section 2.2) in the interval (0,t}, along with the size
and nature of that jump, we can establish in a straightforward manner

the following baékward Kolmogorov integral equations for Ri(t,z,x)

for z 5 0.
Lﬂ&h‘.‘)‘t ©
(3.1) R L (t52,X)=U(x-2) (1-H, (£))+a(1- plexpf [ exp(- av)R (t-7,v,x)dvdH, (1)
0z
t & _ _
+p8exp(-Bz)f f exp(Bv)Rz(t—r,V,x)dvdHl(T),
00 S

oo

(3.2) ﬁz(t,z,x)=U(x-z)(1-H2(t))+aqexp(az)j / exp(-av)il(t-r,v,x)dvdﬂz(r)
0 z

t z
+(1-q)8exp (-82) [ [ exp(BVIR, (t-7,v,x)dvdH, (1),
00

In terms of their Laplace transforms, (3.1) and (3.2) take the

following form for Re(B) > 0.

o0

(3.3) 51(9;2;X)=U(x—z)(1—Hi)9-1+a(l—p)exp(az)Hif exp(—av)@l(g,v,x)d¥+
z o

Z -
+pBexp(-Bz)Hifoexp(Bv)¢2(Q,V,x)dv
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(3.4) 52(9,Z,X)=U(X-Z)(1—H§)9_1+aqexp(az)H§f exp(—av)%l(Q,V,X)dv+
z _
z~
+(l-q)6exp(-BZ)H§f 3,(0,v,x)exp (Bv)dv.
' 0

"We have the following

THEOREM 3.1. The bounded solution of equations (3.3) and (3.4) is

uniQue and is given by

(3.5a) 61(9,_2,'x)=exp(r2z)[ag(rl-rz)]-l[l_a(l_p)wi/(a_rz)]-l.
{exp (-1, %) (a-11) [1-a(1-p)HI/ (a1 )] [a (1-HE) -1, ] -
-opHY (v, -1,)-exp (-1,x) [a(1-H{) -1 ] [a-T - (1-pIH] }, 25X

(3.5b) $1(9,zQx)=9’l+exp{(z—x)rl}(rl—a)[aegrl-rz)]'?[a(l-H;)—r2]+
rexp(r,2) [00 (r-1) 17 [1-a(1-pIHY/ (o)) -
“{exp (-T,x) (a-rl)[1—a(1-p)H’i/(a—r1)][a(l-H‘i)-rZ]-
-opHy (ry-1,)} , 0 <z <X

(3.6aj 52(9,z,x)=exp(rzz)(3+;2)[gpagni(rl-r2)]‘1.
-{exp(—rlx)(;lrl)[1-a(1-p)H;/(a4r1)][a(lfﬂg)—rzl—

—ap(rl—rz)Hi—exp(—rZX)[a(l-Hi)-rl][d—r2~a(1-P)Hi]},Z>X

(3.6b) 52(9,z,x)=9—1+exp{(z-x)rl}(rl—a)(B+rl)[a(1—Hi)-r2]'

- [1-a(-pHy/ (e )] [a0gp (rpx g1 e

+exp(r22)(3+r2)[aBGpHi(rl—rz)]_y{exp(—rlx)(afrl)‘

.[1—a(l—p)H;/(a—r1)][aCI—Hi)—rZ]—apHi(rl—rz)},oipix,
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where Re(8) > 0 ggg_rl(g) and rz(e) are given by (2.12) and (2.13).

Proof: The technique of the proof is exactly the same as that of

Theorem 2.1. and we therefore sketch only an outline of the proof.
Proceedingias in the case of Theorem 2.1, we arrive at the same set
of third order differential equations (2.22) and (2.24). The general
solutibn to equations (3.3) and (3.4) has therefore the same form as
in (2.26). This is not unexpected, since equations (3.3) and (3.4)
differ from (2.7) by the constant term involving ¢i(9;0,x) in eéch
cése. Thus the same relations (2.31) hold between the constants

C4, CS’ C6’ C7 and Cl’ C2, CS’ C8 respectively. We proceed now ;n

the same manner as before. A substitution of the general solution
(2.26) into (3.3) and (3.4) yields an identity. By comparing'coeffi-
cients on both sides of this identity we are led to the relations
Col1-a(l-p)H]/ (a+B)]-pH]A=O

- - ) =
C,[1-a(1-p)H}/ (a*g)* BPHIB, =0
(3.7) ¢ Cc[1-(1-q)BH}/ (a+B)]-aqH3E=0

anOHE/(a+B)+(1-q)H§A=O

anZHE/(a+B)-(1'q)H§BBl=0,

where
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A=B{C5[exp{(a+8)x}-l](a+8)"1+c6[exp{(r1+8)x}—1](r1+3)—1+
+C7[exp{(Jc'2+8)x~}—1](1~2+£V§)_1+C4exp{(1‘2+B)x}(r2+3)_1 +
+(exp (8x)-1) (80) '},

-1 -1 -1 -1
BFC (a+B) " +Cq (x,+8) 7 +C, (x,+8) T+ (80) ™,
and

E=(C0—C2)exp{—(a+8)x}(a+6)—1—C3exp{—(a—rl)x}(a—rl)_1+
+(C1—C8)exp{—(a—r2)xj(a—rzj—l-exp(-ax)(aG)'l.

The solution of the system (3.7) is obtained with the help of equations
: El ‘ 4;2| 2’6/
(2.31). The'valueélof the constants so derived, when put into (3)36)

yield the solutions (3.5a) and'(3.5b). The algebraﬁ‘although tedious,
is straightforward and thus is omitted. As in the proof of Theorem 2.1

the solution 52, as given in (3.6a) and (3.6b), is derived from the

1
(2;31). We have thus exhibited, by construction, a solution of (3.3)

solution ¢,, as given in (3.5a) and (3.5b), by use of the relations

and (3.4). The uniqueness is argued in the same way as in Section g:g.//
The distribution of time to first emptiness is given in terms of

its Laplace transform in the theorem below. The proof of this theorem

is omitted as it easily follows from (3.5b) and (3.6b) by letting x » e,

while keeping the signs of Re(rl) and Re(rz) in mind.

