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l. nggggggzzgg. Let Xl,Xz,...,Xn,... be a sequence of independent

and identically distributed (i.i.d.) random variables taking on real

n .
values. Let fern = 0,1,2,..., S_ = Z X., where S, = X, =0. We shall
n 120 i 0 0

be concerned here with the random variables
(1) nn = max(O,Sl,Sz,...,Sn), n=90,1,2...
We assume that E|X | < « and write a = EX . Let

(2} n=1limn_= sup S
n
oo O<n<e
The random variable n is nonnegative, but possibly improper. We shall
call the process {nn} subcritical, critical and supercritical according as
a < 0, equal to zero and a > 0, respectively. We shall assume that

P(Xn = 0) < 1, for in the trivial case where P(Xn = 0) = 1, we have

P(nn 0) = 1, for all n. We summarize in the following few known asymp-
totic results converning - The exact distribution of n, is of course
covered by the celebrated Spitzer's identity [12].

(i) In the subcritical case, P(n < ») = 1, whereas in the remaining cases

*
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;rdos and Kac [S]j.'
‘ven below in the
: to Chung [4], who

X 's are not
n

‘ariables, we pro-

Yer, Var.Xn = 1,

~ from the strong

fbn} of real numbers

hn) = max(0,b).

on of is
n

proving (5) for



(7) gn = max(O,Sn—Sn_l,...,Sn) = Sn+ max(O,Sl,—Sz,...,—Sn},
so that
) gn—na i Sn—na , max(O,-Sl,-Sz,...,-Sn)

/n vn - /n

Now using the fact that max(O,—Sl,-Sq,...,~Sn) corresponds to a subcritical
A

process, (taking —Xn‘s instead of Xn's) it follows from (i) that

2’

the last term of (8) tends to zero in probability as n -~ ». Hence the

max(O,-Sl,—S ..,—Sn) tends in law to a proper random variables, so that
theorem follows from (8) by using the central limit theorem.

The aim of the present paper is to establish the above asymptotic
results for nV(n) as n » =, where v(n) is a positive integer-valued random
variable for n > 1, such that v (n)/f(n) converges in probability to a positive
random variable v as n » «, for some positive sequence {f(n)} with f(n) » «,
as n » «, For the case, where it is assumed that for any n > 1, v(n) is
‘independent of khe random variables nn(n = 1,2,...) the above results are easy
to establish. However, in the present work we make no such assumption.

A central limit theorem type result in this direction was originally
»establiShed by Anscombe [1] under a condition of uniform continuity in proba-
biiity of the random variables involved. However there it was assumed that *
v(n)/n ténds in probability to a positive constant. »Rényi [9] gave a siﬁpler
proof of Anscombe's theorem for the special cage of simp1e>sum of i.i.d. random
variables and established a central limit théorem. Later in [11], Rényi gener-
alized his result to the case where v(n}/n tends in probability to a positive

discrete random variable. He, however, conjectured that his result holds more



generally even when v(n)/n tends in probability to an arbitrary positive
random variable. The validity of the conjecture was almost simultaneously
established by Blum, Hanson and Rosenblatt [3] and by Mogyorodi [6]}. Reader
may also like to refer in this connecticn to the papers of Barndorff-Nieison
[2] and Mogyorédi [7].

The author is grateful to Prcfessor LeCam for some helpful discussions
and»in particular for drawing his attention to Rényi's work. He is equally
grateful to the referee for providing other references, in particular [3]
and [6], which led the author to strehgthen his earlier results, where it
was assumed that v(n)/f(n) tends in probability to avpositive constant (See

Puri [8]).

2. SOME PRELIMINARY RESULTS. During the course of developments of later

PV T R I R

sections, we shall need the notion of strongly mixing sequences of events
(see Rényi [10]). Let (2,4,P) be a probability space. Then a sequence An
(n = 0,1,2,...) of events is called strongly mixing with density o(0 < o' < 1)
if for any event B ¢ (i, we have |
© lin P(AB) = o P(B)
n-Hee

However it is evidently sufficient to restrict only to those events B with
P(ﬁ) > 0, in which case the sequence An shall be strongly mixing with densify
a if
(10) lim p(An{B) = a,

. o
for évery B with P(B) > 0. Following thegrem, due to Rényi [10], gives a
necessary and sufficient condition for a sequence of events to be strongly

‘mixing.



THECREM 2: The sequence An of events, such that AO = Q and P(An) > 0

i e e e

(n =1,2,...), is strongly mixing with density o if and only if

(11) lim P(A_|A) = o,

n-r«

for k = 0,1,2,..., where 0 < a < 1 and o does not depend on k.

