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1. Introduction

In many of the experimental situations the experimenter is confronted
with the problem of méking decisions regarding k populations, which, for
example, may be categories of wheat, manufactured items coming out of k
factories or candidates who are contenders for an award. The classical
tests of homogéneity which have been applied in these situations do not
supply the information the experimenter really seeks, whether or not the
tests yield significant results. In fact, the experimenter's problems
begin when he obtains a significant result which goes to reject the null
hypothesis that the populations are identical. As a>partia1 answer to the
need for a more realistic formulation overcoming the inadequacy of the tests
of homogeneity, Mosteller (1948) tested homogeneity against slippage alter-
natives. Since then many authors have contributed to the theory of slippage
tests.

The initial efforts in the direcfion of multiple decision problems were
made by Paulson (1949) who considered the problem of classifying the given
populations into a "'superior" and an "inferior" group. Later he (1952)
investigated the problem of selecting the 'best' of k categories when com-

paring (k-1) experimental categories with a standard or control. Bahadur (1950)
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NO0O14-67-A-0226-00014 at Purdue University. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
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has made some early contributions to the theory of k sample problems.
Bahadur and Robbins (1950) obtained some minimax rules for selecting from
two populations the one with the greater mean. The multiple decision prob-
lems that are now known as the ranking and selection problems have been
formulated mainly in two ways. The first one is known as the indifference
zone formulation due to Bechhofer (1954). This formulation, in its simplest
form, selects one of the populations as the best with a guarantee that the
true best population is selected with at least a preassigned probability p*
whenever the best and the second best populations are "sufficiently" far
apart. For an exposition of this formulation the reader is referred to the
excellent monograph by Bechhofer, Kiefer and Sobel (1968). The main investi-
gations surveyed in the present paper are under the second formulation due
to Gupta (1956) known as the subset selection formulation. The goal here is
to select a non-empty subset of the given populations so that the selected
subset includes the best population with at least a preassigned probability
P*. It is usually desired that this be accomplished by selecting a subset
as small as possible and without any knowledge of the true values of the
parameters.

Suppose that Wl""’ﬂk are k independent populations and ﬂi(i =1,...,k)
is characterized by the distribution function FA.’ where Ai is a real valueq
(unknown) parameter, which is assumed to be a me;sure of the quality of T
Let A[l] E-A[Z] f:"f.k[k] be the ordered values of the Ai. The correct
pairing of the ordered and the unordered A's is not known. The population

associated with A[i] is denoted by ﬂ[i] and the population ﬂ[k] (or ﬂ[l]) is



usually defined as the best population. In the case of a tie, we assume
that one of the populations with A. = A[k] (or A [1]) is tagged as the
best. The selection of any subset which includes the best population is called

a correct selection (CS) and P{CS|R} denotes the probability of a correct

selection using the rule R, Thus we are interested in defining a rule R

such that
. , . * -1 *
(1.1) P{CSIR} > P* |, k71 < p* o ,
regardless of the true parameter point A= (A 17+ k) in the parameter space

= {A}. If the distributions are not indexed by the values of any parameter
A, Q denotes the space of the k-tuples {F ...,Fk}, where Fi is the distribution

function of m, . In order that (1.1) be met, we want

(1.2) | inf P{CS|R} > p*
. Q

The requirement (1.2) is usually referred to as the basic probability require-

ment or the P*—condition.

2. Selection in terms of Location and Scale Parameters.

Many of the early investigations relate to rankiﬁg and selection of
Populations in terms of either location or scale parameters. The ranking
of normal means and gamma shape parameters are examples of this type.

Let us first suppose that ni(i = 1,...,k) has the continuous distribution
FA.(X) = F(x-xi), - ® < Ai < © and X5 is an observation from m . In order to
seiect a subset containing the population associated wifh A[k]’ we define the

following rule Rl‘



(2.1) Rlz Select m. iff x. > x - d
i i — "max

where Xmax max(x ye e k) and d is g p051t1ve constant chosen so as to

satisfy the basic probability requirement. It is easy to see that

’ © k-1 ‘
2.2 P{CS|R.} = I F(y+d+x ., .-i.. dF
-2 fah= 8 ROy @)
Clearly, the infimum of P{CS[RI} is attained when Al =...= Ak and hence d is given by
7 k-1
(2.3) JF " (y+d) dF(y) =

Denoting by S the number of populations included in the selected subset,

we can see that

(2.4) E(S) = p1 +,..4 pk ,

where P; is the pfobability that the population associated with A[i] is

included in the subset. 1In the present case

(2.5) p; = £ F(y+d+x[i] “Aryp) AR ()

J*l

It has been shown by Gupta (1965) that sup E(S) is attained when A1=...=Ak
provided that the density fA(x) = f(x—A)Qhas a monotone likelihood ratio
in x and in that case the supremum is kP*., The procedure R1 has also been
shown to be montoné in the sense that P; > p for A[ 1 [J]

As an application of the above results, we consider selecting a subset

containing the population with the largest mean from k independent normal

. . . 2
populations with unknown means Hpseeooly and a common known variance ¢ .
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If }i(i =1,...,n) is the sample mean based on n observations from s the

Trale R, in this case selects 7. iff y. > max y:-d, where d. will depend on
1 i i -'1<j<k J 1 1

n and k. By letting d1 = do/vn, the constant d is given by

(2.6) | L N uedyp yau = bt

where, unless otherwise stated, ¢ and ¢ denotes here and in the sequel the
cdf and the density of the standard normal distribution. If 02 is unknown,
one will naturally use 52, the pooled estimate of 02 based‘on k(n-1) degrees

of freedom. In this case we can show that d is given by

(2.7)

O 8

J o Luydyg (g, (y)dudy = »*,

where gv(y) is the density of xv/v with v = k(n-1).
Rizvi (1963) considered the goal of selecting a non-empty subset from k
normal populations so as to include the one with the largest 0. = Iuil. He

uses a rule of the type R1 based on w. = ,xi]. For his procedure
- T k-1

(2.8) sup E(S) = 2k [ [2 ¢(u+rd)-11°"! do(u), where
Q 0 .

d is given by (2.6). This bound for E(S), however, exceeds kP*.
Suppose the populations T i =1,...,k, have the continuous distribu-
tions FA (x) = F(x/ki), Ai > 0, X; > 0. To select a subset containing the
i "

population associated with A[k]’ we define the procedure R2 as follows:

(2.9) R,: Select n, iff x. > c—1 X
i i~ max

where xi is an observation from ﬂi and ¢ > 1 is determined so that the basic



For the problem of ranking and selection from normal population in
terms of their means, Seal (1955) considered a class of procedures satis-
fying the basic probability requirement. Assuming that the populations have

a common unknown variance, let x "ik be the sample means from the popula-

12

tions, each based on n independent observations. Let [ (cl,...,ck_l) be a
vector whose components are arbitrary non-negative numbers such that

C; +...+ C

= 1. Let x <...< X be the ordered sample means. The
1 [1] == *[x] P

k-1

class C of rules DC defined by Seal is as follows:

Dc: Include in the selected subset the population corresponding to i[i] iff

(2.13) i[i] > Cli[1]+"'+ci—1i[i—1]+cii[i+1]+'"+Ck—1i[k]_t(P ,¢)s/vn,

where 52 is the usual pooled estimate of the common variance 02, and t(P*,g)

satisfying the P*-condition is given by the upper 100(1-P*) percent point of
k-1

the distribution of Y = (121 s Z(i)-Zk)/s where z, = 1,...,k are random

observations from N(0,0°) and z < 2(2) <,..< z(k—l) are the ordered

(1

ZyseeesZy
The rules of this class possess certain desirable properties. For example,
the rule DC is unbiased, that is, P{rejecting any population not having the
largest megh} > P{rejecting the population with the largest mean}. Also the
rule has the property of gradation, namely, corresponding to any P*, there
exists a constant Yo (depending on the decision rule, the unknown means anﬂ

: o . . > *
the common variance 02) such that P{retaining the population with mean ui} <P

according as 2
g My Mo
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If we now assume that o is known, we can take o=1 with no loss of
generality and the rule Dc will be (2.13) with s=1. We define a subclass
C'of C by the restrictio;-cj = 1 for some j = l1,...,k-1. The procedure
R(called Rl earlier in th?s section) studied by Gupta (1965) is a member

of ¢' with ¢ It has been shown by Deely and Gupta (1968) that the

k-171
rule R has the smallest eéxpected subset size among the rules of the class C'
provided that the parametric configuration is “[1]53"5P[k—1]jP;”[k]”6(6>O) and
§ is sufficiently large. If we consider a slippage configuration (u,...,u,u+6),
6>0, Seal (1955) shows that in the classC, the rule D with Cy=-..=¢ =1/ (k-1)
maximizes (approximately) the probability of including the population with mean
H+é. Deely and Gupta show that E{S|R} < E{S|D} except when ¢ is near zero.

Seal (1958) defined a class of rules similar to € for the problem of

selection from gamma populafions given by (2.11). Let c = (cl""’ck-l) be

k-1
as before a vector of non-negative components such that Z c; = 1. Let
i=1 ~
KpoeeosXy be a set of observations from the k populations and X[1]5}[2]53"§¥[k]

be the ordered observations. Then, in order to select a subset containing the

population with the smallest Ai’ Seal proposed the class of rules D; defined below.

Dé: Include in the selected subset the population corresponding to x[i] iff

(2.14) X1 j_b(cli[1]+...+ci_1 i[i—l] + Cii[i]+"f+ ck-li[k])’

where b satisfying the basic probability requirement is given by upper
k-1
100(1—P*) percent point of the distribution of Yk/ Z c.Y .., where Yl""Yk
, j=1 + (1)
are k random observations from a gamma population with A=1 and Y(l)ff"fy(k—l)

are the ordered Y Seal (1958) has obtained results similar to his

LYy g

earlier ones for the class of rules Dc .



3. General Theory of Subset Selection.

In this section we will describe a class of subset selection rules appli-
cable to populations from a family of stochastically ordered distributions and
therefore in particular to populations characterized by a location or scale
parameter. Many of the specific selection problems discussed in the subse-
quent sections fall under this general frame work. We also discuss a decision-
theoretic formulation of the problem.

We assume that ™ “2""’ﬂk have the associated absolutely continuous

distributions F, (i=1,...,k), where Ai e A, an intérval on the real line.
i

The family {FA}’ X e A, is assumed to be stochastically increasing (SI) in

A, i.e., for A < X' in A, F, and F are distinct and FA(X) Z_FA'(X)

A At

for all x. For selecting a subset containing population associated with A[k]’
Gupta and Panchapakesan (1970) have discussed a class of procedures Ry de-

fined by a class of real valued functions h = hC a ¢ >1,d >0, possessing
b4

the following properties: For every x belonging to the support of F,, (1)
hc,d(x) > x, (ii) hl,O(x) = x, (iii) hc,d(x) is continuous in ¢ and d, and

(iv) lim hc d(x) = o (¢ fixed) and/or lim hC d(x) = o (d fixed), x # 0. If

d-—)oo fomad
XpsweosXp
Rh is defined as follows.

is a set of observations from ﬁl,...,ﬂk,. respectively, the rule

Ry : Include the population T, iff

(3.1) h(xi) > max Xx

<r<k r

Letting X () denote the observation from the population with distribution

F = F , we obtain

k-1
(3.2) P{CSIR,} = [{ nl Frp (WO} dF g (x)

r=
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Theorem 3.3. For the procedure Rh defined by (3.1), the sup E{SIRh} is
2

attained when X, = x. = . = A

1 2 .. x Provided that (3.9) holds.

If the condition (3.9) holds, then (3.6) is valid and consequently
v(A; c,d,k) is non-decreasing in A. Thus sup E(S) = k sup ¥(}; c,d,k) can
be evaluated. Hence, by verifying the conditign (3.9) we age simultaneously
assured of the monotonicity of ¢(A; ¢,d,k), the fact which is used for the
evaluation of igf P{CSIRh} and sgp E{S|Rh}. This connection between the
two has been observed by Gupta and Panchapakesan (1970).

It should be pointed out however that condition (3.6) may hold without
(3.9) being true. This is the case, for example, when we consider the selection
from Cauchy distributions in terms of the location parameter using
h(x) = x+d, d > 0. If (3.6) is satisfied, we have inf v(r; c,d,k) =
w(AO; c,d,k). Then we can evaluate the constants bezause-of the conditions im-
posed on h(x) provided we assume that FAO(X) ~is a distribution function in
case AO £ A,

It can be seen that the above results are readily applicable to the cases
of location and scale parameters discussed in Section 2. In the case of loca-
tion parameters the rule R, defined earlier uses h(x) = x-d, d > 0, and in

1

the scale parameter case the rule R2 uses h(x) = cx, ¢ > 1. In both the

cases it is easy to see that (3.6) is satisfied and (3.9) reduces to the condi-
tion that the density fA(x) has a monotone likelihood ratio in x.
Another case of importance is that of convex mixtures of distributions.

