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Abstract - Optimal designs for estimating the slope of a polynomial
regression - By V. N. Murty and W. J. Studden

This paper is divided into two parts. Part one consists of a brief
review of the general design problem, emphasizing the Kiefer and Wolfowitz
(1959) characterization of c-optimal designs and the Federov (1971) charac-
terization of L-optimal designs. In the second part we present the designs
for estimating the slope of a second and third degree polynomial at a fixed
péint of the‘éxpérimental region with minimum variance. Designs are also
‘considered for minimizing the integrated variance of the estimated slope for
second and thir& degree polynomials, where the integration is carried out
with respect to a fixed pfobability measure over the experimental region or
over an extended domain. Finally, for the second degree polynomial we present
the design that minimizes the integrated variance of the estimated regression

function.



Optimal designs for estimating

the slope of a polynomial regression

by
V. N. Murty and W. J. Studden
Penn State University, Capitol Campus

and Purdue University

§1. Introduction. The design problem under discussion is as follows. Let

' =
£ = (£, £,

on a compact set X. The points of X are referred to as the possible levels

£f,..., fh) denote an (n+l)-vector of continuous functions defined
of feasible experiments and the variable x € X is sometimes called the con-
trol variable. For each level x € X some experiment may be performed whose

outcome Y(x) is a random observation with mean value

n
(1.1) E[Y(x)] = } 0, £, (x)
_ i=0

and variance 02 independent of x. The functions fo,fl,...,fn are called
the regression functions and are known to the experimenter. The regression
coefficients or parameters eo,el,...,en and 02 are unknown. On the basis
of N uncorrelated observations we wish to estimate. some function of the
- parameters 60,61,...,6n.
An experimental design specifies a probability measure u (usually dis-
crete) on X. The associated experiment involves taking observations at the
level x proportional to u. Thus if y assigns mass PgsPys+ - oP, to
XpaXqseeerX, . and NPi =n, are integers the experimenter takes n, observa-

tions at X, . Designs with Npi not equal to an integer can in practice only

be approximated.



If the unknown parameter vector 0' = (60,61,...,9n) is estimated by

least squares then the covariance matrix of the estimates 6 is given by

~ - 2
(1.2) E(6-6)(6-0)' = -+ M '(u)

The matrix M(u) = f f(x) £'(x) du(x) 1is called the information matrix of the
X
design .
The variance of the least square estimator of the regression function at

the point x e X 'is proportional to
-1 -1,
(1.3) £rx) M) £(x) = tr M "(0) £(x) £'(x)
where tr denotes the trace of a matrix. The variance of the least square
n
estimator of a linear form (c,@) = Z ciei is proportional to
i=0

(1.4) e Mim) c=tr Ml ¢ e

" d
Let g' = (go,gl,...,gn) denote the (n+l)-vector, where g = Ix fi' The

slope of the regression function (1.1) at a point x € X is given by

n
(1.5) izo 6.g; = (6,8)

The variance of the least square estimator of (1.5) using the design u is

proportional to
(1.6) g (x) M) g(x) = tr M) g(x) g'(®)

The integrated variance with respect to a fixed probability measure o, of the
least square estimator of the regression function (1.1) is proportional to

(using design u)



(1.7) [ e vl £00 dox)

tr ML) M(0)

where M(o)

[ f(x) £'(x) do(x)
X

The integrated variance of the least square estimator of the estimated slope

of the regression function is proportional to (using design u)

(1.8) fx g'(x) M1 gx) do(x)

tr M1 W C

where C

fx g(x) g'(x) do(x)

§2. C-optimal and L-optimal designs. A design uI is said to be a c-optimal

design for estimating the linear form (c,8) if it minimizes (1.4) i.e.

c! M_l(uf)c = min ¢! M-l(u) c
u

A design u§ that minimizes (1.7) is called an L-optimal design. Studden (1971)
denotes this by Io-optimal design. Designs minimizing (1.8) also come under the
general category of L-optimal designs of Federov (1971).

