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What follows is a discussion of relevant papers which'heve been significant
in bringing the jeckknife technique to its present status. It enjoys the posi-
tion of being an almost universally applicable tool in aiding a researcher to
obtain approximate tests or confidence intervals for parameters of interest.
However to understand its petentialvpitfalls, it is important to understand the
development of some of the theory behind it. This development-is far'ffom‘com-

plete as of this date.

1. Introductien. Let X,,...,X; be ihdependent identically distributed (iid)
random variables (vectors), and iet the real-valued parameter 6 be associated

with their di;tribution. Group the N observations into n greups of k
observations'eaeh N = nk. Let 80
groups of observations and let 81 41 be the estimate of © based on 60 after

be some estimate of © based on all n

deletion of the ith group of observations (delete x(i-l)k .1 xik)'- Then let

- A

ei =n - (n-1) en 1 is= l’f'f’n ,
(1.1) l . 8 = n-l Z’;-l 81 »
ss NG Il I CHI) L

The jeckknife estimate of 6 based on Sn is ,8, and was first introduced
- by QuenoQille {1949] in the special case n = 2, end,éubsequently discussed in
Quenouille [1956]. The jackknife estimate of 0 'posseSses’the'interestiné
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property that if 6, is biased of order 1/N, then 8 reduces the bias to

order l/N . That is, if



E GO =0+ a/kn e b/Gm)? o ...,
(1.2) . E(8) =n(e + a/kn+ b/Gkm)? s ...
~(a-1) (0 + a/k(@-1) + b/(k(m-1))% + ...)
=g - b/k? n(n-1) + ... .

It is possiblé to employ the jackknife to reduce bias of order 1/N2, 1/N3

, ztc.

A set of excellent references for the jackknife to reduce bias is Mantel [1967],

Schucany [1971], Schucany; Gray, and Owen [1971], Adans, Gray, and Watkins [1971],

and fhe nonograrh by Gray and Schucany [1971]. |
It is also tempting to consider 61""’6n as approximately indgggndent

identically distributed random variables (they are exch#ngeable random. variables

for each n, however the marginals typically depend on n). Then one might con-

sider

(1.3) : | t=v/n (5-9)/3.
: 0

to be approximately t distributed with n-1 degrees of freedom. This observa-
tion is due to Tukey [1958]. It is this last suggestion that we propose to

analyze in detail.

2. Approxinite_tests and confidence intervals. Alndst simultaneously, two
rigorous justifications of Tukey's conjecture appearedfiﬁ the literature. These

were the situation where the original estimate 83 is a maximum likelihood



estimate (MLE) (Brillinger [1964]), and 6

is a transformation of a senple

mean (Miller [1964]) ‘Brillinger showed that if xl,...,xN are 1id from a
distribution for which the MLE satisfies the standard regularity conditions

for asynptotic normality, then (1.3) has asymptotically (as N * ) a t distribution
with n-1 degrees of freedom. What this probably means in practice is that

unless N is large, only a small number of degrees of freedom can be obtained

for the asylptotic distribution of (1.3). .
Fryer [1970] claims to have overcome the difficulty that n renain finite

as. N + », and also claims to have extended Brillinger's results to the
multiparameter case. Unfortunately, these results have not yet appeared in
- published form. These results (as well as those to oe subsequentiy discnssedj,
open up a question regarding the relative sizes of n and k if N is iarge.
At present, the only solution seems to be that n should be large enough to
.yield adequate degrees of freedom for the t-statistic, but not too large to cause
excessive colputing time. E
Brillinger's result can be extended to the'case of non-identically distri-

buted random variables. As long as the MLE based on X xN has an

Xyseoes
- asymptotic normal distribution (when nornalized), the jackknife will prodnCe;the'
desired result in (1.3). For N = nk, k +> @ and_'n' finite, Brillinger's proof
is adequete. It is unclear whether.Pryer's claims would cover this case.

As an interesting example, consider the bio-assay problem considered 1n . J‘__'iii
iBerkson [1955]. That is the model is that one observes Yl,...,YN 1ndependent
Yi having a Bernoulli distribution with parameter depending on a continuous

predictor veriate X (usuelly a dose level),

-(a + .sxi) )-1

PO p,(l ‘e , di=1,...N.



Let us assume one is interested in a confidence interval for B based on its
MLE. Then if &.é denotes the MLE's of a,B8, they may obtained by

maximizing

L(X,, Y

1 xz, Yé;...; XN, Y

1’
-(a + sxi) . 1-Y,

= “N [ - 1 Y! e ' :
i=1 ('f"'TfF?T?'Ei;T) ( (o + BX) |

l+e l+e

This is equivalent to finding a,8 to minimize
L'(xl, Yl; xz, Yé;...; XN, Y,

| -(a + BX,). |
=0, mase Mea-v) e .

