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ABSTRACT
This paper deals with the stationary analysis of the finite, single server queue in dis-
crete time. The following stationary distributions and other quantities of practical interest
are investigated: (1) the joint density of the queue length and the residual service time,
(2) the queue length distribution and its mean, (3) the distribution of the residual service
time and its mean, (4) the distribution and the expected value of the number of customers
lost per unit of time due to saturation of the waiting capacity, (5) the distribution and the
mean of the waiting time, (6) the asymptotic distribution of the queue length following
departures.
The latter distribution is particularly noteworthy, in view of the substantial difference
which exists, in general, between the distributions of the queue lengths at arbitrary points
of time and those immediately following departures.

1. INTRODUCTION

This paper is a direct sequel to [2], to which we refer for a detailed definition and for the assump-
tions of the finite, discrete time queue. For easy reference, we only give a summary of the notation here.
NOTATION
L, Maximum number of customers allowed in the system at any time. All excess customers are
lost and do not return.
L, Maximum duration of the service time of a single customer.

ri Probability that a service lasts for j units of time, j=1, . . ., L,. We assume without loss of
generality that rp, > 0. Alsori+ . . . +r,,=1.

K Maximum number of arrivals during a unit of time. It is assumed that K < L,.

p;j Probability thatj customers arrive during a unit of time,j=0, 1, . . ., K. We assume without

loss of generality that po > 0. and px > 0. Also po+ . . . +px=1.

X, The number of customers in the system at time n+.

Y, The number of time units until the customer in service at time n+ completes service. We note
that 0 <Y, <L, and that Y,=0 if and only if X,=0.

In [2], it was shown that the bivariate sequence { (X5, Y»), n = 0} is an irreducible, aperiodic Markov
chain with state space {(0,0)} U {(1,2, .. .,L)X(1, .. ., L)} Iis transient behavior was dis-
cussed and investigated numerically in [2]. In this paper we first discuss the stationary joint distribution
of the queue length X, and the residual service time Y.

*The research of this author was supported by the National Science Foundation, Contract No. GP 28650

557



5568 M. F. NEUTS AND E. KLIMKO

2. THE EQUATIONS FOR THE STATIONARY JOINT PROBABILITIES OF X, AND Y,.
We denote the stationary probabilities by P (i, j) fori=1, . . ., L, anfdj= 1, .. .,Lx; P(0,0)

is the stationary probability that the queue is empty. The stationary joint density of X» and Y is the

unique solutiop to the following system of linear equations.

(1) a. P(0, 0) =po[P(1, 1) + P(0,0)],
b. PG, )= pivP(v,j+1) +rsril PG, Ly),

forl<i<K,1sjs<L,—1.

Cc. P(l‘7])= 2 Pi—vP(V,j+1)+rjrz_,21P(i, LZ)’

v=i—-K
forK+1l=<isL,—1,1sj<[L,—1.

K v—1
d. P(Li,j)=P(L4,j+1)+ 2 (1 - 2 pk) P(Li—v,j+1)+ rirgt P(Ly, Lp),

v=1 k=0

forl<j<L,—1.

e. PG, L) =ri, {1’4_"‘1"—10(1, 1)+ piovas P(v, 1)},

Do r=0

forlsi<K.

i+1
f. P(i, Lz) =TrL, 2 Di—vy1 P(Va ]-),
v=1{—K+1
forK+1<si<L,—1. .
K v—=1
g. P(Ll,L2)=rL22 <1—Zpk)P(L1—V+].,1),
»=1 k=0 '
Ly L2
h. P0,0)+3 S PG, j)=1.
i=1j=1

The system (1) contains LiLz: + 1 independent linear equations in L;Ls + 1 unknowns. We shall show
that its solution may be conveniently expressed in terms of the solution of a homogeneous system of
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L, equations in L, unknowns. Moreover, the latter system has a particular structure which greatly

simplifies its numerical solution.
We denote by P;j the Li-tuple [P(1, j), . . ., P(Ly,j)] for j=1,. . ., Lz. We also introduce the

Ly X L, matrices 4 and B defined as follows:

