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1. INTRODUCTION AND THE METHOD. For time dependent response curves,

two. types of models have been considered in literature; those that depend

on a threshold hypothesis (See Gani [1], Gart [2], Wiggins [13], Williams
[14]) and the others which do not (See Puri [6], [8]). While the number of
the organisms at the moment of response in the first type is fixed, nonrandom

and is equal to the threshold, this same number in the second type of models

~

is a random quantity (See [6]). Thus the distribution of the number of

-organisms XT at the response moment T becomes relevant for these iater type

of models. Again, in a model connected with Phage-reproduction, where the .

response was the burst of the bacterium,.the‘author was concerned (See [8])

with the joint distribution of the numbers X1T and XZT-of the vegetafive and

mature phages released at the burst. Both in fé] and [8], the methods adopted

for'obtaining_such distributions were'ﬁnfortunately too lengthy. More recently,

other authors (See.for example Srinivasan and Réngan [12])'have also adopted the-

_same 1engthy methods for this purpose in similar situations. We shall present |

.below a much simpler approach for obtaining such distributions. This approach

was inspired by the methods used by the author elsewhere (See [9], [10], [1}]).
. Later we shall demonstrate the effectiveness of the methbd through two applica-

tions.. |

Let X(t) with state space 8, be some possibly vector-valued continqous
time stochastic process, definea on a suit;ble underlying probability space

«,0m. Let-f(§,t) be a nonnegative real valued (meésurable) function decfined

*Part of thesc results were presented at a Symposium on "Mathematical Aspects of
Life Sciences' held in summer 1969 at Quecn's University, Canada. This investi-
gation was supported in part by Research Grant GM-10525 from.the National Institutc
of Health, Public Health Service, at University of California, Berkeley. '



2

"for évery point (§,t) of the product setE{ix [0,#). Let this function be such
théi éﬁe integral fg f(%(r,w);r)dr exists and is finite for every t > 0 and for
almost every realization w of the process X(t). Here X(T;w) denotes the staté
of the process X(t) at time T for.a given sample path w of the.procesé. We
now iﬁtréduce the quantal response proéess Y(t) as Y(t)=1, if the response has

not ‘occurred until time t and is equal to zero otherwise, where

(M) POY(e+)=0]Y(t)=1, X(£)=x) = £(x,t)t+o(x),

and Z(0)=1. It is assumed that the quaﬁtal response process Y(t) does not
influence the process X(t) in any way, rather as is evident from (1), is
influenced itself by the process X(t). Also the state 'zero' is an absorptioh_

state for the process Y(t). Thus for a given realization w of the brocess X(t),

it can be easily shown using (1) and a stgndard argument that

2)  POY(t)=1|w)=E(Y(t)]w) = P(T > t]o)=exp{-f} £(X(r,0),7)d7} ,
where T denotes the response time. From (2? it easily follows that
(3) E(Y(t)exp{i u' X(t)}) = E(exp{i'g' §(t)—f8 f(&(f),r)dT}),

whefe u is the vector of real dummy variables. Without regards to where T ,-
falls, our main objective here is to find the distribution of the vector ¥T’
denoting the state of the process X(t) at the moment T of response. Ag:-:, in
general, the response time T may not be an honest randOm'Vgriable, so that we
shall be intefested‘in the conditional distribution.bf_gT given that f is finite.
As before, for a giﬁén'realization w of the process X(t), it can be easily shéwn

.t

that



@) - E(Iprexp{i u' X }w)

=[5 expli vt X(t,u)-ff £(X(r,0),)dIEX(E,0),t)dt

where IT denotes the indicator of the set [T < « ]. Taking expectation of (4)

over all the realizations of the process and interchanging the expectaticn and

the integral sign on the right side of (4) by virture of Fubini's theorem, we

obtain
(5) E(If-e;p{i u' §T})=f; E{f(%(t),t)exp{irg' §(t)-f3 £(X(1),1)dr}]dt.

From this we immediately have the desired result

(6) E(exp{i u' X }T < «)

=[P(T < )] 7[5 E[E(X(t), hexpli u' X(t)-f5 £(X(1),1)dr}]de,

where

—

) P(T < =)=1-E[exp{-[g £(X(1),1)dt}] .

The joint distribution of T and XT can be easily given in an analogous manner,

-~

by the transform
(8) E[IT exp{i u’ XT-GT}]
=[p exp(-o)E[£(X (1), )expli u! X(1)-fp £(X(x),7)dr}]dt,

where Re(o) > 0.

