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Abstract

This is the first of a sequence of papers dealing with the
computational aspeéts of the transient behavior of queues in discrete
time.

It is shown that for a substantial class of queues of practical
interest, a wealth of numerical information méy be obtained by relatively
unsophisticated methods.

This approach should prove useful in the analysis of unstable
queues which operate over a limited time interval, but is by no means
limited to such queues. |

Mathematically the service unit is modeled in terms of a miltivariate
Markov chain, whose particular structure is used in iterative computation,
Many important queue features may then be derived froﬁ.the n-step

transition probabilities of this chain,






1. Introduction

The theory of queues, and more generally that of stochastic
models, suffer from the insufficient development of the interface
between structural-analytic results on one hand and directly applicable
numerical methods on the other hand.

The practical queue analyst tends to use of the extensive theoretical
work on service systems only those rare steady-state resulfs, which are
analytically simple. This is often done with little regard for the
mathematical assumptions underlying these results. Moréover such
results usually do not answer the real questions one is facing in the
design or the improvement of a service facility.

While simulation techniques are widely used, their implementation
requires a thorough understahding of the probability structure of the
queue as well as very substantial computing funds. In mosl instances
of simulation studies familiar to this author, the structure of the
queue was incorrectly or insufficiently used and exorbitant
computing times were reported. One recognizes that simulation is
often the only résort in studying a.complex system; however, for
those models whose structure is mathematically well understood, it is
desirable that'algorithms making use of the éxisting theory be developed.

Before we consider one such model in detail, let us discuss some‘

of the difficulties and the desiderata related to such queue algorithms.

a, The finiteness of the waitingline

In reality, unbounded queues do not exist. The unbounded queue
is strictly a mathematically convenient abstraction. By removing
one "boundary" of the gqucuelength process one obtains simpler stochastic

processes, It further becomes possible to give an elegant treatment of






the intuitive quality of stability of the queue.

In practical situations, there is either a finite waitingroom,
usually with loss of those customers who find the waiting space fullj;
or else the buildup of the queue beyond a certain limit creates utter
chaos and the object of the study is precisely the design of a
sufficiently fast service unit or a sufficiently large waitingroom
to make this a very rare event.

Throughout this paper we shall limit our attention to bounded
queues. In the numerical examples considered the largest value of the

maximum gqueue length L1 was at most one hundred.

b. Transient versus Steady-state behavior

There are very few results on the transient behavior of queues,
which are analytically explicit. Even the latter are nearly all
ili-suited fqr direct numerical analysis. An interesting discussion
of a simple transient queue and the difficulties of its computational
analysis may be found in E. L. Ieese and D. W. Boyd [1].

The steady-state probabilities of some simple queues are the
only ones available in books written for the applied worker. Their
relevance to the concrete problems is often limited; théy clearly
have no bearing whatsoever on the solution of unstable queues.
Moreover, since the limiting process by which they are obtained has
an -averaging (or.mixing) property, such results convey no information

on the fluctuations of the queuelength and the waiting times. Ignoring

such fluctuations in a design may have catastrophic results.
In recent years the study of weak convergence properties of

queueing processes and the resulting diffusion approximations have






shed a new light on service systems of which the macroscopic time~behavior

rather than the short-range fluctuations is the most important feature.
This promising_approach is mathematically fairly sophisticated and
has not yet received sufficient investigation from the viewpoint of
computation.

Our concern in this paper is in a sense with the small-scale
service system whose short range behavior is important. Therefore
the models studied here are unlikely to be well approximatéd by a
diffusion process. Nevertheless a comparison of both the direct
solution and a diffusion approximation method with regards to aécuracy

and computing time is of interest, but will not be undertaken here.

c. Continuous versus discrete parameter models

It is known that finite M|G|l and GI|M|l queues may be conveniently
studied in relation to an imbedded Markov renewal process with a finite
number of states. The transient behavior of such queues, as well of
many related ones, may be computed in principle in terms of the successive
matrix-convolution products of the transition matrix of this imbedded
process, if a queue wifh a waltingroom of size Ll ié investigated,
each such a matrix-convolution product may require as many as (Ll + l)2
evaluations of the convolution product of two functions. To perform';
this operatibn accurately is time-consuming, so that the computer imple-
mentation of this analysis is likely to result in coﬁsiderable computing
time.

In an earlier study of the single server queue in discrete time,

S. Dafermos and the author [2] argued at length for the advantages of

analyzing many queues in terms of a discrete time parameter. These






arguments will not be repeated here. From the viewpoint of numerical
analysis the most obvious advantages of a discrete time model are:

a. The ease with which one or more supplementary variables
may be introduced so as to imbed the gueueing process in

a multivariate Markov process.

b. The fact that convolution products of sequences of numbers

" may be computed wita much:. greater ease than those of

functions of a real variable may be evaluated accurately.

In most cases of practical interest one may discern an elementary

unit of time natural to the particular queue. Many gqueueing analysts

nevertheless insists on thinking of discrete models as approximations

to continuous ones. fhis insistence which may usually be treced to

the prevailing attitude in applied mathematics before the advent of

the computer, has some appeal for its mathematical elegance, particularly

where methods of analysis may be used. From a computational viewpoint,

continuous parameter models are often substantially more delicate to

analyze and this without yielding additional insightlinto the real

process which is being modeled.

d. Parametric versus general distributions

The insistence on specific parametric families of probability
distributions (such as the gamma family) in stochastic models is alsé‘
largely a holdover from the pré-computer era, Where a parametric

assumption has an important structural consequence (e.g. the memory~less

property of the negative exponential distribution) one should be very
aware of this. However in cases where the parametric assumption yields
only marginal simplifications, both the theoretical analysis and the

computational methods should ignore it altogether. As a case in point,






the MlEkll queue for k > 1 is only in some details easier to discuss

than the MlGll queue. There is therefore little point‘in a special

numerical method for the former which does not also include the latter.
In the seqdel of this discussion, we shall theréfore only stress

the structural assumptions that are needed. Such items as service time

distributions will be as general as possible.

In most specific models one may assume without loss of generality
that service tiﬁes and related random variables are bdunded lattice
random variables. This assumption, essential to ourzapproaéh, is also
the one which limits its range of applicability most. Our approach is
not well suited to queues in which both very short and very long jobs
may arrive. Different methods of numerical analysis are needed for
these. It is commonly so that a given numerical methéd is well suited
for a certain range of problems, but fails for similar problems oulside
this range. The assumptions which 1limit the applicability of the present

model are discussed in the appropriate places in the sequael.






2. The Assumptions of the Model

a. The arrivals

We consider a single server queue in discréte time with a maximum
queuelength Ll (¥). The elementary time interval is chosen as our
time wnit. We assume that the numbers of arrivals during the successive
wmit time intervals are independent, identically distributed random
variables, Furthermore B,»V = 0, l,ee., K is the probdbility that
v customers join the queue during a given unit time interval.
(po Pyt oees FD S 1). In this discussion and in the FORTRAN
program we shall insist that 1 < K< Ll' The restriction K < Ll is
not essential and is usually satisfied in practice. its removal requires
minor modifications in the analysis and in the program@-

In this discussion we assume that the P, are indepéndent of time,
but with minor obvious changes the recurrence relations are valid

also for queues in which the arrival probabilities vary with time.

b. The service times

We assume that the service times of the successive customers are
independent, identically distributed, (integer vdlued) random variables
with values in the set {1, 2,..., L2}. We denote by fv’ V=1lyeee, Lo,
the probability that a customer requires v umits of service time. Tﬁe
values Ll = 100 and L2 = 100 appear to be practical upper limits to
the computer implementation of the method suggested here.