Po Pv p2 ... pDg 0 0 0 0
0 po P ... pra1 px 0 0 0
0 O po ... pr-2 pPra 0 0 0
0 0 0 ... pr3s px 0 0 0
A= Pk-2 Px-1 Pk

Pxk-3 Prx-2 DPx-1+px

00 0 0 0 P p2 l=po—pi—p:
0 0 0 0 0 Do . D1 1—po—ps
0 0 0 o 0 0 o 1—po
0 0 O 0 0 0 0 1
41 D2 D3 D
1—po 1—ps T—pg """ T‘_‘E 0 0 0 0
Do 21 P2 ... Dk1 pPx 0 0 0
0 Do 2 <+« . Pr-2 Pk 0 0 0
0 0 Do ++«+ Dk-3 Dr—2 0 0 0
B= Px-2 Pr-1 Dx
‘ Dk-3 DPx-2 Pk-1t+px
0 0 0 0 0 pr pPs l—po—...—ps
0 0 0 0 0 o p2 l—pe—p1—
0 0 0 0 0 Do D1 1—po—p1
0 0 0 0 0 0 Do 1—po

In terms of 4 and B, the equations (1 —g) may be written as
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@ Pi=Pid+ryp Py,  1<j<L:—1,

€L2= rLz_lB.

The latter system is equivalent to the equations

Ly
&) Pi=rp}PL, Frd’,  1<j<L:—1,

v=j

I_)L2=BL2( § ruAv1 )B.

v=1

We now observe that both 4 and B are stochastic matrices, that A is upper triangular and that the

matrix B has only one subdiagonal. We shall say, for brevity, that B is nearly upper triangular. Since
Ly
ri+ ... +r,=1, and 4 is an upper triangular stochastic matrix, the matrix 2 r.A¥-1 is stochastic
. v=1
and upper triangular. The stochastic matrix B is irreducible, so that the matrix

@ 0= rav-B,
=1

is irreducible and stochastic. Finally it is easy to verify that Q is nearly upper triangular.

The vector Py, is therefore proportional to the vector of the stationary probabilities of the matrix Q.
The nearly upper triangular form of the matrix Q makes the numerical computation of the vector
P, —up to a positive multiplicative constant — particularly simple. The vector P1, is proportional to the

vector (t1, 22, . . ., i,), whose components may be computed recursively as follows
6) =1,
to=(1—qu)gsx"s

k-2
Byl [tk—l(l—lhc—l,k—l)'— Zl Ly, k-1 ], 3<ksL.

It is easy to verify that none of the entries gx,x-1,2 < k<L, vanish, so that by using the first equation
in (2), the vectors Pj, j=1, . . ., L—1, may be computed up to a common, positive multiplicative

constant. Equation (1a) is then used to determine P(0, 0) up to the same multiplicative constant. This

constant may finally be computed using Equation (Lh). The stationary joint density of the queue length

and the residual service time is therefore determined.
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3. THE STATIONARY DENSITY OF THE WAITING TIME
The support of the stationary density {w;} of the waiting time consists of the integers 0,1, . . .,
L,L,. Clearly wo=P(0, 0) and for 1 <j=< L,L,, the density may be written symbolically as the con-
volution polynomial

©) {wj}=P@1," )+ P2, ){n}+ PG, ){rn}®+.. . +P(Li, )*{r}h-D,

where {r.,} is the density of the service time.
The numerical computation of the wj, 1 <j=< L;L,, by using a convolution analogue of Horner’s
algorithm for polynomials was discussed in [2].

4. THE STATIONARY DENSITY OF THE NUMBER OF LOST CUSTOMERS PER UNIT
OF TIME ‘ ‘

Since the waiting room is finite, it is possible that customers will be lost due to the waiting room
being full at their arrival time. It is therefore of interest to know the stationary density {¢;} of the
number of lost customers per unit of time. It has its support on the integers 0, 1, . . . K and may be
determined by the explicit expressions

K L,
0 ei= Y px 3, P(Li—k+j,v), 1=j=K,
k=j v=1
K
P=1—3 ¢
=1

Knowing the joint density discussed in section 2, the probabilities {¢;} are readily computed.