THEOREM 3.2. The Laplace transforms of the distribution of time to

first emptiness are given by

(3.8) l:’i‘((~))=cxp{r2(0)z}.pll§(9)[Q{l—q('l-p)ll’l‘((-))/((1—1‘2(0))}]-1,2 >0,
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(3.9)  F3(0)=explr, ()2} (B+r,(0)) (80) ", z > 0,

threrl(Q) ﬁrzr(g) are given in (2.12) and (2.13) respectively.
We have seen in Chapter II and wbe shall see again in Chapter IV

that the behavior of Z(t) and of E[Z(t)], for large t, is different

for the three cases, subcritiéal, critical, and supercri‘tical. A

similar behavior is indicated below for the random variable T..

E
Let y. (2) = P(TE=w]Z(0)=z,J0=i), i=1,2,
¥ (2) = P(Tg==|2(0)=2).
‘THEOREM 3.3. (A) The limiting distributio‘n, as t » ‘oo, of TE }i_g_}_\_/ﬂ
0, , L Bq < op

(3.10) y,(2)=

1-p exP{—(Bq-ap)z}[l—a(l-p){a+(8q—ap}—l], Bq > ap
and

0, . _ Bq < ap
(3-}1) ¥, (2)= .

1-exp{-(Bq-ap)z}{B-(Bq-ap) 8" , 89 > ap

~ (B) E[TE[Z(0)=Z,JO=i]=w, i=1,2, z > 0; if Bq = ap and if

Bq < ap, g}_e_n_
E[T.|2(0)=2,J =1]= “HE, -Gk )T 1-prazp]),
E SUI N F ’

and
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E[T,|2(0)=2,9=2]= - (1+82) (8k )™}, (k, < 0),

for z > 0 where kl is given in (2.38).

Proof: For proof of part (A) it is easily seen that

¥, (2)=1im 0 éi(g,z,m), i=1,2 and ¥(z)=1im 0 ¢(0,z,%)
8+0 ‘ 80

and that these limits exist (TE is an increasing function of t). Thus

by the usual Tauberian argument

\

¥, (2)=lim 0(07'-F*(0)), i = 1,2, and y(z) =lim 0(0™ -F*(0)).
60 1 00

With this, formulas (3.10) and (3.11) follow from (3.8) and (3.9). The
results for part (Bl follow from (3.8) and (3.9) aﬁd Lemma 3 of the
Appendix. It is necessary to.épply 2'Hospital's rﬁieiand the limit
result (2.16). | /!
Thus in the case where Bq < ap, T

E

finite random variable, while when Bq > ap it does not. For the sub-

tends in law, as t - «, to a

critical case higher moments may be derived in a similar manner.

3. THE MODEL WITH GENERAL DISTRIBUTION FOR EACH RELEASE AND EXPONENTIAL

~ B e L T T R L

DISTRIBUTION FOR EACH INPUT.

e I N L L e

In this section we study the distribution of TE’ the time until

first emptiness for the model of Section 2,

~

3. ‘As in Section 2,3.
attention will be focused on a forward rather than a backward Kolmogorov
integral equation. Considering the last jump of the process Z(t) during

(0,t], if there is one, and whether it is an input or a release, subject

to the additional condition that the dam is not yet empty at time t, the
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following forward Kolmogorov equation can be established for

ﬁ(t,z,x), for z > 0.

(3.12) 'ﬁ(t,;,x)=U(x-z)exp{-(A+u)t}+
| © t
+)\f
0

t el

suf exp{~ (A+p) (t-1)}dt[ P(y<zZ(1)<x+y,Tp>T|2(0)=2)dD(¥).
0 0 _ '

. X -
exp{- (\+u) (t-1) 31/ R(7,2,x-y)dB(y)
0 o

Since

Py<Z (1) <x+y,Tp>1]2(0)=2)=R(1,2,x+y)-R(1,2,¥),

(3.12) ﬁ(t)z,x)=U(x-z)exp{-(x+u)t}+

t X '
+A[ exp{- (+u) (t-t)}dt[ R(t,z,x-y)dB(y)+
0 0 |

ot ©_ -
+uf exp{- (+w) (t-t) }dtf R(t,z,x+y)dD(y)-
0 0 )

t ©
-uf exp{- (A+u) (t-1) Ydef R(t,z,y)dD(y).
0 0 .

‘ﬁThe corresponding Laplace transform of (3.12) satisfies, for

Re(6) > 0,

-~ x‘-v
(3.13)  9(8,2,x) (\+p+0)=U(x-2)+A[ $(6,z,x-y)dB(y)+
. 0

+ulf 3(9,2z,x+y)dD(y)-] 3(8,2,y)dDly)].
0 . 0
It can be shﬁwn, by exactly the same argument used in Section 2.3.,
that (3.13) has a unique bounded solution, which unfortunately is
difficult to obtain in any closed form in its pfééent generality.

However, there does exist a tractable special case to which we now
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turn our attention. From now on we shall assume that

l-exp(-By), y >0
(3.14)  B(y) =
0, y <0,

g > 0, while D(-) remains arbitrary. With this we obtain, in the

mext theorem, a solution of equation (3.13).

THEOREM 3.4. Given e > 0, suppose D(s)/s < W< =, for 0 <'s < e.

