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INTRODUCTION

Kendall [7] originally suggested the use of a branching process argument for the analysis
of the MIGI1 queue, however he did not develop the idea in detail. Independently of
_Kendall, Neuts also considered and developed this technique, [ 16] and showed how it can
be used in the analysis of several queueing models. The idea of the branching process
argument is to group the customers into ‘‘generations” in a certain way. To be specific,
suppose we consider a single server quveueing system with k > 1 customers present at time
t = 0, and suppose one customer is just starting service. These k customers form the first_

qgeneration in the branchmg process and their total service time is termed the lifetime oitmL

f_rsmeug[a_;lon The customers who arrive durmg this lifetime form the second generation
and so on. This technique was applied in [16] to the MIGI1 queue. Further results using the
‘ _ same idea were reported by Neuts [19] and by Neuts and Y adin {20].

When we analyze more complex queueing systems we see how useful the technique is.
Neuts [17] studied the system having two servers in series by use of a branching process
argument and, using a class of matric functions defined for the first time in [17]), found a
matric. functioh analogue of Tak4cs’ equation [24] for the busy period. In [18] time
dependent results for the MIGI1 queue subject to an extraneous phase process were obiained
using the same methods.

In both [17] and [18] an equation of the form,

(1) | ‘ Z= Z A, 2" nzn<a
n=0

where Z, A are mxm matrices, was obtained. The existence of a solution to equation (1)
was shown in [17, 18] but the uniqueness of the solu.tion was-shown only under slightly

- restrictive conditions by using techniques of complex analysis and matric theory.




‘ 2
_ Chapter 1 contains the necessary mathematical definitions and theorems for the
remainder of this thesis. ‘The main idea is to treat equatioh (1) asa noﬁ-linear operator
. equation in a certain Banach space. Conditions are then given sb that tl';e non-linear
operator equation has a unique fixed point.

In Chapter 2 we give some results on semi-MarkoQ matrices”- in particuiar resulis
concerning the Perron-Frobenius eigenvalue [12]. These results were used in [18] and also
in Chapterl 6 of this thesis.

Chapters 3 and 4 use the results of Chapter 1 vto show that equation (1) has a unique
solution. In Chapters 5 and 6 we show how the branching process method éah be used in
" two more queueing models. In Chapter 5 we consider a single server queue with Poi\sson
input and semi-Markov service times. .This model has been discussed by Neuts [15] and -
Ginlar [2] but the approach via the branching process is presented here for the first time.
We obtain a matrix anaiogue of Takags' Equation and prove that this equation has a unique
solution. The time dependent behavior of a Birth and Death process defined on a
continuous time I:Vlarklov chain is dichssed in Chapter 6. Naor and Yechiali [14] and

Yechiali [25] initiated work on this model and obtained its steady state solution.

&
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CHAPTER |

ANALYTIC MATRIC FUNCTIONS

i

Neuts [17] introduced a class of matric functions which we will call here “analytic
matric functions.” These functions arise quite naturally in some queueing models. In

this chapter we examine some of the properties of these functions.

Definition 1.1. Let A(z) be an mxm matrix all of whose entries are analytic functions
over the unit disc. By A we denote the matrix of coefficients of z" in the Maclaurin
expansion of the functions Aii(z)' Let B be an mxm matrix such that
m ' :
lIBll = max Z 'Bij| < 1. Then the analytic matric function A[B] is defined by
i o= ,
=1 ‘

> .
(1) A[B] = Z A, B".
n=0
This definition is consistent since the series in (1) is absolutely convergent.
Such functions do not appear to have bee‘n studied in the literature. In fact,
Reinhart [23] in his survey of existing definitions of a matric function gives no reference

to functions of this type.

Properties of Analytic Matric Functions.
Since our main interest in analytic matric functions is their use in queueing theory,.
we restrict our discussion primarily to those properties needed therein. However the

following theorem is of interest in its own right.

Definitio'n 1.2. Suppose a matrix A has eigenvalues Aq, Ay ... A, We define the spectral |

radiys of A, u(A}. by



(2) . u(A)¥ max i)\il.
- Kisr

We use the symbol | for the unit matrix.
i

Lemma 1.1.

Let A be an mxm matrix with u(A) < 1. Then | — A is non-singular and

(3) (1-a)~1= ZA". |
: n=0

. Proof: The proof of this lemma is given in any standard textbook of matrix theory.

Theorem 1.1.
Let A(z) be a matrix whose entries are analytic functions over the unit disc. Let B
be an mxm matrix with lIBIl < 1 and let v be a closed contour lying inside the region

fzl > u(B) then,

.

| _1 R
(4) | AlB] M[ym) [21-8]~ dz.

Proof: We note that
(1) : ey P-Tp Ty !

Then, since p(%B) = ﬁ u(B-) <1, for zey we have by lemma 1.1
- z

Sim
n

n=0 2

N|=—

(6) ' ' (z1-B]~ 1=

Consequently we have,



n il Alz) [21-B] 1

N
B
e

This completgs the proof.

We could no'w‘investigate how many of the p‘roperties of analytic functions carry
over to these matric analytic functions. From a queueing theory viewpoint we would be
most interested in extending Rouché’s theorem and, hopéfully, Lagvrange's expansion.
We choose not to pursue this approach here. Instead we look upon A[-] as a non: hnear

operator on a Banach space-the space of mxm complex matrices.

The non-linear operator A[-].

Let,

(8) h M= {Z: Zis an mxm complex matrix}.

- L , '
M is a linear space and we can define a norm on M by

(9) o IZIl = max

s

: IZijI.
. }=1 “
- Under this norm, M is a Banach space. Let,
(10) D={Z: NZII<1, ZeM}

(11) ’ 5D = {Z: IZI1=1,ZeM]} .



~The D CM and 6 D 'is the boundary of D.
Let A be the non-linear operator defined by,
. 00 ‘
(12 - AlZ] = Z AnZ", Z,A e M.
. ) n=0

As usual we will define

(13 ’ HAN = sup NA[Z]I.
HZi=1

We will assume in the rest of this discussion that 1Al < 1. This being so we have,
(14) o A: D~ D.
Lemma 1.2,

D is a convex éubset of M.

Proof:

Let X,Y € D and let o and § be real numbers with o= 0 =20, a+ g=1. Then,

(15) - lHa X+ B Y < ollXll + BHYN <

So, aX+ BY € D.

Let DO denote the interior of D. |

Definition 1.3. The Gateaux derivative of A. Suppose there exists a linear mapping

LA(Xg), Xge DO such that

(16) » 'tl»no 1—(Ail‘:<§,‘) FtX] = ADGGTY = LA(Xg) X, X e M.

Then LA(Xg) is called t ¢ Gateaux deriv_cve of A at Xg.



Definition 1.4. The Fréchei Derivative of A. If at some point Xg € D‘O,
(17) ' ,A[X0+H] — A[Xg) = dA(Xq,H) + w(XgH)

where dA(X,H) is a linear operator in H and

llw(XQ,H)ll _

(18) im

then dA(Xo,H) is called the Frechet differential of A at Xg- The Ilnear operator A [Xol -
defined by

(19) o A'[Xgl H = dA(Xq,H)

is called the Frechet derivative of A at XO'

Lemma 1.3. : ) . ) ‘
If the limit in (16) holds uniformly in X, for all X such that I1XIl = 1 then

r

(20) : LA(X,) = A'(Xg).

~ Proof: See Vainhery [26] p. 42,

Detimition 1.5,

Ais contlnuogsly Frechet differentiable if the mapping XO A’ (Xo) from D to the

space of continuous linear operators on M, is continuous.

Theorem 1.2. .
The non- hnear operator A is continuously Fréchet dlfferentnable at each point Xoe DO.

The Fréchet derivative is given by
- .
' ' ' = (N)yey
(21) A(XO)X—ZAn Py x)
n=

where



n

(22) R Pxo‘")(x) = Z Xk x g1

Proof: Consider the limit,

(23) lim L {A[Xy+1X] — A[Xq] }
: 0t . v
= dim L Z An[(x0+tX)"—x3].
>0 1 n=0 v

For t sufficiently small, XO +tXe€ DO. This implies that the series on the right hand side

of (23) is absolutely convergent. The n-th term in this series can be written as,
(24) t Pxé")(X) + terms involving higher powefs of t.
We can interchange the order of summation and taking limits. Doing so we get,

(25) - lim L {A[Xg+tX] — A[Xg]}
- w0t v

o0
- Z A, Px (X,
0
n=1
We now define the operator A’(Xg) by
v , _
(26) E A(XghX = Z A, Px(()“’(x).
_ 4

A'(Xg) is then a linear operator on M and so is the Gateaux derivative of A at XO. It
remains to be shown that A'(XO) is «he Fréchet derivative. Suppose !Xl = 1. Then we

have

(27) ‘ _ lXg + tXI < NXgll + Tl



So we have that fort <1 — ||X‘o||, XO + tX € D0 for all X such that liXll = 1. Hence the
limit in (23) is uniform in X, WXl =1 and so by lemma 1.3., A'(Xq) is the Fréchet

derivative of A at Xg- We must show that the mapping Xg — A’(XO) is continuous. Let
(28) N L(Xg) = A'(Xg) Xge DC.

We prove the following Lemma

Lemma 1.4.
‘Let {Xm, ‘'m = 1} be a sequence of points in D0 which converge to a point XO € DO.

Then

(29) _ lim L(X )= L(Xg)-

m—>oo .

Proof: Let Y be such that 1Yl = 1. Then

. oo n,
. - n—k k—1
(30) o lim L(Xm)Y = lim ZAn Z Xm Y‘Xm X
: oo . m-—>oe n=1 k=1 .

We have the following relationship

_rxi| n
) o oen ok k 1
Rkl Wy M /XY Xy

nl ko1

) o0
< Z milA I uxmu““.
- n=1

‘Now for a‘n'y € > 0 and for sufficiently large m, X I < IIXOII + e By taking now €
sufficiently small we have IIXOII + ¢ < 1. Therefore the series in (31) is uniformly and
absolutely convergent. ‘We can then interchange the limit and summation operation in

_(30). We obtain
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‘ . oo n
: = n—k k—1
(32) lm L)Y = > A, Z xa=k v xk
. , m n=1 k=
= L(Xg) Y.