Our assumption that every customer requires at least one wmit of

service time may easily be removed, but is satisfied in most all concrete

(¥) TFor easy reference, we are using similar, though not identical,
notation in the theoretical discussion and in our FORTRAN program.






applications. It suffices to introduce a quantity ry that a service
time is equal to zero and to modify the recurrence relations accordingly.
As pointed out below, it is also easy to modify our analysis to

include the case where the service time density depends on the time at

which the service is initiated.

c. The gueue discipline

Except in discussing the waitingtimes, the order ol sérvice is
immaterial. The waitingtimes will be discussed for the first-come,
first-served discipline.

To settle the issue of simultaneous arrivals and beginning we
assume that all arrivals in [n-l,n) are added to thé queue at time n~0O.
If a servicevstarts at time n and requires v units of time, we shall
consider it to start at time n and to end at time n+v-O.

Only as mahy arrivals as to maintain the queuelength less than or
equal to Ll are accepted. Any excessive customers are agsumed to be

permanently lost.

d. The initial conditions

We assume that at time n = O, there are io customers present.
Ifi > 1, the customer in service at time n = O requires

jo’ 1 f_jo §_L2 additional wnits of service time. We make the

convention that if io = 0, then jo = 0 and conversely.






3. The Markov Chain

We denotejby Xn the queuelength at time n and by;Yn the number
of additional units of service time required by the customer in
service at time'n. We make the convention that Xn =0 if and only if
Y, = 0.

It follows readily from our assumptions that the bivariate sequence

{(Xn,Yn), n > 0} is a Markov chain with state space'consisting ol the

and with

point (0,0) and all points (i,j), 1 = 1,..., L3 § = Iyeses Lps

initial state (10,30)..

The transition probability matrix of the Markov chain is easily
written down. We shall not do so since the recurrence relations make
judicious use of its special structure.

For fixed io and jo’ we define the conditional.prbbabilities:

(1) P (1,3) = P{X;= i, Y= 3|X = i, Y= .}

The probabilities Pn(i,j) satisfy the following recurrence relations in

n for all n > O.

(2) (a)  B,,(0,0) = [P (0,0) + B (1,1)]
;:} B
(b) B, (1,3) =, P (5,341) + ) py_, P (v,3+1)
v=1

+x; [p; B(0,0) +py P (i41,1) +

i
zlpi-v+l Pn(v’l)}
v=1

fOI‘ i = l,-'on, K and ,j = l,oo', L2"l.






i-1

(c) P L1(1,3) = o, B(,340) + ) By B(v,d+l)
v=i-K :
i -
b (o By + ) By Ba(a1))
v=i=-K+1

fOI‘ i = K+l,00., Ll" l and ,j = l,..., L - lo

>
: N . \ _h _ .
(@) B, (Lpsd) = B(T,340) + ), (1 - p) B (L= v,3+1)
v=L k=0
K v=1
G .
+rj{L(l ZJPQIg@lv&AH
v=1 k=0
fOI' ,j = l,..c, L2"' lc
(e) P ,a(1:0p) = {p; P (0,0) +p, P,(i+1,1)

2

i
* z Pivel Pn(v’l)}
=1

for i =1,.0., Ke

: i
(£) B, (L) = 1, {p, B_(i+1,1) + ) By Pu(vs1)
v=i-K+1
for i = K+l,.eu, Iy- 1o
‘ K v=-1
- N - -
(&) Bg(isb) =m L), @ Y p,) By(Ty- v1,1))
V= k=0 '

The recurrence is initialized by setting Po(io?'jo) = 1 and
Po(i,,j) = 0 for all other pairs (i,j). If the distribution of the

random variables Xo’ YO is given rather than exact values, this simply
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amounts to a different definition of the initial array Po(i,j).

We note that the expressions in curly brackets in the formulas
(2 b-g) depend on the first index only. This term c;rresponds to the
case where the instant n+l is the beginning of a new SerQice.

This simplifying feature is used in the organiéation of the

computer program. If the service time distribution depends on the

instant of initiation of a service, only the factor T in the recurrence
relations are affected.

‘The analogous, but simpler recurrence relatioﬁs for the unbounded
queue were examined analytically by Dafermos and Neutsi[2].

The recurrence relations (2) are well suited for iterative
computation. The author organized his computation so as to have at
the n~th iteraﬁion only the quantities Pn(o,o) and Pn(i,j), i=1yeee; Iy

J=21yeee, L, in memoxy.

2
The quantities P (0,0) and P (i,3), i = 1,...,,Li; 3= Lreass Ly

make up the (conditional) joint density of the qpeuelehgthgz; and the

11

residual service time Xn at time n. This joint density is not in

jtself of great practical use; however from it the distribution
(or the density) of the queuelength and the waitingtime at time n can
be easily obtained. These "derived" queue features are considered

next.






L., Derived Queue Features

a. The Queuelength Distribution

The probability that the queuelength at time n is zero, is given

by Pn(o,o). For i = 1,ees; Ly, We have:

2
(3) Pl afE= A, Y= g) - ;o P(i,3).
J':

Moments of the queuelength at time n may be obtained routinely.

b. The Waitingtime distribution

The waitingtime at time n is defined to be zero if and only if

Xn = Yn = 0, For Xn =1, Yh = j, the waitingtime equals j. For Xn >1,
Yn = j the waitingtime is the sum of j and Xn- 1 independent service

times. The waitingtime is therefore an integer valued random variable
with value between O and L1L2.

The density WTv’ V = Ose0ey L1L2 is obtained as follows. Clearly

WT = Pn(o,o). The quantities WI for 1< v < IL,L, were obtained by

evaluating the following convolution-polynomial.

Let WT(+) denote the density {WTv’ 1< v <LLy} and let R(-)
be the service time density {rj, 1< 3§ <Ly}, Finally let P (i,+) be
the density {Pn(i,j), 1<j< L2} for i = 1,4, Ly, then WT(-) is .
given by:

| (1,- 1)
(3)  WI(.) = P _(1,) + P (2,)% R(+) +euet B(By,e)* BT (0)

where R(k)(~) is the k~fold convolution of R(.) with itself.

The density WT(+) may be computed for each n by one of two procedures.

Either the convolutions R(k)(-), k=1l,e.., Ll-‘l may be computead






once and for all and only the convolutions with the arrdYs Pn(i,') need
to be computed at those time points n at which the -density of the
waitingtime is desired. This procedure results in a substantial
increase in the central memory storage required by the program.
Alternatively, the density WT(.) may be computed by a convolution

analogue of Horner's algorithm for the numerical evaluation of ordinary

polynomials. This procedure consists in the successive evaluation of

the sequences
(5) | WT(l)(') = Pn(Ll,')
ey = e (e () + B (1 kL,0),

| (T,)
for k = 2,..., L,. The sequence WT

1 (*) is the desired sequence

WT(e).