This is a relatively easy task given any good non-linear m1ninizat1on computer

program. Most computers seem to have these available as standard packages
-0 a1

n-1 |
.,xik’-i =1,...,n, and repeat (1.1). Then as long as B» is

Thus, let N = nk, o, = E, denote the MLE of B8 after deleting

*a-1ke1,.
asymptotically normal, and n remains finite as k -+ ©, one obtains (1.3).
To see this in a special case, a Monte Carlo simulation was performed on the

CDC 6500 computer at Purdue University.
The model considered was the fblloiing:

-, -(a+8X; .)
P(X;5) .= (1 ‘e 1 ) » i=1,...,5, j=1,...,20,

and one observes 'Yij’ independent Bernoulli random variables giveq by this



model. Five levels of X were taken, namely, xij = -4, xzj = -2,

Xs;4

only the parameter values (a =0, 8 =0), (a =0, 8 = .10) and (a =0, B = .25)

=0, x4j -2, xsj =4,j=1,...,20. Finally, due to time constraints,

vwere simulated.‘ Each of these three sets was simlated 1000 times. Thus, for
each of the three sets, 1000 x 100 = 100,000 Bernoulli trials were simulated.
Finally, if the data are presented in the tableau,

Y ces Y1,20

1 iz
Ya Y2 Y520
. . . ]
Y Y. Y
51 's2 5,20

a 5 x 20 matrix results. The data were then grouped into

z

z 2

1 2y Iy Ig.

wherq each Zi is a 5 x 4 wmatrix. Thus in (1.1), n=5(N= 100, k = 20),

and first Zl

Thus to test

" is deleted, then Zz,..., and finally zs.
Ho: 8 = 0

‘HA: B#0



using (1 1) and (1.3), on)'rejects Ho at the a = .10 level if

| /§'e/s | > 2.132. Note that a was also considered unknown, and no trans-

fbrlation of 8 was used. The results were (recall a = 0 for all three TUuns)

l

’ .

e,

B= 0 10 .25

.

Empirical - .095 ¢

.286 .823
Power Function :

,‘. e

Thus, of the 1000 simulations when 8 = 0, the actual number of rejections was
95, and sxnilarly for theiother two. This appears to be quite good.

In addition,,fbr the three values of B8, 90% cbnfidence'intervals were
obtained. What follows is the empirical percent of intervals that coveredpthe

true B. | .

B = 0 - .10 .25
Empirical .905 .907 - .915
Probability of ‘
Coverage

The total amount of computer time used was just under 20 minutes, or 1200 seconds.
Thus to obtain the 3000 tests (and confidence intervals), an average of .4 seconds
was used on each one. To obtain only one test and confidence interval took just
'under 2 seconds. This would of course Be insignificant.

Miller considered the case where 6 was a "nice" function of the sample
mean X(nice here means one with a bounded second derivative in a neighborhood
of ¢). Such problems -ight arise in situations such as the aresine transforma-

tion of a binomial propnrtion, or the square root of a Poisson mean. Miller

| also gives exalples of the result in (1.3) not holding. In fact,
8:, 51....,0 can have a joint normal distribution, and the asynptotit t - dis-

tribution for (1.3) may not necessarily hold.
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In a subsequené paper, Miller [1968] extended his Successful result to the
potentially more useful case in which 90 is the sample variance, or the log
of the sample variance. lThe motivation is to obtain a good competitor to the
usual x2 test (or conf?dence interval) if the xl, XN are normal, and
to obtain a- robust procedure if the data are no* normal One only needs the
mathematical nicety of ftnite fburth moments for the data, and the result holds.

The 1dea is as foll&ws, let u = E(xi), = Var (X;), i =1,...,N,

-1, 2 1N 2
‘Zj-l xi: s = (N'l) Ij'l (xj = —) »

(2.1)

ég = log sz .

Then foilow the steps outlined‘in (1.1). Presumably these calculations will

be done on a coubuter; especially if n is noderately'large. Here (and elsewhere
to follow) this is a relatively easy programming task for anyone with a minimal
capability of writing a computer program. Now a two-sidea (1-a) x 100%

2

asymptotic confidence interval for 6 = log 0“ is obtained from

(2.2) L=6-1¢ 5_8 +

a/2;n-1 “/ /2 n-1 “/

where tu/Z“ﬁ-l is the upper a/2 point of a t distribution with n-1 degrees
» _ .
of freedom. Hence a (l-a) x 100% level asylptotic coﬁfidence interval for

2 .
o is

(2.3) o ' e <o <e



If one is interested in testing

. 2 2

Ho. 0" = oo
L2, .2

HA' o” # 9% >

H0 is rejected‘if'the interval in (2.3) does not contain °§'- An analogous
procedure holds for one-sided confidence intervals or tests.

The jackknife technique was also applied by Miller to obtain tests and
confidence intervals Ain the two sample case. Miller felt that equal sample
sizes were necessary, but this restriction was later shown to be unnecessary :

" (see Layard [1971] and Hall [1971] mentioned below). For moderate sample sizes,
‘Monte Carlo results for several distributions are given which indicate that the
jackknife technique is a valid competitor to the F- test if the data are normal;
Moreover, unlike the F-test, the jackknife gives robust significance levels if
the data are not nornal (as they undoubtedly will be in practice).

In Miller [1964], one of the situations in which (1.3) did not have an
asymptotic t distribution was the following. Let x ..,xN be uniform
on [0,6], and eg = max (xl.....xN). A slightly different version of the jack-
knife was shown by Robson and Whitlock [1964] to behave satisfactorily.