Then the unique bounded solution of equation (3.13) is given Ei

(3.15) 5(9,z,x)=9—1+C(O,z)fA exp(-y(Q)x)-(x+p+9)_1K(z-x), 0 <x <z

(3.16) é(g;z,x)=9—qfc(9,z)+A exp (-y(0)x) : , X > z,
| P |

where . v

(3.17)  €(8,2)=0" (10~ u{1-D* (3 (a-y)o 1317
-1 : -1 “1, 2
[-67{1-D* (v) (a-y)a” 3+ (A+u+0) [ K(z-y)dD(y)+
0

z
+[ exp(av)K(z-v)dv}],
0

' Z
(3.18) A=-a"t(a-y)C(8,2)- (a-v) [ (@) 1+ (1+u+0) "1 [ exp(av)K(z-v)dv],
0

oo

D*(y)=/ exp(-yy)dD(y), and y=y(8) and K are as in Section 2.3.
0

Proof: We proceed exactly as in the proof of Theorem 2.5. Let

5(9,z,x)= él(Q,z,x) for 0 < x < z
8(0,z,x)= 52(9,z,x) for x > z

H(o,z) = [ 3(8,z,y)dD(y).
0




Then equation (3.13) may be broken into the two parts

~ X -~ . :
(3.19) ¢1(9,z,x)(k+u+9)=akexp(-ax)f exp (av) ¢1(0,z,v)dv
0 g
Z-X_ ‘ w
+u[f0 ¢, (0,2,x+y)dD(y)+[ 8,(6,2,x+y)dD(y)]
Z-X

-uH (_992)

and

. yA -
(3.20) @2(9,z,x)(x+u+9)=1+axexp(-ax)[f exp(av), (8,2,v)dv
. 0 -

X
+f 52(9,z,v)dv]+
Z

[>]

+uf 8,(0,2,x+y)dD(y)-uH(9,2), X > z.
0

We shall construct a solution of (3.13) by putting
(3.21) 52=9_1+C*(Q,z)+A*exp(-rx), X > z,
and

(3.22) 51=9_1+C*(Q,z)+A*exp(—rx)+g(9,z,x), 0<x <z,

where g(8,z,x) is a function to be determined, and 0 < Re(r(8)) < a.

_ 3. ‘
Substitution of (3.21) into’(3;}5§'produces an identity in x.

Comparing_the coefficients of exp(rx) and exp(-ax) and the constant

terms in that identity we obtain the relations

(3.23) A+U+0 - Z—}_\r- -uD*(r)=0, afr ,

|

(3.24) 3(0,2)-0"Yexp(az) (07 1+C* (8,2))- @-1) TA*exp( (a-T) 2}=0,

and

80



(3.25) 0C* (0,2)+uH(0,2)=0,
where
Lo Z L
(3.26) S J(e,2)=] exp (av)e, (0,2,v)dv,
0

2. | :
which is independent of x. By Lemma 2.4 equation (3.23) has a

unique root r=y(0) in 0 < |r(0)| Re(Q) > 0

‘}\+ +0|
Substitution of (3.21) and (3.22) into (3/205 leads us to an

integral equatlon of the form
(3.27)  g(8,2,2-5) (\+u+0)=-1H(0,2)-0(071+C(0,2))-
, } s | |
-akexp(-ax)f exp (aw)g(0,z,w+z-s)dw+
0 ,

s | .
+UI g(9,2,2—5+}’)dD(}’) s

0

Now lé; r(8,s)=g(0,z,z-s). Equation (3.27) then becomes, taking

(3.25) into account,
-1 B
(3.28)  T(8,s)=-(a+u+0)” +[i'G(s-y)dH(y),
N » 0

where H is given in (2.54). ,
2,63

Eqnation_(3.28) is the same Volterra equation as (g,98§ and has, as

indicated in_Section 2.3, the unique solution

~ o~

T(8,5)=- (1ur8) 'K(s),

where K(s) = z H(k)(s). Converting from I' back to g we find
. %0
;¢1(9,z,x) in terms of A* by means of (3.22). _Then using (3.24) and

(3.26) we obtain

81
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z .
+C*(O,z)}+(l+u+9)"1f exp(av)K(z-v)dv].
0 B :

(3.29)  A*=-(a-y) [a" 1107}

By the definition of H(6,z) and (3.21) and (3.22) it follows that

H(0,z) satisfies

S S | | BT
(3.30) H(0,2)=0"-u0 "H(B,z)+A*D*(v)- (A+1+8) " [ K(z-y)dD(y).

0
Finally from (3.29), (3.30) and (3.25) it follows that
(3.31) H(e,z)=-[1+ue‘1{1-n*(y)Ca-Y)a‘l}]'l[-9"1{1—0*(Y)(a-Y)a'1}+
_1Z VA :
+(A+p+0) {f K(Z—y)dD(y)+f exp (av)K(z-v)dv}].
0 0o .

Now we get C*(0,z) from (3.31) and (3.25). C* has the form of the
right hand side of.(3.17). And thus A* in (3.29) has the same form

as the right side of (3.18).

The uniqueness of this solution follows in exactly-the same way

as in Theorem 2.5. This completes the proof. //
We now.havé'the distribution of TE given in the féllowing theorém which
| follows from (3.16) by letting x + « and keeping in mind that

Re(y(8)) > 0. |

1

THEOREM 3.5. The Laplace transform of the distribution of T is given,

LN

for Re(8) > 0, and z > 0, by

(3.32)  F*(0)=[0+u{1-D* (v) (a-y)a 13171

pA Sz
[1-p (@) TN K(z-y)dD ) exp (@)K (z-V)dv)].
0




Analogous to the result in Section 2 we have

as t » «,is

THEOREM 3.6. (A) The limiting distribution gf_TE,

Y

given by

o | , if (Mo) < Epu
(3.33) (@ =< |
' 1-[1+u(ED+af1)(a‘lx-uED)‘l]’l-scz), if (Mo) > Epu

where . s ,
S(2)=[ (0™ A-uEy) (Byra 1) - (ue) M K(z-y)dD(y)+

A .
+af0exp(ay)x(z-y)dy}]-

(B) E[Tg|Z(0)=z] = =, if (A/a) > uE,

and .
E[T,|2(D)=2]=u" [1-D* (v*) (a-y*)a 11 W(2) , if (/o) < uEp
: 1
where | . .
W(z) = [1-uCu+) " H{J K(z-y)dD(y)+[ exp(av)K(z-v)dv}],
' 0 0 o
and  y*=lim y(8) (cf. Section 2.3).