Since (32) is true for all Y, HYIl= 1 it follows that equation (29) holds. Thus we have

shown that A is contihuall’y differentiable on Do.

| Generalized Contraction mappings and a fixed point theorem.

Following Kirk [9] we define a generalized contraction mapping by,

Definition 1.6. Let B and M be Banach spaces and Ilet A be a non-linear mapping of B into

M. Then A is a generalized contraction mapping if for each X e B there exists a real

number a(X), af{X) < 1 such that for each Y ¢ B,
(32 . HA(X) — ACY)IE < alX) IX=YH.

The following two theorems are due to Kirk [9]. Suppose E is a bounded open subset of

B and let A map E into B.

- Theorem 1.3. .
Suppose A is Cbntinuously Frechet differentiable on E. Then A is a generalized contraction

mapping if and only if, for each XO e E,

(33 HA' (XM < 1.

The next theorem is the key result needed in our subsequent examination of queueing

systems.

Let U be‘anvopen‘ ball centered at the origin and having positive radius. Let §U denote the

boundary of U. -

~ Theorem 1.4. _
Suppose A is a generalized contraction mapr 'ng on U which maps 8U into L. Ther A has

a unique fixed point in U.



1

In subsequent chapters we will show how, in a number of queueing mbdels, these theorems

may be applied to yield the uniqueness of the solution of interest for the equation for the

busy period distribution.
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CHAPTER 1l
SEMI-MARKOV MATRICES
1. Introduction

A natural combination of the theories of stochastic matrices-and of distribution

functions, which arises in a large number of problems-of analytic Probability theory, is

the theory of semi-Markov matrices.
Here we wish to consider properties of semi-Markov matrices involving multivariate

distributions.

Definition 2.1. k-variate semi-Markov matrix. ;
Let Q{x) be an mxm matrix, whose entries are real valued functions defined on Rk

such that every entry Qii(zg) may be written as:

where Fii(x1" . .,xk) is a k-variate probability distribution and where Pji =0,
m e

z P} = 1, i=1,...m, then Q(x) isa k-variate semi-Markov matrix.

j=1

We note that if P} = 0, the probability distribution Fii(-) may be arbitrarily chosen.

Definition 2.2. Irreducible serﬁi-Markov matrix. ‘
The semi-Markbv ratrix Q(x) is called irreducible if and only if the stochastic matrix

P= {pij} is irreducible.

Definition 2.3. Nondegenerate k-var:ate semi-Markov matrix.
The semi-Markov matrix Q{x) is nondegenerate k-variate if and only if for every

v=1,..k thereexistsa pair of indices (i} such that Pjj > 0 and the corresponding



distribution Fij(x1" . ..X;) has a marginal distribution Fii(+°°" . Xy o +e0) which is

not dégenerate at zero.

The nondegeneracy condition eliminates the case where one or mere of the k-variables

X1, « =X are actually redundant.
Henceforth we assume that Q(x) is an irreducible and nondegenerate k-variate semi-

Markov matrix.

We now consider the k-dimensional Lebesgue-Stieltjes integrals:

v=1

‘ k .
(2) qij(E1" . "Ek) = qij(E-) = J};k exD[—Z EVXV] dx1b,. .v.,x_k Oii(x'l" . .,xk) )

which we refer to as the Laplace-Stieltjes transforms of the entries Oij(x1,. X ) of Qlx).

~ The functions qij( £q.- - -k ) are obviously defined for Re £, =0,..., Re ) = 0,
but they may not be defined anywhere else. We are mainly interested in the cases where
the domain of definition of the qii(g) is larger, as is the case in most applications.

We distinguish the unilateral and the bilateral cases.

In the unilateral case, we assume that all Fij("1'- . .,x-k) corresponding to indices i, j
such that Pij > 0, concentrate all their mass on the positive orthant x4 =20,.. XK =20. In
this case all integrals in (2) exist for all £ with Re 21 >0, .. Ret K = 0. Moreover.all
the functions q'ij(g 1 - .,g,‘() are jointly analytic in Re £1>0,....Re >0 and any
function obtained by setting some but not all of its variables equal to zero .is analytic
inside the corresponding part of the boundary of the set Re £1 >0,... Ret k > 0. The
latter statement is obvious if we realize that setting one or more, but not all of the £~
variables equal to zero, corresponds to taking the Laplace-Stieltjes transforms of suitable
“marginal” distributions of Q;(x,. . WX ) '

The b'iliateral, case encompasses all distributions not in the uhilateral case.

In our discussion of the bilateral case we shall assume that there exist 2k real

numbers Ei and £| i=1,. ..k such that:

(3) | _mggg' <0< gi < +oo, i=1,...k

‘!f
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and such that in the “box’’:

li
—
<
N
~
N

@ £ < Re §; <,

all functions qij(£1,. . .§y ) are analytic in £ by
In order to discuss both cases simultaneously, we shall refer to the domain D in the

unilateral case as the open positive orthant £1>0,.. £k > 0 and in the bilateral case

as the box Y SEp S BB SE S Eg

2. The Perron-Frobenius Eigenvalue of q( £ ).

The matrix q( ) with entries qij(£1,. . ..£|) isanirreducible, nonnegative matrix for
every real point S_ in the domain D or on its bodndary. It follows from the classical theory
of nonnegative matrices, [6, 12], that q(£) has an eigenvalue of maximum modulus, which
is real, positive ahd of geometric and algebraic multiplicity one. Denoting this, the Perron- |
Frobenius eigenvalue, by p (£ ) = p (¢ 1 - &), we set out to dISCUSS the properties of p( £)
-as a function of £ over the domain D. In the simpler case where k = 1, this was done by
H. D. Miller {13].

Lemma 2.1. ,
' All functions qij(‘é_), i,j =1, ..m areconvex functions over the domain D and its

boundary, i.e. for £ and 1 in the closure D, we have:
(5) [a§+(1—a)n] aq“(E)+(1 a)q (n)

forall0 < a<1,andallij=1,...m.
Moreover if £ # nand 0 < a <1, strict inequality must hold in (5) for at least one

“pair (ij).

Proof: k

Since for al! real k-tunles (xq..." xk) the function exp[— E £,x ylis strlctly convex'

=1
over the domaln D the inequality (5} follows lmmedlately from the definition of qU(E)
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To prove the next statement we must clearly consider only those pairs (i,j) for which
> 0. The corresponding L.aplace-Stieltjes transform q”(E 1 | &) is strictly convex
: wuth respect to all the variables which explicitly occur in it. The variables £, which do not
explicitly oceur in qii(zl" . .,k correspond to variables x_ in Fii(x1" coX) with rospect
to which the marginal distributions are degenerate at ze10.
" The nondegeneracy assumption may be restated as saying thal every variable { ),
v =1....k mustoccur explicitly in at least one of the functions q”(.g1,. . .,Ek).
Let now ¢ # 7. In particular §, #n,. Let (i,j) be a pair such that q'ii( £ o)

contains EV explicitly, then for 0 < o <1

<o

q;j[(1-c) 0+ at] < agylg) + (1-a) qij(ﬂ),

_ ‘since qij(') is jbintly strictly convex in all variables upon which it explicitly depends.

‘ ‘Superconvex Matrices.
Let f be a positive function defined on the convex set I € K. Then f is superconvex

if log f is a convex function on I'. Clearly, f is superconvex if and only if for each

£, nel,

flak + pn) < (HEN[HZP ; o+ B =1, @ 20, B>0.

Definition 2.4.

A matrix A(g) = [Aii(ﬁ)] is superconvex if for each (i,j), A”(g) is superconvex on i
The proofs of the following lemmas can be found in reference (8) or (10). | g

Lemma 2.2.

L1 is superconvex on ", then it is convex there.

Lemma 2.3.

Let 7(&). be any non constant positive linear function on I". Then 7'(5,) is not

SUErconvex.
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Following Kingman (8) we let C denote the class of all superconvex functions along

with the constant functions on I.

Lemma 2.4, _
(. is closed under addition, multiplication and raising to any positive power. If for

eachn, f e C , so does lim sup
n—roo

Lemma 2.5; _

Let A(£) be a superconvex matrix on T" and let p(£) denote its largest eigenvalue.

Then pi(£) e (.

Lemma 2.6. v
Let A(£) be a superconvex matrix on I" and suppose plE) isnot a constant

function. Then p(&) is strictly convexon I'.°

Proof: ,

By lemma 5, p(£) is superconvex on I’ and so it follows from lemma 2 that p(£)
is also convex on I". Suppose now that p(_&) is in fact linear. Then by lemma 3, since
p(£) is not constant, p(£) is not superconvex. This contradiction nmphes that plg) is

strictly convex on I".

Theorem 2.1.

Let £ =g +i7 wheref e D.
(a) The Perron-Frobenius eigenvalue, p(f) is analyticat £ = g in the domain D.

(b} pla) isa strictly convex function of g in D, suitably continuous on the boundary.

Proof: _

(a) Asin the univariate case, Miller [131 ,foreachrealg, plg)isa simple root of the
determinantal équation Izl—g(o_)l = 0. Since |z|—g(g)_| is an analytic function of the
k+1 complex variables, z, 01, - -0y, the result follows from the implicit function

theorem for analytic functions.
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(b) We need only show that qii(_o_) is a superconvex function for each (i, j). This follows

at once since
, o
j;)exp[—(ag+ g g’} X} da(X) < [J{; expl—g-X] dQ(X)] [L exp[—o " X] dO(K)I[3

forg=g+ir, £'=a'+i1, £ E'e€ D,and gX = 0;X;+ " Foy X, . This is just
H6_Ider's inequality for a Banach space with a finite measure. Conseq'uently qlg)isa

superconvex matrix and so p(_q) is convex. By lemma 1, p(g) is not constant and so by

femma 6, plg) is strictly convex on D.