An ingenious extension of Robson and.Hhitlock's.useiof the jackknife was |
done by Schucany [1971], and Schucany, Gray, and Owen‘[197l]. ‘They considered

two estimators of the parameter 60, each of which is biased such that

ugavnu%n-e-bﬂmnﬁo,krhz.



b, (n,6)
Letting R = 5115—35—5 they define an unbiased estimate of 6 by
N 2 »"

-t -Rt,
0= iR If as in (lfl), \
0 -1lyn
ty=0,t,=n" ] .6 ,,R= (-1)/n ,

then 8 as definéd by Schucany is the usual jackknife.
" However, his form of the estimator is much more genefal. For example, if
i . ~0 .
xl,...,xn are upifbrn (0,80), and if en = max(xl,...,xn) and tl,t2 as
above, with R = n/(n+l), then Schucany's estimate (which agrees with Robson

and Whitlock) is © = 2K, - X, .. where X gy 15 the ith onder statistic.

6 1is of course unbiased.

Schucany, Gray, and Owen also comment that the asymptotic t distribution
results of Miller and Arvesen hold for their modified form of the jackkﬁifé
estimator.

Dempster [1966] proposes‘another modification of the jackknife for problems
dealing with canonical correlation coefficients. Iﬁstedd of eliminating
observations, Dempster advocates elimination of single degrees of freedom of
the sample covariance matrix. Asymptotically, thesé two methods should be
equivalent,balthough this has not been shown. 7

Brillinger [1966] proposes a general class of estimates to which the
jackknife may be:applied to obtain an estimate of the standard error 6f an
estimate. ﬂnfoftunately n must remain finite as _N + o, and use of the
t distribﬁtion is not obtained.

Mosgeiler and Tukey [1968] give several examples where they would propose
Usg of the jackknife method to obtain tests or confidence intervals. An in-

teresting use of the method is proposed in discriminant analysis, discriminating
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between Haniltoh and Madison as authors of the Federalist papers.
In Arvesen [1969] is found a clags of statistics to which the jackknife may
be profitably applied to obtain asymptotic tests or confidence intervals. If o

is estimated by ég, and -ég

is based on a U-statistic, or a function of
several U-statistics, then the asymptotic t-distribution of (1.3) is valid. For
an earlier paper exploiting another relation between the jackknife and
U-statistics, see Maﬂtél [1967]. The best reference to U-statistics remains
Hoeffdiﬁg's original paper (Hoeffding [1948]).

One of the most striking discoveries that an applied statistician soon.
makes is the nice statistical behavior of the mean. One reason why the central
limit conjecture was believed and used as a theorem long before the Lindeberg-
Lévy proofs is that means from reasonably homogeneous data do behave like normai
variates: they tend to have symnetric distributions; and confidence bounds
computed from t and normal tables are both tight and believable.

There are many problems, however, that iﬁvolve‘éarameters other than the
mean. For instance, (1) in drug screening it is often desirable to derive con-
jectures about thg tails of a distribution from relatively small samples, (2)
attempts to fit data to entire distributions usually involve knowledge of the
first few central moments, and (3) regression problems rapidly get‘}nto higher
mixed moments and the shape of conditional distributions whenever one attempts
to fit real lifb-data. It would be nice to have the_céntral limit theorem and
resultant robust estimates of the uncertainty working for the statistician in
these more cdgplicated probiens. With certain caveats about error in very small
samples, the jackknife offers just such a tool. |

Hoeffding [1949] extended the central limit theory to a large class of

statistics, but his U-statistics remained primarily a theoretical tool, because

it is quite difficult to derive usable estimates of the variance of a U-statistic



from the sample. In fact, it is usually possible to calculate the theoretical

|

[

2 11
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variance of a U-statistic]only vhen one knows at least the term of the under-
lying distribution. This}difficulty was first overcome by Sen [1960].

Arvesen, by éxtending Miller's work on functions of the mean to functions
of U-statistics, has simply produced a kind of "studentization" of Hoeffding's
extension of the central limit theorems. It now becomes possible to use the
“jackknife to estimate the variance of a U-statistic or function of U-statistics
from the data, and the t tables now become a useful set of probability bounds

for constructing believable confidence intervals.

Arvesen was primarily interested in applying these results to the problem

(2.4) Yij’""ai"'ei:Vi'ln-':nvj'l:'-'-’k ’

the {ai} independent N¢o, oi), the {eij} independent 7(0, oi), test

] . a2/l
(2.5) | HO' ] LA 5_60 vs.
,HA: e > 60 .

It is well-known that the standard F-test for (2.5) is non-robust against non-
normality, especially of the random effect terms. Even the significance levels
are incorrect unless 6o " 0.

Letting -

ot e Ty X0 Y DY)

Mse = I3 Dy (Y, )%/mee1)

-

denote the usual hean squares, eg = MSA/MSE, one can follow (1.1). Each inter-

action, the k observatidns assoclated with a main randon efféct are eliminated.
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Also, note that

k (Y -Y )/2,

_ -1
MSA = ('2‘) o
1.

)
01<02

2
-Y ) /(k'l) »
j %. o

MSE = (}) 1 2“1 I r,,
and hence they are U-statistics.