The latter procedure does not result in the use of core storage
for intermediate quantities. For purposes of comparison and as a
guard against rounding errors, both procedures were programmed and
tested on large scale examples. The Horner convolution algorithm
performed slightly better in all examples and no evidehce of rounding
errors were found. Its much smaller core requireme#ts make it the
more efficient of the two procedures.

Moments of the waitingtime at time n may be routinely computed.






5. Report on Computational Trials

A FORTRAN IV program was written by the author and tested on a
variety of caseé on the CDC 6500 at Purdue University. Even in the
largest examples no evidence of rounding errors was found, even though
all probabilities were printed to five decimal places and all computations
were performed‘in single precision.

The full output consisted, in addition to the summary of the input
data, of the. following. |

(a) the mean of the queuelength

(b) the cumulative distribution of the queuelength

(c¢) the mean waitingtinme

(@) the cumulative distribution of the waitingbime

(e) the joint density of the queuelength X and the residual
service time Yn

All these fbr all values of n up to some upper value to be specified.

Since the full output is very voluminous and contains much more
information than may be needed in the analysis of a gi#en queue,
options were written into the program which permit the deletion of the
items (c), (d) or (e) from the printed output. A further option was
created which permits the computation of the waitingtime distribution
to be performed at certain specified time points only.

No systematic study of the processing time was made. For smaller
examples the computation times were generally below 10 seconds. The
following computation times for some larger examples are given for

purposes of illustration only.

L, = 30 (max. queue length)
L, = 6 (max. duration of one service)
K= 2 (max. number of arrivals)

NNN = 250 (number of time points computed )
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In the following CP is the processing time in seconds and IL is the
number of lines of output, including the program lisfing.
a. full printed output |
CP = 215,159 LL = 19265 -
b. the queuelength and waitingtime distributionslonly.
CP = 157.860 LL = 10656

c. the queuclength distribution for all time points and the waitingtime
distribution only for time points which are multiples of

twenty-~five.

CP = 23.763 1L = 4916






6. Conclusions

By the use of only the most elementary structuial properties, we
have shown that the transient behavior of a substantial class of
single server queues may be analyzed numerically. The ﬁpproach prescented
here should prove itself to be useful in studying the build-up of
unstable queties and the fluctuations of queues at traffic lights,
highway merging ramps, service counters in public offices and retail
outlets and many others.

' This approach is well suited for many queueing processes which do
not lend themselves to diffusion approximation methods. The amount
of computing time used in typical examples also indicates a very
substantial saving over that needed to analyze similar models by
simulation methods.

Further work is currently being done to extend the applicability
of this approach to longer queues and to much longef time periods.
This extensionihowever requires the use of mathemafically more

sophisticated properties of the queueing process.
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Aggendix

This appéndix contains a listing of the FORTRAN IV program
written by the aubthor to compute Lhe timedapendnnl, Fendamran of Lhe
dipureba Lime quocies, |

A sample output for a small scale problem is also included.

This examplc analyzes a queue with 20 spaces for 20 time ?oints.

The computing time for this example was approximately 6 seconds

of which 2.2 seconds were used for compilation. The distribution

of the queuelength is printed for all time points and the distribution

of the waitingtime is computed and printed for every fourth time point.






————BHOGRAM QUEUE (INPUTSOUTPUT,» TAPES=INPUT)
c
¢ THIS PROGKAM WAS DEVELOPED BY MARCEL Fo NEUTS = DEPART=

- MENTGF STATISTICS = PURDUE UNIVERSTTY = WEST LAFAYETTE -
C INDIANA, OCTOBER 1971, |

c

"€ THIS PROGRAM CUMPUTFS“THE"TTME'DEﬁENDENT FFATURES OF A
C SINGLE SERVER DISCRETE TIME QUEUE WITH A FINITE WALITING=
C HOOM,

"t WITH THE PRESENT DIMENSION STATEMENTS A WATTINGROOM OF ~ 77
C S14F uyP TO ONE HUNDRED MAY RE STUNIED. THE DEMNSITY OF THE
C SEWVICE ViIME CAN #E CONCENTRATED ON UP TO THIRTY POINTS,
p . A _ e
C THE FuULL OUTPUT OF THIS PROGRAM INCLUDES THE FOLLOWING?
C .

”C“TT“THE“MEKNWQUEUE‘LENGTH”KT“TTME‘Ni’“””" o s I
C 2. THE DISTRIBUTION OF THE QUEUF LENGTH AT TIME N,

C 3. THF MEAN WAITINGTIME AT TIME N, _

T e THE DISTRIBUTION OF THE WAITINGTIME AT TIME N, ' ‘ o
C S, THF JOINT DENSITY OF THE QUEUE LFENGTH AND THE RESIDUAL
C SERVICE TIME AT TIME N,

e e F A e
C ALL THESE ARE COMPUTED FOR N UP To A SPECIFIED VALUE NNN,

c
€ BY USE OF THE VARTOUS OPTIONS, LISTED BELOW, SUME OF THESE
C FEATURES MAY BE DELETED FROM THE PRINTED OUTPUT.

C
""C_THE_TFEERETICKI‘ﬁEVEEﬁﬁﬁEWTmﬁr_THE”ﬁTgfﬁfTﬁmTTﬁﬁ"QUfUEm”—“"“*“""_”
WITH AN UNBOUNDFED QUEUE LENGTH MAY HE FOUND INt

# STELLA Co DAFERMOS AND MARCEL F, NEUTS™ ~
¢ A SINGLE SERVER QUEUE IN DISCRETE TIME #
# CAHIERS DU CENTRE DE RECHERCHE OPEWATIONNELLE = 1971

THE FOLLOWING IS A COMPANION PAPER TU THE PRESENT PROGHAM:
& WARCEL F» NEUTS T e S ‘ o o
THE SINGLE SERVER QUEUE IN DISCRETE TIME - NUMERICAL
ANALYSIS #

PURDUE MIﬁE6§ﬁEﬁH“§E§fE§”J_6EPTf”ﬁ?“§TATi§TTE§7""“
PURNDUE UNIVERSITY = WEST LAFAYETTE = IN = 47907

& % & &

nnnnannnnnonn

DTMENSTOR P 100y RTIOY sPPTIT0,30) o X (10H) » V(100,307
DIMENSION Z(100)sW(100),wT(3000)
CINTEGER OPT(10)

(o
C spvat THE OPT I ONS wiata
C ' o i
“C IN ORPER TO PRINT OUT THE JOINT DENSITY OF THE QUEUE LENGTH
C AND THE RESIDUAL SERVICE TIMEs SEY OPT(1)=]1 = OTHERWISE
C SET opT(1)=0

[
READ (59999) OPT (1)
c o e
"¢ 1N ORPER TU PRINT OuUT THE DISTRIBUTION OF THE WAITING=
C TIME, SET OPT(2)=1 - OTHERWISE SET OPT(2)=0
c '

READ (59999) 0PT(2)






L
C THE USER
C THE WAITINGTIME ONLY
~7C A CONSTANT NR, THIS
C NUMBER NF LINES OF QUTPUT.