By suitably convex an the boundary 6 we mean thatif g*=g"+iz" ¢ D and if
£, & where £, € D then plg,) > plg™). Hence we have  p(g) is strictly convex
on D.

The entries of g{£) are all suitably continuous on the boundary and hence plg) is
suitably continuo>us on the boundary, since convergence of a sequence of positive
matrices entails convergence of their Pérron-F robenius eigenvalues to that of the limit
matrix. |

The theorem 2.1 implies in particular that plg)isa continuoUéIy differentiable
function of ¢ in D. In the unilateral case one may easily verify that p(£) is also suitably
differentiable at all boundary points of the positive orthant D, with the possible
exception of the origin.

In many applications, see Neuts [15], the quantities

- 19
(11) ‘ Mj’- [é—E; P(E1,...,Ek)]£=g

play a fundamental role. In the unilateral case, the derivatives at Q are to be understood
in the same “‘suitable’’ sense as in theorem 1.

We denote by oz(_"), the mean with respect to the variable x,, of the probability
!

distribution Hi(x1,. . ..x,) defined by:

Ly m

(12) - H|(X1, . .,Xk) = p'l F”(X1, . .,Xk), i=1,....m f
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ie. of¥ isgiven by:
I .

13 Jr)=i&kxvde”_mkH#xv””xg,

provided the integral (13) converges absolutely. In this case a(_”) is also given by:
. i 2

N3

(14) =i )
. : i o, =

where the derivative is in the suitable sense in the unilateral case. = -
Furthermore, let mq,. .., be the stationary probabilities associated with the matrix
P, i.e. the row-vector m = (1r1,. . .,1rm) is the unique solution to the equations:

(15) - r=1P, me=1,

where e is the columnvector with all its components equal to one.

- Theorem 2.2.

The guantities Mj are given by:

4 |

In the unilateral case, this is provided the means a(ij), i=1,...m exist. In the
bilateral case, our earlier assu mptions‘encompass the existence of these means.
Proof: _ _

Let x (£) and y(}) be right and left eigenvectors of q(£) corresponding to p(E),
normalized such that y(g)-x(g) =1, and y(g)-e =1. Itis known that such a
normalization‘is possible and uriquely determines x and y for every £. Moreover as §
tends (suitably) to O, we have that y(§)— z and x{g)—>e, componentwise. The

components of x (&) and y(g) are (suitably) continuously differentiable functions of

zg’_inB.



~ ..fﬁ‘;ﬁx;:é L
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We have that:

(17) qu (51,. . ,Ek) XI(E1, . ,Ek) = p(E1, . ,sk) XV(E‘I' . ,Ek) ,

=1

M

for v=1,....m and all £ in D.

Differentiation with respect to Ei yields:

(18) ‘p(£1,...,£ 5{ X (21, ...,‘-;’k)‘*XV(E‘], Ek) aE‘ p(E1,. ..,Ek).l
m I,
= ZX](EAl,,E as qVI(E‘l, ,Ek)+ Z_. qu(E1,,£ “—X(E],,Ek)
=1 i=1

Upon letting £ - O (suitably) and noting that pl0) = 1, we obtain:

m
N

(19) | —E—x(i)]i_b+M——a()+41 i azx(‘;‘_)]io
]=

v

forv=1,..m.

Multiplying by 7, in (19), summing on v and applying (15), it follows that:

m
(20) B M, = — ? ™ a(l) .
’ =1

Remérks

(1) Formally, the quantities M; appear in the same manner as the first moment does
from the Laplace-Stieltjes transform of a probability distribution. A natural question to .
ask is whether p(£;... LE) isitself the transform of a probability distribution. The
answer is‘negai{ive in general. Consider the following example of a 2x2 univariate semi-

Markov matrix

P11=P22=0 Py2=P21 = 1
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tis eaéy to .seer that:
plE) = [£4(8)fo(£)) /2,

where f, (¢) and fo(¢) are the Laplace-Stieltjes transforms of the probability distributions
Fi2( ‘) and Foq(+). Itiswell-known that f4(¢) and f5(£) can be chosen so that their
product is not the square of a Laplace-Stieltjes transform of a probability distribution,

eg.. .-

et .

+

N |-
N =

file)=e¥, fl8) =

{2) The Results of this chapter represent work done jointly by M. F. Neuts and the

author.
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CHAPTER (il

THE M|G|1 QUEUE SUBJECT TO EXTRANEOUS PHASE CHANGES
- L
1. Introduction
Neuts [ 18] discussed the M|G|1 queue subject to an extra_ﬁeous phasé change process
and, using the branching process argument of [16], showed that the Laplace transform of

the busy period matrix must satisfy an equation of the form

(1) . Z=A[Z] uzn<1

where A[Z] is an analytic matric function. Equation (1) is the transformed version of

the system of non-linear integral equations,

- =
(2) e = Z 7w (9w a0

n=0 0

where W({0) is the busy period matrix and for each n, xn(u) is a sub-stochastic S-M matrix
Our interest is in finding a solution which is a (possibly substochastic) semi-Markov matrix.
Consequently we require that a solution to equation .(1) have all its entries analytic in the
right half plane. By applying the results of Chapter 1 we show here that equation (i) has

a unique solution in this class of matrices.

2. The Queueing Model

The model under discussion hére is an M|G|1 gueue governed by an m-state
extraneous phase process. The .phase process is assumed to be an irreducible, m-state
Markov chain in continuous time with only stable states. This Markov chain is full_y

characterized by its state at t = 0, by the transition probability matrix P of its embedded



_ ‘ 22

discrete parameter chain, which is irreducible and stochastic and by the parameters ’

Gqs 0 of the negative exponentral SOjourn times in the states 1,...,m respectively -

Pyke [22] . |

The arrival process to the queue is assumed to be an homoger\eous Poisson process of

_rate \; = 0, during any interval of time that the phase process is in state i, i = 1,...,m. The

successive service times are conditionally independent given the phase process. A customer

who begins servuce during a phase of type i has a service time distribution H; ( ) of finite

mean o;. A key assumption is this, if a customer begins service during a phase of type i, his

service is governed by H;{-) for its total duration regardless of phase changes occurrmg

during the service time.

The Busy Period. |
Suppose that at t = O a single customer is just entering service and that there are no -
other customers waiting in line. The length of time until the queue becomes empty again

is called the busy period. We now define,

(a) \,l)ij(r,x) as the probability that a busy period initiated by a s'ingle customer while
the phase process is in state i ends before time x, that the phase p.ro'cess is then in

state j and that exactly r services are dispensed.

(b) 7ii(s,w) = Z f e % d y;; (r x)w’

r=1 0

/

(c) P (n x} as the probability that we have n arrivals in (0, x) and that after the n-th
arrlval the phase process is in state j given that the phase process is in state i at

t=0.

We let y(r,x) denote the matrix [x[/ii(r,x)] and (s,w) the matrix ['yij(s,w)] . We introduce

the generating function,

- (3) : J(w,x) Ylrx)w'

-
|=
—i

and the probability,
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~ : u ’
(@ xplull =f0 P;(n0) d Hyf0).

Theorem 3.1. 7
The generating function Y{w,x) of the probabilities wij(r,x) must satisfy the matrix

non-tinear integral equation

- (5) , Ylwx) = w Z
o : n=0

X -
f Viw,x~u) d xn(u)
0 _

where w(k)('-,-') denotes the k-th convolution of y(+,*) with itself;

Proof: .

The proof of this is given in Neuts [18].
If we denote Y(1,x) by ¢(x) then for w= 1, equation (5) is a system of non-linear matrix

integral equations of Volterra type,

. - | oo <

(6) ix) = Z [ WM —u) d X, ().
' n=0 0

~ If we now let

(7 . ALl = f e X dx,(x)
0

we can write (6) in transformed form as

[» ]
(8) yls) = A (s ¥ {M(s),
n=0
» We wish to show that equation (6) has a unique solution in the ciass of (possibly sub-
stochastic) semi-Markov matrices. As pointed out in the intr'odu'ction to this chapter, it

suffices to prove the following theorem.

7
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_ Theorem 3.2.

" The equation,
(9) 2(s) = AlZ,s] HNZI<1

has a unique solution Z = v(s) with entries analytic in s for Re s >0,

Proof:

We recall, Chapter 1, that the Fréchet derivative of A at X e DY is given by

. (=]
. . _ n)
(10) ‘ : A(XO)X—Z AnP 0()().
n=1
To show that A is a generalized contraction mapping it sufficies to show that

A" (Xl < 1 for all Xg e DO,

Now A" (X = sup A (XgIXII.

IXti=1
However,
(1) L HAUXIXH = ”Z A sz‘(’)(xm

’ . n=1 ’

< Z AN PO,
n=1

‘But,
12 PRI < nliXgii™=ix

Consequently we get

[ ]
]

(13) : iiA’(XO)il < Z nIIAn!l ||x0||l'i—1_
n=1



waever, since for all Xg € Do we have IIXOII < 1 it follows that

(14) | A" (Xl < Z nllA 1.
' : n=1

By equation (4) we have

-MB ‘

'(15) | AL (s = m?x j(-) e 0X Pij(n,x) dH;(x)

i=1
whéfe o = Res.
In order that IIA'(_XO)H be less than 1 for all XO € D0 it then suffices that

m m

(16) z n Z Z f e OX Pij(n,x)'dH_i(-x_) <1.
: =1 =1 |= 0 -

J

From which in turn it suffices that

an Z n e Pylnx) dHi) < Ly i=1,.

. 0 ol

n=1 i=1
Levt now
_IH‘

(18) ' K00 - Kij(l)
where:
19 K1) = Z n Piint).

. n=1

25

., m.

Clearly then Ki,(t) is the expected number of arrivals in a time interval of length t which

~begins when the phase process‘ is in state i. K;(t) is then majorized by t max(?\i,. COA)

m

But this is just the expected number of arrivals during an interval of length t in a Poisso:

process of rate max(>\1,. . "}‘m

). By assumption, H;() has a finite mean. So we have



" Z=Al[Zs] has a unique solution Z = "y\(s).
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(200 j(; Ki(t) dHt) <eo  i=1,...m.
" Now let
@ ' oilo) = fo &0t R,(1) dH(0).