In Arvesen and Schmitz [1970], it was shown by Monte Cérlo techniques
that one would prefer to jackknifé 5: = log (MSA/MSE), éspeci#ily with moderate
sized samples. Again this variance stabilizing trahsformation (in the case
of normality), has the advantage of symmetrizing the distribution. Since it is
possible to deal with functions of Ufstatistics, thé intraclass correlation coeffi-
cient, p = o:/(o: + o:) is also treated. |

Finally, in Arvesen and Schmitz, the following problem is (.eated.  Consider
5, vk {_l + Iy n-1), S, v#(,, n(k-1)) independently where #(J, a)
denotes the Wishart distribution with expectatioh é;z and a degrees-of freedom.
Then if .Zl’bzz_ are bivariate positive semidefinite and positive definite

covariance matrices respectively, one may be interested in the between group

correlation coefficient

1,
1712 :
b= s where

(@I,

(zl)ij' denotes the element in the ith row and jth coluﬁm of Zl. Let
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(5,-55)1,

- . This is
. 1/2
[(51-5,)1; (5;-85),,]

~ useful to geneticists as a genetic correlation coefficient between traits.
Results of Brown [1969] 1llustrate that the standard tanh -1 transformation of -
Fisher is not always satisfactory with this estimate (assum1ng normality). Un-
fortunately, the appropriate transformation has not been found.

Results given by Arvesen and Schmitz show that the jackknife confidence in-
tervals for P as defined above (when using Fisher‘s‘tanh'lrtransfonmation)b
may be drastically different than those given by the standard prbcedure of -
quoting the_éstimate and its estimated standard error (where the estimated .
staﬁdard error assumes normality).

Another possible application of>the results of Arvesen [1969] is to obtain
a confidence interval interval for the correlation coefficient of a bivariate
sample (without the assumption of normality). The standard confidence in-
terval for p is based on work of F. N. David [1938] (also reported in
Anderson [1958], Ch. 42). It is not robust against nonnormality. Let

, m .
(Yi') ,i=1,...,N have mean (ux) , covariance matrix
. s Y ‘

2 .
Oy  POyTy | .
(one again needs the mathematical nicety of finite fourth moments) .

POyOy Oy

Let



14
2.7) 9: = 1:anh"1 r,
where r is the sample correlation coefficient. Then if as in (2.2), (2;3)

L=8-(t/2n1 'sa//i, U=8+t

(1-a) x 100% confidence interval for p is given by

s.//n , where N =nk, a
0

(2.8) tanh L < p < tanh U .

Layard [1971] and Hall [1971], in separate papers have shown how the jack-
knife may be profitably used in testing homogeneity of variances of P uni-

variate populations. The standard Bartlett test is shown to behave quite poorly

when applied‘to nonnormal data. Let xil""’xin be independent with
X. -}, i
cumulative distribution function F( 10 1), finite fourth moments, F,
, i
¥ir 95 unknown, i =1,...,p. If one wants to test
' o 2 2
(2.9) o | HO: Oy =0y = .o =0,

a test based on the jackknife is proposed. Let

2 -1 oM v .2
5; = (3-1) Inm1 Kin X3 )7 s

- -1 oM
.20y lpey Xip o

2 . -1 — 2
i) = DT Ly Oy - Ky
- -1e
Xigjy = 0= Loys %,

' - 2 2
uij n log $; - (ni-l) log si(j) .
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" Then as min (n,) +.w, if Hy is true,

1<i<p
P on @ T )1 ,
(2.10) :1. 1ni i. .._ 2. £ , x:_l/(P41) ,
- La zjﬂ (U5-U; )7/ (N*-p) |
| n.
where . =nly.d

i. "M Ljan Vij 0

n,
(N*)'l P i U

u.. i=1 4j=1 Y5 -

N* =.ZP=1 ni

o
the appropriate critical point of a x2 distribution with p-1 degrees of

Hence, one rejects H, in (2.9) if the statistic in (2.10) is larger than

freedom (normalizing by the p-1 factor). Extensive Monte Carlo results indicate

favorable results with moderate sample sizes.

~ One frequently encounters the situation where counts are taken of a relative-
ly rare (or highly‘probable) event in the presence of differing levels of some
suspected causative agent. For instance, a major element of controversy in
public policy involves the use of suspected or proven carcinogens or mutagen;
in the environmeﬁt. One view holds that there is a dose-response relationship
involved and that one can calculate minimum acceptable ievels. Another view is
that there exists a quantal relationship and one molecule of the material is as
dangefous as #_kilogram. On a less cataclysmal level, table (1) shows the re-
sults of complete 'cures" using a drug against three organisms. The agent was
known to=k111‘organisn A and was suspected of being effective against organism

B. It was not thought to be useful against organism C. Three doses were availa-

ble to the investigators, equally spaced on a logarithmic scale. The dose
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chosen for a given patient was based upon the investigator's clinical evaluation
of the seriousness of the disease and the capacity of the patient to handle treat-

ment. Ex post facto, the question arose whether there might not be a dose-

response curve involved and that more heroic doses could be expected to affect
organism C. The jackknife was used on the numerator of the least squares slope
estimator of the original 0,1 variable against dose. That is, we jackknifed the

estimator

(2.11) B =10-NE-D, v, =014, - 1log dose.

This analysis was used to conclude that there mightvbe a dose response relation-
ship against organism A, but the cure rate using the three doses now available
was so high thaf it did not warrant the potential problems involved in trying
higher levels against this organism. It was also decided that t“e evidence was
sufficiently sirong against there being a dose response relationship in the case éf_
organism C, and further investigation of this drug in such cases would not be
pursued. There was a clear dose response with respect to organism B. However,
there already exist treatments superior to this one for oiganism B, and this line
of investigation was dropped.