5. THE STATIONARY DENSITY OF THE QUEUE LENGTH AT DEPARTURES

The probabilities associated with the queue length at departure times, are primarily of interest
in the analytic treatment of queues of M|G|1 type. Although they are frequently examined, their in-
herent applied interest is limited.

As we shall indicate below, the density of the queue length following departures may easily be
obtained from auxiliary quantities which are computed in the process of evaluating the joint stationary
density, discussed in section 2. In view of the importance ascribed to this density in the applied queueing
literature, we decided to investigate its computational aspects. Note the very substantial difference
which may exist between it and the stationary density of Xa.

The queue lengths following departures form an irreducible, aperiodic Markov chain with state
space {0,1, . . ., Li—1}. Let us denote its transition probability matrix by T. Furthermore, let 6x (i, v)
be the probability that in £ consecutive units of time during which no departures occur, ¥ customers
join the queue, given that the queue length at the beginning of the first unit of time was i.

The entries of T are then given by
Lz K

(8) T0j=2 rkEph(l—po)_lﬂ;,-(h,j—h+l), for0s;=sL,—1,
1 h=1

k=
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L2

T,-_,-=2rk0k(i,j—i+l), forl<=i<j+1,
k=1
T;=0, fori>j+1.

We note that the transition probability matrix T is nearly upper triangular, The stationary proba-
bilities corresponding to T may be calculated by a simple recursion such as in Formula (5). In order
to evaluate the entries of the matrix T, we first show that

(9) 0:.-(i,j""i+1)=(Ak)t,j+|, for1$i<L1,0$jSL1—l,

where 4 is the upper triangular matrix defined in section 2.
For k=1, we find that

(10) 0:(i, j—i+1)=pjis1, for0=sj—i+1<K,j<L,—2,

K
= 2 Dy, fO!'Ll—KsisLl,j—_—Ll—l,

cov=Ly—1i

=0, for all other pairs (i, j),

so that Equation (8) holds for £=1. Furthermore
a1 Oues (i, j—i+1) = ﬁ‘( 6u(i, v—i+1)py,
v=max (90, j—K)

“for0<j<L;—2, and
Ly X
Ok (i, Li—i)= 2 0x(i, v—1i) P,

v=L -K h=L, —v

for 1 <i=<L,. When expressed in terms of the matrix 4, Formula (11) proves (9) inductively.
The matrix T can be compactly written as

Ly
a2 T=C 'S ¥,
k=1

where Cy=p;(1—po) ! for 1<j<K; Ci1,i=1, for2<i<Ly, and C4=0, for all other pairs (i, j).

The relation between the limiting distribution of the queue length following the nth departure
and the stationary queue length distribution is noteworthy. A well-known theorem, from Reference
[3], states that in a stable M|G|1 queue with single arrivals, the queue length at time ¢t and the queue
length following the nth departure have the same limiting distribution as t and n respectively tend to
infinity.
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An analogous result holds for the discrete time queue, discussed by Dafermos and Neuts [1],
provided that the probability of two or more arrivals during a unit of time is zero. This result is proved
by an exact analogue of the argument used for the M |G|1 queue, so we shall omit the proof.

In the case of group arrivals (K = 2) no simple relation exists between those two limiting distribu-
tions. Theorems which relate those distributions can be proved using the theory of Markov renewal
processes, but the resulting formulas are not illuminating. We shall not pursue this topic here, but we
offer as an illustration some numerical results for a queue which has rare arrivals of large groups of
customers. .

We considered a queue with L; =100, L,=2, K= 20, and with po=10.975, p20=0.025, r;=r = 0.5.
Although the traffic intensity p for the unbounded queue is 0.75, examination of the transient behavior
shows that this queue converges very slowly to its stationary phase.

The limiting distribution of the queue length following a departure has a mean equal to 32.2864.
In contrast, the limiting distribution of the queue length at time n has a mean equal to 24.1752. In
addition, we list a summary of the numerical values of the two stationary distributions. 7« is the station-
ary probability of at most k& customers at time n; m, is the stationary probability of at most k customers,
following a departure from the system (see Table 1).