For any vector c¢ +(0,0,...,0) we define the determinants Dv(C)’ where

£0(sg) +- £(s 1) £o(s 1) oo £ols)) <

fl(so) ce fl(sv—l) f1(5v+1) can fl(sn)- c
(2.1 | Dv(c) =

fn(so) vee fn(sv—l) fn(5v+1) .o fn(sn) c




and Sp»Syrces S, are (n+1) points of the experimental region on which

a design u concentrates mass, and So <5 NEPIERE < S, The sign of
Dv(c) will be denoted by dv(c); if Dv(c) = 0 the sign may be defined as
-1 ‘or +1. We denote by zv(x) the Lagrange basis functions associated with

the set of (n+l) points Sp2S12° 25, for the original regression functions

fo,fl,...,fn and are given by

£olsg) -ov £ols, 1) Eg(syup) -or £ols)) £o(0) |

£1(5g) +-- £1(s, ) £1(s,q) «or £1(s)) £,(x)

f (so) oo £ (s 1) f (Sv+1) con fn(sn) fn(x)

n n- v- n
(2.2) zv(x) =
fo(so) "';fo(sv—l) fo(sv) ce fo(sn)
fl(so) . fl(sv—l) fl(sv) ces fl(sn)
i fn(so) ces fn(Sv-l) fn(sv) fn(sn)
1 if v =3
Note that £ (s.) =
Vo3 0 if v 43

v=20,1,..., n; and j =0,1,..., n
We make use of the following theorem due to Karlin aﬁd Studden (1966) [see also
Studden 1968] which is very closely related to the results of Kiefer and Wolfowitz
(1965) in obtaining c-optimal designs.
Let R denote the class of vectors c¢ such that ¢ Dv(c) >0 for
v=20,1,..., n where ¢ is fixed at +1 or -1 for é given vector c¢ and let
S denote the class of vectors ¢ for which e(—l)va(c] <0 for v = 0,1,...,n.

The theorem referred to above says:



Theorem 2.1

If {fi}g 'is a Tchebycheff sysfém on X and there exists a linear com-
. bination of the fi's,. such that it is = 1 (linear combination is denoted
by U(x)) then

(a) For any design u, the variance of the least square estimator of the
linear form (c,®) using design u 1is always greater than or equal to
[W(c)]2 for ¢ € R and [U(c)]2 for c¢c e S, where

] .

W(c) = z a;c.; Uc) =
i=0 i

b.c.
i7i

N~

0
the ai's being the coefficients in the unique linear combination of fi's
that oscillates between -1 and +1 attaining these extreme values with
alternating signs at (n+l) points Sp2Sy2 25, called the Tchebycheff
points. " The bi's are the coefficients in the linear combination of fi's
that is =1.

(b) The variance of the least square estimator of (c,8) will be equal
to [W(c)]2 for c e R and [U(c)]2 for ¢ e S if the design u = u; concen-

trates mass at the points S,5 V= 0,1,..., n with weights

n
p, = D ()] /vgo Ip, (o) |

(c) The design ui is the only design supported on Sg €Sy +rr <S8,
for which the variances are equal to [W(c)]2 or [U(c)]z. If c eR, ui

is unique.

For obtaining the L-optimal designs we mainiy use the following lemma due
to Federov (1971) if we are interested in minimizing (1.7). Before stating
this lemma we first note that the expression tr M-l(u) M(c) is invariant

under basis change of the regression functions, i.e. if instead of the



regression functions fo, 120 fh which we assumed to be linearly independent
we take as our regression functions another set of (n+l) linearly independent
functions, which are linear combinations of these, and compute this trace we

get the same number. Thus if a design u* concentrates its mass on (n+l)

oints s_. <s,,... <s_ and we consider as our regression functions £ _(x
0 1 n _ 0 ?

ll(x),..., ln(x) given at (2.2) and call

[ 200 ' (x) du*(x)

M, (u*) X

M, (o) [ 2(x) 2'(x) do(x)
X

then

tr M1 (%) M(o) = tr M1 (u*) M, (0)

Moreover Mg(u) is a diagonal matrix with elements PgsPys--+sPy the weights

of u* on its diagonal so that

n
tr Miu*) M(o) = ki
i20

/p;

1

where

ko< T 22(x) do(x)

Federov's Lemmaf If the design u; that minimizes (1.7), for a given o,

concentrates mass On  S;,S;,...,5, then the corresponding weights are propor-
tional to vk H v=20,1,..., n,
v

To obtain designs that minimize (1.8) we first note that the matrix

C= fx £(x) g'(x) do(x)

is a positive semidefinite symmetric matrix and hence can be written as C = A A'



where A is an (n+l) square matrix. So the problem reduces to minimizing
tr M-l(u) A A' and hence we can use the following theorem of Studden (1970)

that characterizes such designs.