Since there were only three doses involved and the responsé variables
were dichotomous, there are only six possible values that the pseudo-values can
take on. Thgse are displayed in table (1) along with.the results of the jack-
knife. o

The behavior of this particular use of the jackknife was investigated in
Salsburg [1971]. Under the null hypothesis of no difference in response, exact
probability‘{evels were computed for the 't statistic" that results from the

jackknife for three doses, equally separated, equal numbers of observations at
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each dose, with the number of observg}ions per dose running from 5 to 20. Compu-
tations were made for underlying probabilities of response of 0.90, 0.95, 0.99.
The results indicate that the one-sided t test based on the jackknife is a
conservative test of alpha level. -That is, if the table of t statistic proba-
bilities are used to compute rejection regions, the true probability of rejec-
tion will be less than or equal to the nominal alpha. However, the test approxi-
mates its trﬁe alpha level at 20 observations per dose and at an underlying
probability of 0.90. Monte Carlo studies on several different alternate
hypotheses indi;ate that the test has low power (as might be expected from its
conservative size). ’

Except for the earlier discussion of the bio-assay.problem in conjunction
with the extension of Brillinger;s result for MLE's, we have restricted atten-
tion to the identically distributed case. Again working with U-statistics (or
functions of U-statistics), Arvesen and Layard [1971]'wére able to obtain procedufes
based on the jackknife when the observations are not,neéessarily identically
distributed.

‘The procedure was applied to the test (2.5) in the model of (2.4) when the
groups were unbalanced, that is for i =1,...,n, j = 1,..,,ki, n, > 2 for all

i. Spjétvoll [1967] has shown that in this case (with the assumption of normali-

ty), that an optimal test of (2.5) is given by the following.'
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Let
n o e o 2.m K - 2.-1
R PO B G S0 R O KD N C A A )
k. _
T _.-1lc¢1i
where Yi. = ki j=1 Yij,‘and

o -1,-1 tn -1y
LN OARR HONAS p I R HOMIE DD A

n ok

K= ljaa ks o

and then one rejects Ho at the a-level if

‘ -1
-‘(K-n) (n-1) " T>F K-n, n-1 ° where

a,

v de-

denotes the upper o point of an F distribution with v )

4 VY, - | v

~ grees of freedom. Spjgtvoll explains that this test is optimal for "distant"
alternatives. For '"close" alternatives, a more complicated test statistic arises.
Without the normality assumption, Spjgtvoll's test is not robust.

The use of the jackknife is possible if one defines

8: = log'((l(--.n)(n-l)'1 T), and the
jackknife procedure as in (1.1). Monte Carlo results are given which indicate
that this jackkﬁife procedure is a good cohpetitor fo-Spj¢tvoll's procedure even
when the data are-querate and normality is present. |

Two recentbpapers open up entire new areas to which the jackknife may be
applied with success. Tﬁey'deal with multivariate problems (Layardb[1972]),

and stochastic processes (Gray, Watkins, and Adams [1972]). We treat them in
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that order. Consider X,,...,X, np("l’ Zl), Yl"f"YNz “’np("Zf 22),

1
and test

(2.13) Hy: I; =1L, -

Layard shows that standard tests based on normal theory are not robust as to
significance level when the ‘{Xi} and {Yj} are nonnormal (as they must be
in the real world).

To illustrate the use of the jackknife to test H. in (2.13), let

0}
N, =N, =N, and in the grouping N = nk, k = 1. Let

T = Z;LI (xl'i) (xi'-x-)' )
(2.14)

U= Z§=1 (Yi'v) (Yi'-Y—)' ’

and T, U, denote the entries in the &th row and mth columns,
i - .
2,m = 1,2. Let

| a1, T
g(T) = (log T;), log T,,, tanh™" (——=—))' ,

T T22

with g(U) defined similarly. Then if ég(T) = g(T), 6,(T), 8(T) as in

'(1.1) (except here we are dealing with vectors), and

s,

B - 1 . N -~ -~ ~ ~
= (N-1) ‘a1 (8:(T) - 8(T)) (0.(T) - 6(T))' ,
8(T) X1-1 i B i :

with similar expressions based on en(u). Then Layard shows that if H0 “in

(2.13) is true,
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2

(2.15)  N@m - o) (2«82 )t em - ey e 42,
o) (V) |

Hence one rejects H0 if this test statistic is largef than the appropriatec
critical value of a x§ 'distributipn (in general the appropriate statistic
is a x:(p+l)/2)° 1f N1 #-Nz, the procedure is readily extendéa;"

Another promising extension of the jackknife is found in Gray, Watkins, -and
Adahs [1972]. This study appears to have been motivated by earliei woik of
~ Gaver and Hoel [1970]. In this latter paper, the authors were céncernéd with
estimation of the reliability function associated with a Poisson process. That
ig, if N(t) isla Poisson procesé with parametef A -on [0,T], esfimate '
£0) = ¢™X, x > 0. A standard estimate (the MLE) is to estimate £(A) by
e, ) = E%Il. Let [0O,T] be partitioned into n intervals of equalfleﬁgth,

Oﬂtn<t1<t2<...<tn=T.

Let 6 =6 (0,T) =¥l= x.