TaBLE 1

k mr T*

0 0.263 0.013
10 0.384 0.180

20 0.561 0.409
30 0.673 0.560
40 0.768 0.688

50 0.838 0.782
60 0.890 0.854
70 0.930 0.908
80 0.960 0.948
90 0.983 0.979

The greater limiting probability of longer queue lengths following departures may appear to be
paradoxical at a casual reading. A moment’s reflection shows however that, on the contrary, this is to
be anticipated in stable queues with group arrivals. In our example, the queue length will typically
be zero for long intervals of time because of the high value of po. The averaging procedure involved in
the stationary distribution of the queue length at time n heavily favors the lower values of % The
limiting distribution of the queue length following the nth departure effectively ignores the long idle
periods and results primarily from the behavior of the queue durihg the service of the large groups of
customers. The high probabilities of the larger values of k in this distribution are therefore not
surprising.

This example strikingly shows that the asymptotic distribution of the queue features may be of
limited practical value, even in very stable queues. Most realizations of the queue length process in
our example will exhibit very substantial fluctuations, which are not reflected in the asymptotic distri-
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butions. The practical questions related to queues of this type can only be answered after analyzing
their transient behavior. The exclusive concern with asymptotic results in “practical” discussions of
queueing theory is therefore regrettable.

6. COMPUTATIONAL ORGANIZATION

In order to minimize both the computation time and the required memory storage, we took ad-
vantage of the highly structured form of the matrices ) and T in Equations (4) and (11), respectively.
The basic matrix is the upper triangular polynomial matrix Q*={q%}
L2

(13) Q*=3 -1

v=1

The rows of this matrix are similar in the sense that
(14) g i v=qf v 1

forr»=0,1,2, ... L,—i—1;i=2,3, .. .,.L,—1.

Furthermore the matrix @ * is stochastic, so that

Li-1

*
qgF, =1-) gy
(15) i, Ly .Z:l

Therefore, the first row determines the entire matrix. This permits the storage of @ * using only L,
memory spaces, rather than the (L2+L,)/2 spaces required for an arbitrary upper triangular matrix.
The resulting saving in memory space is substantial for large queues and in fact makes the analysis
of queue lengths up to 800 feasible. Computation of the matrix Q* is performed by using Horner’s

method for the formation of polynomials, i.e., by recursive computation as follows
(16) Qf= (re,d+ri,-il)

QF=Q* A+ry,_.l n=2,... L,—1.

Each of the successive matrices Q% is completely determined by its top row. The right-most elements
are not needed and therefore are not computed. The top row entries of O} are rapidly calculated by

means of the formulas

min (K, )
17) gt I=Y pa}P+rL,-aps, forj<k
i=0

min(K, 7)

q;kj(n+1)= 2 piqj*—(?)’ for K <J = Ll-
i=0 '
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The matrix Q has the form

qu g1z @18 qu " QL4 9L L3 L AL

g1 Q2 G Q¢ " Q2,13 G2,L-2 2,11 ety

0 g g2 g3 - QL4 @,L-3 §3,1L-1 0, Ls

0 0 g1 Qe ' " Q,L-5 g2, L—4 G4,L-1 44, Ly

0 0 . . R gz qr,-2,L,-1  qL-2, Ly
0 0 . . ce e 0 ga1 qr,-1,Ly-1 qri-1, Ly
0 0 . . P | 0 qL,, L,-1 qL,, L,

where the third through the last rows, except for the last two columns, are essentially repetitions of the
second row. The last column is determined by the condition that the rows sum to one. We therefore
need to compute and store only the first and second rows and the (L;—1)-st column. This requires
3L, —4 memory cells for the storage of the Q matrix rather than the Li+ (L:+2)(Ly—1)/2 required
for an arbitrary nearly upper triangular matrix. The top row elements of Q are given by

Dj N min(K,j—1) * .
(18) W1 _p, it D Pl forj<K
i=o
K .
= pias ;o for K<j<L;—1

L1—1 . K
q1,L,-1= Po ( 1- E q;';- ) + > piatL,-i;

j=1 i=1
the second row elements of the Q matrix are

min(K,j-1)
(19) G2 = 2 piq;k’j_l, forlsjsL,—2;
i=0

and the (L;—1)-st column elements are calculated by using

Li—i min (K,L1—i)
(20) Qi,L1—1=P0(1 -y q;’;.)-i— E P K~k
j=1 k=1

for2=<i<lL,.