6->0 :
We omit the proof as it follows in an analogous manner to the proof
of Theorem 2.5. We see that again in the critical and subg@tritical

cases T. tends in law, as t + «, to a proper random variable, while

E

B .‘l;_li')i"t
in .the sﬂﬁcritical case it does not.
(2%




84

CHAPTER IV

LIMIT BEHAVIOR OF THE PROCESS {Z(t)}

1. THE APPROACH AND SOME NOTATION.

In this chapter we study the limit behavior of the process
{Z(t) }, representing thé 1evei of fhe dam for the storage model
of Section 2.1. A standard approach to this problem would be to
locate first a suitable sequence of points of regeneration of the
process suéh as the time points of first emptiness and subsequent
returns to emptiness in the present case. Then, cbnditioning on the
number and location in time of the points in this sequence, partition
the time interval under consideration into its component parts and
study the éorresponding components of the process separately. It
turns out; however, that this standard approach, although attractivé,
is not the most fruitful one in the present case. Instead we find
it more convenient to consider the sequence of points of return to
the release state,‘which? in general, are not regeneration points of

the process. This consideration leads to the representation (4.5)

which expresses Z(t) in terms of an auxiliary process associated with

this sequence. It is this representation which, when suitably exploited,
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- leads to the main results of this chapter. In Chapter II, the
A ’
solution of equations (;153 for an exact expression of the dis-
tribution of Z(t) was obtained for special cases; in which the
random variables determining the amounts of either inpUts or
releases or both are assumed to be exponentially diétributed.
However, for the limit results presented in this.chapter we make
‘no such assumption.

We carry over all the assumptions and ﬁotation for the
model of Section 2.1. In particular, there we let {(Jn,Tn),
n=0,1,2,...} be a double sequence of random variables taking
values in the state space {1,2} x [0,») where 1 corresponds to

an input state and’ 2 to a release state. We assumed that

T0 = 0 a.s. and that P(J0 = j) = aj where the aj éatisfy (i)

/

aj > 0, (ii) a; +a, = 1, and
P =3, T 5_x]JO,Jl,Tl,...,Tn_l-,Jn_1 = i)
PG, = Ty < al, y = )= By 00 =

for all xe(-®,) and n=1,2,...,i,j=1,2 (cf. also (2.2)) . The

distribution functions Hl(x), Hz(x)‘satisfy H1(0+) < 1, H2(0+) <1

and H1(+m) = 1, H2(+m) = 1. We set
q=0Qy, (=) =P, =10 =2],0<q<1
P=Q,(+) =PI, =2[J =1],0<p <1,




" We have then

Hy () = Z Q (8D

and we assume that

[e]

C(4.1) E, = [ (1-H, ())du < » , j=1,2 .
He o 07

We set

ne-13

(4.2) . T =

T., n=0,1,2,...,
n i

i=0
and define the integer valued stochastic processes {N(t); t > 0} and

{Nj(t);t >0} as

N(t) = sup{n > 0: ©_<t},

Nj(t) = number of times Jk = j for 0 < k < N(t)+1, j=1,2.

Thus Nz(t)_represenﬁs the number of visits to state 2 (release) in

‘the interval (0,t].

The process Z(t) was defined construct1ve1y in Section 2.1. We now

‘introduce some‘additional notation. Let pl’QZ’OS""’ be the sequen
of lengths of time between successive returns to state 2 after time
t = 0. -These lengths are 1ndependent and 1dent1ca11y dlstrlbuted

Set p, = 0, and let ¢ = J p., n=0,1,.... Clearly

Nz(t) =k®g <t<o k =0,i,2,

k k+1?

86

ce



87

“‘Again, Oy (t) denotes the time of the last release, if there is one,
2 ,
before time t. Let us suppose JO = 2 and let vj denote the number
of inputs occurring' in the interval (oj_l,cj) for j=1,2,... The

j-th release must, bx definition of pj’ occur at cj. vy is thus
(starting from state 2) the number of visits to state 1 (input)

until the first return to state 2 (release).

| In Chapter II we defined the independent identically distributed

nonnegative random variables X.,X

10Xg0 e the 'inputs', independent of

N(t), wiih common distribution function B(X), x > 0; also the indepen-
dent identicaily distributed nonnegative random variables Yl,Yz,;..,
the 'releases', independent of the X's and of N(t), with common dis-
tribution functioﬁ:D(y); y > 0. We put, by convention XO = YO z 0,
and assume that B an& D are such that E(X) < = and E(¥) < wf Let the
random variables Vj’ be defined by | |

(4.3) Vj = x{j)+x§j)+.,.+x§;) - Y§é)j=1,2,...,

while V0 is an arbitrary nonnegative random variable. The vj,j=1,2,..,

are independent of the X's and Y's, are mutually independent, and
follow a common distribution, namely that of vy Consequently,

Vj’ j=1,2,... is a sequence of independent identically distributed

random variables.

' Finally, define the following sequence of random variables.