We shall be concerned below with the sdituations where we assume that

f(x,t)=9'(t)-§, where 0(t) is a vector of nonnegative functions. Also, in
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‘our examples, the process X(t) will be nonnegative integer valued, in which
case (6) could be more conveniently written in terms of probability genera-

ting function (p.g.f.) as

~—

ek X
(9) E(E s; T < @)
=l |
1 ko X, (t) ¢ K -
=[P(T < «)] fo E[0' (t)X(t) ( Hlsi )exp{-fo zl 0; (1)X, (1)dt}]dt
_ ~ i= i= .
1 X @ 36(s;1)
=[P(T < =)] izl s; [ 9;(®) 35, dt ,
wheré |
| kX (1) ¢ '
(10) G(s;t) = E[igl{si exp(-f 0, (DX, (1)dD)}]

and [s.] <1, 1 =1,2,... .k

2. APPLICATIONS.

In [6], the author considered a modgl Qhere X(t) was assumed to be a

linear time hoﬁogeneous birth and death proceéé; The method adopted there for
computing the distribution of XT was algebraically involved. Instead,_the

method introduced here is so convenient that even if X(t) were a more general
growth process such as a time homogeneous-Markov branching process, it presents
no Additional difficulties in computing the transform (9) for k=1. This_welshall
now demonstrate. Let X(t), represehting the number of organisms at time t, bea-
time homogeneous Markov branching process as defined in Harris [3]. Let a poéi-

tive constant b be the associated risk of death of an organism and-let h(s) be

the p.g.f. of the probabilities Pp» k=0,2,3,..., with J
. i<

o pk=1, where Py is the
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probability that an organism is replaced on death by k new organisms. We
assume that h'(l) < =, Let f(x) = 8x be the risk function for the response

of the host and X(0) = m, where 8 is a positive constant. Let

X(t)

an . e(s,05t) = E[s exp{-6f5 X(1)dr}|m=1] .

~

Then, because of independent grthh of the ofganisms and the linearity property

of the integral fg X(t)dt, we have

az G(s,t) = [o(s,0;)]".

It can bé shown that ¢ satisfies fhe forward Kolmogorov differential equation
(13) o= [bh(s) - -(e+b)s]e

which is subject to the initial condition ¢(s,0;0) = s. Here @t and ¢s arer
" the partial derivatives of ¢ with respect to t and s respectively. Again, it
was shown in [7] that P
(14) . lim ¢(s,0;t) = q ,

tro

where q is the unique root, lying between zero and one, of the equation

(15) h(u) = (1+ D) u.

Here q < 1 if either 8 > 0 or 0=0 and h'(1) > 1, and gq=1. if 6=0 and h'(1) <'1.
Let 0 > Q, so that
o S R M ' 3
(16) . lim G(s;t) = q ,
. t -

for all |s] 2 1. Thus



-7 P(T==) = lim G(1;t) = q" ,.

Tt

and hence T is not a proper random variable. Again, for s#q, we have from (13)
(18) 6 = b h(s)-(0+b)s] Lo,

From (12) and (18), it follows that

m[¢(s,0;t)]m_1¢

(19) GS = 5 NONCDE ; for s#q.

Thus we have_from (9) with k=1, and for s#q,

(20) E(SXTIT < @)

| -1
0s o m[¢(s,9;t)]m .
o Jo bR @oys O 4t

. 95
G
(1-g™[b h(s)-(e+b)s] ~° ¢

(s;t)dt

. 6s(q"-s™)
(1-q™) [b h(s)-(8+b)s]

/

whére ét the end we have used (16) and the faqt that G(s;0)=sm. Since,

being a p.g.f. (20) is continuous in s, its eipression'for s=q can easily

be found by its continuity. Thus (20j gives tﬁe desired p.g.f. of XT' Also

in the above analysis we have demonstrated how the Kolmogorov fofward differen-
tial equation for ¢ helps in the present approach in getting the éxpression for
“the p.g.f. of XT, without even obtéining first the explicit expression for ‘.

Let h''(1) < «. Then from (20) we immediately have

. : _m h'(1)-1 i
(21) | EQXp|T < ) L DR
- »” a-h'@a»? b nlg"
(22) Var (Xp|T < @)= 22222l v & [W(1)+1-h' (D] - 2

(0/b)? 1-q"
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-In certain experimental situations (See Meynell and Meynell [4]) the observed

number of organisms at death (response) is of the order of 109. Furthermore,

it is observed that thi§\number stays about the same on the average without
regards to the initial dose m of orgaﬂisms injected into the host at t=0.

From this fact and (ii), if follows that in such situations we must have

h'(1) > 1 and that 8 is considerably small but positive. This suggests that
one cou;d approximate the distribution of»XT for small 0, valid for such prac-
tical situations. Thus using (20) we obtain | B
(23) éixg E[exp{iug X }|T < =, X(0)=m]=[1-iub(h' (1)-1)]"*

"~ From this, it follows that for small @,

o . _h'()-1 b 2
(24) ’ Xp 2 =3 g X2 -

The approximatidn (24) is only in 1law. The'féct’that this approximation is
iﬁdependent of the initial dose m , is quite.compafible with the observations
made by Meynell and Meynell [4]. This fact.was Qbsérved once before in (6],
where the underlying growth process was a linear birth ﬁnd death process.

We now have sﬁown that a similar result holds even for the mére general case
of branching processes. Once again this élso shows that the observation made
by Meynell and Meynell [4] can be explained by the above fheory without re;ying '

on the hypothesis of existence of a fixed threshold.

2.2, A PROBLEM CONNECTED WITH A MODEL OF PHAGE- REPRODUCTION
In [8], the author studied a stochastic model for phage-reproduction in
a bacterium. One of the problems that arosc there was to find the joint dis-

tribution of the numbers of vegetative and mature phages released at the time.