Theorem 2.2
A design “§ &oncentrating mass at (n+l) points Sp2S1200 2 Sy mini-
mizes (1.8) if and only if there exists a matrix B such that
(i) L' (x) B0 Bé 2(x) <1 for all x

(ii) A =FB

where #'(x) is the row vector of Lagrange basis functions, F is the matrix
with columns f'(sv) and is assumed to be non-singular, and the matrix B0 is

obtained from B by taking each non zero row of B and normalizing it so as

to make its length unity, i.e. if b, ,b..,..., b; is thé ith row of B,
i0’7il in
then the ith row of B, is given by bio/lbil, billlbil""’bin/lbil where
b, |= /b2 + b2 + + b2 The weights of u%f are proportional to the
i io * Pi17 00 T Pin g 3

lengths of the rows of B.

The following theorem of Elfving will also be needed.

Elfving Theorem

The design p minimizes c' M-l(u) ¢ if and only if there exists

€, = + 1 such that B c = z Evpvf(xv) and B8 ¢ 1is in the boundary of R.

Here u concentrates mass P, at x, V= 1,2,... and R is the convex

hull of the set ‘{:_f(k)lx e XI.

§3. Optimal designs for estimating the slope of a second and third degree

polynomial regression. From now on we take X =[-1,1] and our vector of

regression functions f'(x) is either



(3.1) frx) = (1,.x, xz)

or

(3.2) £1(x) = (1, x, X2, x0)
so that -

(3.3) g'(x) = (0, 1, 2x)

or

(3.4) g'(x) = (0, 1, 2x, 3x%)

3.1 Quadratic regression

To obtain the design ui thaP minimizes (1.4) we now take
(co,cl,cz) = (0, 1, 2x), x a fixed point in [-1,1], we use the Theorem 2.1,
after noting that (1, x, xz) is a Tchebycheff system on [-1,1] and the
unique linear combination of 1, X, x2 that oscillates between -1, and 1
is Tz(x) ='2x2- 1 which attains its maximum with alternating signs at
So = -1, $) = 0, and S, = +1. So we compute Do(c), Dl(c), and Dz(c)

which are given by

1 1 0
(3.5) D,(c) = o 1 1 =2x - 1

o 1 2x
1 1 0

Dl(c) = -1 1 1 = 4x
1 1 2x
1 1 0

Dy(c) = (-1 0 1 =2x + 1
1 0 2X

so that ¢ e R (with € =1) if 2x>1 or 2x < -1 (with € = -1).



Therefore the design u; concentrating mass at the Tchebycheff points i.e.

{xlsz(x) |= 1} is the unique design for estimating the slope of a quadratic

regression function with minimum variance with weights

2
(3.6) p, = D@/ F D () s v=0,1,2
v=0
at a point x where x *» 1/2 or x < -1/2 . From (3.5) these weights are
=1 _ L =1 R
o7 8% 7177 P37

If -1/2 < x < 1/2, we cannot apply Theorem 2.1. It can be checked that, if
-1/2 < x < 0, . the design ui concentrates mass at s0 = -1 and 2x + 1 = s1
with equal weights. A.direct appeal to Elfving's Théorem [see Karlin and
Studden (1966)] will ﬁrove.this assertion. Similarly, if 0 < x < 1/2, uI
concentrates mass at So = 2x-1 ana s1 = 1 with equal weights. The designs

obtained above are summarized in the following table.

Table 3.1
Optimal designs for estimating slope

with a quadratic regression

F—'—i——p— 4_r——' ——
Serial | Points at which Optimal design Optimal weights
No. slope is estimated | concentrates mass at

1 x e [-1, -1/2] So = 1; $) = 0; S, = 1 see (3.6)

2 X € (-1/2; O) SO = -1; 51 =2x +1 pO = pl =1/2

3 xe fo, 1/2) Sy = 2x - 1; s, =1 Py = Py = 1/2
1 -— . — 3 -

4 xe [, 1] so = "15 51 = 05 s 1 see (3.6)

To obtain the design that minimizes (1.8) when the regression is quadratic

we first note that



[ g0 Ml gx) dog) = tr M) C

X
where
C=/ gx g'(x) do(x)
X
0 0 0
=10 1 2u,
0 2u1 4u2
and
-1 _ -1
tr M "(u) C = tr Ml wWwTCT!
where
s 1]
ACED) 1/2 A
1-s 1-s
S 1
T 2(1-s) 1/2 2(1-s)
l/pO 0 0
_1 B
My"(w) = 0 1/p, 0
0 0 1/p2

