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ABSTRACT

Admissibility for Vector-valued Loss Functions

An admissibility criterion for vector-valued loss functions is proposed and
the relationship between this concept and the classical criterion in terms of
linear combinations of the components is examined. Generalizations of some

standard admissibility theorems are given.
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1. Introduction. One of the basic concepts in the formulation of a

statistical problem in decision theoretic terms is the loss function. For

.a given state of nature and a particular action, one expresses the conse-
quences of the action in terms of this real valued function. It may be valid-
ly argued that the construction of the loss function is not within the domain
of statistics, i.e. the loss function must be'presented to the statistician
along with the other relevant aspects of the model.

In some instances, however, it is possible to derive results which are
~ valid for all loss functions in a given class. Thé uséfulness of such re-
sults is apparent in light of the fact that often the construction of the loss
function is exceédingly difficult.

For many practical proﬁlems, the loss function is a linear combination of
two or more functions which may be viewed as components of loss. For exémple,
in an estimation problem, one may consider one component to be the squared
error and another to be the cost of the observations.

For estimating the mean vector of a multivariate normal distribution with
identity covariance ﬁatrix, a standard loss function is the sum of the équared
errors for eacli component. If one Eonsiders }he estimationlof each eompoﬁent
to be a separate problem then the sample mean:-are aamissible estihates. Fow-
ever, for the composite problem, Stein (1956) has shown that thesc estimates

are inadmissiblc when the number of components is greater than two. Thus,



when components of loss:- are added, one cannot always extrapolate results from
the component proElems. |

In this paper, an aaﬁissibility criterion for evaluating decision proce-
dures in terms of the individual components of a loss vectdr is proposed.
Some relationships between this concept and the classical criterion for

appropriate linear combinations are examined.

- 2. Basic notation and definitions. We assume (X, 8) is a measurable

spéce and P = {Pm: w e R} 1is a set of probabilities with the property that
X, ﬁ,Pw) is a probability space for each w €.Q . The set‘ 8 1is called the
parameter space. Let G denote the action space and § bg the set of deci-
sion functions, An element d € § is a function froﬁ X to (@G. Equivalent-
ly, 8 could be some class of suitably defined randomized rules (see Fergu-
son' (1967) for definitions). For ary w e Q@ afid a ¢ G, we denote the

loss vector by
AE(a,w) = (£, (a,0),...,4 (a,0))"

where ﬂi(a,w) >0 for all i, and the risk vector by

r(d,u) = EL@(),0) = (7, (d,0),...,7y (d,0))"

where

r. (d,u) = szi(d(x),w), i=1,...k .

For any vector b = (bl,...,bk)' with bi >3 for all i and Zbi=1, let



L (a,0) = b'L(a,w) = J5_; b, £ (a,0)

and e

Ry, (d,0)

E L, (d(x),0) = J5_) by r,(d,u)

Definitions. (a) d é ® is -admissible (Lb) if there does not exist

d' € § such that

(2.1) _ R (d',6) <R (d,w)  for all w,
and
(2.2) | | Rb(d',w) < Rb(d,w) for some w.

() deg is admissible (£) if there does not exist d' € § such that

-
(2.3) T, (d',w) f_ri(d,w)' for all (w,i) ,
and

(2.4) ri(d',w) < ri(d,w) for some (w,i) .

(c) de®d is Bayes-l(L) for a prior T on Q if there does not exizf

d* ¢ & such that
(2.5) . B,(d') <B,(d)  forall i,
and

(2.6) : B, (d") < Bi(d) - for some i ,



where

(2.7) ~B, (@) = [ r;(d,w) dI(w)

3. Some theorems. To avoid unnecessary complications in what follows,

we assume
' ri(d,w) < o for all (w,i,d)
Theorem 1. If d is admissible (Lb) for some b, then d is admissible (£).

Proof. Suppose d is admissible (Lb) and not admissible (£). Then there exists
d' ¢ ® such that (2.3) and (2.4) hold. But since bi >0 for all i, this
impiies»that (2.1) and (2.2) hold,'i.e. d is inadmissible (Lb). [:]

Stein's (1956) work provides a counterexample to the converse of the above
thedrem. Note that the restriction Zbi =1 i;/merely a convenient normaliza-
tioﬁ. Conditions under which admissibility (Z)_impiies admissibility (Lb) can
be derived. Theorem 2 gives these conditions for the case of.two components

of loss. For aay b = (bl’bZ)’ we identify the vector by its first component,

i.e. b1 = b, b2 = 1-b. For any two decisions d and d', let

.Siw(d’d') = ri(w,d') - ri(w,d) for i =1,2 ,

t,(d,d") = s, (d,d')/(s,, (d,d") - s, (d,d")) ,

| Qo(d,d-) {w: 5,,(d:4") © s, (AN},

Qoo(d,d') = {w: slw(d’d') = szw(d,d') 0} ,

Ql(d,d') {w: slw(d,Q') < szm(d,d')i ,

2,(d,d") = {w: s, (d,d") >'szé(d,d')} ,



¢;(d,d")

max {0, sup(t,(d,d"): we 2 (d,d"))} ,

and

cz(d,d') min {1, inf(tw(d,d'): we Qz(d,d'))} .