Here the density fx(x) is of the form fA(x) = Z w(X,j) gj(x), where

3=0
gj(x), j=0,1,..., is a sequence of density functions and w(x,j) are non-

negative weights such that Z w(X,j) = 1. We assume that the weights are
J=O .

given by
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(3.10) w0L3) = ad /AL, AQ) 20, 1 2 0

and

(3.1 a (m+£j)aj, j=0,1,...; £, m > 0 .

j+l

It is easy to see that A(})

ao(l-xﬂ)_m/z, provided that X < 1/£. It
has been shown by Gupta and Panchapakesan (1970) that the condition (3.9) is
satisfied if, for a = 0, 1,...,[i/2] ([s] denotes the largest integer < s)

and b > 1,

(3.12) b mele) [g;_,(x) 86, (h(x)) - B! (g (h(xX)) 4G, ()]
+ b (m+L(i-a)) [g,(x) 46, (h(x)) - h'(X)g (h(x)) 4G, (X)]

>0

where AGa(x) = Ga+1(x) - Ga(x)

This special case is of interest. If we set m= 1, £ = 0, and ag =1,
we get Poisson weights w(X,j) = e-x Aj/j!. Selection problems involving non-
central chi-square and non-central F distributions in terms of non:centrality
parameter fall under this special case and have been considered earlier by
Gupta (1966b), Gupta and Studden (1970), and Gupta and Panchapakesan (1969a).
These specific procedures are discussed in Section 5. Again, if we set @ =1
and a; = 1, we get densities gj(x) with negative binomial weights. The distri-
bution of Rz; where R is the multiple correlation coefficient, in the so-
called unconditional case is an example of this special case of weights. Selec-
tion procedures involving this have been discussed by Gupta and Panchapakesan
(1969a) and are described in Section 5. The condition (3.12) with b = 1 gives

the syfficient condition for the monotonicity of ¢(X; c,d,k) obtained by Gupta
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Now we present a decision theoretic formulation of the subset selection
problem. We are given k populations Mysenesy where LA is described by
the probability space GKJ%,Pi), where P, belongs to some family €.

We assume that there 'is a partial order relation () defined in &.

Pi > Pj is equivalent to saying that Pi is better than or equal to Pj; or,
in other words Pi is preferred over Pj. For example, if @ is a one-
parameter family, Pi(x) = P(ei,x), we may define: Pi > Pj iff Oi g_ej.

In many problems > denotes stochastic ordering. Other partial orderings that
have been considered are: star-shaped ordering, convex ordering, tail oxrdering.
In the above set-up, we assume that there exists a population "j such

that '5 > L for all i. This populati&n 5 will be referred to as the
'best' population. In case of more than one population satisfying the condition
we will consider one of them to be tagged as the best.

From each population we observe a random element X.. The space of
observations is: Zk = {§_=(x1,x2,...,xk), X5 e%, i=1,2,...,k}. In most
applications zk will be a real vector space.

The decision space 8 consists of the 2k subsets d of the set

{1,2,...,k}: to put it formally,
(3.14) 9 = (d|ldE {1,2,...,k}} .

In other words, a decision d corresponds to the selection of a subset of k

populations.

A decision d € ® is called a correct selection (CS) if j € d which
means that the best population ﬂj is included in the selected subset d. It
should be pointed out that in many subset selection procedures investigated earlier,

the null set ¢ is excluded from 9 to guarantee the selection of a non empty

subset.
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A measurable function § defined on s x ® is called a selection pro-

cedure provided that for each x € Zk, we have,

§(x,d) >0 and

§(x,d) =1 ,
oo °C

(3.15)

where 6(x,d) denotes the probability that the subset d 1is selected when
x is observed. The individual selection probability pi(i) for the popu-

lation T is then given by

3.16) ' .(X) = 8(x,d) ,
(3.16) oK=L S

where the summation is over all d containing i. If the selection probabili-
ties p,(x), p2(§),...,pk(§) take on only the values O and 1, then the
selection procedure &(x,d) is completeiy specified.

In general, we can assume that the selection of a subset d ¢ 8 results
in a loss. Let us consider the situation where p, = p(ei,g) and assume
the loss L(8,d) = L((el,ez,...,ek),d) = iZd Li (8) .where Li(g) is the loss
if the ith population is selected. We may assume an additional loss L if
a correct selection is not made. The overall risk for the nonrandomized rule

§ 1is:

. . -
(3.17) R(8,6) = -21 L;(8) Egp; (X) + L[1 - pyi{CS|83].
i= - -

In many problems it has been assumed that Li(gj =1 and L =0, in
which case, R(6,6) gives the expected size of the selected subset. 1In
general, our aim is to minimize the risk R(6,8) which will be done under

the usual symmetry condition.
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Our goal is to obtain selection rules & selecting a non-empty subset and
satisfying the P*-condition. In general, we wish rules with large probability
of a correct selection and a small value of the expected size. The ratio
nw(5) = k Pw{CSIG}/Ew{SIG} can, among others, be considered as a measure of
the efficiency of the procedure ¢ at w = (Pl,...,Pk), Pi € €. Both
Pw{CS|6} and Ew{SIG} depend on § only through the individual selection
probabilities and hence if we restrict our attention to these quantities, we
can define two rules 6 and §¢' as equivalent if they have the same individual
selectioﬁ probabilities p(x) and p'(x) for all x. Hence, we can use the
following simplified definition, replacing 6 by R.

A subset selection rule R is a measurable mapping from zk into Ek(k

dimensional Euclidean space), namely,

Ri x> (P ()P, (0. v 5P (X)), 0 < p. (X)) < 1,

i=1,2,...,k.

If pi's are 0 or 1, the rule is nonrandomized; in this case, R can also
be defined by the sets Ai = {x ¢ Zklpi(g) =1}, i =1,2,...,k. Ai is the set

of observations for which ni is selected. R is said to be unbiased iff

m, >7., i=1,2,...,k P . >P . for all we Q
J 1 w,] — Ww,1

where Pw i ° Ewpi(§) = probability that TS is selected, and is said to be

monotone iff

m.>m, 2P . »P . for all i,j and all w ¢ Q .
j i w,j = w,i

We shall restrict ourselves to selection rules R which are invariant under

permutation (or symmetric), i.e., rules R for which
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original densities. However, for the slippage situation when the underlying
densities are from an exponential family and Li(g) = 1, the expressions

simplify considerably and in this case the following théorem has been obtained

by Studden.
k 0x
Theorem 3.6. Let fe(g) = 1 fe (xi) where fe(x) = C(8)e and
- i=1 i
8 = e[l] = 6[2] = ,.. = e[k_l] = B[k] - A (A>0). An invariant rule § mini-

mizes Ee{Sld} subject to the condition that Pé{CS|6} > y iff for almost

all x
k-1 Axi Axk
(3.20) P(x) =1if ) e = <Ce
' i=1
k=l Ax, Mx
=0if ) e ~ > Ce .
i=1

Studden also considered a simple situation concerning normal populations

where the parameters are permitted to vary. It is assumed that f(x;6) =

k
I f(xi-ei) where f(x) is the standard normal density. For fixed A let

i=1
p(x;4) denote the selection probabilities defined by (3.20) where C 1is

chosen so that Pe{CSIP(EgA)} =y for all 6 = (6,...,6,6+A). Let ¢(4) denote

the class of invariant procedures satisfying

(3.21) P iCS|s} >y  for all B8 e 2(4)

where Q(A) = {8 | 8py7 <051 S ovr S0 gy SO - A -

Theorem 3.7. For any 6 with 6[1] = 9[2] = ... = e[k_1] = e[k] - A the

minimum value of Ee{S|6} over the class ©(A) is attained by p(x;4), i.e.,

(3.22) min E {S|6} = Eg{S|p(x;8))
¢(a) - -
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Now, consider the sequence of selection probabilities defined for

A e (0,°) by
k-1 Axi Axk
(3.23) : pk(§5A) =1 if e < C(A)e
i=1
k-1 Axi Axk
=0if ) e ~ >C(Ae
i=1
For A =0 we let
k-1
(3.24) py (x;0) = 1 if Y x./(k-1) < X, + C(0)
k-1
=0if ) x./(k-1)>x_+C(),
NP | k
j=1
while for A = «» we define
(3.25) Py (X3°) =1

if max x. < + C(=)
1<j<k-1 7 '

=0 if 12?22_1 T C (=)

The values C(A), A € [0,»] are all chosen so that for a fixed set of values
‘ 6[1] < een f_e[k], the probability of a corre;t selection is equal to a given
value v. The rules defined in (3.24) and (3;25) have been considered by
several authors. It has been observed by Studden that pk(§;A) has lim;ts
pk(§50) and pk(z}M) almost everywhere u as A approaches zero and infinity,
respectively.

In addition to several desirable properties and criteria for selection rules
discussed above, another concept was investigated by Nagel (1970). This is con-

cerned with what are called "just'" selection rules.
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We assume that a partial order relation » is defined on % [¥ > x or,
equivalently, x <y means that Y is better than 5].. A selection rule R
defined by its‘individual selection probabilities pi(5), i=1,...,k, 1is said

to be just iff

(3.26) » =2Pp; (O >p, )

X, > ., J#i
; Y; i#i

’

For nonrandomized rules determined by acceptance regions Al,...,Ak, we
can define a just rule equivalently in terms of increasing sets. A subset
A cxk is said to be increasing iff XeA and y»> x= y € A. We say
~ that P is stbchastically better than Q(P >st Q) iff P(A) > Q(A) for all
increasing sets A € 8. We note that if % is the real line and > stands
for >(or >) then the increasing sets are the intervals [a,~) and (a,«)
which induce the usual stochastic ordering on the distribution functions. A

rule R is said to be just iff

y implies y ¢ Ai .

syl
Xs Y; J#1J

As mentioned earlier, frequently we require a selection rule to satisfy
the basic probability requirement. Hence, a central problem in the subset

selection theory is to determine inf PQ{CS|R}. For many rules investigated
wes )

in the literature, this infimum is attained in QO where QO € Q@ is the set

of w where the Pi are identical. This could reasonably be expected of a

good rule, because in QO, no statistical information can be employed to find
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the arbitrarily tagged population. It has been proved by Nagel (1970) that this
property holds for a just selection rule i.e.,

(3.27) inf P LS|R}= inf P _{CS|R}, if R is just .

wel mGQO

It is also a reasonable requirement that Pw{CSIR} be constant over
QO because in stating the P*-condition, we express that we are content if
Pw{CS|R} is at least P* and we are not interested in exceeding P*, at
least not in QO where it can be achieved only by increasing the expected
number of populations in the selected subset.

The following lemma can be applied to construct just subset selection rules

with constant probability of a correct selection in 24-

Lemma 3.1. Let Xl, Xz,...,Xk be independent and identically distributed
random variables with joint distribution Pe. Let T(Xl, X2,...,Xk) be a
sufficient statistic for 6.

(1) If E(6(X;,...,%)|T) = P* for all T then Eg6 = P* for all o.

(i) If T is complete w.r.t. {P (x)}, then Ee(a(xl,...,xk)|T) = p*
is also neceséary for Eeé = P* for all o.

Gupta and Nagel (1971) have investigated the problem of constructing just
rules in the céses of some discrete distributions such as binomial, Poisson and
negative binomial distributions, which are discussed in the next section. They
have also discussed the problem of deriving rules with constant P{CS|R} in
QO using the likelihood ratio criterion. They consider densities
f(xi’ei)’ i=1,...,k, where f(x,8) is given by

oT (x)
(3.28) _ f(x,8) = c(6) e h(x)
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Under the slippage configuration, they derive the rule

R: Select m, iff T, z_T[k] -c

where c¢ = c(k, P*, 6, §) is determined from the P*-condition. This rule is

just and the constant c is given by

- o k-1 .
(3.29) [7 6577 (t+ ) dGy(t) =P

-0

where G6 is the cdf of T. For the normal distributions with € as- the location
parameter, c¢ is independent of 6. In gemeral, c depends on © and, if 6 is
not known, an estimator of 6 may be used. Since ZTi is a sufficient statistic

" for 6, this yields a selection rule of the form

(3.30) Select M iff Ti Z-T[k] - c(ZTi,P*)

By Lemma 3.1, this rule has constant probability of a correct selection in QO,

if c(ZTi,P*) is determined to satisfy

(3.31) P, {Ti > T

. 2Ty - c(ZTi,P*)IZTi} = Pp*

for all ZTi, w, €9

0 %% However, it is now known whether (3.30) is a just rule.
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4. Selection from Discrete Populations

In this section we discuss the results of investigations of procedures
for selection from k independent discrete populations. Though selection of
the multinomial cell with the largest (smallest) probability where the obsef-
vations are on integer valued random variables falls under this category, we
discuss it in the next section along with problems concerning multivariate
normal populations. The case where only the ranks of the observations are
considered is discussed in the section on distribution-free procedures. Our
present discussion will be mainly concerned with selection from binomial,
Poisson and negative binomial populations.

Binomial Case:

We have k independent binomial populations wi(i=1,...,k) with unknown

probabilities of success on a single trial 91,...,9 respectively, where

k

0 <8, <1, i=1;...,k. The following procedure R based on samples of size n

1
from each population has been proposed by Gupta and Sobel (1960).

R: Select the population L iff
(4.1) X; i_max(xl,...,xk)—d

where xi is the observed number of successes in n observations from ™ and

d=d(n,k,P*) is the smallest non-negative integer that will satisfy the P*-condi-

tion.
It is known that P{CS|R} is minimized when 6,=...=0, . Thus, the integer d
is the smallest non-negative integer for which
2 ona n-o otd n,.j n-j k-1
(4.2) inf ¥ Me*@-9)" T el -y > b
a . o =
0<0<1 =0

a=0 J
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The above procedure and another procedure for the case of samples of
unequal sizes along with the normal épproximations for both these cases
have been discussed earlier in the literature and have been briefly
summarized by Gupta (1966a). It has been shown by Gupta and Sobel that
for k=2, the infimum in (4.2) is attained for 0=1/2, and that, for a fixed

k, the value 0, at which the infimum takes place tends to 1/2 as n>o.

0
However, in general, the value of 8 for which the infimum takes place is
not known. When 6,=...%6,=6, P{CS|R} can be written as a polynomial of
degree nk in 6. Let

‘ nk .
(4.3) P{CS|R} = Qe .a® = iZO ci(k,n,d)gl

The minimum of Qk n d(@) is attained for some QO, 0 < 90 < 1 for which

%%10_9 =0. Nagel (1966) has evaluated the coefficients ci(k,n,d) numerically
0
for k=2(1)7, n=2(1)7 and d4=0(1)n-1. It is found that the first derivative is

of the form
(4.4) | Q- rea-01% e

where T(8) is a polynomial in 8. The computations showed that Q(8) may have
several minima in (0,1). A table of Q values is given for a few selected
values of k and n.