Then we have

(a pilaq) > pilag), for o < 0y
(b} pila) > 0 as oo,
So; by choosing o sufficiently large, we can make pilo) < V/m i=1...m.

- However we note that

(22) pilo) = Z n[ i e79% Pyi(n,x) dH;(x).

=1 0 =1

Consequently there exists ¢4 such that whenever Res>aq,

(23) HA' (Xl < 1 ' Xgh < 1.

~ This means, by Theorem 3, Chapter 1, that A[{Z,s] is a generalized contraction mapping

for all s such that Re s> aq.

To show that A[Z,s] has a unique fixed point we need only show that HA[X,s] 11 < 1

for 1XH) = 1. However, for all s with Res >0

(24) A: 50 - DO

By Theorem 4, Chaptar 1 it then failows that for all s such that Re s > 04 the equation

4
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We have seen already fhat v(s), Res=0,isa solbution whose entries are analytic i‘n s,
Since v(s) = fy\(s) for all s such that Re s > ¢ it follows by analytic cdntinuation that
' y(s) = -?(s) for all s with Re s > 0. For Re s = 0, the solution is defined by continuity.

" So, v(s) is the uniqué analytic solution for Re s > 0 of the equation -

Z = Al[Zs] nzn < 1.

Outside of its mathematical interest, this result should be most useful in the numerical
solution of equations of this type. |

\

 Tuvgamer T
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CHAPTER v
TWO SERVERS IN SERIES WITH A FINITE INTERMEDIATE WAITING ROOM

1. Introduction _

Neuts [17] used a branching process argument to analyze a queueing system having
two servers in series with a finite intermediate waiting room. Using the matric functions
in Chapter 1 he found that the distribution of the busy period must satisfy a matrix form
of Takags’ equation. We show here that the equation found by Neuts has a unique

solution.

2. The Queueing Model

_ We summarize here the relevant details of the model in question. Fora fuller
description we refer to [171. | '

The system is made up of two servers in series with a finite waiting room in

between. Customers arrive at unit | under a homogeneous Poisson process of para—
metric A and are served in order of arrival. The successive service times are independent
identically distributed random variables with distribution H{+) having finite mean «.
The output of the first service unit is fed into the second service u_nit via the waiting room.
A customer who has not yet finished service in unit | is called a | —-customer; a customer
who has finished service in | but not in unit 11 is called a {1—customer. The finiteness of

the waiting room is expressed by the cendition — there can never be more than k+1

|| —customers in the cystem at any time, Whenever the number of {I—customers

reaches k+1 the system becomes blocked.
The service mechamsm in unit 1| deperds upon whether or not the system is

blocked.



(a) Service in'1l when the system is unblocked. _ _

Suppose T1' and T are epochs of arrival in the waiting room and suppose the s'ystem
is not blocked at'Tj. Clearly then no blocking occurs in (T4 T5). In the interval (Tq Ty
we assume that the departure process from unitlll is a Markovian death process with,
possibly, state dependent death rates. Speciﬁcally, let Ty <t < t+dt < To and let
there be j |l—customers present at time t. Then the probability that a I1—customer will

leave the system in (1, t+dt) is o; dt with og =0 and 0; >0 j=1,.. k.

(b} Service in unit 1| when the system is blocked.

Suppose that T is an epoch at which the number of ll—c_ustbmérs reaches k+1. The
system then becbmes blocked. Clearly T is the time of a service completion in unitl. The
system remains blocked until some time T’ > T, where T' — T is s.tochastically independent
of (a) the arrival process, (b) the service process in unit | and (c) conditionally independent

of the service process in |l prior to T.

We let H,-(X) be the probability that T' — T is at most x and that the number of

ll—customers at T' + 0 is j. We also let

(1) - ~ H(x =

N~

L =1 \

H(x) is an honest probability distribution with finite mean &. At T’ + 0 we assume that

the service mochanism in unit 11 becomes aygain as outling in (a).

Alktl) - state Markoy renewal process, related to the service process in unit 1.
Suppose at some instant we have i > 1 customers in unit I, one of which is just

beginning service. Let TQ 71~ - -Tj—1 be the epochs at which these customers begin

service and let 7; be the epoch corresponding to the end of the i—th service. Let e

n =0,1,...,i bethe number of I1—customers at Tht 0. Then the.random variablés

(2) | (S0 19=0), (£q. =70) ** (&p 1= 7,1

may be regarded as the first i+1 states and sojourn times in a Mavrkov renewal process

with (k+1) states. For details of Markov renewal processes the reader is referred to
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kuke [21) and [22] and (ainlar [4]. Fora simple Markovian death process, let Pij(t) be the

conditional probability that there are j customers preseﬁt at time t given that there were i
present at time 0. '

We can now write down the transition matrix of the (k+1) state Markov renewal
process. Let |

(3) o Rrv(x)=P[§‘n+1 =V, Tpg1— Ty SX {n.=r].

Explicitly then we have

X _
(4) -~ Rpix) = f Prv_j(u)dH(u), O0<v-1<r<k.
. 0 /)
. k X u -
(5) Ric+1 yIx) = Z f dH,,(x—u) f Py y—1(w) dH{w).
, v=v—1 0 0 ‘

We note that
k+1

@ Z R, () =HIx), r=1,..k.
| ' v=1

k+1 \
(7) i Z Ric1 y{x) = H o Hlx).

v 1

We will need these results later on.

The Busy Period for Unit 1. f

We descfibe briefly the branching process argument used to analyze the behavior of
the queue during a buzy’period for tjnit . Attimet=0 supposé there are i |—customers
andr, 1< r < k+1, ll—customersin the system and let t = O correspond 10 a service
completionin |. Thei |- -customers are called the 1st generationvofvcustomers and the
time until they b.ve aii become H—customers is the lifetime of the 1st generation. The

customers, if ahy, who join the queue in front of unit | during this lifetime form the 2nd
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generation. We pfodeed thus until a generation is reached during whose lifetime no
custdmers arrive. At the end of this generation’s lifetime the initial busy period for unit |
has come to an end. | _ R '

Let EO = j and FO =r. We define Tg = 0 and T4 as the total time spent in unit | by
the initial i customers. E, will denote the number of | custorners present at T1 +0. If
21 = 0 then 'T2 is undefined, if ’51 21Ty is defined as for T1. §1 is the number of
I1—-customers present at T4 + 0. Proceeding this way we generate the sequence of triples
(En, ?n' Tn) which is a Markov renewal process defined on the state space

(0,1,...) X (1,2,., . k+1). The states (0,1) ... (0,k+1) are absorbing states.

The transition matrix is given by

| P > P X Ay ol gl
(8) Q. (iix) =Pl£a11=0, £ neq=" Taq Sx|Eq=i, £, = fo e V%ftld Rev (V)

fori=z1, 1<r<k+l, j=20,1<v<kt+l, Where

. X .
Rli)(x) = fo R D x-uld Ry, fu.

| 'Dbenoting the corresponding Laplace-Stieljes transforms by qrv(i,j,s) and introducing ‘

generating functions we get

(9} alil(z,s) =qu(i,j,s) zl = Rll(sta—n2)

where Ew(s) is the Laplace-Stieljes of Rw(_').

We now let grv(x) be the probability that a busy period initiated in unit | by a single |
customer with r Il.customers present ends before time x with v 1l customers present.
Let y.,{s) be the Laplace transform of g, (x). |
Neuts [17) has shown that y(s), the matrix whose (r,v)-th entry is Yry () must satisfy the

equation

(10) ~yls) = R[{s#\)I—\yl(s)] Res>0.



32

Our aim is to show that the solution to (10) is unique.

- Theorem 1.

- The equation
(11) T Z=RUSNIAAZ)] N2 < 1

has a unique solution Z = y(s) with entries analytic in s for Re s > 0.

Proof:
" Let R{N)(s) be the matrix of coefficients of z" in the series expansions of the functions

R'N(sﬂ\—)\z), then equation (11) can be written as

“12) y z Ring) zn = RIzZs].
- =0 |

But we know that, |

(13) : AR'LC)(S) =[ e—{stNly Q?‘qﬂd Rp(v).
. 0 :

We now apply the flxed point theorem of Chapter 1. W2 begin by showmg that
IIR Il <1. Asin Chapter 3 it suffices to show that

) o kt1 .
(14) Z n f e—lorly w? 4 Ry < Lr=1,. Kkt

= 0 & n! m o

n= = o

where o = Res.

Now for r=1,.. .k we have that the left hand side of (14} is

(15)

N8 |

n f e~y =ty () dH(y).
0 nl

3
i
—
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And for r'= k+1 we have

(16) z n f e~ 0Y gAY Qﬁi dH * H(y).
: 0

" n=1

However, since both H(*)} and H * H(+) have finite means, it follows as in Chapter 3 that
we can find g4 such that for ¢ > o1, HA'II< 1, i.e. R[Zs] isa géneralized contraction

mapping. Again R: 6D - po for all o such that Re 0 > 0.
So by Theorem 4, Chapter 1, equation (11) has a unique solution for Re s > 0q-
However we already know that +(s) is a solution to (11) with entries analytic in s for

Res>=0. So, by énalytic continuation, v(s) is the unique analytic solution to equation

(11).
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CHAPTER V
THE SINGLE SERVER QUEUE WITH POISSON INPUT
AND SEMI-MARKOV SERVICE TIMES

1.  Introduction ‘
In this chapter we discuss a variation of a model studied by Neuts [13] and Ginlar [2].
We approach the problem via the branching process argument of [18] and obtain a matrix

form of Takags' equation. We discuss also the equilibrium conditions for the model.

2. The Queueing Model

We consider a single server system in which there are m customer types. We assume
that during a service of type i the arrivals are Poisson with rate A and that a customer
arrives at an empty queue after a negative exponential time with parameter Ao The
customers are sefvéd in order of arrival and the successive customer types form an m~
state Markov chain which we assume to be irreducible. The successi\)e service times are
conditionally independent given the Markov chain and depend only on the transitions
occurring within the chain. We letJ denote the type of the (n+1)st customer and )(n

denote the service time of the n-th customer. The sequence

(1) S {1, X); n=>0}

forms a Markov renewal sequence with transition probability matrix given by

*

(2) Ryl = PU, =i Xy <xfdp_g=il.