N . N(ti) - N(ti-l) R
8; = 6(t, ., t.) = = A,
i Ji=1? i -4, 1
~i n : 1 2 .
en'B‘ﬁe-ﬁei » i=1,...,n.

Then a jackknife estimate of 6, based on 6, is suggested and is defined to be

~

“AX) 2 pe™8X _ (@zly yn
J ("% = ne - 59 Zi=1 e

~1
-8,x

As the partition becomes finer, or more precisely, as n + o |
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2.16) I (e =X (1N T -1 - 1 ).

This estimatot was then studied with respect to its robustness in case of de-
partures from the Poisson assumption. |
Gray, Hatkiﬁs, and Adams extend to above results to arbitrary piecewise
continuous stochastic processes. In addition, the original estimate must be of
the form, for‘ t, t2 € [O,T] ,
I (t) - I (t))

0 (t;.t5) = t, - 1§ '

where

2

if {G(t) ] t_ [0,T]} is the original stochastic process,

{IG(t) | t [O,T]} is a stochastic process determined by the original stochastic
process, and almost every realization is piecewise continuous. Unfortunately, an
important example, to be discussed in section 3, does not satisfy these restric-

tions.

3. Some possible extensions. Basically, we have seen two types of situations

to which the jsckknife seems to be a useful tool in obtaining approximate tests
and confidenss intervals. One of these situations was where the distribution
theory associated with typical estimates is difficuli or perhaps impossible to
obtain. This Sifuation was exemplified by the MLE 7of the slope coefficient in
the logistic bio-assay model, and in the situation proposed by Salsburg [1971].
The other situation was one in which the usual techniques (which assume normality)
" behave in a non-robust fashion when normality is not present. This situation

was illustratsd by examples dealing with variances, variance components, and
covariance matrices. At present, there seem to be far too few examples where

the jackknife procedure was successfully applied in a situation where distribution
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theory is difficult or impossible - that is in the fofmér case. Some examples
of these will now briefly be discussed.

The thedry of classifying a multivariate observétion into one of two
mu1t1var1ate normal populat1ons is well worked out when the population means afe
known and the populat1on covariance matrices are known and equal (see
Anderson [1958], Ch. 6). In fact, it is possible to obtain error ;ates.for
misclassifying.observations. Unfortunately the population parameters are raréiy

known, and must be estimated from some preliminary sample. If

Xy " e, Do

x2i ﬁ:np(uz, Z) ’ i=sl,...,N all indepgndent

one quantity of interest is the population Mahalanobis distance

~

a = (upoup) T hpoug) . The MIE of @ is Gu-up)' DT (v, wp)

1N
where u, = N [ X,

A

-1
2 Zi-l Zi ’

p-p [0y = M) Kygoig) '+ Oy - ) Oy = 1))
i=1 N

I

The distribution theory for a isbvery coﬁplicated. A related problem is
found in Sitgreaves [1952]. |
Now, following Brillinger (or Fryer's extension to a function of several

MLE's), it is possible to follow (1.1) and obtain a confidence interval for a.
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~

Actually, in practice one might prefer to take 6n = log (;). Of course, o is
also a function based on U-statistics. The lower bound on the confidence interval
would be of interest in obtaining probabilities of misclassification. Actually,
this idea goes back go Mosteller and Tukey [1968], although not quite in this
form. |

Mosteller and Tukey describe the jackknife as having as general use as the
Boy Scout's trusty tool after-which.it was named. This generality makes the
jackknife particularly handy in the early creative part of data analysis or when
conjecturing hypdtheses from a preliminary set of information. In such situa-
tions, one usu;lly'starts with a large class of models which might, a priori,
apply to the problem at hand. If there is some parameter associated with this
class for which a consistent estimator exists which is a sufficiently smooth
function of U-statistics or for which a computable maximum likelihood estimator
exists, then the jackknife can be used to produce confidence bounds on this para-
meter or a rejection region that will enable the investigator to restrict his
attention to a sub-class of the models. |

For instance, in the development of drugs, a new compound might be created
.which appears, in animal trials, to produce its toxic éffects by some unanticipated_
mode of a;tion. Dose-response curves are straight lineé developed by regressing
some function of the response variable (such as the arc-sine of a proportion)
on some other fuhction of the dose (Such as the logarithm.) But, the choice of
transformations can be made arbitrarily from a wide‘fange of such functions, and
a test which enables the investigator to reject linéérity inyfg&or of convexity
(or concavity), such as described below, is a useful toql for reducing the class

of transformations under consideration.
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The jackknife has been applied to the early phases of data analysis in
several problems arising in the drug industry. Some examples and empirical re-

sults are described below.