Gupta and Négel (1971) have constructed a rule RO for the above binomial
pfoblem thch overcomes the difficulty of finding the infimum of the probability
of a correct selecfion. Their goal is to construct a just rule such that

Pw{CSIR} = P* for all w e Q,, where QO={9;9?(9,...,O)}. It is clear that

O’
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this goal cannot be achieved with a nonrandomized rule, because when
w=(0,...,0) or w=(1,...,1) the observations will be x=(0,...,0) or x=(n,...,n)

with probability 1, requiring the use of individual selection probabilities

p; (x)=P*.
The joint density for w € QO is
: nk K 0 k n
(4.5) fgfxl,xz,...,xk) = (1-8) exp[(g xi) log Tjaﬂ ? (xi)
X :
We see that T = ‘21 Xi is a sufficient statistic for 6. Since we are
i=

interested in symmetric rules R it is sufficient to know one of the individual

selection probabilities, say, Py - From Lemma 3.1 it follows that
(4.6) E(pk(§)|T) = P* for T = 0,1,...,kn.
The requirement that R be just leads to

Y; j_xi, i=1,2.,,,.k-1
(4‘7) = pk(xl’xzi""xk) ipk(yl’yz""’yk)'

Yk Z %

Figure 1 shows the partial ordering induced by (4.7) among the observation
vectors for the case k=3, n=2. The individual selection probability
pS(xl’xz’XS) defines a just rule if its values are nondecreasing in the
direction of the arrows. Because of symmetry only one of the two permu-

tations (xl,xz,xs) and (x XS) is plotted. The numbers underneath the

21X1)

observation vectors denote the corresponding T values.
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(Jzzo)‘\ ~ 120)/ (a 241)/(2T262)_
\(ITZSO)/' ’\ T

Figure 1. Partial Ordering for Binomial

Observations k=3, n=2.

The conditions (4.6) and (4.7) do not determine a rule uniquely.
Gupta and Nagel have proposed the following rule RO:

1 if x, > ¢

(4.8) pk(zj = p if X, = Cr

where p = p(T,P*,k) and Cr = cT(P*,k) are determined to satisfy
_ - - *
(4.9) E(p, (X)[T) = PX, > cp|T} + pP{X, = ci|T} = P* .

The conditional distribution of Xk given T is hypergeometric:

n (k-1)n
G M

&)

(4.10) P{X, =i|T} =
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Let ZT have the same distribution as Xk given T. Then (4.9) becomes

(4.11) P{ZT > CT} + pP{ZT = c.} = P*

T

and the constant Cr is smallest integer determined from the inequalities

(4.12) P{ZT > cT} < p*
and

*
(4.13) P{ZT :_CT} > P

From (4.11), we have

* _
p P{ZT > cT}
P{ZT = cT}

(4.14) p =

It has been established by Gupta and Nagel (1971) that the above rule

R. is just. They have also tabulated the values of c. and p for k=2,3,5;

0 T
n=5,10 and P*=.75, .90, .95, .99, in each case T going from 0 to nk.

Since T takes on the values 0,1,...,kn these tables become very
extensive for large values of k and n. Therefore it is desirable to find

approximations for c. and p. The normal approximation for the hypergeometric

T
distribution gives good results when n is large and T is not extreme (close

2_T(kn-T) (k-1)
o°= =
(kn-1)k~

to 0 or kn). The expectation and variance of Zp are y =.{-and

respectively. Using the fact that asymptotically ZT is‘N(u,oz), we obtain
approximate value ET given by ET = [%-+ u-o0 ®_1(P*)] where & L is the
inverse of the standard normal‘cdf and [x] is the integral part of x. For

p we get the approximate value ; = ET + 0.5 - (u - o¢_1(P*)). The exact and

approximate values of c. and p have been compared by Gupta and Nagel for

T
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.k=2,3,5,10; n=5,10,20; and some selected values of T and P*. The results
show no change in the values of Cr and ET and only small deviations in the
values of p and 0.

The nonrandomized version Ré of RO, namely, Ré: Select ™ iff x5 > Cps
is conservative in the sense of meeting the basic probability requirement.
However, Ré may not be just and it selects large subsets if the Oi’s are
close to zero or one. A comparison of R0 and R is difficult because

inf Pw{CS|R} is not known in the case of R. Since it takes place near
Q —_

6 = %3 the P*-value for R0 has been chosen by Gupta and Nagel to satisfy
Pw{CS|R} = P* with w = (%3%3...,%9 which makes the comparison slightly more
f;§orab1e for R. Under slippage configuration (8,...,8, 0+8), the numerical
computations show that R0 yields better results for small values of &, while
R is better for large 6. Hence RO should be applied if small differences in
the success probabilities are expected. This advantage of RO becomes more
evident in the case of equally spaced configurations, where almost surely
more than half of the populations will be retained in the selected subset

if the number of observations is increased indefinitely, whereas R will
eventually select only the best one.

Gupta and Nagel (1971) have studied rules similar to R0 defined by
(4.8) for the prbblem of selection from Poisson and negaﬁive binomial distri-
butions. The case of Fisher's logarithmic distributions has been discuS;ed
by Nagel (1970).

In connection with selection from discrete populations Nagel (1966)

considered the problem of minimizing



30

n i+d k-1
(4.15) A=) a (] a)
i=0 * j=o0 J
under the condition
n
(4.16) izo a, =1, a >0fori=0,...,n.
Setting
1 .
(4.17) A, = ) a.,i=0,...,n; A, =0,1i<n; A =A,1i>n,
i b j i 1 n
j=0
we have
n
(4.18) . A= iZO (A - A DALy -

For d = 0, it has been shown that the minimum of A is given by

| 1 k-1
(4.19) A (kn) b Sha
If b = k-1)/K"%"1 then

) 1/k-1
(4.20) AL (cnel) = 1-b /(A (k) .

Amin(k’n) has been tabulated for k=2(1)8 and n=1(1)25. The case of d > 0

can be handled using the results for d = 0 case.
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5. Selection Procedures for Multinomial and Multivariate Normal Distributions.

I. Multinomial Case.

Let PysPys---sPy be the unknown cell-probabilities in the multinomial

k
distribution with X p; = 1. Let XpsXose s Xy be the respective observa-
i=1 K
tions in the k cells of the distribution with z x; = N. Let the ordered
1

cell-probabilities be given by p[l] f'p[Z] 53..§_p[k]. For selecting a
subset of the cells containing the cell associated with p[k], Gupta and

Nagel (1967) proposed and investigated the following procedure

Rlz Select the cell with observed xi iff

(5.1) | X z_max(xl,...,xk) -D

where D is a given non-negative integer. Using this rule the probability of

a correct selection is given by

5.2 P{CS|R,} = F(k,N,D;
(5.2) fcs|ry} = F( Pr1ye - Prx)’
.3 N! 1 Yk
. v T v ] Pri1-- Prxy-
viiyk+D

i=1,2,...,k
Then the following lemma can be established.
Lemma 5.1. (i) If the sum p[i] + p[j], 1 <i<j <k, is kept constant,- .
P{CSIRI} decreases as we pass from the configuration (p[i],...,p[i],...,
Sy ees t yeeosDPrs1 = EseeesPrsqg + Eseene, where
Prjpeee-oPrk]) T (Pragec-ooPpy) = €aee Pyt aeeoP )

0 <e¢ f-p[i]'
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(ii) If the sum Priy * Prx] 1 <1i<k, is kept constant, P{CS]Rl}
decreases as we pass from the configuration 3o e sPraqseces to
p g (P[l] P[1] p[k])
»ec 5Py se e, - h 0 .
Prip>e- i) * €0y <€) where 0 < e < ppy

By using this lemma, the following theorem is obtained.

Theorem 5.1. Let u be the smallest integer such that p[u] > 0 and let v
be the largest integer such that p[v] < p[k]. Then, for a configuration
minimizing P{CSlRl}, W > v. In particular, if u = k-1, then u > v.

As a consequence of the above theorem, we have

(5.3) inf P{CS|R,} = min (, min F(k,N,D;(0,...,0,s,p,...,p))
1 1 1
Q r=2,...,k TP

where s = 1 - (r-1)p and Q is the space of all configurations of Ppse-sPy-
For the purposes of computations it is not necessary to consider the
cases where r < k, when the problem is already solved for all smaller values
of k for the same N and D. In other words, we need consider only vectors of
the type (s,p,...5p), s =1 - (k-1)p. On the basis of numerical evaluations
of F(k,N,D; (s,p,...,p)) done for D = 0(1)4, k = 2(1)10 and N=2(1)15, it was

found that the minimum over p took place either for p = %-or for p = E%T

except in the case of k = 3, N=6 and D = 4 for which the minimum was attained

in the interior of the interval (%—, Q%TJ'
Consider the configuration (p,...,p,Ap), A > 1. For any D, the expected

subset size is given by
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where Bv = number of vi's > Vhax " D. The probability of selecting a

non-best population is given by E(S)RZIP{CSIR}. Tables have been provided

by Gupta and Nagel (1967) for the values of P{CS|R1}, expected proportion

of cells selected and the probability of selecting a non-best population

corresponding to the configuration (p,...,p,Ap), A > 1 for k = 2(1)10,

N =2(1)15, A = 1(2)5 and D = 0(1)2. Another table gives the minimum D

such that inf P{CS|R1} > P* for k = 2(1)10, N = 2(1)15 and P* = .75, .90.
Q2

For selecting a subset containing p[l], Gupta and Nagel investigated

the rule R2 which selects the cell with observation Xs iff

(5.5) X f_mln(xl,...,xk) + C

where C is a given non-negative integer. In this case the probability of a

correct selection is given by

(5.6) P{CS|R,} = G(k,N,C; Priy»-- 2Pk’
. NI Y1 Yk
Ty =N yll...vk! p[l]"'p[k]'
1
Vj 2 V-G, j=1,...,k

The following lemma has been proved.
Lemma 5.2, (i) If the sum p[i] + p[j], 1 <1i<j <k, is kept constant,
P{CS}RZ} decreases as we pass from the configuration

(p[l],...,p[i],...,p[j],...,p[k]) to (p[l]""’p[i]_e""’p[j]+€""’P[k])

where 0 < ¢ 5-p[i]'
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(ii) If the sum P11 * P[4’ 1 < j <k, is kept constant, P{CS[RZ}
decreases as we pass from the configuration seeesPreqseces to
P g (p[l] P[J] P[k])
FE e Praq=Esenns h .
(Pruy*e- - oP)7es e oPx)) WheTe O < @ < ppy

As a consequence of Lemma 5.2 the following theorem is obtained.

Theorem 5.2. P{CS]RZ} is minimized at a configuration (p[l],...,p[k])
given by (p,...,p,q), where q = 1 - (k-1)p, 0 < p 5_%3
Numerical evaluation of G(k,N,C;p,...,p,q) for k = 2(1)10, N = 2(1)15
and C = 0(1)4 show that the overall minimum is given by the configuration
(%3...,%0. For the configuration (p/A,p,...,p), A > 1, tables are available
for the expected proportion, P{Cé|R2} and the probability of selecting any
fixed cell with probability p for k = 2(1)10, N = 2(1)15, A = 1(2)5 aﬁd c =0(1)2.
As we have seen above, Gupta and Nagel procedures are based on a fixed sample
size. For the problem of selecting the cell with p[k], Panchapakesan (1971)

proposed a procedure R, which is based on inverse sampling. Observations are

3

taken one at a time until the count in any cell reaches a given number M. Let

Xys Xoyeee Xy be the cell-counts at termination. Then R3 is defined as follows:
R3: Select the cell with count X; iff
(5.7) X; >M-D

where D is a non-negative integer. For the rule R3 the probability of a .
correct selection is given by
k-1

(5.8) P{CS|R,} = 1 - Yy L

o=1 o

where
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1
M(v1+...+vk_l). v, vy

(5.9) L=l T v Pri] oo Prxye

100V such that

<M-1, 8=1,...,k-1; B # a. This multiple

the summation being over the set of values of v

va=M,0 < v < M-D-1 and 0 f_vB

sum can be expressed in an integral form and we get

I ((k-1)M+M")
[r ) 1¥r 1)

T

(5.10) P{CS|R3} =1 - .

where M' = M-D,

(5.11) T =

w1

and ¢i = p[i], i=1,...,k.

It has been established by Panchapakesan that the statement of Lemma 5.1

holds in the case of RS’ and hence that
(5.12) inf P{CS|R,} = min (, min F(k,M,D; (0,...,0,5,p,---,p))
3 1 1
Q r=2,...,k TP <TT

where @ is the space of all configurations of the cell-probabilities, r is the
number of positive cell-probabilities in the configuration
0,...,0,s,p,...,p), 0 <s < p, and F(k,M,D; (0,...,0,s,p,...,p)) is the
probability of a correct selection for this éonfiguration. Subject to the
condition that s + (r-1)p=1, it has been shown that, for every fixed r,
P{CS|R3} increases in p and hence

(5.13) inf P{C3|R,} = min  F_(k,M,D)
3 T
Q r=2,...,k
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where Fr(k,M,D) denotes the probability of a correct selection for the

configuration (0,1..,0,l

s %J. It has been recently shown (unpublished)

that Fr(k,M,D) is monotonically decreasing in r. Thus
(5.14) inf P{CS[R5} = F (k,M,D).
Q

For RS’ the number of observations (n) is a random variable. Exact
and asymptotic expressions for E(n) corresponding to the configuration
¢1 =...= ¢k = % are written down using earlier available results. Specific
results have been obtained for the special case k=2.