For further reference we introduce the matrix A(z,s) with entries defined by
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© e o D
(3) Ajilzs) = Z j(; e (s+2jlu (_n"u_)_ dﬂii(u)z".
‘ n=0 .

We note that A-ij(z,s) is just the transform of the probability that, starting at time 0 with
a customer of type i entering seNice, the service ends before time x thét we have n
arrivals during this service time and that the next customer to enier service is typej. The
matrix A(z,s) can be written as I'(sl + A—Az) where,

. {a) A =diag. LU W

(b} Tist+ A-Az) = [ (s A-Azlu gpyy)

‘ A first embedded Markov renewal process.

Let to =0, tq, ty. .. be successive epochs at which departures from the queue take
place; Jo- J1- - . be the type of the next customer to enter service after tg t4... and
£o £1. . . be the queue length at tg+0, t; +0 - Asusual we have
)+

(4) . Ent1 = Eq—1 4+,

where Yn is the number of customers joining the queue during the n-th service time. The

sequence
(5) - O Uk =t ) n30)

is @ Markov renewal sequence defined on the state space (1,...,m) % (0,1,2,...). The

transition probability matrix for the sequence is given by
(6) Oii(k,k',x) = P[Jn+1 =, En+1 = k,, ;tn-#-‘] - tn & X IJn =1, ‘c’n = k] .

These probaﬁilities can be given explicit forms as follows,

(a Fork’>» k—1>0



X A gk ke

(7 . Oij(k,k',X) = j; e_ ! md R"(U)

To see this we just note that at some time u < x the first service comes to an end, durlng

(O,u) we have k'—k-+1 arnvals and the second customer to enter service is of type j-

(b) Fork’'< k—J

® | ik, K, x) =

{c) Fork=0
. X —A

19) QoKX = [ rge O Q1 x—uldu,
- b l |

- Suppose now that at time t = 0 we have k customers present and that a customer of
.type i isjust enterlng service. Let OQ(n)(k k’,x) be the probability that the initial busy
period involves at least n services, that the n~th service is completed no later than tlme X,
that at the end of the n-th service there are k' customers in the system and that the
(n+1)st customer to enter service is a type j customer, all this conditional on the first

customer being of type i and k customers being present initially. We set
(0) "y =4.. '
(10) ‘ OOU (k,k ,X) 6'] 6k,k’ U(X)

where U{(-) is the distribution which is degenerate at zero.

The following relationships are immediate

m k+1

(1) 00.‘.“+”(k,k',x)=z Z f OQ(")(k,V,x—u)th-j(v,k’,u).
1} —

=1

<

1 we let Oqi(j")(k,k’,s) denote the Laplace transform of OOgj")(k,k',s) we can write

36
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: m k'+1 © _(st) Ju (A )V'—k+1
- ‘.n+1') ‘o) = (n) —{sTAplu u 4
(12)  qaj; (k,k_,s) h; ,,=E 0%h (k,v,s)j(; e —(hﬁ)!_ dRyp;(u).

We shall need equation (12) in the next section.

The Markov renewal branching process. _

In this section we show how the analytic matric functions of Chapter 1 again occur
_in a queueing model. '
' Suppose that at-time t = 0 we have k = 1 customers present and that a type i
customer is just entering service. Let T be the epoch when all custom'ers present at time
0 éomplete service. Let 21‘ be the number of arrivals during this time period and let I4 be
the type of the next customer to begin service after Ty Ifg4=0 theﬁ T4 is the end of
the initial busy period, otherwise we define To, £9. 15 asfor Ty, Eq. I4. Continuing in

this way we generate the sequence,
13 ' {(ln, En,Tn—Tn_1);n>0}, T0=0, kg =k, g =1

This is a Markov renewal sequence on the state space (1,2,. . .,m) X (0,1,2” ..} with states

(j,0), j=1,.. m as absorbing étates. The transition probabilities for this sequence are
(14) aij(k,k’,,>;) =Pl 170 £pp 1=K, Tnﬂ;Tn S TRt

.We see immedfately that

(15) N Q') = QI (ke .

Lemma 5.1.

For1<i, j<m k>1and Res >0, Izl <1 or Res > 0, Iz < 1 we have, ¢
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(1) Z Ei‘-(k,k's)zk'=[Ak‘(z,s)]ij.
| k'=0

Proof:
By (15) we have

(17) Z Eij(k,k',s)z Z 0q(k)(kk s)z k!

kl=o I

Using equation (12) we can write

(18) Z Oq(.n'*'”(k'k"s)zk:

k'=0
0o m k't+1 !
) N n) ® —~(stAdu () vt k'
= kéé Z £, Oqlgh (k,V,S)[O e ! m——dﬂh](u,z
m ‘ ed
= Z ;_[z oal (k..s) — oalr ’(kOs)] Apitz, s).
h=1 =0 .

We recall now that

(n " o) = * —5X (1) - —(S+7\)><_(}\x)
O o fo R /o ’ ety R

From equation (18) we deduce

o0

‘ R L ) P Z T —(shgx (Ax) ke
(20) ZO 0Q§] (k,k’,s)yz k,_ofo e (————k,_kﬂ)!dﬁu(u)z

- 2 oo k'—k+1 |
- k=1 Z[ —istAhx (Apx) k'—k+1 4p
z e arerTaa dR"(u)



Equation (18) along with equation (20) then gives
(21) Z oafM k512 = KA 5]
- K'=0 -

The lemma now follows by taking k = n.

Following Neuts [18], we introduce the random variable 6, defined to be the
total number of customers served up to and including the n-th generation. We now

define a new probability mass function by

(22) oﬁfjf‘)(k,k’,r,x) =P{l =i, £,=K", 0,=r, T, <x, £,#0,»=0,.. .n—1|Ig=i, £g=k]

i

and denote its Laplace—Stieljes transform by a'( )(k,k',r,s). Let us introduce the
0™j

generating function

- (23) 0¢§in)(z,w,s) = Z z Oa’gjn)(k,k',r,s)zklwr.

Finally we introduce the matrix-functional iterates A(n)(z,s,w) defined by

(24) » A(O)(z,s,w) =zl

A(n)(z,s,w) =w A{A(n__”(z,s,w),s] ]

Theorem 5.1.

The matrices c)qb(n)(z,s,w) and A(n)(z,s,w) are related by the equation

(25) ol O sw =25
Mz sw) = AK (zsw-Ak 105w,

Proof: .
The Laplace-Stieljes transforms of the probabilities defined by ec-ation (22) saticfy

the relationship

39
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m r

{26) Oa'("ﬂ)(k,k',s) = Z Z oaéﬂ)(k,v,r—v,S) Ehi(v'k"S)
h:

V:

providing we set 0“'(0)(k k',r,s) = 5ij Sk’ 8 gr- Using Lemma 5.1 we may write this

more compactly in terms of the generating functions o¢§i")(z,s,w) as
m oo oo .

(27) - o¢i(jn+1)_(z's"”) = Z Z Z_’ 0qih(k,u,r,s)w"[w A (z,9)] hi

Equation (27) can be written in more compact form as

(28) c)ti>("+1)(z,s,w) = o(b(") [w Alz,s),s,w] — 0czz(n)(O,s,w). .

By induction from equation (28) we finally have

29 05w =2

o' M (25w = A'((n)(z,s,w) - A'(<n__1)(0,s,w).

Since the A(n) are, in principle, known functions we have exhibited Orp(")(z,s,w) in

terms of known quantities.

Corollaries to Theorem 5.1.

'Let ngN)(k,r,x) be the probability that the initial busy period beginning with a customer
of type i and having k customers initially present lasts for N generations, involves exactly.
r services and ends before time x and that the next customer to enter service is of type j.
As N tends to infinity, d/(N)(k,r,x) converges to the probability il/ij(k,r,x) that the busy
period with the initial conditions £p=k, 1p=i ends before time X, involves a total of r
services and that'the custormner who initiates the next busy period is a type j customer.

Let now

(30) ' (k)(sw) Zw j e_sxdwij(k,r,x).
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Corollary 1

The probabilities Yik,r,x) have a generating function given by
: k) Y k
(31) o fewi = tim (A 0T

Proof:

Letting z=0 in equation (25) leads to

N
(32) Z ot (05w) = Alfy) (05w,

n=

From which we get

Nz

(33) Z wr f e d N krx) =

r=1 0 n=1

o¢§i")(o,s,w) = [ATN)(O,S,W)] ij -

Since
(34) wijlkrx) = fim N )
N—oo
the result follows from equation (33). We note from Corollary 1 that
(35) | LK (s ) = (y Diswil k.
We will henceforth write —y“)(s,w) simply as y(s,w). We note further that (s, 1) which

we will denote by ~(s) is the transform of the distribution matrix of the busy period.

Corollary 2

The transform y(s) must satisfy the equation

oo

(36) 'y(s)=z f g (sI+Al L%%ﬂdmu)ﬁ[‘s,, Res>0.
L =0 0 : |



Proof:
Since A[Z,s] is continuous in Z for IIZIl < 1 this result foll.ows immediately from

- equation (28).

Theorem 5.2.

The equation -

(37) o Z=A[Zs] nzZin<1

has a unique solution ~(s) with entries analytic in s for Re s 2 0. This solution is the

Laplace—Stieljes transform of the busy period distribution.

Proof:

" We recall that

. > L n
38) Az = z f Sl DT 0020,
=5 70 E
: . n=0 .
Setting
o P (sHA)x ()"
(39) _. lAn(_s)]ii=f s T
nl
we can write equation (36) as
(40) | Z= 2_ Anls) ZM = A[Z,s).

n=0

Once again we wish to use Kirk's fixed point theorem of Chépter 1. As before it suffices,

for A to be a generalized contraction mapping to show that IIA'lIl <L 1. For which itis

sufficient that

o m s
. O —A: A 1]
(41) Z n Z J; g-~m. e i* (_:‘_’;_L dRij(X) < '1—'-1 for ié $,..,m

42
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However we observe that

(42) : _ z n f e i (—’\ﬁ)—— 2 dR.;(x) < oo,
n! i
n=1 0 ]=1

(42) holds since

[= o]
—A:x ()" :
(@@ Z ne ! ——'T is just the expected number of arrivals in (0,x) under a Poisson
- n!

n=1

process of rate A;.