19

MAY WISH TO COMPUTE AND PRINT THE DISTRIBUTION OF

AT TIME POINTS WHICH ARE A MULTIPLE OF

TO SAVE ON PROCESSING TUME AND ON THE ~
IN THIS CASE THE IDENTIFIER

C OPT(3) SHOULD BE SET EQUAL TO ONE AND THE NUMBER NR SHOULL BE.

€ GIVEN, OPT(3) AND NR

“ARE T0 BE GIVEN TN AN T1,12 FORMAT.

o
READ (59997) OPT(3)sNR
XNRaNKH
KTESTI=OPT (V)
KTESTZ=OPT (2)
KTEST3=0PT(3)
IF (KTEST3.EQ. 1) KTEST2=0
IF (KTEST3,EQ.0) KTEST4=0
C sttt T H E DAT A #Hopud
c
B TITTE THE S1ZE OF THE WAITINGROOM, (1T Is 0¥, Tl T T
C
READ (591001) L1
C L2 IS THE NUMBER OF POINTS ON WHICH THE DENSITY OF THE
€ SERVICE TIME 1S CONCENTRATED, L2 IS LT. 31
READ(591001) L2
c .
C KIS THE MAXIMUM NUMBER OF ARRIVALS PER UNTT oF TIME.,
C K SHOULD BE AT LEAST ONE AND STRICTLY LESS THAN Ll
c
—C TREAD (85,1001 K T T
C R(J) IS THE PROBABILITY THAT A SERVICE TIME LASTS FOR J

C UNITS OF TIME.

C ONE SHOULD VERIFY BEFOREHAND THAT THE

C 1S EQUAL TO ONE,

C

READ (591002) (R(J)eJ=19L2)

SUM R(1)+s,sR(L2)

C
'WTTTTCTT;TS—THEMPPUENETETTV”T?ETWUMEUETﬁﬁERS”JﬁTﬂ'IHE"DUEUE““"“'m'"“_‘
C DURING A UNIT OF TIME.

C THE INUEX J RUNS FROM ONE TN K.
e T e e e o e - e o
READ (551002) (P(J)eJ=19K)
C
—¢ PO 1S THE PROBABTLITY THAT NO CU STOMERS ARRIVE DURING A~~~

C UNIT oF TIME,.

C ONE SHOULL VERIFY BE

C IS EQUAL TO ONE.

c

READ (541003) PO

C

c 10

c Jo
TCIF

cC 10

C Jo

1S THE INITIAL QUEUE LENGTH.

IS THE INITIAL RESIDUAL SERVICE TIME.

1020, THEN J0=0 AND CONVERSELY.
SHOULD NOT EXCEED Ll
SHOULD NOT_EXCEED L2.

C

FOREHAND THAT PO + P(1) ¢ees*PK)






20

" T REAND(S5.1001) 10
READ(5+1001) JO
C
”—C“NNN_TS”THE”MKXTMUN“TINE—PUTNT"FOR‘WHICH"THE“EUEUE—““““m“““”“"”’”'“
C FEATURES ARE COMPUTED. NNN SHOULD BE AT LEAST ONE AND
C AT MOST 9999« NOTE HOWEVER THAT THE PROCESSING TIME
'_C”INU—THE"NUMBERWﬁFﬂLINESWUF”ﬁUTPUT”GRUW“PROPGRTIONITEEY'TU"'—"““”M"
C THE VALUE OF NNN.
C

READ(591004) NNN ™
IF(IO.EQQO.ANDQJO.EQ.O)GOTO 2001
PP(T0sJO) =1,
GOTO 2002
2001 PoO=1.
2002 N=0 .
___-_—_-__AXT_I éP_U e e e . - e g ——————— { ———— e i Gimeds e = - m—— e e—e J R —
Do 21 I=leK
xi=I
TTTTTTRT12A114P (1) T
X1=X1+X1#P (1)
21 CONTINUE
Do 22 J=l,L2
xJsJ
X11=X11+R(J)
TTTXpEX2+XJ*R (J)
22 CONTINUE
X1l=x1ll-2,
X11=ABS (X11)
PRINT 1014 R
PRINT 1022,51Eg1glwﬂm_w
N1=0
PRINT 1007eN1lePQs (JsP(J)eJ=19K)
PRINT 1012
PRINT TOL0y (JyR(J)9J=Trl2)
PRINT 1012
PRINT 1008+10sJd0
PRINT 1012
PRINT 1009¢NNN
PRINT l0l2 7 o

PRINT 1013¢X19X2
PRINT 1006

CC T T hwdes 01 AGNOSTICS wesken
c

IF (L1.LE.K) GOTO 2005

 JOSNE+OsOR.I0 NE,0.AND.JO.EG,0)G0OTO 2005
IF(X11+GT,,00000001) GOTO 2005
IF (KTEST3.EQe1,ANDeNR,LT,2) 6OTO 2005

- C
c
C

IF(1G.EQ.0sAND,

Lil=L1=1
L2l=al2~]
Leesbe+l
M1=L1%L.2
Kl=K+1
Do 13 1=1,L1
Y(IoL2)=OoO







TTTTTIY W(l)=1.=FO -
IF(KsEQe1)GOTO 2003
DO 20 I=2¢K
Ty EW TS D) P (LT T T e -
20 CONTINUE
¢ )
“CTAY THIS STAGE THE INPUT DATA HAVE BEEN READ INe THE
C PP=ARRAY HAS BEEN INITIALIZED AND THE INPUT DATA HAVE
C BEEN PRINTED OUT AND SUBJECTED TO SOME RUDTMENTARY
"‘t‘ﬁTiGﬁﬁSTTC*TE§T§I“THE‘NEXT“ETNE"STﬁﬁTS“THE”MATN”CGBb”—_ T
C WHICH IS REPEATED NNN TIMES,
C .
C aevad THE M AT N TLUO0 P s s T T T T T T
c

2003 N=N+1

C

TF(NJGTNNN)STOP

C THIS PORTION OF THE PROGRAM COMPUTES THE NEW PP=ARRAY.

— T PP(I,J1 15 THE PROBABTLTTY THAT AT THE TIME CONSTDERED
C THERE ARE I CUSTOMERS IN THE SYSTEM AND THE RESIDUAL

C SERVICE TIME OF TH

E CUSTOMER BEING SERVED 1S J.

—€ THIS 15 FOR I BETWEEN ONE AND L1y FOR J BETWEEN ONE AND
C L2. THE IDENTIFTER P0OO CONTAINS THE PROBABILITY THAT THE

C QUEUE IS EMPTY.