..Of lysis (bacterial burst). We éonsider only the fo@ﬂohing simplified version
of the model for the sake of illustration here. Let ws assume that the length
of the eclipse period (See [1] and [8] for details) is neglegible. (Alterna-
tive;y we couid consider the process conditional to the point of eclipse as-

our Afigin on the time scale). Let Xl(t) and.Xz(t) denote-the'numbers of
vegetétive_and maturé phages at time t, respéctively, with X1(0)=1 and X2(0)=0
as the initial conditions of the process. Lef Xl(t) be a linear nonhomogenedus
birth and.death process with A(t) and u(t) as the time dependent birth and

death rates. Since death corresponds to the conversion of a vegetatlve phage

to a mature one, X (t) represents the number of deaths that have occurred durlng

(0,t]. As in [8], we assume that
(25) p(Y(t+Af)=o|x1(t)=x1,x2(t)=x2,v(t)=1)

=[b(t)x;+c(t)x,]at+o(At),

e

where b(t) and c(t) are two given nonnegative functioems, and where Y(t)=1
if lysis has occurred until time t, and is zero:otherwise. Let

Xl(t) Xz(t)

.(26) . G(sy,5,5t)=E(s, S, ‘Y(t)), Isil <1, i=1,2.

It can be easily shown that the p.g.f. (26) satisfies the partial differential
.equétion
(27) G,=[s2 A(t)-5, (A(£)+u(t)*b (£))+s,u(t)]G, -5 c(t)G.
o t 71 ~1 2" S, 27 s,
subject to the initialvcondition G(s,,s,;0)=s., where G_, G and G denote
. 1°72>7~» 71 t Sy S,
the corresponding partial derivatives of G. In [8], it was assumed that for

all t > 0,



w(t) _ b(t) _
. (2?) NORIABYOR s,

(g]

() _
A(t) T 0,

where p, 6§ and @ are nonnegative constants. While the assumption that the
ratio u(t)/x(t) be a constant was based on certain experimental evidence
(See Gani [1] and Ohlson [5]), the other ratios of (28) were assumed constant,

only to enable us solve equation (27) more easily. Subject to (28) the equation

(27) becomes

_ -1 2 -
(29) . - [A(F)] Gt-[s1 - Sl(l+p+6)+p 52] Gsl+952 G52 = 0.

The solution of (29) is given by (See Puri [81)
(30)  G(s.,5.5t) = L(leprs)+ L ovexpl- L 0t*13! (vexpl- L ot*})
1252 Z\ P 2 Pi- 3 p VEXPLm 3 >
. "1 kayq-l
[Jp(vexp{- 5 et™ 1] o .
L, g2 1, . 1. 2,01 -1
+Jp (vexp{—i ot })[{(51‘2F17°+6))Jp§“)*2 Qva(v)Jp(v)}
itk 2 1 . -1
-fo Jp (vexp{-5 Gu})du] ";
Jp(w) is the Bessel function defined by

© k 2k+p
= (-1) (w/2) .
S ‘ Jp(w) —.kzo K!T(k+p+1) ’

Jé(w) is the derivative of Jp(w); p=(1+p;3)/9; t*=f3k(u)du,'and v=2¢psz/9.

In [8], the joint distribution of the numbers Xi7 aﬁd Xors respectively,
 of veggtétive and mature phages released at burst, was obtained under the
‘assumption that c(t)EO-or eqﬁivalently thaf 6=0. Tﬁe general case with

8 > 0 was algébraiéélly too involved to obtain the distribution while uging

the methoas of t8]. The present method however appears fo simplify the_algebra

considerably. We assume that IZ A(u)du=», so that from (30) it follows that



10

“(éé) - P(T=) = 1lim G(1,1;t)=0.

trw
Thus from (9) we have on using (28)

X X
(33)  E(s, ''s, 2') = és

ZIO

1fox(t)Gsl(sl,sz;t)duGs

A(t)Gsz(sl,sz;t)dt.

Again on using (29) we'equivalently-can write

XlT 2T

(34) E(s, )=[s] 2_(1+p)s LS ]IOA(t)G (s 1+Spit)dt- foc (sl,sz;t)dt."

On the other hand

(35) foGt(sl,sz;t)dt=11m G(sl,sz;t)-G(sl,sz;O)=.-s1 ,
o _ .

and also using (30), straight forward calculations lead to

(36) _ f;x(t)cs-(sl,sz;t)dt = -le,(v){[s1 ¥+°+6

]J (v )-—-OvJ (v)J (v)}

Substituting these in (34) immediately yields the desired result
. X, X -(1+p)s +ps

(37) E(sl 1?52 2T) = s+ . 2

: - 1]+-2--9v[Jp(v)/JP(v)]

1 1l+p+6
[ p

.Finally, the lack of simplicity of (37) (as it involves Bessel functions)
'should help the reader appreciate the intensity of the prohibitive algebra
that one would need to go through while using instead the methods of [6] and

[8] to arrive at (37).
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