"o = Vo

- (4.4)

Noep = max(Q,nn+Vn+1), n_=_0,1,2,...
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“-. The sequeﬁ;e N has been studied extensively; more.iecently by
Takacs [52]. o

Now by Lemma 1 of the Appendix Nz(t) is almost surely finite
for all tlz_O. This in turn implies there is a last release before
time t and'thét the random variables Vj’ j=1,2,... are also almost
surely finite. Thus, by the above structure and the constructive
-definition of the process Z(t) (cf. Section 2.1) it is eVident that

I )

(4.5) Z2(t) =y gy * zo X £ 20,
2 j= |

holds, almost surely, where It denotes the number of inputs occurring
during (o t].

8 On, 0, H |
In the next section we examine more closely the components

comprising this representation. Y

2. SOME PRELIMINARY RESULTS.
Unless stated otherwise wé take JO - 2 throughout this section.
Then it is easy to establish that
) p(pl f_ X, \)1 = 0) = (l‘Q)HZ(X)

(4.6)

P(p, < x, v, = k) = q(l—p)k_lpH *H(k)(x); k > 1.

1 — 1 21 _ —
From this it follows that
' s T i o1 K1)

(4.7)  Ple; < %) = (1-QH,y(x) + pqH,*H;* } [(1-p)H; (x)] ,

k=1

“and




(k-1
- (4.8) P(v; = 0) = (1-q), P(v; = k) = pq(l-p) ~, k> 1.
We have the following two theorems.

THEOREM 4.1. It has the following distribution for‘t >0,

P(I, = 0) = (1-H)*U(t)
(4.9)
P(1, = K) = q@-p) (e uce), ko2 1,
where u(t) = 2 P(p0 Pyt toy < t).

k=0

Proof: Since P(Nz(t) < ©) = 1 we have

P(I, = 0) = P(I_ =0, Ny(t) = 0)+kz1 P(I, =,0’ N,(t) = k),

or equivalently,
oo t ‘
P(I, = 0)=(1-H2(t))+kzl fo(l—Hz(t—x))dx P(90+p1+...+pk < x)

=(1-H,)*U(t).

2)

Fbr k > 1 we get, by the same argument,

I P, =k, Ny(t) = j)
j=0

I

P(I, = k)

q(1-p)* e 1’*(1 Hy) (6%

-+ t v
k-1 k-1) ¢
q(1-p) Hz*Hf *jzl %(1-H1(t—x))dxp(p0+pl+...+pj < x)

+

q(-p)* (D v,

which is the desired result. : ' //




t @
THEOREM 4.2. ] X, »7T, as t >,
- j=0 J —

where T is an almost, surely finite (nonnegative) random variable,

with Laplace transform given by (4.14).

Proof: The Laplace Stieltjes transform of the random variable

It

'Z X. is given by
j=0

Le

(4.10) E[exp{-s ) Xj}]=(1—H2)*U(t)+
j=0

+kzl[Y1(S)]kq(l—p)k_le*ka_l)*(l-Hl)ﬁU(t),

where s > 0 aﬁd v.(s) = Elex (—sX)]. From (4.7) and an application
I P PP

of the monotone convergence theorem

v
/

ot k-1 d = K
(4.11) E(p,)=E, +E. pq ) k(1-p)" "=E_ +pqE, {- 5= Y (1-p)7}
17, P b H, H dp %

1 1

' -1
=E +p "q E < o,
H2 H1

Now by the Key Renewal Theorem (cf. Smith [50], p.15), listed also

in the Appendix, it follows that

(4.12) lim (1-H)*U(t) = By a1

to 2

where u = E(pl). Also by the same theorem

tim e (1-n ) U e = u‘leHZ*H{k’l)*(L-Hl)(u)du .

tore

90
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it can be shown that
T e (k-1) -
* - -
(4.13) i H,*H *(1-H) (u)du = E; , k> 1
0 1
Using (4.12)‘and (4.13) in (4.10) it follows that

I

t
(4.14) 1lim E[exp{-s )

-1 . -1
X.}] =u" E, +qy, (s)E, {u[l-(1-p)y,(s)]}
toroo j=0 ) - Hy "1, !

=h(s), say.

By Theorem 2, p. 408 of [14] h(s) is the transform of a possibly

defective distribution F,, and the convergence in law holds. Since

T
y(0) =1 it follows from (4.14) that

-1 -1
h(0) = w (B, +a p By )
2 1

Now it follows from (4.11) that h(0) = 1. This completes the proof. //
We prove now the following lemma which will be essential for the

P’
l'

‘limit results in Section 3.

LEMMA 4.1. Let {Ut} be a sequence of random variables defined on

appropriate probability spaceé (Qt,Gt,P), T an almost surely finite

random variable defined on (Q,G,P) such that lim P(ut < x) = P(T f_xj
too T
for every continuity point x of the distribution function of T.

Suppose also that g is any function such that g(t) + = as t » . Then

P
(4.15) [v./g(t)] > 0, as t > .
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Proof: Let Fu and FT be the distribution functions of v, and of T
t

respectively. Fix e > 0, § > 0. Since T < = a.s. there exists a

continuity point A of FT such that
FT(A) > 1-8 and FT(—A) < 8.
We have

P(lv /g(t)]< €) = Fy, (680 - R, (o))

There exists t, = tl(e) such that for t > t

1 1

-¢ < F A) - F..(A) <€
e SF, (W) - Fp) <

and another t2 such that eg(t) > A when t 3_t2. Take. t Z_max(tl,tz).

Then we have

P(lu /g(t)]< €) > Fy(A) - & -(Fy(-A-)ve)

|v

FT(A) - FT(—A—)—ZE

| v

1 - 2(e+6).