As also observed by Rényi (see footnote, page 217 [10]), the assumption
P(An) >0, n = 1,2,..., made in thg above theorem, is not aﬁ essential
restriction. In fact, according to the definition given above, in a strongly‘.
mixing sequence of events there can occur only a finite number of events
having the probabllity zero, which can be omitted without any loss of the
strongly mixing character of the sequence.

We shall call a sequence Sn(n‘= 1,2,...) of random variables a mixing
sequence with the limiting distribution function F(.) if for every B e
with P(B) > 0 and for every real X, whicﬁ is a point of continuity of F(),
we have
(12) lim P(E_ < x|B) = F(x)

e ,

We now have the following theorem to be needed later.

THEOREM 3: Let a = 0 and Exi = 1. Then the sequence {nn/nl/z} is a mixing

sequence with the limiting distribution given by (3).

PROOF. In view of theorem 2, it is sufficient to prove that for any x > 0,

and for any k > 1, with P(n < X kl/z) >0,

(13) - lim P(n_ ix-nl/zlnk <x k% =20 1.

n-reo.



1
Note that because of (3), P(nk <X k‘/z) > 0 holds for all k > 1, except
possibly for a finite number of them, which can be ignored in view of the

remark following theorem 2. For this we first note that as n » =

2 "

, o _ 1
(14) {r]n - H:RJ\(O,SI’ S, ,...,Sn-Sk]}/n > 0.

K+ 1

-

This follows from the fact that

(15) In -max(0,S,  ;-S,,--+,8 -5 )] < [ny-max(s,,...,8 )|+]S,|
hS

M1t Sy ]

172 *
and that (nk_1+|8k|)/n + 0, as n > «,

Using (3) and (14) and the fact that Ny and max(0,8k+l-sk,...,sn—8k) are

mutually independent, it follows that for x > 0,

. 1/2 1/2
(16) lim P(max(0,8k+1—Sk,...,Sn-Sk) <xn |n_k <x k')
>
= 13 < 1/2
= lim P(maX(0’°k+1'Sk""’Sn_sk) <xn’'%)
n-oe
= lim P(n_ < x 22y = 2e(x) - 1.
>0

Consider now the probability space (2,G,P"), where
(17) Pr(A) = P(Alnk f;xrkl/z), Ae @,

. and P(nk <X kl/z) > 0, by assumption. For any sequence An of events, with
P p!
indicator function IA , since IA -+ 0 implies IA + 0, (13) follows in view
n n n '

of (14) and (16). This completes the proof of theorem 3. !

The following theorem gives an analogous result for the supercritical case

and is given here without proof.




THEOREM 4: Let a > 0 Eﬂé_EXi = 1. Then the sequence {(nn—na)/nl/z} is a

mixing sequence with the limiting distribution given by (5).

The approach adopted iﬁ Sections 4 and 5 fo prove our results is that
of Mogyorodi [6]. In this connection, the following theorem, due to
Mogyoradi [6] and an extensicn of the celebrated Kolmogorov inequality, will

be found useful,

THEOREM 5: LetlTl,Tz,...,Tn,..., be a sequence of independent random

variables witﬁ E(Ti) = Uy and Var(ri) = c?. Let further

rl+...+rn-(ul+...+un)

n \
n

where

n
Vo= [] o]

i=1

1/2

Let us suppose that the distribution function Gn(-) of random variable Tn

converges to the nondegenerate distribution function G(-) with variance 1.

Let further C be an arbitrary random event having positive probability.

Then there exists an integer n

= nO(C) such that for n > n

0 0’

(18) p( max | Z (-1 )|> A VL0 < 3[P(C)]1/2
T 1<P<n i=1

where A is an arbitrary positive number.

e - - - -t o e e A A

3. SUBCRITICAL CASE. Here we assume a < 0, and prove the following theorem.

THEOREM 6: Let a < 0. Let v(n) denote a positive integer valued random

variable for every n = 1,2,..., such that as n » », vw(n)/f(n) converges in

probability to a positive random variable v, for some arbitrary sequence of posi-
: ) P
tive numbers f(n) with f(n) » », as n + « . Then nv(n) + 1, @S N > e,




_ P
PROOF. Since v(n)/f(n) » v, there exists a nondecreasing sequence

e, > 0 with €, 0 as n -+ », such that

(19) . P(iv(n) - v| > e,) <€

n) ,n=1,2,...