Testing for Sjmmeiry

Oné is frequently tempted to apply a paired t test to paired before-after
observafions, justifying the use of the t; distribution with the vague staté;
ment that the difference between two identically distributed random variables
is symmetric and that Efron [1969] indicates that the t is robust under symmetry.
Under a null hypbthesis of no difference between observations, the paired differéﬁ-
ces are, in fact, differencés 6f pairs of identically distributed random Qériables;f
But, what if the null hypothesis is wrong? How good are the resulting confidenceb
bounds? One §ay of checking on the assumption of symmetry is t. examine the
sample third central mbment - a notoriously variable variate. Table (2)g§hows
some results of applying the jackknife to the third central moment of before-after 
data taken from ciinical trials of new drugs. As a compa;ison for the jackknifed =~
t test; the sample third central moment has been divided by a samplé estimate of
its sfaﬁdard error (based upon the assumption of normality) which uses the first
si; sample central moments. Although all three of these measures have been
shown not to have normal distributions, the normalized third central moment fre-
quently agrees with the jackknifed t (especially when one cannot reject the
hypothegis of symetry). This suggests a similar degree of robustness for both
methods‘of estimation when the data is symmetric and diQergence when it is not.
Theoretical considerations also suggest that the jackknifed t may be the more

robust for non-symnetrié distributions.
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'Small Sample Performance of Jackknifed Third Central Moment on

.Before Treatment-After Treatment Differences

26

—3 ] Normalized _
X;-X) Jackknifed | 3rd Central | Jackknifed
N ) -3ﬁ—-—- Estimates | Moment "t" Statistic
13 15.10 18.76 0.60 0.89
Psychoneurotic Anxiety 9 -2.11 -2.86 -0.44 -0.93
Scores 13 23.17 28.78 0.92 1.48
15 3.53 4.26 0.067 0.44
13 -28.55 -35.46 -1.00 -1.80
13 -8.05 -10.00 -1.12 -1.35
9 -4.85 -2.86 -0.44 -0.93
‘ 9 0.021 "0.014 0.65 0.14
Fasting Blood Sugar 9 0.016 0.0006 1.03 0.169
' 9 0.0001 0.0002 | 0.403 0.644
9 -0.238 -0.033 -1.07 -1.28
9 -0.0001 |  -0.0002 | -0.23 -0.44
9 0.00 0.0001 0.46 0.90
Systolic Blood Pressures ~24 -107.g -13:.0 -0.0001 ~0.0002
24 -9x10 -10 -6.41 -9.88
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Testing Dose ReSponse - Linear versus Concave (Convex)

Thornby and Rao [1969] have proposed a class of non-parametric estimators
and tests that involve the conve*ity of a regression. - Heuristically, the
: procedﬁre divides the independent variable's range into several regions.
Thornby has formalized a specific test that uses three regions, and so we will
illustrate withvthree regions in figure (1).

For a typiéal point in region I (xi in the figufe), we compute the slope
of the line to a typical point in region II (xj in the figure) -- call it
B -- and tﬁe slope of the line to a typical pqint in region III

12
(X, in the figure) -- call it 313. Then, define

h(Xg, X5 X)) = -1 if By, < By

+1 if B.,. > B

12 13

0 otherwise.

With a little clevel juggling of indices to identify the kernel, it can be
shown that thq average of the h(.,.,.) is a linegr function of a U-statistic,
and that its éxpectation is O if the regression is linear.

Mopte Cario studies have been run by one of the authors in an attempt to
understand the effects of jackknifing this estimator. Two kinds of errérs_were

imposed on a linear regression of the form
ysx .

The first error was normal with mean O, variance 1; the second error,

a mixture of normals, N (0, 1) with p = 0.8 and N (0, 10) with p - 0.2.
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FIGURE (1) - THORNBY - RAO TEST

OF LINEARITY
| | .
Y-AXIS REGION I | REGION 11 "REGION 11
| | ‘ ’ X

X Typical xj |

| l " X-AXIS
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Equal groups of observations uore:generated at x =5, 10, lS.r The concatenation
of a Monte Carlo generation and the jackknife used excessive amounts of computer
time (at ld observations per group, ; Monte Carlo study of 200 sample runs took
44 minutes on a PDP-10), and so the investigation was limited to 200 runs per 
trial.

‘Initial iesults on 10 observations per group indicétéd that the distribution
of the‘gesulting 't' statistics were essentially the same for both types ofw?andom
error. (A Slirinoﬁ test comparing the two distributions produced an alpha.ievel
of 0.75.) For this reason, the bulk of the investigation was done for the first
type of error [N (0,1)] only. Tables 3 and 4 display the results for 2 observa-
tions per group, 3 per group, and 5 and 10 per group. At 2 and 3 observation§ per
group, the resulting 't' statistics had discrete distributions with a small :
number of possible values. The resulting frequency counts for each of these
pos;ible values are shown in table 3. Theoretically, fhe distribution-Should
have been symmetric and the results appeared to corroborate this, so the observed‘
frequency counts were 'folded' to produce more stable boint probability estimates,
which are also displayed., Note that at n, = 3 there is a positive probability of
infinite value. This occurs when all pseudo variates are equal and the denominator
of the 't’ statistic is zero. Note also that the tail probabilities are close to
what one might expect from the t distribution. However, 'improbéble'.tail
values are‘unusually large. |

Table 4 shdﬁs the results for n, = 5 and n, = 10. Here, the number of
possible values (for a 't' statistic which is still discrete) was m.ch too lérge
to disﬁiny, lhd_so counts are shown of percentile cells taken from the tabled
values 6f the ippropriate t statistics. Chi squﬁr?d goodness of fit tests
were then run to compare the results to the predicted counts for the 12 cells

~displayed, lnd these are also shown. At n = 10, the fit is quite good,



Estimated Discrete Distribution, Small Sdnple Sizes

Table (3)

Thornby-Rao Test Jackknifed

30

n, =2, ]n =6

n =3, Jn =9

Discrete "t"
values

-1.7x10
-1.643
-0.885
-0.775
-0.701
-0.245
-0.149
0.000
0.149
10.245
0.701
0.775
0.88S
1.643
1.7x10