(b) ;1 Rij(x) is the probability that the service time of the.i;th kind of customer ends
)= S
before time x. We assume as usual that all the service time distributions have finite
means.

The.rest of the proof is exactly the same as in Chapter 4 Theorem 1. R

Comments

Here again we have shown how the branching type argument can be used to solve some
queueing problems. We also note that the queue with semi-Markovian arrivals, see
Cinlar [3], can be treated in a similar fashion, since the crucial step in its discussion is

the solution of a system of integral equations of similar type.

The Equilibrium Condition.
Let 7 = (1{1,. . .,nm) be the stationary probability distribution for the Markov chain

with transition matrix R(+o0} and let o; be defined as

m .
(43) | o = Z f x dRij(x), i=1,...m.

=1 0

«; is then the mean service time of the i-th type customer. We assume that o; is finite

fori=1,.. ,m We now introduce the quantity p* defined by
m

g, o0
(44) pT = Z m, f ?\'td(Z Ru(t))
=1

i=1 0

<
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As we shall see, p* is the traffic intensity for this model. We note that p* isclearly finite.
Both A(Z,s) and y(s,w) are irreducible, non-negative, (sub)stochastic matrices for
Res 20, 0 <z <1, 0< w< 1. Wedenote the Perron-Frobenius eigenvalue of
AlZs)bynlzs), 0 z2< 1, s >0 and the Perron—Frobenfus viqenvalue of y(s,w) by
x(s,w), s =0, 0 < w < 1. The proof of the following lemma can be found in Neuts

[18].

Lemma 5.2,
(i) Forevery0< z <1, s> 0, n(Z,8) is uniquely determined and is analytic in

(Zs)for 0< z2<1,s>00r0< 2< 1,5 20.

(i) n(Z,s) is a convex function of both z and s. Foreveryz, 0 < z < 1 itis strictly

decfeasing ins 2 0and for every s > 0 it is strictly increesing inz, 0< 2 < 1,

Theorem 5.3.

The queue is in equilibrium or equivalently 7(0+,[‘) is stochastic if and only if

(45) ’ p“ = Z 'n'i)\iai < 1.

Proof:

The proof is the same as that given in Neuis [18].
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CHAPTER VI

A BIRTH AND DEATH PROCESS v
DEFINED ON A MARKOV CHAIN .

1. Introduction - }
‘We discuss here an M|M|1 queue subject to an extraneous phase processv. The phase
process is assumed to be an m-state irreducible Markov chain in continuous time. This .
:chain is fully characterized by its initiél conditions, by an irreducible stochastic matrix P |
and by the mean sojourn times g9. . .0y in each state. During any interval when the
phase process is in state i the arrival process is Poisson with parameter A; and the service
- time distribution is exponential with parameter p;. Both the service a.hd arrival rates
change When the phase process changes state. This feature distinguishes the present model
from that discussed in Chapter 3.
Naor and Yéchiali [14] initiated work on this model for the case m=2, P11=P22 = 0
and obfained its steady solution. Yechiali [25] further obtainedv,the steady state solution
for géneral m under the assumption p;; = 0, i=1,...m. Here we discuss the time dependent
behavior of the model without these restrictions. The work is divided into two parts. In
part | we give, very briefly, an approach using mafrix differential-difference equations

while in part 2 we use the more elegant branching process method. . b

Part 1
Let X{t) be the state of the phase process and Y (t) the number of customers in the

system at time t. We define the guantity Pij(r,t) by
(1 'pii(l’,t) = P{X(t}=j, Y(t)=r ‘ X(0)=i] . o

When the phase pincess is in state i the queueing model forms & birth and death process

which has birth rate \; and death rate p;. For the queueing model a “'birth"’ corresponds
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~ to the arrival of a customer while a ““death*”

is the departure of 3 customer. from the
system. Becéuse of the Properties of bijrth a

nd death Processes, for sufficiently, small h the
only transitions possibie jn (0,h) are ' '

(_a) asingle'birth
(b) asingle death -

(c) neither a birth nor a death. -

We let ‘P:;‘-'(n,h) be the Probability that in (0,h) we have n arrivals and that at

epoch h the
phase process is in state j given that X(0)=i,

We allow n 10 pe negative in this definition -
a negative arriya| meaning a departyre from t

he system. The Chaprhan—Ko!mogorov
equ.ations may be written '

(20 Pfr,eeh) =

Z [Py (r.00P, s(0,h) + P;,,(r+1,t)P,,j(-1,h) +Py i
v=1

LUP(1Lh)] + ofh).

The folloWihg lemmias follow by standar
proofs are

d birth ang death process arguments and the;r
therefore Omitted,

Lemma6.1,

For1g Li S m we have,

im L e /4.,
(3) lim L. (1) = A5
h~C h 1 o
:\\' . ’ ., 1 ~
. {4) lim & P--(,—],h) =pu. §..
o ‘ h-oh Y P
: ' * Lemma 6.2,

For1 < i, < m we have,

(5) Py(Oh) = 5,11 Ntuirohl + ) g "io Poj{h=he.0ph + ofh)
p

=1

‘where <9 <1 _
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We introduce now the following mxm matrices,

P(r,t) = [P};(r.0)]

M = [5” “l] -
= 50

Theorem 6.1.

- The differential-difference equations for this system are,

(6) %@Jl = P(1,HM — P(0,0) [S(I-P)+A]
uR OPILY - p(r+1,0M + Plr—1,0A

—Plr,t) [ZU=P)+A+M], r=1.

Proof:

By equations (2}, Lemma 6.1 and Lemma 6.2 it follows, for r = 1, that
.1 ’
{8) : lim = [P.:(r,t+h) — P;:(r,1)]
h—0 h ) 1]
= )\ipij(r—-1,t)+l.LjPii(f+1,t)-()\j+}.li+()i)Pii(r,t) ]
m
+ z ovPVjPiv(r't)'
v=1

Equation (7) is just equation (8) written in matrix form.

T

We now note that when r=0 the death rate is zero. Hence,

N

{9) P(0.tth) = > [P, (0,0P,;(00) + P, (1,0P, (=101 + olh).

v=1

Equation (6) now follows by the same argument used for equation (7).



The steady-state conditions.

As pdinted_ out in [14]‘, lim P(r,t) exists for all r. We let now,
_ C e )

(10) | P(r} = lim P(r,.t).
t—>oo

The steady state equations for the system are

(11) ' P(O)[Z(P—I)-A] +P(1)M =0

(i2) ' - PO Z(P—=1)=A—M] + P(r—=1)A+P(r+1)M=0, r>1.

Equations (11) and (12) are the matrix forms of the steady-state equations of Yechiali
[25]. '

Let 11‘1‘,. . .,w;‘n be the steady state probabilities for the matrix P and let

Pi(r) = lim P{X(t)=j, Y(t)=r].

t—o0

7 Then we have (Yechiali, [25])

' N o
D en =" o).
=0 k=1

N ) . m
- Finally, let M = Z K (1‘rl-*/oj) '
=t

A= i )\’ (ﬂ;/ol)

=1

Then we have

48



_ _ 49
Theorem 6.2,

The steady-state condition for this system under the assumption p;; = 0, i=1,.. .,m s
(14) f-12>o0.
Proof:

- This is just a re-statement of Yechiali’s condition.

Solution of the differential-difference equations (6} and (7).

o0

Let w{z,t) = Z P(r.t) 2", Izl < 1.
r=0 '

Alz) = zA + 3 M=[Z(1-P)+A+M] .

We recall here the definition of eAl2)t
(15) o Al E 2 Angy),
‘ n!
n=0

Theorem 6.3. | v
The system of equations defined by equatians (6) and (7) has a solution whose generating

function is

t .
(16) owlzn) = A (L) f A2 t=lp(o ) du-M .
‘ - 0

The solution is given in terms of P{0,u) which consequently we must find in some other
way. . .
Proof:

" From the definition of 7(z,t) it follows that

(17) - om(z.t = Z aP(r,t! zr'.
v at at

Lo e
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.S0, by using equations (6) and (7) we obtain

(18) 21z = Lin(z, ) — PONIM + Zn(z M — nlz,0 [E(1=P)A+M] + PIO.OM .

Which we can rewrite as
(19) omlzt) = a(z 0A(2) - (- npo,um.
Following Loynes [11], the solution to equation (19) is

. |
(200 mlz) = wlz,00eA B —(L— 1) f eAl2)(t=ulp(0,u)du M.

0
Now 7(z,0) = = P(r,0)z" and if we suppose that k customers are initially present it
r=0 '
~ follows that
/
(21) - n(z,0) = 2¢ 1.

Consequently,
. t T )
(22) niz,1) = 2XeA@t (L1 f eAl2) (t=up(0,u)du M.
e

In principle we could proceed to find P(0,t) by conditioning on the epochs of phase
changes in (0,t). However, we will not pursue this here since the methods of part 2

enable us to discuss this model more elegantly.

Part 1l

1. The Arrival aﬁd Service Process.

Let Sij(n,'t) be the probability that a service which begins at time O ends before time
t, that n arrivals take place during this service time and that the phase process is in state |

at the completion of the service, given that X(0)=i. These probabilities satisfy the equation,
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t

—\-+o.tu: .u)n
(23) Sii(n"t) - 6ii e \*o; p;lu (_)ll;ul_ du
. 0.

t (g AN u)n—h
+ Z Zb a;Piy J; e (oAt ((_:l;:T)—!_ Svi(h,t-—u)du.-
p= = '

Our first problem is to show that this system of equations has a unique bounded solution.

Lemma 6.3.

The system of equations defined by equation (23) has a unique bounded solution.