Let A denote the following four conditions:

(1) t,(d,d")

c,(d,d") for all w e 2;(d,d") , '

(2) tw(d,d') c2(d,d') for all w € Qz(d,d') R

(3) Qo(d,d') Qoo(didf),~and

(4) one or more of the following:

(a) Ql(d:d')'= b,
(b) 2,(d,d") = 4 ,
(C)'Ci(d,d') = cz(d,d') .

Let
(cl(d,d'), cz(d,d')) if A holds,
I(d,d') =

[c,(d,d"), c,(d,d")] otherwiss.

Note that I(d,d') may consist of a single point or be degenerate. For. any

ded, I1let . -

8 0 for all (i,w)}

a=9- {dr: sim(dl,d')'

- {a': szw(d,d') -Slw(d’d') > 0 for some w} ,



and

Bd = (0,1) - U I(d,d") .

d'eﬂd

Theorem 2. If d is admissible (£) then d is admissible (Lb) if and only if

b e Bd.

Proof. First note that Lb-admissibility is defined only for 0 <b < 1. Assume
'd_ is admissible ). If b ¢ Bd then there exists a d' ¢ sd such that

b e I(d,d'") or eqqivalently,

c;(d,d") <b < c,(d,d")
with strict inequality if A holds. Now, for all w € Ql(d,d'),

t(-n_(d,d')_ <b
and thus,
lem(d,'d-) + (1-b) s, (d,d") <0 .
From the definition of siw(d,d') it follows that
bry (w,d") + (1-5)r2(m,d-) < bry (0,d) + (1-b)1,(u,d)

or equivalently, S

(3.1) Ry (w,d") <R (w,d) ,

with strict inequality for at least one w ¢ QI(d,d') unless tw(d,d') = v for



ail w e Ql(d,d'). Note that this exception includes the possibility that B
Ql(d;df) =.¢. A similai argument shows that (3.1) holds for all w € Qz(d,d')
with strict inequality for at least one such w unless. t (d,d') = b for all
w e Qz(d,d'). In addifion,'it is easy to see that (3.1) holds for all

w e Qo(d,d') with strict inequality for some w in this set unless

Qo(d,d') Qoo(d,d'). Hence, (3.1) holds for all w’c_ﬂ unless tw(d,d').= b

for all w e 9,(d,d"), t (d,d') =b for all o e 2,(d,d') and

Qo(d,d') = Qoo(d,d'). Since 0 <b <1 and ci(d,d') <b j{cz(d,d'), the
above:excepfion is equivaient to condition A. However,lif A. holds then

cl(d;d') <b <vc2(d,d') from the definition of 1I(d,d'). If, invaddition,

either ,Ql(d,d') # ¢ or Qz(d,d') # ¢ then fhere exists at least one w for
which the inequality in (3.1) is strict. Alfeiqatively, if Ql(d,d'} = Qz(d,d') = ¢
then Qo(d,d') = Q and'the equality Qo(d,d') = Qoo(d,d') cannot hold because

such d' have been excluded from ﬁd. Thus, if b £ Bd, then there exists a

d' € 8, which is better, i.e. d ié inadmiséible (Lb).

d
On the other hand, if b ¢ Bd and d is inadmissible (Lb) then there ex-

ists a rule d' ¢ 8 such that

(3.2) : Rb(w,d') f_Bb(w,d) for all w e Q@
-and
(3.3) : R, (g,d") < R (w),d) for some wy € @

For‘ w € Qd(d,d'), the inequality (3.2) is equivalent to

(3.4) i 5,,(d:4") = sZN(d,d'} <0 .



Also, by virtue of (3.3), it is not possible to have
sim(d,d') =0 for all i and ‘w .