For selecting the cell associated with p[k], Nagel (1970) constructed a
symmetric rule based on N observations, which yields a minimum of PCS when
the cell-probabilities are equal and which maximized PCS for the configura-
tion (8,...,0,0+8) where § > 0 and k@ + § = 1. His rule R4 is a randomized

rule which selects the cell with observation x. with probability p. where

1 if x. > d
.1
(5.15) p; = p if X, = d
0 if x. <d,
1

where d > 0 1is determined from

N :
(5.16) LN NS AR
i=d+1
and
1N NN N-i
(5.17) 1 §) G172 P

i=d
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It follows from above that

N .
pad - 7 ) aen™?
i=d+1

(k—l)N_d

(5.18) p =

II. Multivariate Normal Case.

Selection problems for multivariate normal populations have been
investigated when the populations are ranked in terms of (i) generalized
variance (ii) distance function and (iii) multiple correlation coefficient.
In the following diséussion of these investigations, we assume that TyseersMy
are independent p-variate normal populations, where L has mean vector u,

and covariance matrix Zi(i =1,2,...,k). Let xij’ j
1

j 1,2,...,n, be a sample

n _
of size n of vector observations from wm. and S. = —= z (x, - X.)(x. - x.)
i i | ia i ia

'
n 1

(a) Selection in terms of Generalized Variance, IZl, In this case My and

L, are unknown. For selecting a subset containing the population associated
with the smallest lZil, Gnanadesikan and Gupta (1970) studied the following

rule R, based on the sample covariance matrices Si’ i=1,..,n.

R: Select the population m, iff

H

_ 1
(5.19) |si| 5_E-|s|min

where ISimin = min(lsll,...,|8k|) and 0 < ¢ < 1. It has been established that

(5.20) inf P{CS|R} = P{Y, < Ly ,j5=2,...x,
Q —c )

where Yi(i 1,...,k) are k independent random variables, each being the
product of p independent factors, the rth factor being distributed as a

chi-square variable with (n-r) degrees of freedom.
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The exact distribution of Yi js unknown except when p=2. In the

case of p=2, we get inf P{CSlR} = P{Z1 < Z.; j =2,...,k} , where
-~ ]
Q c
Z.,1i=1,...,k, are k independent random variables each having a chi-

square distribution with 2(n-2) degrees of freedom. I1f, further k=2, then
cl/2 is the 100(1-P*) percentage point of an F variable with (2n-4, 2n-4)
degrees of freedom.
When p > 2, one can use Hoel's approximation for the distribution
of Yi in (5.20) or use the approximation of log x2 by the normal distribution.
Some study of these approximations were made by Gnanadesikan and Gupta.
Further, the performance of the procedure R was studied in terms of
risk functions using three different loss functions. If the ordered
generalized variances are denoted by |Z|[1] §_|Z|[2] < L. §_|Z|[k], the
different loss functions that were considered for the loss incurred by

including the population whose generalized variance is Zi, are:

i) L E) = |z|i/|z|[1] - 1.0,

k(k+1)

> , where the ranks increase

(ii) LZ(Zi) (Rank of the population ni)/

along with the generalized variance, and,
(iii) LS(Zi) = %—, where S is the number of populations included in the subset.

The computations of the risk functions associated with the above loss functions,for p=2,
k=208, |zl (712l = 22572 hen a = 1.2(.2)2.0(.5)3.0, n = 3(1)7 and
pP* = .75, indicate that E(Lz) and E(L3) are sensitive to changes in the values

of the parameters and are decreasing functions of a and n. In the case of

E(Ll), it increases in the range of values of a considered when n=3 and, for
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other values of n, it increases up to a certain point and then decreases as
a increases. This lack of monotonicity in the behavior of E(Ll), as the
'best' population moves further away from the other populations, and the
difficulty of its interpretation render E(Ll) less suitable than L, and

2
LS' Comparing L2 aﬁd L3, due to the ease of interpretation, L3 would be
more appropriate as the criterion of performance of the procedure R. Finally,
the procedure R is shown to be monotone.
Suppose we consider a partition of the p variables into two sets of

9 and q, components, respectively, where q; * 9, =p- The corresponding

partition of Zi is denoted by

(1) (1)
I 12
¥r. = , 1 = 1, ,k
1
(1) (1)
L1 2
5 (1) ( )

Here we assume that Zi are all positive definite. We are

11 s 292
interested in selecting a subset containing the population associated with
the smallest |zi|/|2(1)| = IZ(I)— Zéi) fi) ! (1)| = 0., say. In other
words, if we consider for each population the conditional distribution of

the q, set when the q, set is fixed, then our criterion of ranking is the
conditioﬁal generalized variance. If the observations are taken on the
variables of the q, set, holding the variables of thé q; set fixed, then

‘the problem reduces to selection in terms of the generalized variance for

the conditional normal distributions with dimensionality 9y 2 problem solved

by Gnanadesikan and Gupta (1970). Let us consider the unconditional case in

which all the p variables are random and observations are taken on all of them
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and use o, as the criterion for ranking. Then consider the partition of the

sample covariance matrix Si denoted by

1y i)
S S15

11
S. =
1
(i) (i)
S21 S22
(1) . g) @) ) |
We compute s, = |822 - 821 S11 S12 | Ggpta and Panchapakesan (1969a)

studied the following rule R' for selecting the population with smallest o, .

R': Select LY iff

1 .
(5.21) Ss j_ET-mln(sl,...,sk)
where 0 < c' = c‘(k,P*,n,ql,qz) < 1 is chosen to satisfy the P*-condition.
It is shown that
. e k-1
(5.22) inf P{CS|R} = 10 1 -6(c'x)] dG(x) ,

Q

where G(x) is the cdf of a random variable which is the product of Q,
independent x2 variables with degrees of freedom n—ql-l, n-q1-2,...,n—q1-q2,

respectively.

(b) Selection in terms of distance function.

Suppose the mean vectors i, are unknown and Zi = % (known) for all i.

-
Let A, = n; pX 1 My the Mahalanobis distance function of the population .

from the origin. Let Yii = %44 I

-1
X .
J 1] 1]

3§ =1,...,n 1= 1,...,k. Then
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n

Yy = 2 yij has. the non-central x2 distribution with np degrees of freedom
j=1 ' .

and non-centrality parameter Ai = nxi. We are interested in selecting a

subset containing the population with the largest Ai. Gupta (1966b) proposed

and studied the following rule R.

R: Select the population ™S iff

(5.23) y; 2 ¢ max(yl,...,yk)

where 0 < ¢ = c(k,n,p,P*) < 1 is determined to satisfy the P*-condition.
The probability of a correct selection is given by
k-1

[nE, &1, ©,
=1 M1 T M

o

(5.24) | P{CS|R} = [,

where A'[l] 5_%'[2] <oen S A'[k] are the ordered \' values and FA,(x)

denotes the distribution function of a non-central XZ variable with np
degrees of freedom and non-centrality parameter A'. Since {FA'} is stochas-

tically increasing in 1A', .

(5.25) inf P(CS|R} = inf [ BX;0 () AR, (0)
Q A'>0 ¢

Gupta showed that, for k=2, the integral on the right haﬁd side of (5.25)
is non-decreasing in A' and hence the infimum takes plaqe when A'=0. Thus,

the constant c satisfies the condition

] X 7 *
(5.26) [o 6, a6, (x) = P*
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where Gm(x) is the central x2 distribution with np degrees of freedom.
For selecting the population associated with A'[l]’ a similar procedure

was studied, namely,

R': Select e iff

(5.27) : Y3 <b mln(yl,...,yk) s

where b = b(k,n,p,P*) > 1 is determined so as to satisfy the P*-condition.
In this case, we obtain

(5.28) inf P{CS|R} = inf [7 [1-F,, (%J]k'ldFA,(x)
Q A'>0

The integral is shown to be monotonically increasing in A'-fpr k = 2.

For the procedures R and R' defined above Gupta énd Studden (1970)
established the monotonicity of the integrals appearing in (5.25) and (5.28)
w.r.t. A' in the géﬁeral case k > 2. They proved the following theorem for

that purpose,

Theorem 5.3. Let gj(x), j =0,1,2... be a sequence of density functions on
the interval [0,~) and define

-2
j!

(5.29) £ () = Z €

g.(x}, x> 0.
j=0 )

For a fixed integer k > 2 and ¢ > 1, let

(5.30) 1) = [y Fi_l (cx) dF, (x)
and
(5.31) I = [y 1-F, % ar, ()
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Let A denote the condition that, for each % >0

L
1 ,
(5.32) iZO T 654, (ex) - G (cx)}gl_i(:Q

e gi(cx) {Gl_i+1(x) - Gl—i(x)}] >0.

Then, the function§ I(A) and J()) are non-decreasing in A provided that the
the condition A holds. Further, both the functions are strictly increasing
in A if the condition A holds with strict inequality for some integer %.

As pointed out earlier, the condition (5.32) can be obtained from the
condition (3.9). In fact, Gupta and Studden verify in the cases of non-central
chi-square and non-central F distributions a condition which is stronger than
(5.32). This stfonger condition states that the sum of the terms in the left
hand side of (5.32) corresponding to i and 2-i, i = 0,...,[%/2], is positive
and this is same as the condition (3.12) for proper choiées of h(x) and the
weight functions.

To be precise, Gupta and Studden considered the case where Z, are all
not necessarily equal but known. With a slight modification, namely,
yij = xij Zil xij’ we have essentially Gupta's procedures R and R'. They
also studied procedures when Ei's are different but all unknown. In this
case, let z, = ii S;I ii' Then, for the selection of the population with

the largest and smallest distance functions, the procedures studied are,

respectively,

R,: Select ™ iff

(5.33) cz, Z_max(zl,...,zk)

and
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Ri: Select w. iff
i

(5.34) zs <b mln(zl,...,zk)

where ¢ = c¢(k,p,n,P*) > 1 and b = b(k,p,n,P*) > 1 are determined so that
P*-condition is satisfied. It is known that z; is essentially distributed
as a non-central F variable, whose density is of the form (5.29). Hence
Theorem 5.3 applies in this case. It is shown that the sufficient condition
A is satisfied. Thus we obtain the equations to determine the constants ¢

and d, namely,

| o k-1
(5.35) fO Fp,n-p (ex) de,n—p(x) = p*
and
(5.36) (2 neF 1t ar ) = e
0 p,n-p p,n-p

Alam and Rizvi (1966) have also considered the problem of selection in
terms of distance function. For Zi unknown, their procedure is same as that
of Gupta and Studden (which was originally studied in a technical report
issued in 1965) but the monotonicity of the integral involved is established
rather directly and not by obtaining a sufficient condition applicable to a
class of distributions including non-central chi-square and non-central F
distributions. Further, in the case of Zi known, Alam and Rizvi use the
procedure R1 defined by (5. 33 with Zi in the place of Si; in other words,

using the statistics z, = ii

7! ii. This is different from the procedure of
Gupta (1966b) and Gupta and Studden (1970), who have observed the undesirability

of using ii Zil ii in the sense that the constant evaluated subject to the

P*-condition is independent of n.
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(c) Selection in terms of multiple correlation coefficient.

Let Py = pl.2...p be»the multiple correlation coefficient between the
first variable and the rest in the population s Let 0 f-p[l] 53..§_p[k] <1
be the ordered values of the o Gupta and Panchapakesan (1969a) investigated
the problem of.selecting a subset containing the population associated with

p[k] (or p[l])' Denote the sample multiple correlation coefficients by

R. = R(l) . Two cases arise:
i l1.2...p

(i) The case in which Xigsee

(ii) The case in which Xipsne Xy aTE random, called the unconditional case.

"xip are fixed, called the conditional case;

The following rule R has been investigated by Gupta and Panchapakesan for

the selection of p[k]'

R: Select ™ iff
2 2
(5.37) R*™ > ¢ max (R¥",...,R¥

where R;Z = Ri/(l—Ri), i=1,...,k, and 0 < ¢ = c¢(k,P*,p,n) < 1 is chosen
subject to the P*-condition. In the formal statement of R we do not make the
distinction between the conditional and unconditional cases.

Letting Ai =p., 1i=1,...,k, the distribution of R;z is given by

. . j ‘
(5.38) u () = ] M (1-0)3* ™ £2(q+i),2n )

in the unconditional case and by

e_m)‘(mk)J

(5.39) uk(x) = . R f2(q+j),2m(x)

J

S N~18

in the conditional case, where
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(5.40) qQ= (p-1)/2 , m = (n-p)/2

and fr s(x) denotes the density of the F-distribution with r and s degrees
of freedom. It is easy to show that uA(x) has a monotone likelihood ratio
in x and hence the distribution of R*2 is stochastically increasing in A.

Thus we obtain
. . o k-1

(5.41) inf P{CS|R} = inf fo U, " (x/c) du, (x) ,
Q A

where UA(X) is the cdf corresponding to ux(x).
In the conditional case, the condition A of Theorem 5.3 is satisfied
and hence the infimum takes place for A = 0. For the unconditional case the

same result is shown by proving the following theorem.