Proof: v ‘
We define the generating functions ‘Sij(z,t) by
A

. e}

(24) Sij(z,ti = Z Sii(n,t)z" lzt <1
. o,

and the Laplace transform of Sii(z,t) by

(25) Sijlzs) = f e St as;(z.0).
0

In terms of these transforms we may write equation (23) in transformed version as

' = _ -1
(26) Sii(Z,S) =6 ” #l(7\|+ﬂ|+0| )\iz+5)
m .
+ Z OiPiV()\i+}1i+0i—)\iz+5)_1 S;}i(Z,S) .

v=1

We now introduce the following mxm matrices

(27) S'(zs) = [Sjjlz.s)]
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(28) | Z = diag (0y....0,)

29 A = diag Ay, )
(30} M = diag (uq,. . ..u)-

}n terms of these ’m-a-tri'ces we can write equation (26) as

(31) S'(z,s) = M[A+Z+M—zA + zl] -1, [A+Z+M-—-zA + sl] ~lyp S'{(z,s).
Rear'ranging termS"wé obtain

(32) {|-[g_\+sz—zA +s11 712 P} S'(z,5) = MIA+Z+M—zA+ sl “1’._-

In order to solve equation (32) for S'(z,s) we need to show that | —[ A+X +NI'—-zA+s|] s p

is non-singular. We note to begin that

oi Pjj <p.
|S+0i+ki+[.li—k |Z| 1)

|st+z+men—zn) Tz P =

with strict inequality holding for some (i, j). Consequently the matrix of interest has a

spectral radius which is less than the spectras radius of P. Since u(P) = 1 we then have

(33) s+ SeMEA—zA) 1T P] < 1.

So, by lemma 1.1, |—-[si+tA+Z+M—zA] ~1zp is non-singular. It then foliows that
(34)  S'(z,8) = [I-(s+ A+ Z+M—zA) "1 P~ 1e (s1+A+Z+M—2A)~ M.

Rearranging equation (34) leads to
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(35) C §'(zs) = (s ZHMH1-2)A—ZP) T M.

Equation (35) implies that the entries Sij(z,s) are analytic functions of z and s in the

region Res>0, 1zI <1 or Res >0, Izl < 1. This completes the proof of lemma 6.3.

2. A first embedded Markov renewal process.

Let t0=0, ty, t2 _ . be the successive epochs in which departures from the queue
occur. Let &g, £ o Jqe e be respectively the queue lengths and the states of the
phase process at tOJ?, t1+' - 1fwe let Y be the number of customers joining the queue

during the service time of the n-th customer it follows that
(36) | £oeq = =T+ v)T.

The random variables Yn depend upon the past only through the phase state at t + . it

follows that the sequence
(37) Uy Ene t—ty_1),n=0} t_ 4= 0.

is a Markov renewal sequence on the state space (1,2,...,m) x (0,1,...). The transition

matrix of this sequence is defined by

(38 ik x) = PUpg B trp =ty < x| dp=i, &=kl

~

Fork'> k—1 =0 we have
-

(39) Qi k', x) = f d 8(lc—k+1,u). o i
0 ' "

-While for k' <k we obtain

(40) ’ Qj(k.k’, x) = 0.
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3. Transitions within a busy period. _ |
Subpose we have k = 1 customers present at t=0. Let OQi(jn) (k,k',‘ x) be the
probability that the initial busy period involves at least n services that the n-th service
is completed not later than time x, that at the time of the n-th departure k' customers
are in the system and the phase process is jn state j; all this cond_iiional on Jg=i, £0=k.
For convenience we set Oofjo’ (k,k‘, x) = 5ij Sk’ Ulx). We immediately have the

following relat,ionship'

. NI |
(41 g ik x = i E f 0l (kpx—uld Qv u).
| h=1 »=1 0

If we denote the Laplace—Stieljes transform of OO%") (k,k’, x) by Oqu")(k,k’, s} it follows

that

R m k'+1 oo
(42 gal ik ks = Z Z oal? (kv,s) f €TSS (Kt T,u).
: h=1 =1 0 : , .
This relationship is required in the next section.

4. The Mavrkov renewal branching process.

The queueing model under consideration can be analyzed by -the argurnent
detailed in Neuts [18]. We descr‘ibe an imbedded discrete parameter process as follows.
Suppose there are initially. k customers present one of whom is just beginning service.
Let T4 be the time when all of these customers have completed service. These k
customers form >th>e first generation in a branching process and‘T1 is their total lifetime.
We denote the number of arrivals in (0,T1) by 2'1 and the state of the phase process at
T4+ by J'1. We also set £'0=k, T0=O and Jb=i. If $'1=0 then T4 is the end of the initial
busy period. If £ > G we let T be the time when all customers present at T4+ have
departed and J’2, £'2 are respe~tively the state of the phase process and the qu'eue length

at that time. Continuing in this way we define the sequence

(43) UL E, T, = Th_4in>0,T_;=0}

1 cuiliag
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“which is a Markov renewal sequence on the state space (1,...m) x{0,1,...). The state
(j,0), j=1,-. ., m are absorbing.

The transition probabilities for this sequence are
(49)  Qyilick’, x) = PUpyyis By =K' Traq =T < x| Jpis €471
These probabilities may also be written
(45) , Qi k", x) = o0 (i k', x).

The following lemma expresses the generating function of the Laplace—Stieljes transforms

Eii('k,k,'. s) in terms of the matrix S'(z,s).

Lemma 6.4.
Fort< i, j<m, k> 1andRes > 0, 1z| <1 or Res = Olzl<1
. . . ~ ' k’___ ’ k A
- (46) qij(k,k,s)z {[S"(z,9)] }il :
- k=0 ’
Proof:

By (45} we obtain

(o] [e2]

(47) | | Z Eij(k,k’, sz¢ = z Oqgik) (k,k',s)zk'.

=0 k'=

From equation (42) it follows that

(48) Z Oq("”) (K, )2

co » . ,
z Oq h) (k,V,S) J- e—SU d Shi(kl—_'V+1,U)Zk
=p-1 - 0 : _

3‘



oo ) oo
n) —s / k'—p+1_v—1

Oqsh (k,V,S) Z J‘ e u d Sh](k —"V+1,U)Z ZV
v=1 k'=p-1

M

o0

6hj(z,s)‘17 {Z) qu)(k,v,s)z”—oqgn)(k,O,s) }.
. V=

b=
Y

We will now show that

(49) Z Oqu” (k k', s)zk’ = k-1 Sfi(z,S).
k'=0
Proof:
Since
-~ (OO
(50) oat kK, s)=f e™SX d S;i(k'—k+1,x)
j o i
it follows that
o0 00’ oo
(51) Z ool ik 512X = Zf €™ d itk —k+ 1,02 = 24T s5z,5).
k=0 k=00

~ 1t then tollows by equation (48) that

(52) oot kK, 2% = 2N ([S"(z,8)1" .

18

kl

It
o

The lemma then follows by setting k=n in (52).

Let now Bn denote the total number of customers served up to time Tn, provided Tn is

‘ 'defined. We introduce the probability,

K : '
(53) OQsin)(k'k"r'X)_= P[J'n=j, E;,‘=k', 9n=r, Tn <X, E;}?“O, v<p—1 |Jb=i, Eb=k]

56



and denote 1ts Laplace —Stieljes transform by 0q‘")(k k', rs). Let

(54) ¢(n)(z s, W) = z Z (n) (kk',r s)z W .

and let c»)qb(")(z,é,w) be the matrix whose entries are defined by equation (54). Finally

‘we define the matrix—functional iterates S(n)(z,s,w) by

.(55) : S(O)(z,s,w) =z

S(n+1){zswl = w S'[S(n)(z,s,w),s] .

We recall here the definition on 5(Z,s]

(56) _ S'[Z;s] = Z Sn(s)Z”

where .

(67) S’(é,s) = Z Sn(s)z"
S £

Theorem 6.4.

Forn=2 1, k =21,

{58) otﬁ(o)(z,s,w) =K

‘Proof:

“rrm N

We begin by noting that

(59) Oﬂnﬂ)(k" rs) = Z Z oqw)(kvr v,s) th(vk s)

if we let Oq(o)(k iK', r,s) = &;; 5or



58

In terms of the generating functions oq)!j")(z,s,w) we can write

. m oo oo -
(60)  ooi™ iz, - Z ZZ o (kp,rsw (W’[S'(z,8)]

v=1 r=1

in matrix form equation (60) becomes
61 oM Dizsw = ¢ wSTzs) swl - 0" (05w]
and also

(62) 0(f)‘o)(z,s,w): 2K

The theorem now follows by induction.

This is the key result needed for the remainder of this ayalysis. .

5. The joint distribution of the busy period and the number of customers served

| during it.

Let Y (k r,x) be the probability that the busy period with initial condmons go—k
Jo=i. ends before time x during a phase of type j and involves a total of r services. The

transform ofvthns probability we will define by

o0

(63) 7§ik)(s,w)%z wh f e™8d yjilk,rx).

r=1 0

Theorem 6.5. ‘
The matrix 7(k)(s,w) with entries ﬂik)(s,w) Res>0, Iwl<1 or Res>0 Iwl<1,
is given by - ‘ 1

®4 ‘ Al (s w) = nm s'(< (0.
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Proof:
On setting z=0 in equation (58) it follows that

\ |
(65) Z 1M (0,5 = Sty (05w

n:

- We denote by l,b!il\”(k,r,i() the probability that the initial busy period with k customers
and in state i initially lasts for N generations and ends before time x during a phase of

type j and involves exactly r services. Then,

. oo oo ' N ’
(66) Z w' [ e SXd wst)(k,r,x) = Z C,¢§jn)(0,s,w) = [S'(‘N)(O,s,w)] i -

r=k 0 n=

Now we also have

(67) | fim d/!iN)(k,r,x) = ll';j(k.f,X)-
N-»o0

On taking limits in equation (66) the results follows.

We note that equation (64) implies that
(68) A (s, w) = sk

We will denote 'y( 1)(s,w) simply by y(s,w} henceforth.

Corollary 1.