Therefore, d' e ﬂd. Now, for w e 2,(d,d'), (3.2) implies

brl(w,d') + (I—B)rz(w,d') f_brl(w,d) + (l-b)rz(w,d)
or equivalently
!
tw(d,d ) <b.
Similarly, for w € Qz(d,d'),
b f_tw(d,d') .
Therefore,

3.5) e (@,d") £b < c)(d,d")

If the inequalities in (3.5) are strict, then‘clearly bel (d,d') which im-
plies the contraciction that b £ Bd. If condition A does nét hold, then |

the interval I(d,d') is closed and the same contradicfion results. Finally,
suppose that A holds and either b = cl(d,d'), b= cz(d,d') .or both. If

.the wo for which (3.3) holds is in ,(d,d') then the inequality in (3.4)
must be strict. However; this contradiéts part (3)'§f.condition'A. Theréfore,
wg mustfbe in either Ql(d,d') or Qz(d,d'). Suppose that b = cl(d,d').
Then, wg ¢-Ql(d,d‘) since partz(l) of cpndition A _wéuld be violated. There-
fore, wy € Qz(d,d');: But by part (4) of conditiqn A, this implies that eiuher
Ql(d,d') = ¢, cl(d,d')'é cz(d,d'), or both. The first alternafive is incom-

patible with the condition b > 0 whereas the second implies

—



; 1y =
| two(d,d )=b

which violates (3.3). A similar argument holds for the case where b = cz(d,d‘).

Therefore, b ¢ ﬁd and the theorem is proved. [:]

Example. Suppose that @ = {1,2} and # is a family of Tules indexed by a

parameter €, with 0 < e < 1/2, having the following risk functions:

rl(l,e) =1+ 82
rl(z,s) =1 - 2¢
rz(l,e) =1-c¢
r2(2,e) =1-c¢

Clearly, all rules are admissible (£). It is easy to verify that

2

P | if e > §
I(e,6) = |

[0, 1/(1+e+8)] if € < & .
Hence,
88 = [1/(1+2¢), 1) .

Thus, the rule € = 0 is admissible (Lb) for «11 be(0,1), whereas for any

other rule, there is an interval .of values of b for which it is admissible

(Ly)-

This example suggests the following coroliary:

Corollary. If for any rule d, there is a subset §'C & such that
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(a) SUPg. . g sup{tw(d,d'): w € Ql(d,d')} =1

and
cz(d,d?) = o; for all d' ¢ &' ,
or
(b) - infy, _ g, inflt (d,d"): we nztd,d')} =0
and

¢;(d,d") =1 forall d'e#d ,
then d is inadmissible (L) for all be(0,1).

Many of the standard admissibility theorems can be generalized for vector

valued loss functions. The following are some examples:

Theorem 3. If Q is finite and 1 assigns posifive probability to each point,

then any Bayes-T(£) rule is admissible (£).

Proof. Let Q = (ml,...{wn) and I = (nl,...,nn) and suppose d is Bayes-II(£)
but not admissible (£). Then there exists d' €8 such that (2.3) and (2.4)
_hold. But this clearly implies (2.5) and (2.6), a contradiction. [:]

A rule d is almost () admissible (£) if there does not exist d' eg® such

that
(3.6) ri(d',m) f_r{(d,w) for all i and w ,

and
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(3.7) _ ri(d"“‘) < ri(d:“.’)
for some i and all w in a set of positive H-probability.
Theorem 4. If d is Bayes-NI(£) then d is almost (1) admissible (AR

Proof. . If d is Bayes-I(£) and not almost (1) admissible (£) then there
exists d' € § such that (3.6) and (3.7) hold. This, however, implies the
contradiction that (2.5) and (2.6) must hold. [ _]

Two rules d and d' are equivalent if
(3.8) ri(d,m) = ri(d',m) for all i and o .

A Bgyes-n(l) rule d is essentially unique if any other rule having the same

Bayes risk vector is equivalent to d, i.e. if d' is such that

Bi(d) = Bi(d') fori=1,...,k, then d' is quivalent to d.
Theorem 5. A Bayes-N(£) rule is admissible (&) if it is essentially unique.

Proof. Suppose d is an essentially unique Bayes-N(£) rule which is inadmissible
(£). Then there exists d' ¢ & such that (2.3) and (2.4) hold. This implies
Bi(d') E.Bi(d) for all i. But since d is Bayes-Ii(£), this is equivalent to
Bi(d') = Bi(d) which jmplies (3.8) since —d is essentiglly unique. Hence, .

(2.4) cannot hold and d must be admissible (£). ]

4. Conclusions. Given the appfopriate definitions, many. additional results can
be obtained. The usefulness of‘the concept of vector-valued loss functions,
however, must bz measured in terms of its applicability. Many so-called dptimal
propertles may be reformulated in terms of admlss1b111ty (£) for a certain loss

vector. - The optimal property of the sequentlal probability ratio test is an
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example. In addition, many other statistical procedures are evaluated in terms/
of more than one loss function. In subset selection procedures one considers
the probability of correct selection and the size of thé subset, while for
confidence intervals, one is interested in the coverage probability and the
length of the interval. This paper represents an attempt at extending the struc-
ture of degision fheofy so that more problems may be meaningfully formulated within .

its framework,
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