Theorem 5.4. Let gj(x), j=0,1,2,... be a sequence of density functions on

the interval [0,«) and define

(5.42) £ (x) = CLDE A (1-01 g,(0, x20, 0 << L.
A o [(a)

For a fixed integer k >2and 0 < c <1, let I(A) and J(A) be defined as in
(5.30) and (5.31). Let B denote the condition that, for each integer 2 >0

(@); @, _;

2
(5.43) L ST

[(q+i){Gi+1(x|c) - Gi(XIC}gz-i(x)

_c-l(q+2-i)gi(x]c){G2~i+1(x) - Gl—i(x)}] >0

where (q)S = q(q+l)...(q+s-1) and Gj(x) is the cdf corresponding to gj(x).
Then, I(A) and J()) are non-decreasing in A if condition B holds and the
two functions are strictly increasing in A if strict inequality holds in condition

B for some integer £.
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It can be easily verified that the condition B is satisfied in the

unconditional case. Thus, in either case, we get

k-1

2q,2m (x/c) dF

(5.44) ir;zf P{CS|®} =(f) F on®) s

2q,
where F2q,2m(x) is the cdf corresponding to f2q,2m(x)' Since the distri-
bution of R*2 when X = 0 is the same in both conditional and unconditional

cases, the constant c¢ used in the procedure is the same and is given by

fw k-1

(5.45) : F (x/c) dFZq,Zm(x) =IP* .

2q,2m
When q and m are integers, i.e., p and n are odd, we can use
series expansion for qu 2m(x)‘ and obtain formulae for computing c¢ for

specified values of q,m and P*. The final result is:

(5.46) P* = I(q*m)
r(q)r(m(1-c)™
qk-1 (k-1) (m-1)

x 7 7 D%
a=0 j=0

a+j

T Dat-1,) 50 K(e,m,q,0,5)

o

where a(r,j) and K(c,m,q,a,j) are given by the following recurrence relations:
!

(5.47) a(l,j) =

q(q+1)...(g+j-1), 1<j=<m1.

and for r > 1
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1 1 j=0
(5.48) a(r,j) = 4 min(n-1,j)
o | ) a(l,s)a(r-1,j-s) , 1 <3 <r(m1)
s=max (j-(r-1) (m-1),0)

~

(5.49) K(c,m,q,a,j)
[ T(m+ o+ jIT(Q - o - j . . .
( ?(mi)q)(q J) Il_c(m"‘a"'J:CI‘a"J), q>oa+])
m+q-1 2
-1 - .
I @Ot entlled g, a=a+;
£=1
=
m+o+j-1 s
@ o j - 1) -n* {1 - cto-J*ay
=0 ) P-a-J+aq
Lfa+j-q
1 . '
L + Ly g ) DY T 10g ¢, q<a+j

where Ix(a,b) is the incomplete beta function.

For selecting the population associated with p[l]’ the rule proposed is R!
2 %2

*
which selects 7. iff d R, — min R, where 0 <d = d(k, P*, q,m) < 1 is
1 1<j<k

chosen so as to satisfy the basic probability requirement., The constant' d is
given by
(5.50) fm [1-F xd)1*! dF x) = p*

) 0 2q,2m 2q,2m :

. _ - . x
Since 1 F2q,2m(Xd) F2m,2q(1/Xd)’ for a given set of q,m,k and P*, the

constant d of the procedure R' is the same as the constant c¢ of the procedure
® with q and m interchanged. It can be shown that the procedures ® and R!

have the monotonicity property.
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Govindarajulu'and Gore (1971) have discussed selection from bivariate normal
populations in terms of their product-moment correlation coefficient. If £5
denotes the correlation coefficient in the population ni(i =1,...,k), then

to select a subset containing the population with p[k]; Govindarajulu and Gore

have investigated the following two rules R 1 and RY2 based on the sample

1+,
product-moment correlation coefficients rs and the transforms s; = %-log T:;l
: ' i

(i =1,...,k), respectively. R, selects LY iff

(5.51) or, > max r. - h
15j<k

and R2 selects Ty iff

(5.52) $; 2 max sj - h
: 1<j<k
where h > 0 1is chosen so as to satisfy the P*-condition. It has been shown

that, for large n, h satisfies
(5.53) : : P(Ui <h vn/2, i =1,...,k-1) = P* |,

where the Ui vhgve a multivariate normal distribution with E(Ui) =0,

V(U;) = 1, E(U; Uj) = 1/2, i # j. If we are interested in ranking |pi]5 then
the'procedure suggested is to select L iff Iri| 3_max\|rj| - h, where large
sample solution of h 1is given by (5.53). It is to be noted that ranking in
terms of lpil is really a special case of ranking in terms of multiple correla-

tion coefficient investigated by Gupta and Panchapakesan (1969a).



6. Distribution-Free Procedures.

In this section we discuss a non-parametric procedure for selection in
terms of quantiles of a given order based on order statistics and some pro-

cedures based on ranks and paired comparisons.

(a) Selection in terms of quantiles.

Suppose T, (i=1,...,k) is a continuous population with distribution
function Fi whose form is not known. It is assumed xa(Fi)' is the unique
a-quantile of the distribution Fi' Let F[i] denote the distribution with the
its smallest a-quantile. The problem of selecting a subset containing the
population with the largest o-quantile has been studied by Rizvi and Sobel
(1967). Their formulation of the problem requires the P*-condition to be met
for the set Ql ‘of all k-tuples (Fl,...,Fk) for which F[k] is stochastically
larger than any other population.

For 0 < a < 1, we take n sufficiently large so that 1 < (n+l)a < n and
define a positive integer r by the inequalities r < (n+#l)a < r+l. Then the
procedure R1 = Rl(c) proposed by Rizvi and Sobel is défined in terms of a
positive integer c(1 < ¢ < r-1) and the order statistics Yj,i where Yj,i
denotes the jth order statistic from the population Fi based on n independent

observations.

R,: Select Fi iff

(6.1) Y . > max

Y .
T,i _-1§j§k r-C,j

where ¢ is the smallest integer with 1 < c < r-1 for which inf P{CS|R1} > P*,

Q
: 1
For any o and k, it may happen that a value of ¢ < r-1 does not exist
- k-1 . .
L. -1 +1
for some pairs (n,P*). However, if P* < P1 =v(2) Z (-1)1 (ki )/(n(i )), then
AR i=0 :

a value of c < r-1 exists and is unique. The value 6f c has to satisfy

'
|
'
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1

| k-1 .
(6.2) (f) G, (uw) dG (u) > P* ,
where Gr(u) = Iu(r, n-r+1) is the standard incomplete beta function.

It has also been shown that E{SIRI} is maximized in @, when the popu-
lations are identical. Further, - we let PA denote the configuration with
e[k] - e[i] = A(i=1,...,k-1) under the assumption that F[i](x) = F(x-e[i]).
Let nl(s) be the approximate sample size (obtained by using asymptotic theory

of quantiles) required to satisfy

(6.3) E{S|R;, P,} <1+ ¢ .

Similarly nz(e) denotes the sample size required to satisfy (6.3) when we

use the procedure R2 based on sample means §£(1=1,...,k), which selects the

population corresponding to ii iff X. > max X, - & where 6 > 0 is chosen
1<j<k '

to satisfy the P*-condition. Then the asymptotic relative efficiency of R1

" relative to R, is defined by

2
(6.4) . ARE(R,,R,) = lim [n,(e)/n,(e)] .
1272 2 1
g0
For a = %— and normal shift alternatives with o =1, ARE(RI,RZ) = 2/m. Again,
for o = %- and two-sided exponential shift alternatives with continuous symme-

tric densities about the median value ei, ARE(Rl,RZ) = 2.

Desu and Sobel (1971) have discussed non-parametric procedures for quantile
selection under a modified goal of selecting a fixed;size subset which is described
elsewhere in this paper. Barlow and Gupta (1969) investigated the quahfile selec-
tion in certain restricted class of distributions and this is also discussed

elsewhere.
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(b) Paired comparisons procedures.

In the paired comparison approach, we compare all the k(k-1)/2
possible pairs of the populations 7,,...,m and we have n replications of

each comparison. For i, j=1,...,k; i#j and v =1,...,n, let
1 if 7. > W,
1 ]
6.5 ' X. . =
(6.5) iy
0 if 7w, > m,
j i

where T ms means that m, is preferred to e

It is assumed that the ties are not possible. Let

(6.6) P{Xin =1} = ¢ii and P{Xin =0} = ¢ji =1 - ¢ij

The score a, of the population m, is defined by
' n n
(6.7) a, = ) a. = )

where aiY denotes the (partial) score of T in the vyth replication. It
k
is easy to see that )

k
a. =k(k-1)/2 and ) a. = nk(k-1)/2.
i ol i=1 *

1

It is assumed that the preference probabilities ¢ij satisfy a liﬁear model.
To be specific, let 6, be the true "merit" of L when judged on some"
characteristic. Let yi(i=1,...,k) be the observed merit of m, on which the
comparisons are based. Suppose that T “j if y; > yj and ﬂj > T other-.
wise. Then the preference probabilities ¢ij are sgid to satisfy a linear model
if ¢.. = P{yi - yj >0} for all i and j can be expressed as H(ei-ej),

1]
where H(x) 1is a distribution function on the real line with H(-x) = 1 - H(x).
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Under the above linear model, Trawinski and David (1963) proposed the follow-
ing rule R based on the score a, for selecting a subset containing the popu-

lation with the largest ei.

R: Select . iff a; > max a, - v,
| 1<j<k 7
where v = v(k,n,P*) is a non-negative integer to be chosen so as to satisfy
the P*-condition. Under the linear model, it has been shown that the least
favorable configuration is given by ¢ij = 1/2 for all i and j(i#j) and

is denoted by C(1/2). Thus v is the smallest integer for which
(6.8) P{CS|R1: C(1/2)} > P* .,

Trawinski (1969) obtains an approximation for E{S|R} in terms of (k-1)
variate normal distributions and transforms these into more numerically tractable
integrals. His approximation is obtained under a slippage configuration which

is specified by

(6.9) 5.

1/2 for i, j = 1,...,k-1; ifj ,

i ¢ fori=1,...,k-1.

and is valid whenever ¢ < %—+ %-{k/(k+1)}1/2.

(¢) Procedures based on ranks.

Let 'Xi., j = 1,...,ni, be independent observations from population

T (i =1,...,k) whose associated distribution function is FA (x). The
i

functional forms of FA is not known but it is assumed that {FA} is a
stochastically increasing family. All the observations are pooled and Rij

denotes the rank of Xij in the combined sample of N = L
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observations. Let Z(1) <Z(2) < ... < Z(N) denote an ordered sample of size N
from a continuous distvibution G such that - « < a(r) = EG(Z(r)) <
(r=1,...,N). With each of the observations xij associate the number a(Rij)

and define

n.
1
(6.10) H. = n, Y a(R..),i=1,....k.
i=1 1]

Using the quantities Hi’ Gupta and McDonald (1970) defined the following three
classes of procedures for selecting a subset containing the population with

the largest ei:

Rl(G): Select ™ iff Hi + d > max (Hi,...,Hk), d >0
_(6.11) RZ(G): Select m, iff cHi > max (Hl""’Hk)’ c>1

RS(G): Select ™. iff Hi > D , - ® <D<,

All the three classes of rules are equivalent if R = 2. The following
theorem is established regarding the infimum of the probability of a correct

selection.

Theorem 6.1. For the procedures Rl(G), RZ(G) and RS(G)’

(6.12) inf P{CS|R;(6)} = inf P{CSIRi(G)}, i=1,2,3
Q

where § 1is the space of all configurations of 6 = (61,...,6k) and

Q = {6 ¢ Q: © = 9

k [k-1] }. Further, for R,(G) ,

(k]
(6.13) inf P{CS|R;(6)} = inf P{CS|R;(G)} ,
Q Q

0

where QO = {86 ¢ Q: e[l] = ... = e[k]} .
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It should be noted that a result of the type (6.13) is not true in general
for Rl(G) and R2(G). The procedures Rl(G) (and their randomized analogs)
have been suggested by Bartlett and Govindarajulu (1968) for continuous distri-
butionsdiffering b& a location parameter. The procedures of the type RZ(G)
have been proposed by Blumenthal and Patterson (1969). For all these procedures
a result of the type (6.13) is not true in general. Rizvi and Woodworth (1970)
have given counterexamples to show that the least favorable configuration is
not always given by the identical distributions case.

In the cases of Rl(G) and RZ(G)’ Gupta and McDonald (1970) have obtained

bounds on the probability of a correct selection. It has been shown that

(6.14) 1gf PLH 1y > v} 5_1gf P{CS|R, (G)} 5_1gf P{H(y 2 u}
and
. . . .
(6.15) inf P(Hq, > v'} < inf P{CS[R,(G)} < inf P{Huy 2 u'l ,
Q Q f
where H is the statistic H, associated with the distribution F
(k) i e[k]

and, u' and v' are given by

(6.16) a' = u'(d,k, B = n L AL + c(k-1)71)
and
1 N
(6.17) vt = v (d,k,n) = (nc)” Yy a(n),
r=N-n+1

N
where A= ) a(r).

r=1

For the particular case where a(r) =7, nHi = Ti’ where the Ti are
the rank-sum statistics. In this case we denote Ri(G) by Ri' For this

special case, we obtain
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(6.18) inf P{CS|R;} > P{U < nd} ,

Q

where U is the Mann-Whitney statistic associated with samples of sized n
and (k-1)n taken from two jdentically distributed populations. A similar
result is true for RZ'

As regards RS’ we observe that R3 may not always select a non-empty
subset. A sufficient condition for selection of a non-empty subset is
that P* be sufficiently large so that D < A/N. For large n, this sufficient
condition holds if P* > %u The constaht D = D(k,n,P*) for the rule R is

3

found such that

16.19) pU <Pk - 2) - 0@ - P} 2P

Asymptotic expressions were obtained for E(S|R1) and E(S|R3)-
Assuming n, = n, for large n, the distribution of T' = (Tl,...,Tk)
1

is approximately multivariate normal with mean vector By = (ul,...,uk)

and variance-covariance matrix ZT' Let A be a (k-1) x k matrix given by

1 0 0 P 0 -1

0 1 0 “es 0 -1
(6.20) A =

0 0 0 .o 1 -1

Define W' = AVIJ where Av is the (k-1) x k matrix obtained from matrix A

by moving column j to column j+l, j = v, v+l,...,k-1 and replacing column
]
v by column k. Let u = A b and zv = AvXTAv' Then we have the following

theorem.