T

PRINT 1000
PRINT 1017eN

PRINT 1012
X00=P00+PP(1s1)
DO 1 I=1sK

KT =P (1) #P00+PORPP(TeT, 1)

I1=1~1
Do 3 Nu=lsl

3
4

X(I) =X (D +P(1¢1=NUI#PP(NUY I}
CONTINUE
Do 2 J=lsL2]1

Y(1+J)SPO#PP (Tyu*l)
IF(1.EQ.1)GOTO 51
DO S NV=leIl

5

Y (T, )3V (Ted) ¢P (I=NVI#PP(NV,Jely

CONTINUE

51 CONTINUE s e

1

T2 CONTINUE

CONTINUE
Do 6 I=K1l,L11

TTUTX(D =PO#PR(T L)

7

NUl=I=K
NUZ2=NU1+1
I1=1-1

DO 7 NUsNUZ2s I

XDy =X(I) «P(T+1NU) #PP(NUs1)

CONTINUE
Do 9 J=1lslL21
Y(TeJ)SPO#PP(I4.¢1)

Do & NV=NU1,I1I

Y(IoJ)=Y(1'J)*P(I-NV)*PP(NVthl)

8 CONTINUE

6§ "CONTINUE







[

“—”—"MW"YTET)EX]L]}4W(NUY5PPTET31;N0113'””"'W“—““_w'-‘"”"“w“”“m”""

6 CONTINUE
X(L1)=000
DO 10 NuU=slK

10 CONTINUE
Do 11 J=lsL21

Y(LlsJ)mPP(L1eJdel) ’ . ' o ' .

DO 12 NU=lyeK
Y(Ll’J)HY(LloJ)+W(NU)QPD(L1-NU0J01)
12 TANTINUE ' o
11 CONTINUE
PoysFO® XU

e N
C 2(1) CONTAINS FIRST THE UENSITY AND NEXT THE DISTRIBUTION
C OF THE QUEUE LENGTH AT THE TIME POINT CONSINERED.,
¢ XMN CONTErNS“THE‘ﬁEKN‘EUEUE’EEN@TH“KT”TFE‘TTME*ﬁBTNT“““’““““'“"“
C CONSIDERED.
c _
el R T T T _ :
Do 14 I=1yL1
o Z(1y=0.0 e
Do 15 J=slsL2
PP(IsJ)aY (Ioad)¢R(J)#X(])
Z(D)ELL)4PP (L)
15 CONTINUE
14 CONTINUE
Z(Ly=Z()ePOO
XMN=XMN+T =7 (1) ) IR } - T
Do 18 I=24L1
Z()=2(1)+Z(1=1) B -
TYXMN=XMN+ 1o =7 (1) T T
18 CONTINUE
IF (KTEST3.,EQ.0) GOTO 2008 .
XN=N T
U1=AMOD (XNs XNR)
IF(UI.LTQO.Q) KTEST4=1
Ir(u1.GT.o.qi“K?€§TFEﬁ“”“””““““””“““”““'““’”“’"‘ i T
IF (KTEST4,,EQel) GOTO 2010
IF (KTEST4,EQ.0) GOTO 2009 e

2008 CONTINUE

THIS PORTION OF THE PROGRAM COMPUTES THE DISTRIBUTION OF

YAE VIRTUAL WAITINGTIME AY TIME N, THE ACGORITHM IS AN

ANALOGUE OF HORNER#S METHOD FOR THE EVALUATION OF ORDI=-

OOOOOO

NARY POLYNOMIALSs BUT ADAPTED HERE T0 CONVOLUTION PRODUCTS,

IF(KTEST2.EQ«Q0) GOTO 2006
2010 CONTINUE

Do 32 J=l,L2
WT (J)=PP(L1yJ)
32 CONTINUE

DO 33 J=L22,M]
WT(J)=000
33 CONTINVE
"7 MNI=]
MN3=2
MN4=L. 2 o
Do 34 JkslyL1l







Jxlell=Jdx
MNZ2aMN4
MNGuMNZ+L.2

L

MNB=MN&s2
DO 35 J=24MNG
JRz=MNS=J
WT(JR)=000
MN6eMAXO0 (19 JR=MNZ)
MN7nMINO(L2.JP-l)

BE 35 NiymMNA sMNT

WT ( IH) =W T (L) 48 (NU) ®WT (JR=N)
CHNT THUE

WY (1) =s0.0

on 37 JJ=1sl.2

WT (JJ) =WT (JJ) +PP (JXT9JJ)

~37 CoNTINUE
34 CONTINUE

WT(1)=P00+WT (1)

TMNS2.=P00=WT (1)
DO 36 J=z=2:M1
WT() =WT(J) eWT (U=1)

TIMNZZMN+ Lo =W T (D)

C THE PRINT STATEMENTS FOR THE REQUIRED OUTPUT,

c

36 CONTINUE
2006 CONTINUE

2009 PRINT TOT6)NoXMN

PRINT 1012
__ PRINT 1018eN
TPRINT 1012

PRINT 10119Nlo POO0s (L1oZ(T)sI=1lyl])

PRINT 1012

IF (KTESTZ2.E0+ 0. ANDSKTEST4, EQ.0) GOTO 2007

PRINT 1021 sNsZMN
PRINT 1012

TPRINT 10209NeN1, P00 TJywT (JysJ=TeMl)

2007 CONTINUE

IF (KTEST1.EQ.0) 60TO 2004 . .

TPRINT Tol2

PRINT 1019sN
PRINT 1015.P00
PRINT 1012

DO 17 I=lyll

PRINT lOOSoIo(PP(IyJ)'J=19L?)Vﬂ__

T7T1T CONTINUE
2004 GO TO 2003

e

2005 PRINT 998

C THE FORMAT'STATEMENTS.

c

997 FORMAT(T1912) S -
998 FORMAT (# ATTENTIONS THERE ARE ERRORS 1IN THE INPUT#,

o2 DATA, PLEASE CHECK, #)

- 999 FORMAT(I1)

1000 FORMAT (#1#)
1001 FORMAT(I3)

1002 FORMAT (3F 7. 8)

<o







(A

7771003 FORMAT (FT,.5)
1004 FORMAT(I4)
1005 FORMAT(3X9I3s10FTels(6X910F744))
1006 FORMAT (/7)Y ' T
1007 FORMAT(# THE DENSITY OF THE NUMBER OF ARRIVALS PER#,
82 UNIT OF TIME2,//(2Xs10(144FReS)))
T 1008 FORMAT1# THE INITTAL QUEUE LENGTH IS 29139/ THEZ
#g INITIAL RESIDUAL SERVICE TIME IS #,.I)
1609 FORMAT(# THE WUMBER OF TIME POINTS COMPUTED IS#,
T ey e e R e
1010 FORMAT (# THE DENSITY OF THE SERVICE TIMES#,//2X9
4(10(149F8,5)))
TTY0TY FORMAT (3Xel0(14,FB,5))
1012 FORMAT (/)
1013 FORMAT (2Xy#THE MEAN NRe OF ARRIVALS PER UNIT-TIME:#,
‘*“'“_’??TUIE?7&““TﬁE”N€IN“SE§VTCE”TTME&i)FTU;KT”'"“““"‘”'”“"““""“""“_‘“
1014 FORMAT (#1%4////# THE TRANSIENT BEHAVIOR OF A #,
- _ﬁ_;#nISCRETE TIME QUEUE WITH A FINITE WAITINGROOM#,
/7)
1015 FORMAT(# THE QUEUE IS EMPTY WITH PROBABILITY#s
#FQ,5)
TTT1016 FORMAT(# AT TIME N =%, Th+# THE MEAN QUEUE LENGTH#,
o2 EQUALS#yF10.4)
1017 FORMAT(# THE GUEUE CHARACTERISTICS AT TIME N = #»
*14)
1018 FORMAT(# THE DISTRIBUTION OF THE QUEUE LENGTH #,
#2AT7 TIME N = #¢14/)