1

Let IA denote the indicator function of a set A and A stand for its

complement. Also, let B(n) denote the set

B(n) = {-sn j-v(n) - v<el} .

For an arbitrarily small § > 0, choose o > 0 such that P(v < a) <§. Let

N(n) = [(a—en)f(n)], where [...] denotes the integral part of the number in
a.s.
the square bracket. Since nN(n) + 7, it suffices to show that
P

Inv(n)-nN(n)l + 0, as n » ». However,

@ Iy ey =gy e vt Ty ) M P v adrB )

*Inym) e pvadnem)”

P

Since Iﬁ(n) + 0, as n > », the second term on the right side tends to zero

in probability. Also, since the probability of the first term on the right
side being positive, can be made arbitrarily small by‘choosing ) and o
accordingly, it is sufficient to show that the last term of (20) tends to

zero in probability. On the other hand,

(21) Inv(n)-nN(n)II[v>a]nB(n) f'(nV(n)“nN(n))I[(a—snjftn) < vl

< sup (n, - )
SN K N
< (;']'nN (n)) ’

and since the last quantity tends to zero in probability, the theorem follows.




4. CRITICAL CASE. We prove here the following thecrem, the analogue of (ii),

section 1.

THEOREM 7: Let a = 0 and EXi exist. Also without loss of generality let

EX” = 1. Let v(n) Be as defined in theorem 6. Then

(22) lin P(n, gy < xGmYH = v

110

where ¥(-) is as defined in (4).

PROCF. For any arbitrary ¢ > 0, choose ¢ > 0 small enough and g > 0 large

enough, both continuity points of the distribution function of v, such that

P
P(a < v < B) > 1-e. Now since v(n)/f(n) + v, there exists an ng such that for
n>ng, P(An) > 1-2¢, where the event An = {a < v(n)/f(n) < B}. Let
@ =ag < a) <...<a g <g = B, be continuity points of the distribution

function of v. Also, let A( = {a < v(n)/f(n) <8y }, i =1,2,...,k, which

-1
are mutually exclusive events, so that A { A .' Similarly let
A(l) = {ai_1 < v §_ai}, i=1,2,...,k. Then for x>0,

k .
1/2 1/2 1/2 <
(@) PO,y < X0 / )= 1 Pl gy (o(a) 208 xR,

The last term is smaller than 2¢ for n 3_n0, so that we only need to consider

the first term on the right side of (23). Again, we may write

N. i-

@) 0y 0@ e D 7HRRm,K,D Tk,

where for 1 = 1,...,k, [f(n)ai_l] = Ni-l’ the integral part of f(n)ai_l, and

N, 1/2, Ny(n) ”N 9
R(n:k:i) = [\)(n)] ——'_———_ﬂ

i-1
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“N 1/2
T(n L)J)~ — vt))) )
N .
1—1
Now choosea(a > & » 0) such that
(25) ly(x)-v(x8)| < ¢ ,
and let C{(n,k,i,8) denote the event
(26) Cln,k,1,8)={|R(n,k,i)-T(n,k,1)] < 6}, i = 1,2,....k,

with €( ) denoting its complement. Then

) | |
@) ) Plnygxb o) V2 A0 'Z POy (n )<><(v(n>)1/“ Ak, 5,6))

k
IR RN AN CR RN
i=1

On the other hand it is easy to establish using (24) that

K | K

(29 ] Pty yexv@Y2a8em ks Py sty MRl
i=1 _ i=1 Ti-1
and ﬁlso
S 1/2 , (i)
(29) z P(nv(n)jﬁ(v(n)) ’An ,C(n,k,1,8))
-i=1
k . '
> WPy <G-0) 0y YEA cmikii,60)
i=1 i-1
k . k . : :
Il <Ges) oy pMZal ] e emiei) .
i=1 i-1 i=1

Here the last inequality follows from the fact that for any three events
A, B, and C, P(ABC) > P(AB)-P(AC).
Let A A B denote the symmetric difference (A-B)+(B-A), for any two

p .
cvents A and B. Then since v(n)/f(n) » v, as n +» », for any ¢ > 0, there



-®

exists a positive integer nl(n] > no) such that for n » nl;

30) ) pa) s Ay < e/a,

Thus using this and the fact that for any three events A, B and C
[P(aB) - P(AC)| < P(BAC) ,

we have for n 2 Ny

: k . k
1 ey, <can ey PYEAIY Y by <oy YA |2
i1 My i1 Mio1

1-

Now using theorem 3, it is easy to show that

k
(32) lim E P(n <(x46)(N
N i=l 1»]

DYy e < v < 8,

so that there exists n7(n2 Z.“l) such that for n >y,
K ? 1/2 , (i)
(33) I oPlny  =(xes) Ny _)75AT)-¥(xe8)P (o < v < B)| < /2
i=1 i-1

Thus using (31)and (33) in (28) and (29) we have for n > n

(34)  ¥(x-8)P(a<v<b)-e- { PA) 8,k 1,6))

k
' 532 P(n v(n )<Y(v(n)) / (1) ,C(n,k,i 6))<W(x+6)PLa<v<B) €.