57

Theorem 6.2. If zv is non-singular for v = 1,...,k; then

k d d y I ko
(6.21) E(S|R;} = vzl Kv_i e _fm exp [-(W-u )" zv W-u)/2] 121 dw,
1#v

1
k-1 2
where Kv = [(2m)] |Xv|] . For R3,

k
(6.22) ~ E{s|rg} : v§1 o[ (n,-D)/o ] -

Let m. and w. be two normal populations with means 0 and 6(> 0)

1 2

respectively and a common unit variance. The asymptotic relative efficiency

of Ry (which is equivalent to R, and R, in the case of two populations)

relative the rule R based on sample means (see Section 2 ) is given by

(6.23) ARE (R),R;6) = ([20(2"Y26)- 1]/20B(8)}°
where
(6.24) B2(6) = [ 0°(x+0) ¢(x) dx - 82 (2712

-0

We see that 1im ARE (Rl,R;B) = 3/7m .

Y
8+0 -xlei
In the case of two exponential distributions F6 x)=1-c¢e (x> 0),
i '
where 6, = 1 and 6, =6 > 1, a similar comparison of R, and the rule R

by Gupta (1963) for gamma populations yields

(6.25) ARE (R,,R';8) = [(6-1)/4(6+1) B, (6) log 012,
where |
(6.26) B?(ﬁ) 1200 L ¢ 2oe1) ! + p(2e6)"! -20% (1+6) 77,

In this case 1im ARE (R,,R';8) = 3/4.
g1 2
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Some exact comparisons of the procedures Rl’ R2 and two other procedures

were made in the case of three independent exponential populations by McDonald
(19692) . Procedures similar to Rl’ R2 and R3 were studied by McDonald (1969b)
n
by taking T, = z R.. where R.. 1is the rank of X.. among
i j=1 ij ij ij

X The results for the probability of a correct selection are

15° ij,...,ij.
very similar to those discussed above. In another paper McDonald (1971) has
discussed some methods of approximating the constants required to implement the

procedures R1 and RZ'

(d) Selection in terms of measures of association.

Let Fj(x,y) denote the continuous distribution function of

ni(i =1,...,k), a set of k bivariate populations and T denote the rank

correlation coefficient for population . Let (X }, j=1,...,n

LY.
i,] 1,]

and i =1,...,k be n independent observations from each of these populations.

The rank Rif of Yij is the rank of its associated X value among

xil""’xin' The sample rank-correlation coefficient is given by
n-1 B n

(6.27) T; = ()" % ) §= 51gn(Rij—Rij,), i=1,...,k.

For selecting a subset containing the population with the largest T, Govindarajulu

and Gore (1971) proposed the following rule R.

R: Select " iff

Using the normality of the Ti and assuming a knowledge of the structure of

Xij and Yij (which implies the same sign for the correlation between any two
X's) they have obtained a lower bound on P{CS|R}, which is used to obtain a

suitable value of h. 1In the absence of any information on the structure of Xij
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and Yij’ an approximate value of h is found by using certain consistent
estimators of the mean and the variance of the asymptotic distribution of Ti'
For sufficiently small 05 the asymptotic efficiency of the procedure R
relative to the procedure R1 defined by (5.51) based on product moment
correlation coefficient is found to be 9/1r2 when the underlying populations

are bivariate normal. For the p-variate case (p > 2) some suitable measures

of association have been discussed by Govindarajulu and Gore.
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7. Sequential Procedures

Barron and Gupta (1970) investigated a non-eliminating sequential rule,
for selecting from k independent normal populations with unknown means

. . 2 -
el,...,e respectively and a common known variance ¢ , a subset containing

k
the population with the largest ei. The rule is non-eliminating in the

sense that, though the rule selects and rejects populations at various stages,
observations are taken from all the populations until thé final decision is
made. The ordered 6, are denoted by 6[1] < .. f_e[k] and it is assumed
that the successive differences between the ordered ei gre known. To select
a subset containing the population with e[k], the procedure . investigated
by Barron and Gupta is described below.

We take one observation from each population denoted by X sXgs oKy

For each population T define

1 if x. > x - do
i = “max
(7.1) Yi1 =
0 otherwise ,
where X ax = max(xl,...,xk) and d 1is given by
k-1 Cow
(7.2) J ¢ (x+d) de(x) = P* .

-00

Then we draw a second set of one observation from each population and define

Yiz(i=1,...,k) similar to Yil' Continuing in this manner, after the mth set
of observations are drawn, we have Yim’ i=1,..., k. For each population T
we define

m
(7.3) S, = )} Y.
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We have a pair of sequences of real numbers n=n, C=({bm},{cm}) such

that for all m>1,

(ii) bm <c
(iii) lim bm = ®

(iv) P{mgl [bm < Sim < cm]} = 0 for all i=1,..., k.

The sequential selection procedure is now defined.
o : Tag population ™ i=1,...,k, at the first stage m > 1 such that
S. ¢ (a_,b ) and mark it '"rejected" if S. < a énd "accepted" if
im m’ m im — "m
Sim 3_bm. Continue sampling from all k populations until each has been
tagged; then accept those marked "accepted" and reject those marked '"rejected'.

The following observations are made at the outset. For any

m, P{Yim =1} = p; and P{Yim =0} = 1-p. where

o k
7.5 .= NI ¢(x+d+(6,..,-6,. o)]de(x), i=1,...,k.
(7.5) py =S [j=1 (x+d# (85 1-8 (1) /9)]do(x)
j#i
Also Y.., Y. ,...,Y, are independent and S. is distributed as a binomial
1l 12 im im -

random variable with parameters m and P; - Let "(r) denote the population

with mean 6 . Define
[r]
ai(m) o= ai(m’nb,c) = P accepting ﬂ(i) at stage mLJ(nb,c)}’
ri(m) = ri(m’nb,c) = P rejecting "(i) at stage mLJ(nb,c)}’
ai (T]b C) = Z ai (m) and ri(nb,c) = 2 ri (m) ’
4 m=1 m=1
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where .(nb c) is the procedure using the pair of sequences oo When there
3 H

is no ambiquity, J/n) is used for J(nb <:).

Definition 7.1, Let n =({bm}, {cm}) and n'=({b$},{c$}) be two pairs of
sequences satisfying (7.4). The sequences {bm} and {bé} are said to be
pairwise ordered iff bm f_bé for all m > 1. This relation is denoted by

b} < {br}.

Definition 7.2. The pair n is ordered w.r.t. n' (denoted by n < n') iff

{bm} < {bé} and {cm} < {cé}.

Definition 7.3. A class of pairs of sequences satisfyiﬁg (7.4) is said to be

ordered if for all n,n'e either n<n' or n' <n.

The following two theorems have been established by Barron and Gupta.

Theorem 7.3. If n"< n then ai(n') f_ai(n) and ri(n') f_ri(n),

i=1,2,...,k. In particular P{CS|(n')} > P{CS|s(n)}.

Theorem 7.2. The procedure . /(n) is monotone and unbiased, i.e., > a 4> ...>22
and r

k

The rest of the investigation of the procedure o’(n) has been accomplished

2Ty, i=1,2,...,k-1.

by using the following class °1 of pairs of sequences. Let bm= Gm—Yl, cm=6m+y2
where § 1is a rational number in (0,1) and Yp:Y, are positive integers.

For Y125 fixed, the class C1 is ordered in §&§. For this class it is shown
that condition (iv) of (7.4) holds. If we set Rim = Sim - &m, for any n.e Cy»
the events [6m-y1v< Sy < 6m+y2], [sz_6m+Y2] and [Sm.§_6m-yl] are equivélent
to [-yl < Rm < yz], [Rm > yz] and [Rm j_-yl] respectiyely. By taking &=t/s
where t and s are relatively prime integers with t < s, the problem of
evaluating the various probabilities and expectations is reduced to a problem

concerning a random walk on the line where the state space is all points of the

form (Ns-Mt)/s for all integers M > N > 0. It is now possible to relate it to



63

a random walk on the space of intege?s. These probabilities and expectations
are not always easy to compute and hence some approximations and bounds were
obtained. We summarize the results below.

Theorem 7.3. For the sequential procedure o/(n) where n =({ém-v}, {{ém+y})

and 6=t/s>0
i 0 if p. < t/s

(7.6) lim ai(d,y) = 4 %- if p. = t/s

‘Y-')OO

L 1 if p. > t/s

where P; is given by (7.5).

Theorem 7.4. Let m. = the smallest m > 1 such that n(i) 'is accepted or
rejected and M. ='E{mi e #(n)}. Then, for the sequential procedure S(n)
specified in Theorem 7.3,

(7.7) M, © v/ |pi-t/s]

.provided Y is sufficiently large and P; # t/s.

Numerical evaluations made for & = .75, y = 3(1)10 and p; = .4, .6, .8,
indicate that the approximations are good for all the Yy values chosen. The
approximation in the case of the probability of selecting the populations using
the procedure improves as Y increases. |

There still remains the problem of choosing the two constants & and Y .
Theorem 7.3 guarantees that for any choice of § ¢ (pk_l; pk), there exists a

Y = v(8,e) such that for any ¢ > 0,

and

v

et
|

m

1) a (5,7) >
(7.8)

A
(Y]
-

(ii) & _108,7) <
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regardless of the configuration of plf:_pz S ... :_pk ahd hence the

configuration of 6 <O, < .. <8, Thus for a sufficientl small «
& [1] = "[21= " < k) 4 h

the P*-condition can always be satisfied by ch0051ng an approprlate ne °1'

If we define S to be the size of the selected subset when the procedure

v k
terminates then . E(S) = Z a; <1+ (k-1) 3 _1- Then we can replace (7.8) by
i=1 :

(i) ak(é,y) > 1-¢ and

(7.9)
(ii) lI-e < E(S) < 1+(k-1)e

regardless of the-configuration of the means 6, . The experimenter

e1’ e2""’ k
has for any § ¢ (pk 1° pk) a countably infinite number of procedures n which
guarantee (7. 9). Given two- procedures n, n' ¢ C which satisfy (7. 9),
procedure with the smaller expected number of stages is preferable in some sense.

If M= max Mi;' then the experimentor will want to use a minimax rule,
1<i<k

namely, an n Which minimizes M over the subclass C c:c1 of procedures
satisfying (7.9). The following theorem has been established using approximate

value of M.

Theorem 7.5. For & ¢ (Pk-l’ P>

( Y, (8) ~
min_ T s for &* < §
| §%<8<8 Pk-1 o
(7.10) minM = J
§
Y, (8) -
min 5 > for ¢ <8,
<8 Py ‘
N

where Yl(G) 1s the first positive integer such that ak > 1-¢, Yz(d) is the

first positive 1nteger such that a1 2 &, §* 1is the value of § such that
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¥,(8) = v,(8) and T = (p, *py_,)/2

A lemma shows that the approximate unique value d&* is. given by

[1ogl(1-py_1)/(1-py)]

» if 1
log[p, (1-p _;)/Py_;(1-Py )] if Py * Pt

(7.11) 8% =4
1/2 , Af p R sl

\

However, there still remains the problem of choosing a specific & if
§* 4 . It has been found empirically by Barron (1968) that often 6&* = &,
so that the expérimenter will not be "far" from the minimum for any choice of
§ between & and 6*. Numerical evidence indicates that if & and &* are
significantly apart, the minimum takes place near &*. It seems an approxi-
mate minimax rule which has certain desirable properties wbuld be (n*)
where n* = ({8* m-y*}, {* m + y*}). |

Some sample size comparisons have been made numerically between the proce-
dure (n*) and the fixed sample-size procedure of Gupta (1965) based on means
of samples of size h from the k population, which is denoted here by R(n)

and defined below.
R(n): Select m. iff X > X -

where d is given by (7.2).

The comparisbn'was made with o = 1 under slippage configuration

(k]
tion 6 =06, 0 = 0+ Tyeee, O =0 + (k-1 > 0. The following ranges
on oy T 8 fpe i [x] (b, = g Tang

6[1] = ...+ e[k—l] =9, 6 =@ + 1, T>0, and the equally-spaced configura-

of the values of k, Tt and P* were considered:
(1) Slippage configuration: k = 2(1)10, 25, 50; t = 0.05, 0°10(-10)0-60,

1,2; P* = 75, -90.
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(ii) Equally-Spaced Configuration: k = 2(1)5; t = 0.05, 0-10(°10)0-60;
P* = .75, .90.
The empirical results indicate that ;(n*) is preferable when the means are
close and R(n) is better when any one mean gets significantly larger than
the others.
Guttman (1963) considers a sequential procedure for a goal which is different

from the usual one. Suppose that Hi(i=1,...,k) has the density f6 (x) and
i

the quality of the population is characterized by hi = g(ei) where g is a
known function. Let Ti be an appropriate statistic based on a sample of n
independent observations in the sense that E(T) is g(8) or a monotonic func-

tion of g(®). Consider the rule R which selects IIi iff

(7.12) Toe wy (P, D)

where wn,k (P*,T) is a random linear set contained in the sample space of Ti
and depends on T = (Tl""’ Tk) and is such that igf P{CS|R} = P*,

Since the size of the selected subset is random, a natural question is how
to proceed sequentially so that we could select one population as the best or
reduce the size of the subset selected subject to certain.cost considerations
which restrict the number of stages.

Let t denote the stage of the experiment and kt denote the numbep of
populations retained at the start of the stage. If M units of capital are

available to spend on the procedure and at each stage a sample of n, independent

observations are taken from each population, let to be the largest integer for
t
0

which }

kt ntd <M where d is the cost per observation.
i :

1
The sequential procedure proposed and investigated by Guttman (1963) is

defined below.