The stationary probabilities of the Q matrix were determined using Formula (5) and its compact
representation by Formulas (18)—(20). For this purpose, a subroutine called STAPROB was written. The
reswiung stationary probability vector was identified temporarily with the vector'fz,g. The vectors



566 M. F. NEUTS AND E. KLIMKO

P, ..., Py were successively obtained by (2). Throughout this computation essentially only the top
row of the matrix 4 is needed. The multiplication formula is

min (K,j-1)

v=0

forj=L,—1, .. ., 1.

Finally P(0, 0) is computed and all P(i, j) are adjusted so as to satisfy the normalization condition
(1h). _

The waiting-time distribution was calculated according to (6) by a subroutine called WAIT. This
subroutine was adapted from the program, discussed in [2]. In cases where LL; is large, one may wish
to print only the percentage points of the waiting-time distribution. A routine to do this was also written.

The computational procedure for the queue length following a departure is similar to that for the
stationary queue length distribution. The polynomial

Lz

(22) > ndr=AQ*

v=1

is first computed and then the matrix T'is determined. It is represented in a2 manner similar to that of the

matrix Q. Only a modicum of additional computation is involved. The stationary distribution is then

calculated by the subroutine STAPROB.

Testing

In addition to testing the program for its correctness, we compared the stationary probabilities

with the transient probabilities after 60 time units. The latter were obtained by the methods developed
in {2].

Computational Experience

Practical limits on the problem size are determined by the memory requirements. The available
memory space of 150K octal required that L;L, =< 20,000, approximately. This permits, for instance,
queue lengths of size 800 with service times concentrated on 25 points. For problems of this magnitude
the computation time was a limiting factor only in the evaluation of the waitingtime distribution. We
ran examples, both with and without the distribution of the waitingtime. The central processing times
on the CDC 6500 at Purdue University for these examples are shown in Table 2. T; and T; are the
actual program running times in seconds (without compilation and loading times), respectively, with and
without the computation of the waitingtime distribution. For the example with L, =800, L,=25,
K=4, the time T was in excess of 3,000 seconds and the computations were not completed even then.
In all the examples, we used the same arrival distribution po= 0.8, p; = p>== ps= ps=0.05. The service
time distribution for the first three examples was r;=0.675, rs=rs=r;=0.05, and rs=0.175. In the
last example, the service time distribution was a truncated geometric with p=0.5 and the residual
probability was added to rus.
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TABLE 2
Ly L, K Ty T
100 5 4 5.751 0.945
200 5 4 22.539 2.221
400 5 4 69.774 6.612
800 25 4 > 3,071.032 26.290

7. CONCLUSIONS

Large discrete, single server queues in the stationary phase may be analyzed numerically. As we
have shown, most queue features of interest, with the possible exception of the stationary waiting-time
distribution, can be computed without the use of excessive processing times. This should be contrasted
with simulation methods which are inherently ill-suited for the study of the stationary phase.

The prohibitive processing times required for the waiting-time distribution in large queues, raise
the interesting question of how to evolve efficient numerical procedures for the evaluation of expressions
of the general type

2": Ai(+)*FO(+)
i=1

which appear frequently in stochastic models of varied applied interest.

Finally, the example discussed in section 5, shows that in queues exhibiting large fluctuations, it
may be hazardous to base conclusions on a single stationary distribution. In such cases one should study
the transient behavior, whenever possible.

For further information on the algorithms discussed in this paper, one may contact either of the
authors at the Department of Statistics, Purdue University, West Lafayette, Ind. 47907.
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