10

where PgsP,sP, arve the weights that the design u concentrates at -1, s,

and 1 respectively. Thus if we denote the matrix T CT' =K

tr M) € =

which is minimized when P; is proportional to VEi .

il B~100

i=0

In our case



u . H
T (1+s)
e
2 (1_52)2
H H
kg = %‘* 11 ¢ 2 2
® Q-s)
where My = f xt do(x), i =1,2. Thus the minimum value of tr M-l(u) C
is given by
-1 2 2
(3.7) tr M (u) C = ¥ JE;
i=0
and if the value s 1is to minimize (3.7) then s

must be a solution of

kl

(3.8) P = = 0
/kS

P |
R TR

where ki = dki/ds. This equation reduces to
2 -1/2
(1-5) [111'2112"'5111] g / (5) + 45/11—;

v (148) % fupr2uy-suy h7 2 (s)

where

g(s)

s +2$(1-2u1) + (1—4u1+4u2)

and

h(s) = s7-2s(1+2u)) + (L+du +dp,)

There does not appear to be closed expression for

solution of (3.8) if g 0

. Note that s
2
Uz-x)(c

s. The value

s =0 1is a

0 is also a solution if Hy = X,

x) and |x| >1/2.

concentrates all mass at
The result for /&1 = 0 can also be analysed using Theorem 2.2. In this

case the matrix C becomes a diagonal matrix and could be written as

A AN

11



12

where
0 0 0
A = 0 1 0
0 0 2/1];
Using Theorem (2.2) with Sp = -1, Sy = 0, s, = 1
(xz-x 2 x2+x
9' (X) = ’ 1-x ’
2 2
\
-
[0 -1//1+4u2 2/172'/»/1+4u2
B0 = 0 0 -1
0 1//1+ay, 2@/ V1+4u2J
and
1 1 1
F = -1 0 1
1 0 1

one can easily check that all the conditions are satisfied and hence the optimal
design that minimizes the integrated variance of the estimated slope of a

quadratic regression with respect to an arbitrary but fixed measure o that

satisfies f x do(x) = 0 concentrates mass at Sy = -1, $; = 0, and s, =1
X .

with weights proportional to %-(1+4112)1/2 s 2/5; and %{1+4u2)1/2 respec-

~tively. If .o 1is the uniform measure i.e. do(x) = dx then the weights are

1/4, 1/2, 1/4 which was also observed by Ott and Mendenhall (1970).
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3.2 Cubic Regression:

To obtain the design ui that minimizes (1.4) we now take
2
(CO, cl) cz) = (0, 1, zx’ Sx )

where x is a fixed point in [-1,1], and use Theorem 2.1, noting that

(1, x, x2, xz) is a Tchebycheff system on [-1,1] and the unique linear com-

bination of 1, x, x2, x3 that oscillates between -1, and +1 1is

Ts(x) = 4x3 - 3x

which attains its maximum with alternating signs at Sy = -1, $; = -1/2;
S, = 1/2, and S; = 1 . Computation yields
[ 1 1 1 0o ]
: -1/2 1/2 1 1 1 2
(3.9) Do(c) = = ¢ [36x"-24x-3]
‘ 1/4 1/4 1 2x
s 18 1
[ 1 1 1 0 ]
-1 1/2 1 1 1 2
Dl(c) = =5 [9x7-3x-3]
1 1/4 1 2x
2
-1 1/8 1 3x” |
[ 1 1 1 0 ]
D2(c) =] ! -1/2 1 1 = %—[9x2+3x-3]
1 1/4 1 2x
-1 -1/8 1 3x° |
! 11 0
-1 -1/2 1/ 1 ] 2
Dz(c) = = 33-[36x +24x-3]
1 1/4  1/4 2x
| -1 -1/8 1/8 3x2)
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so that c e R if (a) x e [-1, '2;/7 ] or () xe [2'g7 , '22/7 ]

2+V/7 . .
or (¢) xe [ e 1] . Hence the design ui concentrating mass at the
Tchebycheff points i.e. {x||T3(x)| = 1} 1is the unique design for estimating

the slope of a cubic regression function with minimum variance with weights

3
(3.10) P, D (c) / ZO IDV(c)|; v =0,1,2,3
v=

at s, where g = -1, s, = -1/2, S, = 1/2 and Sg = +1 if the fixed

point x 1is in (a), (b) or (c). The optimal design'for the other cases are

given in Table 3,2. These results can be verified using Elfving's
Theorem. They were obtained by considering the cubic polynomial lying between