On the other hand, since P(a<v§§)i}-e, on using (25) we have for n > Ny,

K4y . o
(35)  ¥(x)-3e- ] P(AT,C(n.k,i!8))
| is1

e

5“2 P(n (n)<x|r(n)) 172 &1) ,C(n,k,1,8)) <y (x)+3e.

|
|



-

Now using this in (27) we have for n Z.nz’

. k . k
(36X (-3e- § (A 2,k 1,60)< ) O LxmNY2, 1))
i=1 i=1

<W(x)+ £+ z P(A‘l) C(n,k,i,8)).
i=1

Thus the theorem follows once we show that for any e > 0, there exists

ns(n3 3—“2) such that for n > DNy,

K g .

(37) | L P Emk,i,6))ze
i=1

(i)

Again, given An , since both R and T are nonnegative, it easily follows

from (26) that

(38) L P(«( D &k, 1,8)< 2 P(A( 1 R(n,k,i)>68)+ 5 P(A(l) T (n,k,1)>8).
i=1 i=l i=1

We shall restrict attention te the first term on the right side; the second

term can be similarly treated. Now for n > n,, we have

(39) Z P(A( D R,k ,1)>86)

P(A(l),(nv(n) . )zﬁ(Ni_l)l/z)

< Y

“() 1/2
PRI M (g nN )26(0; 1))

i=1 -1 -1
k .
<e/2+ ] P(A(l),(nN oy, 02808 ) 172

i=1 i i-
K . ‘ '

<e/2+ § P max(sy L paeeSg 0emy ve,_ Y2

‘ i=1 i-1 i Ni-1

)

K . |
Y (1) ) /
<e/2+ ) P(AY, max, o (] XJemy o <S8V, ) )
| i-1 £—N1 jaN, e Noor N -1

1/2

| >

k .
<e/2+ ) p(A(Y) | max | y X5/ 0N -N; )

i=1 N. _1<£<N j=N. ,+1

i-1

JENIVICE S
kNN,

<e/2+3 § 2 32L pa)1/?

i=1 & Nl_1



¥

Here ve have used (30) in the top third inequality, while at the end we
have used theorem 5.

Now since the set of continuity points of the distribution of v is

everywhere dense, we can choose the points of subdivision of («,B] such that

for any 6 > 0O,

(40) a;-a; 4 = (B—a)(l+aiQ)/k, i=1,2,...,k,

holds for some €5 with |ei|§}. Taking this subdivision of (e,B], we obtain

k N.-N. . . . -
wy ) AL ea®plie }eEm) 210, (p (1)) 1/2
- i=1 0 N; 4 i= 16° [ef(n)] '

(B-)fln) L8 Eon@yV2. gl/?
&2[afm)]  © i=l

| A

< (ﬁzs_a)f(n) IR
6 [af (n)]

Here the last but one inequality follows from the Cauchy inequality. Now

for 0 < 8§ < a, choose n3(n3 Z_nz) such that for n 3_n3

f(n) 1
[T = o8 °

so that using this and (41), it follows from (39) that for n > Mg
(42) 2 P(A(l) R(,K,1)6) cer SLEELA0) (712,
i=1 : 6 (a-8)
Finally taking k large enough, the last term can be made arbitrarily small.

Hence the theorem follows.

5. SUPERCRITICAL FASE We shall need the following theorem in order to
prove the main result of this section. This theorem, by itself, appears

to be some interest.
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"THEOREM 8. Let a > 0. Ihen

(43) Lim P(n -8 < x) = H(x),

-

where W(-) is a distribution function of a nonnegative proper random

variable. Furthermore, this distribution is same as that of the limit

of a subcritical process obtained by replacing Xn Qz_—xn, for all n.

The proof of this theorem is omitted as it follows along the lines of
the proof of theorem 1 and in particular from (7). Finally, we have the

following theoren as the analogue of theorem 1.