‘“'TﬁT@“FBﬁﬁﬁTT¥”“?ﬁ?“ﬂbTNT“ﬁ€N§TTY‘GF”TEE”ﬁUEUE“EENGTﬁ”i?m”""“"””""“"‘
#2AND THE RESIDUAL SERVICE TIME AT TIME N =#,14/)
1020 FORMAT(# THE DISTRIBUTION OF THE WAITINGTIME AT #y

TTRETIME N B Fo 140 /7 (3Xs10(T49F8,5)))
1021 FORMAT(# THE MEAN WAITINGTIME AT TIME N =#.14y
#zg [S#IF12,4) '

1022 FORMAT (# THE UPPER LIMIT OF THE NUMBER OF ARRIVALS#, T
#¢ PER UNIT OF TIME I1S#,13s/# THE UPPER LIMIT OF THE#,
#2 NUMBER OF UNITS OF SERVICE=-TIME PER CUSTUMER IS#,
T T %13s/#  TYHE UPPER LIMIT T THE NUMBER OF CUSTOMERS#, T
#2 IN THE SYSTEM IS#,14/)
END it — —_ — — S —— —— ————
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THE SINGLE SERVER QUEUE IN DISCRETE TIME —
NUMERICAL ANALYSIS 1 '

Varcel F. Neuts*

Purdue University

ABSTRACT

This is the first of a sequence of papers dealing with the computational aspects of the transient
behavior of queues in discrete time. '

It is shown that for a substantial class of queues of practical interest, a wealth of numerical in-
formation may be obtained by relatively unsophisticated methods.

This approach should prove useful in the analysis of unstable queues which operate over a limited
time interval, but is by no means limited to such queues.

Mathematically the service unit is modeled in terms of a multivariate Markov chain, whose par-
ticular structure is used in iterative computation. Many important queue features may then be derived
from the n-step transition probabilities of this chain.

1. INTRODUCTION

The theory of queues, and more generally that of stochastic models, suffer from the insufficient
development of the interface between structural-analytic results on one hand and directly applicable
numerical methods on the other hand.

The practical queue analyst tends to use of the extensive theoretical work on service systems only
those rare steady-state results which are analytically simple. This is often done with little regard for the
mathematical assumptions underlying these results. Moreover such results commonly do not answer
the real questions one is facing in the design of a service facility, and in rare cases the measures of
performance based on steady-state assumptions may actually be misleading. An example of a stable
queue with rare arrivals of large groups of customers in which this is the case, is discussed in the third
paper in this sequence.

While simulation techniques are widely used, their implementation requires a thorough understand-
ing of the probability structure of the queue as well as very substantial computing funds. In many
instances of simulation studies familiar to this author, the structure of the queue was incorrectly or
insufficiently used and exorbitant computing times were reported. One recognizes that simulation is
often the only resort in studying a complex system. However, for those models whose structure is
mathematically well understood, it is desirable that algorithrhs making use of the existing theory be
developed. It is obviously intellectually pleasant to be able to use one’s understanding of the mathe-
matical structure to obtain numerical results by efficient algorithms. There are however also many
practical reasons for investigating exact, rather than Monte Carlo algorithms, wherever possible.
Since this is not the place to discuss these at length, we mention the study of relatively rare events
as an example. To obtain a good estimate of the probability that a very stable queue exceeds a certain
bound may require long simulation runs, because the simulated paths will only rarely exhibit the event

* This research was supported by the National Science Foundation, grant GP 28650.
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N

of interest. Queues which are nearly critical are also difficult to simulate, because of the substantial
stochastic variability of the queue length and the related quantities. For these again, exact algorithms
prove to be a useful alternative method of analysis.

The time involved in the preparation and testing of an exact algorithm is probably much greater
than in a corresponding simulation study. This aspect must be taken into account in comparisons of
the cost and the effectiveness of both approaches. For this reason only models of wide potential ap-
plicability should initially be studied by means of exact algorithms. There is furthermore a return
which has particular value to the theoretical queue analyst. An algorithm is similar to a theorem in
that its applicability is usually far greater than the original problem from which it sprung. As is the case
for theorems, algorithms are also interesting because of their limitations. When the latter are recognized,
they usually stimulate many questions related to approximations, algorithmic efficiency or structural
theorems. ‘

The purpose of this paper and the subsequent ones is to investigate a useful single server queue
in detail. Before we consider the model specifically, we first discuss some difficulties and desiderata
related to the numerical analysis of a much wider class of queueing problems.

a. The Finiteness of the Waiting Line

In reality, unbounded queues do not exist. The unbounded queue is strictly a mathematically
convenient abstraction. By removing one “boundary” of the queue length process one obtains simpler
stochastic processes. It further becomes possible to give an elegant treatment of the intuitive quality
of stability of the queue.

In practical situations, there is either a finite waiting room, usually with loss of those customers who
find the waiting space full, or else the buildup of the queue beyond a certain limit creates utter chaos
and the object of the study is precisely the design of a sufficiently fast service unit or a sufficiently
large waiting room to make this a very rare event.

Throughout this paper we shall limit our attention to bounded queues. In the numerical examples
considered the largest value of the maximum queue length L, was, at most, 100.

b. Transient versus Steady-state Behavior

There are very few results on the transient behavior of queues, which are_analytically explicit.
Even the latter are nearly all ill-suited for direct numerical analysis. An interesting discussion of a
simple transient queue and the difficulties of its computational analysis may be found in Leese and
Boyd [1].

The steady-state probabilities of some simple queues are the only ones available in books written
for the applied worker. Their relevance to the concrete problems is often limited; they clearly have
no bearing whatsoever on the solution of unstable queues. Moreover, since the limiting process by which
they are obtained has an averaging (or mixing) property, such results convey no information on the
fluctuations of the queue length and the waiting times. Ignoring such fluctuations in a design may
have catastrophic results.

In recent years the study of weak convergence properties of queueing processes and the resulting
diffusion approximations have shed a new light on service systems of which the macroscopic time-
behavior rather than the short-range fluctuations is the most important feature. This promising ap-
proach is mathematically fairly sophisticated and has not yet undergone sufficient investigation from
the viewpoint of computation.
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Our concern in this paper. is, in a sense, with the small-scale service system whose short-range
behavior is important. Therefore the models studied here are unlikely to be well approximated by a
diffusion process. Nevertheless a comparison of both the direct solution and a diffusion approximation
method with regards to accuracy and computing time is of interest, but will not be undertaken here.

c. Continuous versus Discrete Parameter Models

It is known that finite M | G | 1 and GI | M | 1 queues may be conveniently studied in relation to an
imbedded Markov renewal process with a finite number of states. The transient behavior of such
queues, as well as many related ones, may be computed in principle in terms of the successive matrix-
convolution products of the transition matrix of this imbedded process. If a queue with a waiting room
of size L, is investigated, each such a matrix-convolution product may require as many as (L,+1)2
evaluations of the convolution product of two functions. To perform this operation accurately is time-
consuming, so that the computer implementation of this analysis is likely to result in considerable
computing time.