+1 on [-1, 1] with a maximum derivative at the point x. The x values

where the resulting polynomial touches + 1 support the optimal design.
To minimize (1.8), when the regression is cubic we present below some

computer results obtained when the measure o is of the following type.

do(x) = k- (1+0)% 1 (1-0% ! ax

The corresponding optimal design is on s, = -1, s, = -z, 5, = +z, s, = +1

0
with weights q, p, p, q respectively so that

1

2(p+q) =1 .

The results obtained for this case are presented in Table 3.3.
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Table 3.2
Optimal designs for estimating slope with a

cubic regression

Serial |Point at which Optimal design " Optimal weights
No. slope is estimated concentrates mass at
-2-V7
1 xe[—l,T 1 so=-1,s =—1/2,52=1/2,53=1 po,pl,pz,p3[see (3.10)]
-2-v7 -1-2V/7 _ y-2. 2V7+8 11-4/7
2 xel—g g ) | 5p= LS ;T st Y 77 Y275
y = x(4+V7)+(3+V7)
-1-2V7 1-2/7. - e _
3 xe[ ] ] so--l,sl-y, S,= 1 po-(1+y-2x) (y-1)/8x |
y=3x+5/7 P =1/2;p,=(2x-y+1) (1+y) /8x
1-2/7  2-V7 _ _ y+2 _ 11=4v7 2/7+8
b RO i P I 7 i v
y = x(4+/7) - (3+/7)
2-V7  -24V/7 _ _ _ _ .
5 xe[ 3 3 ] so--_l,sl--1/2,sl—1/2,53-—1 PysP1sPysP 35 [see (3.10)]
26/T -1e2/7 | ys2 11-4/7  2/7+8
N O e B I A U R 5 0 Vi T
| y = X(4+V7) - (3+/7)
-142V7  1+2/7 _ _ _ . .
7 xe[ T 9 ] So° -1, $1 Y, S,° 1 same weights as in 3.
5 ,
y = 3x- = /7
3
142/7 2447 _ _y-2 . .
8 xe (. 5 > 76 ) S = —l,sl- o Sy= Y same weights as in 2.
y = x(4+/7)+(3+/7)
9 xa[%, 1] SO = -1,sl=-1/2,52=1/2, same weights as in 1.
s_ =1
3




with a cubic regression, when do(x) = k(1+x)a_1(1—x)

Optimal design that minimizes

Table 3.3

the integrated variance of the estimated slope

aH

dx.

o z P q

0.1 0.453 0.291 0.209
0.5 0.445 0.288 0.212
1.0 0.442 0.291 0.209
1.5 0.447 0.299 0.201
2.0 0.456 0.309 0.191
2.5 0.464 0.319 0.181
3.0 0.472 0.328 0.172
4.0 0.484 0.345 0.155
5.0 0.492 0.358 0.142

16
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4, In this section we present some simple results concerning the design that

minimizes (1.7) when the regression is quadratic. Here we need search for a

design u that concentrates mass at -1, s, and 1 with weights Py» Pp»

and P, respectively. We can now use the Federov Lemma and obtain the point

s, as the root of the equation

k! k! k!
(4.1) 220320
ko kg
where
de
k) =— i=1,2,3
and
k; = jx zf(x) do (x)
2,(x) = (x-5) (x-1)/2(1+s)
(4.2) 5, = a-xD)/(-sY)
7(x) = (x+1) (x-5)/2(1-s)
ii_ _ 1 [-u4+u3(1+53+u2(lfS)-u1(1+5)+S]
KL @+9)% [ug-2ug(les)uy (L-dsss®)-u, 25 (14s) 4571 /2
'kl
2 4s 1
(4.3) 2 :
K, s @zt
l_cé i T »Lu4+u3(1-5)-u2(1+S)-u1(1-S)+S]
G 097 [n#2(-s)ugeu, (1-dses?)-25 (1-s)u,+s°1/2



s = 0 is a root of (4.1) if

2
(Hg=Hgmuy+H;)

2
(gt gmty=Hy)

which is true if Hy = Hg = 0.

closed form expression for s.

Ha¥2ugti,

In other cases it is not easy to give a

18
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