If we let € >~ 0.then § -~ 0, the assertion follows. //
Considering the random variable Vj we observe that E(Vj) exists,

is finite and is given by

(4.16) L(V) = E(X) E(Y) - E(Y), j =1,...
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This follows from Wald's fundamental identity, since the vj's are
almost surely finite and from the assumption that the first moments

of B and D are finite. It follows from (4.16) and (4.8) that
B(V;) = E(Oq p P EM L= 1,2,...
In a similar manner it can be shown that
var(v) - qp‘lﬁ(x_2)+[EcX)]Zfzcl-p)_-q}qp'z- 1B 51,2,
From now 6n we set a = E(X)q p_1 - E(Y), (=EVj), and
b = qp” HEXD) -2V 2B 1 2q(1-p)pT + EOD), (EV))

The sequence n_ employed in the representation (4.5) has the
€4 n P

following property which will be useful in the sequel.

(4.17) " n_ = max(S -5 , S -S S_-81,8.), n=1,2,...

n-1°°°'"°

n .

where S_ = y vy (cf. Takacs [52], p. 344). A sequence of random
i=0

variables closely related to the Ny and also essential in the analysis

of the limit results for Z(t) is the following.
. .
. (4.18) ,nn = maX(O,sl, CZ’...’CH)’ n= 0,1:2"--{

*
where (. =-Sn—V0. The exact distribution of nn is covered by the
K ;
well known Spitzer identity [51]. If n0=0, nn'and n, have the same
distribution. If i1 is an arbitrary nonnegative random variable, the

distribution of nnvis covered in the paper by Takacs [52]. Let

g
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(4.19) - n= sup (S -V

. O<n<eo

The random variable m is nonnegative and possibly infinite. As in
Chapter II, we_call the prbcess {nn} subcritical) critical or super-
critical according as a < 0, a = 0, or a > 0. We exclude the case
P(Vn=0)=1 since in that case the independence of the X's and Y's is
violated when B and D are noﬁtrivial, and otherwise We would have
P(n=0)=l.'
Consider then.the case P(Vn=0) <1l. Ve summarizé some known liﬁiting
results for hn and n*. .
(R;) (Takags [52], p. 350) 1If E(]Vn|) <« and a < 0, then P(n<=)=1.
On the other hand if.a'z_o, then P(n==)=1. ‘
(R)) (Lindley [25], p. 281; Takacs [52] p. 345). If E([V_|) < = and
P(Vn=0) < 1, then we have .

© lim P(n, <x) =P(h <x) , |

N

regardless qf the distribution of Une As a consequence of the proof
of Lindley's result we have that n, and n; have theHSame limit distri-
bution. )
(Ry) (Erdo_s and Kac [12]). If a = 0, E(Vi) = 1, then
(4.20) : n¥ n-1/zf g,
where £ is a random variable with distribution function

2¢6(x) - 1 for x > 0
(4.21) L(x) = ' '

0 for x < 0,
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and ¢(x) is;the standard normal distribution function.

(R4) (Chung [9], p. 1163; also a shorter proof by Puri [451). If

-1 a,s.
a> 0, then}n; n 3°* a, as n > =, If moreover Varlvn=1, then

(4.22) lim P((n% - an) n"1/2

N>

<x) = o(x) .

1, we could go through

We remark here that, starting with JO

exactly thé same analysis as we did for JO 2 in this section. The
limit results for the case a > 0 are independent of %he value of JO.
However, the 1imit results for the case a < 0 will, in general, depend
upon thé value of JO' Unfortunately, there are.ofher problems associ-

ated with this latter case. We Teserve comment on this, until the end

of the next section.

3. THE.LIMIT RESULTS.

First it is essential to state an important limiting property of
Nz(t), the number of Teleases in the interval (0,t]. Since Nz(t)'also
represents the number of visits of the Markov chain {Jn} to the state
2, it could be visualized as a renewal process (cf. Ginlar [11],

p. 125).- Denote the distribution function which’indpces this renewal
process by F.  We have p = E(pl) = fo(l-F(u))du < « from (4.11).
The folloﬁihg well known result is stated without proof (see Chung [10],

p. 127).



THEOREM 4.3. Let N, (t) denote the number of renewals in (0,t] of

the renewal process induced by F. Then

: o |3
(4.23) Ny(&) 7> >0, a5t >,

where cC =1

We turn first to the critical case, where a = 0. In proving
the following limit theorem we employ the approach used by Renyi
in [48] where he studied the asymptotic distribution.of the sum of

a random number of independent random variables.

THEOREM 4.4, Let a = 0, b < =, Withbut loss of generality we take

b = 1. Then

im P t V% < = LexeV?
e
where the distribution function L is given by (4.21). .

Proof: Using the representation (4.5) we have

I .
R t
(4.24) Z(t) M2 . (t)t'l/z ) x.t Y2,
. 2 j=0
I, |
By Theorem 4.2 E X. tends in law, as t -+ «, to an almost surely
T 520

finite random variable. Lemma 4.1 allows us conisequently to focus
attention on the first term on the right hand side of (4.24). In
view of Theorem 4.3., there exists €t > 0, with £t # 0 as t » =,
such that

(4.25) . P(INz(t) - ct] > ¢ e, t) < coep .
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Define the set At = {w: |N2(t)-ct| f.etCt}’ t > 0.

Wé thus have

(4.26) PR 2ce

where At denotes the complement of At' Let now
nl(t) ='[(1—et)ct] and nz(t) = [(1+et)ct] ,

where [....] denotes the integral part of the number in the brackets.
For convenience the arguments of ny and n, will sometimes be suppressed.
Both nl(t) and nz(t) > o as t » =, Moreover, on At’ nl(t) < Nz(t).i

nz(t). We can now write

inil/z[“l/tll/zlAt*

-1/2_

(4.27) nNZ(t)t n

-1/2 1/2
1ﬂ1 [n,/t] IAt+{nN2 (t) -.nn'1

-1/2
! t I; >
Nz(t) A,
vhere IB is the indicator function of the set B. By (4.26) it suffices
to consider the first two terms on the right hand side of (4.27). From
' P

(4.23) it follows that nl(t)/t + ¢, as t » », Further, it can be shown

using : )

-1/2 -1/2 -1/2 L-1/2

* * .