In an earlier study of the single server queue in discrete time, Dafermos and Neuts [2] argued at
length for the advantages of analyzing many queues in terms of a discrete time parameter. These
arguments will not be repeated here. From the viewpoint of numerical analysis the most obvious ad-
vantages of a discrete time model are:

a. The ease with which one or more supplementary variables may be introduced so as to imbed the
queueing process in a multivariate Markov process.

b. The fact that convolution products of sequences of numbers may be computed with much
greater ease than those of functions of a continuous real variable may be evaluated accurately.

In most cases of practical interest one may discern an elementary unit of time natural to the
particular queue. Many queueing analysts nevertheless insists on thinking of discrete models as
approximations to continuous ones. This insistence, which may usually be traced to the prevailing
attitude in applied mathematics before the advent of the computer, has some appeal for its mathematical
elegance particularly where methods of analysis may be used. From a computational viewpoint, con-
tinuous parameter models are often substantially more delicate to analyze and this without yielding
additional insight into the real process which is being modeled.

d. Parametric versus General Distributions

The insistence on specific parametric families of probability distributions (such as the gamma
family) in stochastic models is also largely a holdover from the pre-computer era. Where a parametric
assumption has an important structural consequence (e.g., the memory-less property of the negative
exponential distribution) one should be very aware of this. However, in cases where the. parametric
assumption yields only marginal simplifications, both the theoretical analysis and the computational
methods should ignore it altogether. As a case in point, the M|Ex|l queue for k£ > 1 is only in some
details easier to discuss than the M|G|1 queue. There is therefore little point in a special numerical
method for the former which does not also include the latter.

In the sequel of this discussion, we shall therefore only stress the structural assumptions that are
needed. Such items as service time distributions will be as general as possible.

In most specific models one may assume without loss of generality that service times and related
random variables are bounded lattice random variables. This assumption, essential to our approach,
is also the one which limits its range of applicability most. Our approach is not well suited to queues
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in which both very short and very long jobs may arrive. Different methods of numerical analysis are
needed for these. It is commonly so that a given numerical method is well suited for a certain range of
problems, but fails for similar problems outside this range. The assumptions which limit the appli-
cability of the present model are discussed in the appropriate places in the sequel.

2. THE ASSUMPTIONS OF THE MODEL
a. The Arrivals

We consider a single server queue in discrete time with a maximum queuelength L;. The elemen-
tary time interval is chosen as our time unit. We assume that the numbers of arrivals during the suc-
cessive unit time intervals are independent, identically distributed random variables. Furthermore p.,
v=0,1, . . ., K, is the probability that v customers join the queue during a given unit time interval. (po
+ p1+. . .4+ pr=1). In this discussion, and in the related FORTRAN program, we shall insist that
1 < K < L,. The restriction K < L, is not essential and is usually satisfied in practice. Its removal
requires minor modifications in the analysis and in the program.

We further assume that the p, are independent of time, but with minor obvious changes the recur-
rence relations are valid also for queues in which the arrival probabilities vary with time.

b. The Service Times

We assume that the service times of the successive customers are independent, identically dis-
tributed (integer-valued), random variables with values in the set {1, 2, . . ., L,}. We denote by r,,
v=1,. . ., L,, the probability that a customer requires v units of service time. The values L, = 100
and L= 100 appear to be practical upper limits to the computer implementation of the method sug-
gested here.

Our assumption that every customer requires at least one unit of service time may easily be
removed, but is satisfied in most all concrete applications. It suffices to introduce a quantity ro that a
service time is equal to zero and to modify the recurrence relations accordingly.

As pointed out below, it is also easy to modify our analysis to include the case where the service
time density depends on the time at which the service is initiated.

c. The Queue Discipline

Except in discussing the waiting times, the order of service is immaterial. The waiting times will
be discussed for the first-come, first-served discipline.

To settle the issue of simultaneous arrivals and beginnings of services, we assume that all arrivals
in [n—1, n) are added to the queue at time n — 0. If a service starts at time n and requires » units of
time, we shall consider it to start at time n and to end at time n+ v —0.

Only as many arrivals as to maintain the queue length less than or equal to L, are accepted. Any
excessive customers are assumed to be permanently lost. )

d. The Initial Conditions

We assume that at time n = 0, there are iy customers present. 0 < iq < L,. If i¢ = 1, the customer
in service at time n = 0 requires jo, 1 < jo < L, additional units of service time. We make the convention
that if io= 0, then jo,=0, /and conversely. '

3. THE MARKOV CHAIN
We denote by X, the queue length at time n and by Y, the number of additional units of service
time required by the customer in service at time n. We make the convention that X, = 0 if and only if

Yn=0.

Lo
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’

It follows readily from our assumptions that the bivariate sequence { (X, Y»), n = 0} is a Markov

chain with state space consisting of the point (0, 0) and all points (i, j), i=1,. . ., Ly;j=1,. . ., L,

and with initial state (io, j). _
The transition probability matrix of the Markov chain is easily written down. We shall not do so

since the recurrence relations make judicious use of its special structure.
For fixed io and j,, we define the conditional probabilities

(1) Pu(i, j)=P{Xn=1i, Yn=j| Xo=io, Yo=jo}.

The probabilities P,(i, j) satisfy the following recurrence relations in n for all n = 0:

@)@ Prs1(0,0)=po[Px(0, 0) +Py(1, 1)],
(b)  Pasi(i, j) =poPa(i,j+1) + '—Zl PiPr(v, j+1) +r; {prn(O, 0) +poPa(i+1,1)

i .

+'2 Pi—u+1Pn(V, 1)},
v=1

o Ly—1.

Ei: Pi-vs1Pa(v, 1)},

for i=1, .. ., K and j=1, . .
{poPn(i+1, 1)+
v=i—K+1

© PaciGo ) =poPulisj+t D+ S piosPulw, j+1) +ry
v=t—K
fori=K+1, .. .,Ly—landj=1,. .., L,—1.
K v—1
@ PunilLiy )=PulLs, j+ D)+ 3 (1— S p;,-) Pu(Li—v,j+1)
v=1 Y k=0

v—1
=S p) Patta=v+1, 1)}
k=0

+r{ (1

v=1

forj=1, ..., L,—1.
(e) Pn+‘1(i, L2)=TL2{PiPn(O, 0) +P0Pn(i+1, 1)+ 2 Pi—v+xPn(V, 1)}s
v=1

. K.

fori=1, .