67

R': At each stage t, use the‘rule R with P* = P; where

P; =1 - ——% adopting the following stopping rule:
‘ 2

At the end of stage t,
(1) Stop if t = to.
(2) Stop if t < t0 and kt+1 =1

(3) Continue if t < to and kt+1 > 1

It has been shown that P{CS|R'} > B. Suppose that there is infinite capital.
We say that the rule R' is in state vy if, at any stage t, we have kt =Y .

The states form a Markov chain with non-stationary transition probabilities

(7.13) Pyo = Pl = alk, = v}, 1T <ac<y=%k <k

These are dependent on w_ , (P*,T). We note that p_ =0 if vy < a and
nt Y t’— Yo

% pva = 1. The following theorem has been established by Guttman (1963).
a=1

Theorem 7.6. Consider the Markov chain with the above structure. Let

paa(t) =1 - Ga(t), 0 < Ga(t) <1 for o # 1. Then the Markov chain is absorbed

at state 1 (i.e., R' terminates at a finite stage) iff Z 6a(t) diverges for
t=1
all o # 1.

It might be‘possible to find a "reasonable'" value of n, in some special
cases. Suppose that the expected subset size E(S) at stage t can be written

as a function of , k., P* and the differences h,.,- h..., i < j. Since
O e fer Tt [317 "[i] !

kt and P; are known, if we have information about the differences of the h

[i]’

we can set E(S) = 1 and solve for n,.
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8. Selection from Restricted Families of Distributions.

There are situations where we do not know the actual functional forms of
the distributions Fi’ i=1,...,k, associated with the populations but have
some information about the class of functions to which they belong defined in
terms of a parﬁial order relation with respect to a known distribution G.
Such families do occur in practical problems. In these cases the evaluation
of the necessary constants for the procedures depends on the knowledge of G
but not on the forms of the Fi themselves and in this restricted sense the
procedures are distribution-free. Barlow and Gupta (1969) have discussed selec-
tion procedufes for restricted families of distributions mainly in terms of
their quantiles. We will briefly discuss here these procedures and indicate
certain other related problems.

Assume that each Fs has a unique o-quantile, i Let F[i] denote
the cumulative distribution function (cdf) of the population with the ith

smallest a-quantile. We assume that

(a) F[i](x) 3_F[k](x), i=1,2,...,k and all x,

(8.1)
(b) there exists a continuous distribution G sﬁch that

F[i] : G foralli=1,...,k , |
where : denotes a partial ordering relation on the space of distributiops.
To be precise, Ff’F. for all F and F:G,Gsl—{--'-’F:H. Note that F < G
and G‘: H do not necessarily imply F = G.

Some special cases of partial ordering which are of interest here are:

(1) Fg G iff F(0) = G(0) =0 ;nd G-lF(x)/x is nondecreasing in
x > 0 on the support of F.

(ii) F< G iff G'lF(x) is convex on the support of F.
c
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1

= and G-lF(ﬁ)/x is increasing (de-

(i) Fg G iff F(0) = G(0) =
creasing) for x positive (negative) on the support of F.

If GXx) =1 - e—x, x_z_O, then (i) defines the class of IFRA distributions
studied by Birnbaum, Esary and Marshall (1966) while (ii) defines the class of
IFR distributions studied by Barlow, Marshall and Proschan (1963). It is easy
to see that é ordering implies $ ordering. Implications of ; ordering

have been studied by Lawrence (1966). Van Zwet (1964) investigated the con-

vex ordering and s-ordering (not defined above).

(a) Quantile selection rules for distributions $ ordered w.r.t. G.

The distributions F[i] and G satisfy the assumptions in (8.1).
Let T. . denote the jth order statistic based on n independent observations

from Fi where j < (n+l1) a < j+l. Then for selecting the population with the

largest a-quantile, Barlow and Gupta. (1969) proposed the rule

R: Select the population ™ iff

(8.2) T, . >c max T, s
J’l 1irik J’r

where 0 < ¢ = c(k,P*,n,j) < 1 is determined so as to satisfy the P*-condition.
It has been shown by Barlow and Gupta that

(8.3) inf P{cS|R} = | [G.(x/c)]k'1 dG. (x) ,
Q o J

where § 1is the space of all the k-tuples (Fl,...,Fk) and Gj(x) is the cdf
Thus

of the jth order statistic based on n independent observations from G.
the constant ¢ of the procedure is determined by

(8.4) [ 6. /)1 a6, x) = P
0 3 j

and is tabulated by Barlow, Gupta and Panchapakesan (1969) in the case of
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G(x) =1 - e_x; x > 0 for selected values of n, k, j and P*. For j =1,
the constant ¢ is easily seen to be independent of n.

We discussed earlier in Section 6 a non-parametric procedure R, studied

1
by Rizvi and Sobel (1967) for the quantile selection problem. It has been shown
by Barlow and Gupta that the rules R and R1 are asymptotically equally
efficient in the sense defined by (6.4) under the scalé slippage configuration.

A selection rule R' proposed by Gupta (1963) for gamma populations based

on the sample means has been referred to in Section 2. Comparing R and R!
under the slippage configuration A[i] = Gk[k], 0<8<1, i=1,...,k-1,
we have

2 2 _.2 2 - 2
(8.5) AR,R'; 6) > 2(1-8)" o [-log a] /[r (log 8)° aa (1 + & )],
where o = 1 - a. Consequently we obtain

(8.6) A(R,R'; § 1 1) > 0.493  for a = 1/2 .

Barlow and Gupta (1969) also considered selection in terms of median when
the distributions Fi(i =1,...,k) have lighter tails than G which means that

Fi centered‘at its median, Ai’ is ; - ordered w.r.t. G (G(0)= %) and

(d/dx) Fi(x + A.) > (d/dx) G(x) .« In order to select the population with the
L x=0 x=0
largest median, the following rule R, was proposed.

R,: Select w, iff
2 1

(8.7) Ty 42 max T, . -D, j 2 (m+1)/2 < j+1 .

Tk 1T

It was shown that the constant D > 0 satisfying the P*-condition is determined by

©

(8.8) | f G§_1 (t+D) 4G () = P*

- 00

where Gj ié as defined in (8.3).
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It is easy to show that, if F has a lighter tail than G, then G-lF(x)-x

is increasing in x, which means that F 1is tail-ordered w.r.t. G(F é G) accor-

i

ding to a definition of Doksum (1969). As a matter of fact the rule R2 defined
by (8.7) can be used for the larger class of distributions Fi which are

tail-ordered w.r.t. G.

(b) Selection w.r.t. the means for IFR distributions.

Let be the mean of the distribution F., i=1,...,k, and

F[i] denote the distribution with the ith largest mean. We assume that

(a) F[i](x)‘é_F[k](x) fori=1,...,k-1 and all x;

(b) F G fori=1,...,k

[i] 3

-X

where G(x) =1 -e ", x> 0. We also assume that Fi(O) =0 for all 1i.

Let ii be the sample mean based on n independent observations from TS and

Hi(x) be the cdf of E&. Let H denote the distribu;ion of the sample .

(il

mean from F,... Then
[i]

(8.9) H[i](x) Z_H[k](x) fori=1,...,k-1 and all x
and
(8.10) }&i] é G fori=1,...,k .

The statement in (8.9) is an immediate consequence of the assumption (aj above,
while (8.10) follows from (b) and the clbsure of IFR distributions under convolu-
tions (see Barlow, Marshall and Proschan (1963)). For selecting a subset con-
taining the population F[k]’ Barlow and Gupta (19695 proposed the rule RS’

namely,

R3: Select the population L iff

(8.11) : X. > c' max X
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where the constant c¢' (0 < c' < 1) satisfying the P*-condition is given by

(8.12) fm [6x/c1* ! degx) = p* .
0

The disadvantage of the rule R, is that the constant c obtained from (8.12)

3
is independent of n. However, by restricting the class of distributions to

the gamma family we can obtain a lower bound for P{CSIRS} which depends on n.

(c) Some results relating to partial orderings of distributions.

The two procedures R and R1 defined by (8.2) and (8.7) for the
two types of ordering provides the motivation for an attempt by Panchapakesan
(1969) to unify these two by a general order relation which throws more light

on a lemma of Gupta (1966b). We define the general ordering here in a slightly

revised form.

Definition 8.1. Let ¥ = {h(x)} be a class of real-valued function on the

real line. Then F 1is said to be ¥H-ordered w.r.t. G if F(0) = G(0)
and G 'F(h(x)) > h(G'IF(x)) for all h ¢ H.

We note that if ¥ = {ax, a > 1} and F(0) = G(0) = 0, then we get
1
2,

reduces to tail ordering. It has been shown that ¥-ordering is a partial

star-ordering. If H = {x+b, b >0} and £(0) = G(0) = then H-ordering

ordering and that order statistics preserve the ordering. The following lemma
is the key result we need to bound below the probability of a correct selection.
Lemma 8.1. If F‘ﬁ G, then, for any positive integer vt,

t t
(8.13) [ Fr(h(x)) dF(x) > [ G~ (h(x)) dG(x)

for all h ¢ A.
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Gupta (19665) proved the following lemma.

Lemma 8.2. X is a randoﬁ variable having the distriBution function FA(x).
Let hb(x) be a cliass of functions and suppose there exists a distribugion
function F(x) .such that hb(gk(x)) z_gk(hb(x)) for all X and all x,
where gA(x) is defined by FA(gA(x)) = F(x) for all X. Then for any

t >0,

(8.14) [ F (b () dF, (x) > [ F'(h (x)) dF(x).

It is shown that the assumption of Lemma 8.2 amounts to saying
FA ﬁ;F. A general selection problem discussed by Panchapakesan (1969) is as
follows. Let Myseessy be k populations and Fi is the distribution
function associated with s We assume that there exists one among the k
populations which is stochastically larger than any other. Let us denote the

distribution of that population by F[k]' Thus we have
(8.15) Fi(x) 3_F[k](x) for i = 1,...,k and all x.

It is also assumed that there exists a continuous distribution G and a class

of realvalued functions ¥ = {h(x)} such that

(8.16) _ Fi(x) 76 fori=1, 2,...,k .

If X, = (Xyps Xigeeoo

ourselves to the class of statistics Ti = T(Xi) that preserve both the

’xin) is the observed sample from e then we confine

ordering relations (8.15) and (8.16). Let FT represent the cdf of T(Ei)'
‘ i

under Fi and GT’ the - cdf of T(Y) under G, where Y = (Yl,.z.,Yn)

is a random sample from G. If h(x) > x, then for selecting a subset con-

taining the population associated with F[k]’ the following rule R4 was
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proposed.

. R4: Select L iff

(8.17) ' h(Ti) z_max(Tl,...,Tk) .

It has been shown that
: , ® k-1
(8.18) P{CS|R,} = [ G "(h(x)) dG.(x)
4 ‘o T T
If h(x) 1is indexed by the constants ¢ and d (c > 1, d > 0) then we can

find suitable constants ¢ and d if conditions on h(x) given in the very

beginning of Section 3 are satisfied.
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9. Bayes and Empirical Bayes Procedures.

Let y = (yl,..., yk) £ Ek (Euclidean k-space) be an observation

of the random vector Y = (Y . Yk) whose components are independent

10"
random variables, Yi having the density f(yi|ei). The space of action
is denoted by G and it consists of all non-empty subsets of k-populations
(Yi is the random variable associated with the population Tis i=1,...,k).
A selection procedure D is a mapping from Ek to G . The loss incurred
when g' = (el,..;, ek) is the true state of nature aﬁd D(y) 1is ther

i

subset selected is denoted by L(D(y), 6). Let G, be the a priori

k
distributions of 0 and G= T Gi denotes the a priori distribution on
i=1

the parameter space Q. The Bayes risk of a decision procedure D

w.r.t. the a priori distribution G 1is defined by

(9.1) R(D,G) = | {fk LO(Y),8) £(v]e) dy} 4G (®) ,
& E
where
k
£yl = 1 £y, |8y
i=1

A Bayes procedure w.r.t. G is a procedure D* for which the Bayes risk

is minimum. Suppose we consider the loss function in selecting the subset

Sj given by |

(9.2) L(Sj,g) = quj ajq(e[k]- eq)

wherg ajq > 0 and the sunmation is over all populations q included in Sj,
Deely and Gupta (1968) investigated Bayes procedures with the above

formulation.
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Before stating the main results of their investigation, we adopt the
following notation for the sequal.

Sj denotes the singleton consisting of ﬂj, j=1,..., k. The remaining
k

27-k-1 subsets containing two or more populations will be denoted by Sj,

j=k+1,..., 2k—1 with no explicit ordering. Further let

vS;y) = [ L(S;,8) £ir[e) ao(e), i=1,2,..., 2%1
)

(9.3) a = gfz (811-8g) £0r19) 46(8), a=1,..., k

a = min a

Deely and Gupta haw established the following result.

Theorem 9.1. Let the loss function be given by (9.2) in which ajq= a >0

for j =1,..., k. If Z a. > o for every j =1,2,..., 2k-1, then
| qesj Jq

the Bayes procedure w.r.t. G for selecting a subset containing the
population with e[k] is given by D* = D*(y) = Sj where j 1s any positive
integer 1,2,..., k such that
(9.4) WG(S.,y) = min W(Si,y)
) i<i<k

This result is applied to the normal means problem with Gi as
(i) normal with mean Ai and variance Bi and (ii) wuniform on (Ai-di,
Ai+ di). In the first case, the Bayes procedure is:

Select “i for which
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ng. X+ Ay nB? X.+ A
(9.5) e W RV T M 8
1+n8£ lfjfk 1+n8j

where xi's are sample means based on n observation.