P(nnn : f_x,(vo+cn)n < x)i_P(nnn f_x):_P(nnn < x), all x>0
S . : . -1/2

and a similar argument to that in proof of (Rz) Section l, that n.n

and n;‘ln'l-/2 have the same limit distribution, - 'By (RS) Section 1

the first term on the right side of (4.27) tends in probability to

01/2 g, and thus it suffices to show that



-1/2
In -n In I, >0, as t + o,
Nz(t)‘ n, 1 At
Now fix an € > 0. Then
1/2 oo 1/2
P(|n -1 |I > € ) < P( sup ln.-n .] > en’’ ")
Np(t) "y AL = "y 7 = n<j<n, M0 1

The form of the limit in (4.21) allows us, for § > 0, to choose a
continuity pbint A = A(8) of L, so small that P(g < A) < §/8.

Now, from'(4.20) there exists a tl(é) such that for t > tl(d)

|P(nn iAnl/z) - P(E < A)| < &/8.
1

1
Hence
1/2
(4.28) P(n. <A ) < §/4 for t > t.(§8) .
n, — n — . 1
1 1
Now
(4.29) P( sup |n.-n |>en1/2)=P( sup ]n.-n [>en1/2,n >A 1/2)
n.<j<n, I "1 1 n,<j<n RS | 1 M
1595 1515 .
1/2 1/2
+P( sup lnj~nn |>en1 ,nnl<A ).

. n1<Jin2

By (4.28) the second term in (4.29) is less than §/4 for t z_tl(d).
In order to consider the first term on the right hand side of (4.29)

we set e'=min{e,A). Choose t > tl(a). Since



1/2
{ sup |nJ n [>e'n1/ » N >e'n

n1<3<n2 , 5] 1

j-1

J .
c IR A A AR
n1<J<n? 1 n1 i=n1+1
c{ sup % V|>e n1/2 s
nl<3<n2 i= n1 -
it follows that
(4.30) . P(v sup In.-n |>en1/2, n. > A 1/2)
n,<j<n RS | 1 RS 251
1 -°=-"2 .
<P( sup |n;-n |>€'n1/2, n >8'n1/2)
- - n 1 n 1
n,<j<n 1 1
v am | b uents
n,<j<n, ‘1=n1+1

Now by the Kolmogorov inequality (Chung [10], p. 109) it follows that

@51 p( swp | 3 v e/ B <n,-n {0yt Te2e (e - )Y

ny<j<m, 1=n1+1
The right hand side of (4.31) tends to zero as t + «, Letting § »~ 0, we

P :
' , ' -1/2 : . :
conclude that lnNz(t)-nnllnl IAt -+ 0, completing the proof. //

Consider now the supercritical case, where a > 0. We first prove

the

THEOREM 4.5: Let a > 0, b-a’=1. Then

(4.32) - lim P((nn-an)n'l/z

N>

< X) = ¢(x) as n > =,
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Proof: By the definition of n, We can write

' -1/2_ o -1/2
_(4.33) (nn-an)n —[max(Sn—Sn,Sn-Sn_l,...,Sn-Sl,Sn)jan]n

e ) -1/2 -1/2
=max ( Sn’ S ©s Sl,O)n f(Sn-an)n .

n-1°°"

The first term on the extreme right of (4.33) tends to zero in

probability by Lemma 4.1. For we use the fact that

. . E
max(O,-Sl,—Sz,...,-Sn) corresponds to a subcritical process by

replacing Vn's by _Vn'sf It follows from (Rl).and (Rz) of Section
1 that méx(O,—Sl,...,-Sn) tends in law to a proper>random variable.

Finally, by the central limit theorem (Feller [14], p. 187) the second
term on the extreme right of (4.33) tends in 1aw to a random variable .

with the desired distribution. This completes the proof. //

Immediately from Theorem 4.5 follows the

COROLLARY 4.1. Let a > 0, b—a2=1. Then

P
(4.34) n,on >a, asn->e,

Proof: Consider v, = (nn-an)n—l/z, g(n)=n1/2. The result follows

upon application of Lemma 4.1 to un/g(n), ; 7

We now wish to prove

THEOREM 4.6. Let a > 0 and b-a2=1. Let N?(t) be as defined in Section

1. Theh

(4.35) lim P((Z(t) - aNz(t))"l/2 < x) = cp(xc’l/'z

-t -

).
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Proof: We write, using the representation (4.5), .

. I
i t
_aNz(t))t'1/2+[ y xj]t'l/z.
20

(4.36)  (Z(t)-aN, (£))t "/ 2
: . . _ J

n
N, (1)

By the same argument set forth in the proof of Theorem 4.4 it suffices

to show that the first term on the right hand side of (4.36) tends in
1/2

law to a random variable c r, say, where the distribution function

of £ is ®. In view of Theorem 4.3 define {et}, nl(t), nz(t) and At

in the same way as in the proof of Theorem 4.4. Then we can write

' | L -1/2_ -1/2 1/2
(4.37) (nNZ(t)-aNZ(t))t -(nnl—anl)nl (n /t)" s

—a(Nz(t)-nl)}nil/z(nl/t)l/z.

+{nN2 (t) 'T]nl

By Theorem 4.5 and the definition of nl(t), the first term on the right

of (4.37) tends in law to cl/zc. By (4.26) it suffices to show there-

fore that
I” .
P

~a(N2(t)-n1)}n11/2 IA + 0, as t > o,

1 t

{n

Nz(t)—nn

Now

]

- . -1/2
{{n -n_ -a(N, (t)-n J}T, n 0]
N, (£) ", "2 1’7 | o

/2

| A

sup [ny-n_-a(j-np)|n]}
. j n 1 1
- ny<is<n, 1

I A

sup {max(—Sj,—Sj_l,;.