The matrix y(s,w) must satisfy the equation

(69) o ris,w) = w S{y(s.w),s]

r Res= 0, Iwli< 1.

for Res > 0, lwl < 1

. Proof:

The proof follows immediately by equations (58) and (64).
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If we let +(s) be the matrix whose entries are 7ij(s) where (s) is 7“-(5, 1-) we have,

Corollary 2.

The matrix y(s) must satisfy the equatidns

(70) | y(s) = S[yls),sl.

Proof:

This follows immediately by Corollary 1.

We note here that these corollaries are the matrix analogues of the corresponding results
for the M|M|1 queue. Indeed we obtain the M|M|1 queue as a special case on taking m=1.

For m=1 we have, by equation (35)
(71) Sly(s,whs] = {stut{1—y(swA T 1.

(72) Slyls),s] = {S+M+[1—'Y(S,W)]7\}_1 T
Then we have

-.Corollary 1A.

For the M|M|1 queue the transform y(s,w) must satisfy the equation
(73) vis,w) =w u {s+u+[1—'y(s,w)]7‘\}_1 .

Corollary 2A.

" For the M'M|1 queue the transform «(s), of the busy period must satisfy the equation

(74) ylis) = u{s+p;+[1—-'y(s)]7\}'—1 .

We now turn our attention to the matrix S(1—,0+). We show that this is a stochastic

matrix.
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Lemma 6.5.

The matrix S{1—,0t) isa stochastic matrix.

Proof:

By equation (35),

(75) | §(1—.0¢) = [Z+M—ZP] T M.
As is easily seen by w«jitting out the entries,

(76) _ [Z+M—ZPle = Me

so, consequently we have

(77) (z+M-2P] " Me = e.
Hence,

(78) S(1—,0+)e = &

and since all of its entries are non-negative S(1-,0+) is therefore a stochastic matrix.
6. The Equilibrium Condition.

Let T1=(mq,. . .,Tl’m) be the vector of stationary probabilities corresponding to the

irreducible stochastic matrix S(1-—,0t). We define the quantity p* by,

(79) : p* = Z n _“ z LK d Si. {n,x}.
| n=1 0 =

On examination we see that p* may be interpreted as the mean number of arrivals
during a suitably defined "‘average’’ service. Theorem 6.6 gives us an axplicit 2xpression

for p* in terms of the original parameters of the queue.



_ 62
Theorem 6.6

The quantity p* is given by,
9
- S
(80) | o* =Z m(d) |
. u.
j=1 J
Proof: _ |
We begin by showing that, ‘ - .
(B1)  p*= N[Z+M-2P]~TA [Z+M-ZP] " M¢ . '

From equations (79) and (35) it follows that,

(82) ) .p»=' N 9S'(z,s
» 0z

z=1—
s=0+ | £+

In order to evaluate the derivative term in thes expression we write

(83) . 9Sizs) = lim  —[S'(1-,0+) — 5'(z,04)] o .

0z | z»1 1-2

=01
=dim ToEemeEeimt im0 A e Mowm
71 ’
&
We can rearrange this last expression to give,
(84) lim 1’— ([Z+M=3 P]_—’n—(z+M—zP)(z+M+(1—z)A—zP)-‘J }.
=1 12

We next note that, ' : '_ ' : ia.

(85) 1~(Z+M=ZP)(Z+MH1-2)A~ZP] ™" = 1— (1+(1-2)A (z+M_zp)=1;

To express the second term in equation (85) in terms of a power series we must show
that, for z sufficiently close to 1, the spectral radius of (1—-z)A (S+M—ZP)~ 1 js less

'
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" than 1. However,

(86) M1—2)A(S+M—-2 P)~ Il < 11—21 NA(Z+M-ZP)~ "I,

Now, since HA(Z +i\/i——2P)—1 il < oo by taking z sufficienvtly close to 1, it foliows that,

87) H1-2)A(Z+M=ZP) " T < 1.

Now for any matrix A, u(A) < HAIll and hence the required result follows from equation
(87). Expanding as a power series gives, '

o

88) {1+ (1—2A (Z+M=zP) 1) =Z (1—2)" %ﬂ"{mmm—zpr’}"
n=0 ' -
Returning to equation (83) we now have,
(89) lim 1—1—1— (1~(£+M—ZP)[Z +M+(1—2)A —ZP] 71}
o 1=
= lim — {I—-Z (=0"(1_z)" (AZ+M—2P) 1)
71 1—z n!
n=0
= Alz+tM=zP)~ 1,

Consequently, by equation (82) we can write,
(90) . p* = M(Z+M—-2P)"'A(Z+M—ZP) " Me .
We recall that S’{1—,0+) is given by

(91) S'(1-,04) = (Z+M—2P) "M .

* So consequently,

(92) (z+M—2P) " Me =e.

P
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_ Further, the vector IT is given by
4

(93) M= N[Z+M-—2P]~m
and so, -
(94) oM~ 1= niz+m—zp) -1,

Thus we can rewrite equation (90) as

. (95) = M TAe.

e

From equation (95) it follows immediately that,

11 :
(96) p* = 2 ﬂj )\l/ﬂj .

i=1
- The two main results of this chapter are stated in the next two theorem:s.

' Theorém 6.7

The equation,

(97) - 2=8[Z,s] nzi < 1
has a unique solution y(s) whose entries are analytic in s for Re s > 0.

Proof:

The proof follows the same lines as the proof of Theorem 3.2 and will therefore be

omitted.

Theorem 6.8
The queueing system is in equilibrium or equivalently, the matrix 7(0+ 1} is stochastic ' §-

if and only if,

£1]

» r-‘ A
(98) Z mi (~1)
l
=
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Proof: |

We denote the Perron—Froberius eigenvalue of

S'(z,s) by nlzs) 0<z2< 1, s=20

and the Perron—Froberius eigenvalue of y{s,w) by x(s,w). By the results given in
chapter 2 we have the following,
lay For 0< z< 1, s

> 0, nlzs) is unlquely determined and is analytic in (2,s)
for 0<z< 1,s=20

or 0< 1s>0

(b) nlz,s)is convex jointly in z and s. For every Z, 0< z< 1, itisastrictly
decreasing functuon ofs = 0 and forevery s > 0 itisa strictly increasing
functionofzin0< z < 1.

(¢) p* = lim anlzs)

= 1- 9z
s—0+ '

Similar results hold for x(s,w). We also have

(d) The limit x(0+,1—) exists and is the Perron—Froberius eigenvalue of v(0+,1-).

To complete the proof of the theorem we need only show that x(0+,1-) = 1if and only
if p* < 1. The proof of this fact follows exactly the same lines as the proof of Theorem 3

given in Neuts [18]. We summarize this proof without repeating all the details.

i)  Foreachsandw withs > 0,0<w< land s > 0, 0< w< 1 thereis aunique

abcissa 2 = xo(s,w) such that

.(99) Xolsw) = n[xo(,s,W);s] 0 <xplsw) < 1.

i) Fors=0,w=1, the value z = 1 is always a solution. By continuity x0(0+,‘l-) is
also a solution which may or may not be identical with z = 1; fchis depends uzon
the value of the derivative of n(z,0) atz=1- i.e. on the value of p¥. Forp* >1

we have x0(0+,1—) < 1 while for p®* <1, x0(0+,1—) = 1.
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i) Finally it is established that

Xolsw) =xlsw); s> 0, 0K we 1.

Thus we have shown that the queue is in equihbnum if and oniy ifp° l Theorern 6.8

then follows immediately from Theorem 6.5,

7.  Some special cases.
We now show that the equilibrium condmon for the M,M,‘l queue, the Naor and Yechiali

model and finally, the Yechiali model all follow from Theorem 6.8.

1. The M,M|1 gqueue.

The M|M|1 queue is obtained as a special case of our model for “Ixi” matrices
since then A = )\, M=pu, M=1,
2.  The Naor—Yechiali quel.

In this case we have only a 2 state Markov chain and our equilibrium condition can
then be written as .

' A A

(100) m=h + wy(m2) <1,
| | | 1 H2
where ( 1r»i , 1r2) is the vector of stationary probabilities for the stbchasﬁc matrix

S(1—,0+). In this case,

ortuy =0y 77 [y 0
(101 S(1-,04) = |
"o opt 0

Elementary calculations then show that,

“02) : 11'1 = W]:’-_“Za—l

__Kka0
"2 7 mop Fagoy -

i

Equation {(100) can now be Written as

BT
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Aqop + A
(103) 2192 201 < 4
- H102 + K2 04

which is the equilibrium condition given by Naor and Yechiali {14).

3. The Yechiali model.

- Yechiali (25) discussed the same model as did Naor and Yechiali {14) in the case
| of an m—state Markov chain with transition matrix P with Pj; = g, i=t..m. If we let
[1* be the vector of siationary probabilities for P, Yechialis’ equilibrium condition

can be written as,

m A a ,
(104) | Z m (EiL)/Z n g <.
| = =

To show that this inequality reduces to an inequality of the form

(105) m () <1
. 1= ”l

we will express #* in terms of .

Lemma 6.6
The vectors II* and Il are co‘_nnected by
(106) e = oM~z (mm s et

Proof: v

By definition we have,
(107 m=n[(s+M-2pP] ~m.

‘Consequentiy,

(108) ~ um~lzem-zp) = 1.
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On expanding the left hand side of equétion (108) we get,
(109) o nm-tx = nm-lze

and, since nv-lz e ¥ 0 we get,

(110) mm 'zey Inm s s vz e vz P
NERED o mmT Tz nvmTlse = 1
. ’ | 5
Therefore, ;
(112) e = v~z e) Tim 1z

This proves the lemma.

We have immediately from Lemma 6.6,

) . . Oi : Oi‘ -1
(113) o= "i(}T) [ "'(“—I-)] . i
- i=1 ’

On substituting for 77,
A
(114) Z " G/ Z "t G -Z m
. =1 '

We would also comment that the equilibrium condition written in the form of equation
(105} is to be preferred to that given in equation (104) since it shows more clearly the

relationship of this model to the M|M|1 queue,
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