Some other cases like selection for binomial and Poisson populations
where the parameters, respectively, have beta and gamma a priori
distributions have been discussed by Deely (1965) who has also investigated
empirical Bayes procedures for the selection problem which we presently
discuss.

In the empirical Bayes approach, only the existence of an a priori
distribution G on the parameter space is assumed and not a particular
G. Thus the Bayes procedure is not available. Suppose independent
observations (X%, El)’ (§§, 92)”"’ (55, gn) on a random variable X
are available with Qi's all being drawn from the same distribution
G. (The * indicates that 'r" observations from each population have
been taken for i = 1,..., n). The "prior observations' contain information
about G and thus if a decision procedure Dn based upon Z;,..., };
could be found such that R(Dn,G) converges to R(DG,G) (i.e. the Bayes
risk of Dn converges to the Bayes risk of the Bayes procedure DG which
we would use if we knew G at the start) for any G - in some family é,
then the procedure Dn is asymptotically optimal to DG and is called
an empirical Bayes procedure w.r.t. the unknown G. The main theorem of
Deely (1965) proves that under certain regularity conditions the Bayes
procedure w.r.t. an estimate Gn of G 1is also empirical Bayes w.r.t. G.

In order to apply this theorem, a sultable estimate G, is required.

A completely satisfactory answer to this problem is not available.
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Suppose we make an additional sssumption that G belongs to a
parametric family G with parameter A = (xl,..., Ak). Suppose now

an estimate Anj of Aj depending on the prior observations from the

jth population can be found such that an based on the observations

converges to Gj with probability one. Then it is shown that
k k
G = 1 G, N converges to G = 1 Gj with probability one. Further,

GTr n is also a member of G. Thus, if the Bayes procedure w.r.t. any
H

G in G is available, then in particular GTT 0 is available and thus

2

an empirical Bayes procedure w.r.t. G is obtained. Empirical Bayes

procedures have been obtained for several special cases of f(x|ei) and

G, namely, (i) normal-normal, (ii) normal-uniform . (iii) binomial-beta,

"

(iv) Poisson—gamﬁa. To illustrate the type of results obtained, we
consider the case of normal-normal.

Let m, (i=1,..., k) have the normal density f(x[Gi) with unknown
mean ei and known variance oi and let ei be distributed normally
with unknown but finite mean xi and known variance B?. Let

1

51, 55,..., 5; be independent prior observations and x* the present

observation. Then the empirical Bayes procedure under the linear

loss function in (9.2) with o, = 1,D (x*) select the population

J9 Gv,n *
for which
(9.6) Z. = max Z.
Pogx
where
rs? X.+ 0% X,
9.7) 7, = —2J I _J
. j 2 2
cJ + 1B
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§3 denotes the sample mean from “j based on present observation
and ;} is the over-all mean of the prior observations from ..

Similar procedures have been obtained for the case where G is
subject to certain very general conditions. .We briefly describe one
of the results below for the sake of illustration.

Suppose f(xlej) be a normal density with mean ej and variance

o?. Let ej be distributed according to Gj such that f o d Gj(e) <
Y

s

i =1,...,k. Let x*, x*, ..., Xx* be independent prior observations
] X X X P P

and x* be the present observations. We denote the mean of the present

observations from “j by i} and the means of the prior observations from
- -1 .

m. by x ., o=1,...,n. Let H_ .(x. denote (n+l times the total

g% Xype : 5 &5 (n+1)

number of §;j's ‘which are < x, including the present observation §5.

]
Define
_ HnJ(§5+ n 1/5) nJ( .-n_l/s)
(9.8) h .(x.) = ~ s j=1,..., k
nj-j o~ 1/5
and
| b G n /5y . h G- n"1/5
(9°9) gnj (xj) = - 2n_1/5 4

Then the empirical Bayes procedure under linear loss function (9.2)

(with ajq = 1) for selecting the best population is the procedure which
| _ ol (X))

selects the population wj G =1,..., k) for which xJ+-al-—4L—4L— is
(x )

maximum. The main result used in these cases is a result due to

Robbins (1964).



80

10. Modified Fofmulations and Goals

In the precediﬂg sections we discussed the general theory of subset
selection problems under the usual formulation and described several cases
of specific distributions and ranking criteria used. There are, however, a
. few other cases which were not mentioned earlier. Barr and Rizvi (1966)
considered the problem of selecting a subset containing the population with
the largest 6 from a set of k populations having uniform distributions
over (0, ei), i=1,..., k. Guttman (1961) investigated selection problems
using the coverage probability as the criterion of ranking. If m,

1

(i=1,..., k) is described by the sample space (x,a,Pe ) where Pe is a
i i
probability measure belonging to the class {Pe}, ® € ®, the populations

are ranked according to bi = fA dPe. , where the set AeG . Guttman has
discussed specific procedures for no;mal and exponential distributions with
A = (-=,a) where‘ a is known and specified in advance.

Several authors have considered formulations and goals different from

the usual ones. In the remaining part of this section we will briefly describe

these modifications.

(a) A generalization of subset selection goal.

Suppose that there exists a binary relation < which orders the popula-

tions ﬂl,..., ﬂk from worst to best. The ordered populations are denoted by
m < < ... < . This gives a unique t-subset comprising the t
1@ = Sy B 4 prising

i ' T LI <t <k).
best populations, namely, {W(k-t+1)’ (k-t+2)?° " (k) for any t(1 <t <k)
- The experimenter's goal is to select a subcollection of the collection of all
subsets of size s from the k populations such that at least one such se-
lected subset contains at least c¢ of the t best populations. A correct

selection is a realization of the experimenter's goal. - For a given probability
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P*, a rule RS is proposed satisfying the condition that P(CS]RS) > p*

no matter what the unknown configuration of the populations 0’

Tfl,..., x*

Of course in a meaningful problem, we have constraints on the values of

t,s and c, namely, 1 <t <k, 1 <s <k, max[l,s+t+l-k] < ¢ < min[s,t].
Let Xij’ j=1,..., n., be independent random variables denoting ob-

servations from population e i=1,..., k. Let Ti= T(Xil,X X_ ),

i2’"""? Tin,
. _ i
i=1,..., k, be independent statistics with absolutely continuous distribu-

tions G, =G., i=1,..., k, suitably chosen such that =, ¢« 7m. =T, < T,
| ig7

1<i, j<k. Let t, be an observed value of Ti’ i=1,..., k. Then the
rule RS proposed and studied by Gupta and Deverman (1969) is the following.

Rs: Consider all possible s-subsets (subsets of size s) of = b

120

K*
Include in the collection of s-subsets the s-subset {ni , ni‘,..., . } having

1 2 s

the observations A = {ti , ti seans ti } and complementary set of observations
1 2 s

< _ : : c -d* . i
A {tis+1,..., tik} iff d[T[I](A)} T[k—s](A )] > -d*, where T[1](A) is

the ith smallest element in any finite set of real numbeis, d(x,y) is a general-
ized difference.such that (i) d(x,y) = 0 ex=y, (ii) for fixed y = Yo d(x,yo)
is increasing in x and (iii) for fixed x = Xy d(xO,y) is decreasing in vy,
and the constant d* > 0 is chosen so that the P* probability condition is
satisfied. For the:procedure Rs’ it has been shown that the infimum of P(CS]RS)
occurs when all fhe populations are identical w.r.t. the binary relation with
which they are ordered.

Gupta and Deverman have also discussed the normal meéns problem in

particular.

(b) Selecting a subset better than a standard

Under this formulation we have (k+1) populations T (i=0,1,...,k+1)

with the associated distribution funections Fe . .The parameters 6

1

1,.-., k
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are unknown and the parameter 6, of the standard population may or may not

0
be known. The goal is to select a subset containing all the populations ™

> 8. (or ei :_90). Any rule R defined for the purpose is

for which ei

0
required to satisfy the P*-condition.

The cases of location and scale parameters have Been discussed by Gupta
(1965). Earlier Gupta and Sobel (1958) have considered the normal means
problem where the procedure based on sample means E; (i=0,..., k) selects
m, iff §i z_?b - A/Vn. (It is assumed that all populations have wnit
variance).

Puri and Pﬁri (1968, 1969) have investigated rules based on ranks for
the location and scale parameter cases and have studied the efficiency of
these procedures compared to the normal theory procedures. The results and
techniques of these investigations are similar to those of Lehmann (1963).

Nonparametric selection procedures for selecting populations better than
a standard when the comparison is in terms of a-quantile have been discussed
by Rizvi, Sobel and Woodworth (1968). The corresponding subset selection
problem under the usual formulation has been investigated by Rizvi and Sobel
(1967) and has been discussed in Chapter 6.

In comparing'a population with a standard Lehmann (;961) considered a
population to be good if it is sufficiently better than the standard. To be
precise, let ni‘(i=1,..., k) be a population whose quality is characterized

by a real-valued parameter ei and a population is said to be positive (or

good) if 6. > 6

i + A and negative (or bad) if ei 5_60, where A is a

0

given positive constant and 6, is either a given number or a parameter that

0

may be estimated. A negative population if included in the selected subset is

called a false positive,while a good population not included in the subset is
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called a false negative. Rodghly speaking, the aim of a selection procedure
is to seek out the positive populations while holding false positives in the
selected subset to a minimum.

Let S(9,5) and R(6,8) denote the expected numbef of true positives

and false positives, respectively, using the procedure ¢&. Then the problem

is to determine a'procedure for which sup R(6,8) is minimum subject to
8 e Q
the condition that inf S(8,8) > vy where Q denotes the whole parameter
8 e Q!

space and Q' denotes the set of parameter-points for which at least one of
the populations is positive.

Under certain conditions, Lehmann (1961) shows that a rule minimax in
the above sense selects ™. when Ti Z_ci, where Ti is a suitable statistic
whose distribution depends only on ei and where c; is a suitable constant.
He has also discussed the applications of these to distributions with monotone
likelihood ratio.in the case where 6, 1is known and to normal distributions

0

where observations on 60 are included in the experiment.

Krishnaiah and Rizvi (1966) have considered the problem of selecting multi-
variate normal populations better than a control on fhe basis of the linear
combinations of the elements of the mean vectors of the p0pu1ations. Different
definitions of positive and negative populations have been used and in each case
a selection procedﬁre 6 is proposed such that inf P(w,8) > P* or
inf S(w,d) > p* where P(w,8) denotes the probab?lity of including all positive
pgpulations, S(w,d) ‘denotes the expected proportion of true positives and P*

and p* are given constants. As an illustration of the type of results obtained

ﬂk and the

where ™ (i=0,1,..., k) 1is the p-variate normal

by Krishnaiah and Rizvi, consider the set of populations-_nl,...,

control population Ty

distribution 'Np(Hi,Zi). Let emc= E}cﬁi’ (c=1,..., r; i=1,..., k), where
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3y,..., 8, are specified vectors. The population ni’ is said to be positive

if eic z_eoc + AC, c=},..., r, and negative if eic :QeOC’ c=1l,..., T,

where Ac are given positive constants. For the case of known Zi(i=0,1,...,k),

the rule ¢ proposed selects LAY iff

— — -1 -1 1/2
! - = .
(10.1) a (xi xc)/[a'(ni Zi+ n, Zo)a ] >d, c¢=1,..., T,

where X, is the sample mean vector from ™S based on ﬁni observations.

Krishnaiah (1967) investigated similar procedures when the comparison of
the multivariate normal populations with the control population is based on
linear combinations of elements of the covariance matrices, determinants of the
covariance matrices and the largest (smallest) characteristic roots.

Desu (1970) considered the selection problem where the populations are
not compared with a standard but rather with the best aﬁong them. If
d(ei, ej) is a distance measure between ei and ej and if emax= max(el,...,ek),
population ™ is said to be superior (or good) if d(emax’ ei) 5_6; and inferior

(or bad) if d(em ei) > 8*, where &%, 8* are specified constants such that

1 72

0 < 6; < 63. For the location and scale parameter cases which have been considered,

d(ei, ej) is taken to be Gi— ej and ei/ej respectively. The proposed proce-

ax’

dure R selects =, iff d(Y , Y.) < d(8*, ¢) where Y., is a real-valued
» i max’ i’ - i

statistic based on a random sample of size n from ™ whose distribution has

Gi as a scale (or location) parameter and the constant ¢ is to be chosen such

that the P*-condition is satisfied. The correct selection here is the selection

of a subset which contains no inferior population.

(c) A fixed subset size approach to the selection problem.

Mahamunulu (1967) considered a selection problem under the indifference-
zone approach with the modified goal of selecting a subset of size s which

contains at least c¢ of the t best populations where max(1,s+t+1-k)<c<min(s,t).



85

Closely related to Mahamunulu's problem of determining the common sample size
required for a given subset size s, 1is the problem investigated by Desu and
Sobel (1968). Their goal is to select the smallest possible fixed subset
size s that will contain the t best of k populations (t <s <k), based
on any given sample size from each population. The basic probability require-
ment is met under the usuél indifference-zone set-up. The aim in the modifica-
tion is to avoid the possible inclusion of all the populations in the selected
subset. The smallest fixed subset size s 1is determined as a function of the
common sample size n and the specified constants but not of the observations.
Nonparametric procedures for selecting fixed-size subsets when the popula—
tions are ranked in terms of a-quantiles have been discussed by Desu and
Sobel (1971). Therrandom subset size procedure for the case of t =1 has been
earlier studied by Rizvi and Sobel (1967) and has been described in Chapter 6.
Sobel (1969) investigated the probiem of selecting_from. k populations a
subset containing at least one of the t-best populations for given t and
k(1 <t <k) under an indifference-zone set-up. For t = 1, the problem is
related to the pfoblem of Desu and Sobel (1968). The procedures proposed by
Sobel select a sﬁbset which is either of fixed size or of random size depending

on the values of the constants specified.
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