L

v={—K+1

® PrsliuL) =, [poPali+ 1 D+ S piosriPa(v, 1)

fori=K+1, .. .,L,—1.
K v—1

(& Pn+1(L1,L2)=I'L={ 2 <1—2 pk) Po(Li—v+1, 1)} .
v=1 k=0
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The recurrence is initialized by setting Po(io, jo) = 1 and Po(i, j) = 0 for all other pairs (i, j). If
the distribution of the random variables Xo, Yo is given rather than exact values, this simply amounts
to a different definition of the initial array Po(i, ).

We note that the expressions in curly brackets in the formulas (2 b— g) depend on the first index
only. This term corresponds to the case where the instant n + 1 is the beginning of a new service.

This simplifying feature is used in the organization of the computer program. If the service time
distribution depends on the instant of initiation of a service, only the factor r;in the recurrence relations
are affected. )

The analogous, but simpler recurrence relations for the unbounded queue were examined ana:
lytically by Dafermos and Neuts [2].

The recurrence relations (2) are well suited for iterative computation. The author organized his
computation so as to have at the nth iteration only the quantities Px(0, 0) and Px(i,j),i=1,..., Ly;
j=1,...,Lzin memory.

The quantities Pu(0, 0) and Pa(i, ), i=1, ..., Li;j=1, .. ., L, make up the (conditional) joint
density of the queue length X, and the residual service time Y, at time n. This joint density is not, in
itself, of great practical use; however from it the distribution (or the density) of the queue length and the
waiting time at time n can be easily obtained. These “derived” queue features are considered next.

4. DERIVED QUEUE FEATURES
a. The Queue Length Distribution

The probability that the queue length at time n is zero, is given by P.(0, 0). Fori=1,. . ., L,
we have

La
3) PXn=i|Xo=1i0Y=jo} =7 Pa(i,)).

j=1
" Lower order moments of the queue length at time n may be obtained routinely.

b. The Waiting Time Distribution

The waiting time at time n is defined to be zero if, and only if X,=Y,=0. For X,=1, Y.=j, the
waiting time equals j. For X5 > 1,Y, = j the waiting time is the sum of j and X, — 1 independent service
times. The waiting time is therefore an integer-valued random variable with value between 0 and L,L,.

The density WT,, v=0, . . ., LiL; is obtained as follows. Clearly WTo= P.(0, 0). The quantities
WT,forl < v < L;L, were obtained by evaluating the following convolution-polynomial.

Let WT(-) denote the density {W'T,, 1 <v =< LiL;} and let R(-) be the service time density
{rj, 1 <j < L,}. Finally let Pa(i, -) be the density {Pa(i,j), 1 <js L} fori=1,. .., L, then
WT() is given by '

(4‘) ) WT(-)=Pn(l,')+Pn(2,.)*R(-)+. . '+Pn(Ll, 0)*R(Ll—1)(.)’

where R®)(-) is the k-fold convolution of R(-) with itself.

The density WT(-) may be computed for each n by one of two procedures. Either the convolutions
R®(), k=1, ..., Ly—1 may be computed once and for all and only the convolutions with the
arrays Pn(i, -) need to be computed at those time points n at which the density of the waiting time is
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desired. This procedure results in a substantial increase in the central memory storage required
by the program.
Alternatively, the density T (*) may be computed by a convolution analogue of Horner’s algorithm

for the numerical evaluation of ordinary polynomials. This procedure consists in the successive evalua-
tion of the sequences

) WTO() = Pu(Ls, ),
WT0() = WT6=-D (IR () +Palla—k+1,),

for k=1, ..., L;. The sequence WT{V(-) is the desired sequence wT(-).

The latter procedure does not result in the use of core storage for intermediate quantities. For
purposes of comparison and as a guard against rounding errors, both procedhres were programmed and
tested on large scale examples. The Horner convolution algorithm performed slightly better in all
examples and no evidence of rounding errors were found. Its much smaller core requirements make it
the more efficient of the two procedures.

5. REPORT ON COMPUTATIONAL TRIALS

A FORTRAN 1V program was written by the author and tested on a variety of cases on the CDC
6500 at Purdue University. Even in the largest examples no evidence of rounding errors was found,
even though all probabilities were printed to five decimal places and all computations were performed
in single precision. _

The full output consisted, in addition to the summary of the input data, of the following:

(a) the mean of the queue length,

(b) the cumulative distribution of the queue length,

(c) the mean waiting time,

(d) the cumulative distribution of the waiting time,

(e) the joint density of the queue length X, and the residual service time Ya
All these for all values of n up to some upper value to be specified.

Since the full output is very voluminous and contains much more information than may be needed
in the analysis of a given queue, options were written into the program which permit the deletion of the
items (c), (d), or (e) from the printed output. A further option was created which permits the computa-
tion of the waiting time distribution to be performed at certain specified time points only.

No systematic study of the processing time was made. For smaller examples the computation
times were generally below 10 seconds. The following computation times for some larger examples
are given for purposes of illustration only. :

L,=30 (max. queue length)
L:=6 (max. duration of one service)
K=2 (max. number of arrivals)

NNN =250 (number of time points computed)

In the following CP is the processing time in seconds and LL is the number of lines of output, including
the program listing.
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a. full printed output

CP=215.159 LL=19265

b. the queue length and waiting time distributions only.
CP=157.860 LL=10656

c. the queue length distribution for all time points and the waiting time distribuiion only for time
points which are multiples of 25.

CP=23.763 LL=4916

The processing time for a large scale iteration of the type needed here can be substantially de-
creased by writing a program in an assembly language, rather than in FORTRAN. A reduction by 50
or 60 percent can realistically be expected.

For large problems, the computation of the waiting time distribution is by far the most time con-
suming part of the algorithm. For very stable queues, we recommend neglecting the higher order terms
in the convolution polynomial (4). These terms contribute very little, except to the extreme upper tail
of the distribution, but add very considerably to the processing time. For queues with a very rapid build-
up, some savings may be accomplished by neglecting lower order terms in (4), but this is less significant.
For queues which are near-critical, the waiting time algorithm ceases to be practical for queues with
L; > 200, because of the large numbers of operations involved. The problem of finding good numerical
approximations to the distribution of the waiting time in this case is challenging and needs further
investigation.

6. CONCLUSIONS

By the use of only the most elementary structural properties, we have shown that the transient
behavior of a substantial class of single server queues may be analyzed numerically. The approach
presented here should prove itself to be useful in studying the build-up of unstable queues and the
fluctuations of queues at traffic lights, highway merging ramps, service counters in public offices
and retail outlets and many others.

This approach is well suited for many queueing processes which do not lend themselves to diffusion
approximation methods. The amount of computing time used in typical examples also indicates a very
substantial saving over that needed to analyze similar models by simulation methods.

Further work is currently being done to extend the applicability of this approach to longer queues
and to much longer time periods. This extension, however, requires the use of mathematically more
sophisticated properties of the queueing process. ' )

A version of this paper, containing a program listing and a specific numerical example, is available
as a technical report. It may be obtained from the author upon request, by writing to Professor Marcel
F. Neuts, Department of Statistics, Purdue University, West Lafayette, IN. 47907.
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