1. Let v(n) be as defined in theorem

THEOREM 9., Let a > @ and Var Xn

6. Then
n -av(n) ]'
(44) 1im  p—>1) < x) = ¢(x)
N> Yv(n)

PROOF. The proof of this theorem follows the same lines as those of theorem 7.

However, we shall mention here briefly the points of difference, while skipping

the details., Analogous to (24) we write

-aN,
n -av{n) ™N. i-1
(45) ”(“3[__ = Ao # R (n,k,8) - T (K1),
v(n) i-1
where '
' : n -ny, -a(v(n)-N. )
R s = (k2 Y o -
P e v(n) 7 m___ . >
i-1
and
N, TN N.
T ' MNi-1,1/2
Tl(n,k,l) = { } (1“(v(n) )'
i-1 -

Also, analogous to (26) define the events

(46) C (K, i 8)={|R; (n,k,1)-T; (n,k,1)| < 6}, i = 1,2,... k.
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Now proceed exactly along the same lines of argument as those of theorem 7,
during the course of which, we would need the mixing property of the sequence
(nn—na)/nl/z, as exhibited in theorem 4, untilvfinally we are required to
show that for'any ¢ > 0, there exists n3 such that for n z_ns,
(47) | Z P(A(l), C,(nk,i,8)) < e, '
i=

the analogue of (37). Again, it is easily'séen that

k . ' K . k .
(48) 3 P 8 k1,605 ) PAMR (k1) 126/20¢ ) P IT (k50 [28/2)

i=1 » i=1 i=1 :
As before we restrict to the first summation on the right side, while the last
can be analogously treated. Now it éan Be easily shown that for n > n,, we
have

k ]
o) ) Pl IR, (n,k,1)[>8/2)
i=1 n 1 —

Ny M, 2@INg )
P(A( ) i-1
1 T
' -y —a(l—Ni_l)

| A
0 o~

| > 6/2)

i

n
S peald) RN
<3 P(AL max I | > 8/2)
i=l, N 1<£,<N /Ni_l
k n,-n -a(%- N, )
) <ef2+ E P(A(l) max l . Ni—l | > §/2)
i=1 Nl 1<Q,<N /N—l—_—l—
K . coompmSy o maleeNy ) oy Sy
<ef2+ ) p(A),  max [ i-1 | +1 i-1 1-1|_>__6/2).
i=1 N 1<9,<N Vﬁi-l ' /Ni_l .

On the other hand, in view of theorem 8, since for i = 1,2,...,k,

P
_ /2 .
(nN. -5y )(N1 1) + 0,

i-1 i-1

as n+ o, for 0 <4 y < §, we can find n,(n, > n,) such that for n > n_,, we
Y 3403 =72 =73

have



*a

10
k

' 1/2
(50) Y P((n, -S; Y >2yW@. D7) <e/2.
=1 M My ol -
Thus for n > Ny, We have from (49),
kL.
(51) .ZIP(Aél),]Rl(n,k,i)l > §/2)
. 1=
- n -S -a(2-N, )
- % o (1) . \1/2 PN -1
~ Ay -8y sy )0, omex 125 -y)
i=1 i-1 i-1 ' N, .<2<N. VN,
- i-177= i-1
k .
(i) 1/2
< g+ X P(a s (n -5 Y<y(N. ) ,  max lmax(n -8 »S -5, ,
i=1 Niop M Y N Mior Nyt Ny
8 " 1/2
....,sg-sNi_l)-a(z-Ni_l)tzﬁz - VW, P
k
(1) ‘
< e+ 2 P(A s max |max(S -8, yeea,S S }-a(2-N, )l
i=1 N. . <2<N. Ny gt N5 2N 1-1
i-1 "—1
) 1/2
k . %
(1 ) - \1/2
<o p®, max |1 el G-nog pYh
i=1 N. ,<&<N. j=N. ,+1 J
i-1 -1 i-1
k . % ,
cer T PA®, max |3 aealon-n, 7VEBG - o sop 1t
. . b i i-1 2 i-1 ii-1
i=1 N. ,<2<N, j=N, .+l
i-1""—1i i-1
k N.-N, . .
< e+3‘z § 1"].2 (p(A(l)))l/Z .
1=l (- v) N

Here for going from second inequaiity to the third, among others, we have used the

fact that 4y < 6. The last step of (51), of course, follows from theorem 5. The

rest of the argument is same as the one for theorem 7, and is therefore omitted.

This completes the proof.
We close with the remark that all the above results can easily be extended to
cover the case where SO=X0 is a nonnegative random variable. When v(n) is non-

random and is equal to n, this case has recently been considered by Takac [13].
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