) .,-Sn ,...—Sl,O)—max(fSn ,...,—81,0)+
<js<m,

n 1 1

1

(continued)
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- | o a-1/2
4.3 .- - -
(4.38) - +|sJ snl a(j nl)[}nl
< sup | 7 ' : -1/2
< p max(—S.,-S._l,..,—Sn ,...—Sl,O)—max(—S ,...,—Sl,O)}n1 +
n. <j<n ) 1 " '
1595
+ sup [S,-S_ -a(j-n )ln—l/2
. J n 1 1
n,<j<n, 1

- L -1/2
-Sl,O)—max(-Sn ,...,-Sl,O)}n1 .

< {max(-S_ ,-S seves
ny’ ol 1
-1/2
+ sup | i (v;-a) |n) /2,
n;<jsn, 1~n1+1

By the same reasoning set forth in proof of Theorem 4.5 both

1/2 -1/2

1 can be shown

max(O,—Sl-Sz',...,-Snz)n1 and max(O,-Sl,..,-Snl)n

to tend to zero in probability as t - «. Moreover, by the Kolmogorov

inequality, for any arbitrary constant § > 0, we have,

.39 P swp | Y (vi-a)lz_ani/z? < (n,mn))(6’n))

n,<jsn, 1=n1+1

-1

1
li

The right side of (4.39) tends to zero as t + <. This completes
the proof. ‘ o : S //

. ‘.
As a consequence of Theorem 4.6 we have

COROLLARY 4.2. Let a > O, b-a2=1. Then, as t » =, ..

_1P
Z(t)t ~ > ac .

In the subcritical case we know from (2.35) that, as t - «, Z(t)

tends in law to a finite random variable, in the special case where
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B(y) = l-exp(-ay) and D(y) = l-exp(-8y), o, B8 > 0; y > 0. In the

more general setting of this chapter it is not easy to deal with

Y

the subcritical case. Any analysis of the asymptotic distribution
of Z(t) for large t must depend upon the joint distribution of
It :
and Z xj. Moreover, these two random variables are by no
-j=0 . ) .

n
N, (t)
means independent and it is not known how their joint limiting dis-

tribution behaves. This appears to be an open question.
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APPENDIX

In this appendix we collect some useful lemmas and theorems
referred to in the text. With the notation as in Section 2.1

except as noted, we state the following results.

qé -
LEMMA 1. (Pyke [éfi, Lemma 4.1). If m < », m the order of X, then

for gll_states ied

P[N(t) < =, for all t z_OIJO =i] = 1.
» /

LEMMA 2. (cf. Prabhu [36], p. 155). N, (t), k = 1,2, is a proper

random variable with finite moments of all orders, that is, for

. vaamc‘u\j tL\e:.(.\rac{ss/ angd k=L,

34%4{2(?%OQLMF:£M¢CAL{

1), P(Nk(t) < @) =1

(1) Em (1) <=, v=1,2,.

LEMMA 3. (Feller [14], Lemma 1, p. 148). If F is the distribution

function of a nonnegative random variable, then for any v > 0

[o] ©o

/ x¥ dF(x) = vf xv_l[l—F(x)]dx
0 0

in the sense that if one side converges so does the other.

We have also the following Tauberian theorem.
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 THEOREM 1. (Widder [54], p. 187). Let £(s) = / exp(-st)da(t)

0
converge for s > 0, and let
lim f(s) = A .
$>0 +
Then
lim a(t) = A ,
tro
if and only if
_ t \
g(t) = [ uda(u) = oft).
0 _
t -1
NOTE: If a(t) = [ a(u)du, then a(t) = o(t "), (t > =) implies
—_— 0

B(E) = oft), (t +=).

/

Another useful Tauberian theorem is the foliowing

THEOREM 2. (Widder [54], p. 192). Ef_a(t) ig_nondecreasing,and such

oc

that ' the integral f(s) = f exp(-st)da(t) éonverges for s > 0, and if
O .

for some non-negative number y and the constant A

£(s) ~ As Y, (s > 0+)

then

() ~ AV[(r+D)], (t + + )

From Theorem 2 we have

T T T T T T e P e Y T e Ty T TR T




=

[ Q(t)dt < =. Then
0 , —_—
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THEOREM 3. Let £*(s) = [ exp(-st)a(t)dt. Under the conditions

of Theorem 2 above, if

' £ s) ~ A, (s > 04)

then

a(t) - AY [P (> ).

Proof: f(s) = s£*(s) and the result follows upon direct application

of Theorem 2 to £(s). //

For the proof of existence and uniqueness of solutions to certain
integral equations in Chapter II and III we use the contraction mapping

theorem. We state it here without proof.

THEOREM 4. (Kolmogorov and Fomin [24], p. 73). Every contraction

mapping A defined on the metric space f has one and only one fixed

point (i.e. the equation Ax = x has one and only one solution).

-y

1

KEY RENEWAL THEOREM (Smith [50], p. 15, or Prabhu [36], p. 166). Let

Q(t) be a nonnegative, nonincreasing function of t > 0, such that

t © ' o .
[ Qut-vdu(n) ~ut [ Qt)de, as t >, o
0 -0

fhe Ilimit being interpreted as zero if_u = o, Here U(t)= z F(k)(t),

(rontattice) k=0 - .
t > 0, for the distribution function Eggffgrnonnegativewrandom~vartable}

with u

1t

[ [1-F(u)]du.
0
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ROUCHE'S THEOREM. (Titchmarsh [53], p. 116). If £(z) and g(z)

are analytic inside and on a- closed contour C, and Ig(z)|<|f(z)|

on C, then f(z) and f(z)+g(z) have the same number of zeros inside

C.