Counts
N=200

22
12
26
13
25

19

21

21

folded
prob. estimate

0.0325
0.0250
0.0225
0.1075

10.0525
0.1175
0.0800
0.1250

'~ 0.0800
0.1175
0.0525
0.1075
0.0225
0.0250

' 0.0325

Discrete ''t"

values

-2.143
-1.250
-0.968
-0.581
-0.530
-0.433
-0.194
-0.177
-0.153
0.153
0.177
0.194
0.433
0.530

0.581

0.968
1.250

2.143

Counts
N=200

16
14

16

13

17

21

11

21
15

10

folded
‘prob. estimate

.0150
.0450
.0275
.0775
.0875
.0150
.0675
.0225
.0475
.0950
.0950
.0475
.0225
.0675
.0150
.0875
.0775

.. .0275
.0450
.0150




. Table (4)
' Thornby-Rao Test Jackknifed Medium Sized Sample Properties

Goodness of Fit to Tabled t Distribution (200 Trials per Model)

t Statistic Frequency Counts

Tabled -
Percentiles n; =5, In; =15 | n, =10, Jn, = 30

[0, .05] 13 | 9

(.05, .10] 9 11

(.10, .20]) 24 21

(.20  .30) 26 27

(.30 .40) 16 » | 20

(.40  .50] 25 | | 20

(.50  .60] 20 2

(.60  .70] 2 24

(.70 .80] 15 17

(.80  .90] 14 ‘ 16

(.90  .95) 4 4

(.95 1.0] 12 8

X(12) 12.700 | 9.200
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suggesting that for samples of this size or larger one can rel& on the asymptotic
properties of the jackknife. The 'fat' tails that were so obvious for smaller counts
still influence the distribution at ‘n; = 5. In fact, there were four runs which
produced 't' statistics greater in absolute value than 7.0, and one of these was
was infinite (zero estimated variance).

Thus, it would appear that one is reasonably safe to jackknife this estimator -
with noderﬁtely sized samples provided he has a fiied alpha level determined be-
fore the ihvestigatibn. Attempts to attribute something remarkable to extremely

large absolute values can lead to error.

Trends in Variance During the Course of a Clinical Trial

In cliﬁical trials of psychotherapeutic drugs, an important measure of
effect is the psychiatric traing scale. The clinician records his iﬁpression
of a large number of specific patterns of patient behavior on a three to seven
point‘scale. That is, he may record that the patient fidgits to a moderate dé;
gree, suffers from early insomnia to a severe degree, complains of cardiovascular
symptoms to a mild degree, etc. By the use of principal component analysis,
factors have been derived from these scales that appear to represent stable
and independént hspects of patient response. There is a considerable placebo
response in this kind of trial, and over a course of time many of the ifems of a
rating scale tend to be reduced to the lowest categofy (usually coded as a zero).
Thus, it is only natural to expect a decrease in botﬁ mean and variance.

However, general "eyeballing" of data may sugﬁest that factors associated
with drug activity tended to show a more precipitous drop invvariance than did
factors not associated with a drug's activity or factors derived from patients

on placebo. Here is a typical problem that can arise éarly in the analysis of
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data. Without the underpinning of any methematical‘model, a consistent pattern
begins to emerge in the numbers. Should this be pursued? Is the eye being fooled by
purely random phenomena, or can thisrbe used as a hint out of which one might
generate a mathenatical model and gain further insight.into differences between
treatments? | |

In this case, there do not exist any statistical tests ready to examine
the ranoonness of such an observation. The variances being observed are deri?ed
from highly correlated time series, the underlying distributions are olearly skewed,
and there is an essential infimum which is clearly having en effect on both mean
and variance. On the other hand, the jackknife calls for only an estimator |
that can be written as a sufficiently smooth function of U-statistics. Tables
(5) and (6), d1splay some typical results of the 1nvest1gat10n Least squares

. linear. regressions were conputed on the model
log (variance) = A + B (time)

and the slope estimator, B, _wes jackknifed.

In both examples displayed in the tables, patient improvement (as measured
by baseline-final mean differences) was highly sighificant. Two sample testsvr
comparing that ilprovenent between groups failed to show any sign1f1cance (most
likely due to the small sample size). The jackknife suggests a difference in,re-
sponse not only because of the resulting t seaFistics - one is significant et 5%
and the other is not - but also because 11 out of 16 pseudo variates in one group
are positiﬁe'and only 6 out of 23 are positive in the other group. Well over half
of the patients who contributed positive pseudo variates in both groups showed some
deterioration in condition towards the end of the study. All of those contributing

negative pseudo variates showed continual improvement throughout the study. It



Table (5) - JACKKNIFE APPLIED TO SLOPE |
ESTIMATE - I

MEAN NO. OF PAT. VARIANCE STD ERROR

1.747 17. 0.756 0.211
0.675 16. 0.486 0.174
0.506 16. 0.429 0.164
0.660 ' 15. 0.401 0.164

0.270 10. 0.189 .0.137

INITIAL ESTIMATES
LOPE-LOG-VAR VAR(X(1 VAR(X(2 VAR(X(3
-0.1603E 00 -0.5266E 00 -0.721SE 00 -0.8472E 00

INDIVIDUAL PSUEDO VARIATES

-0.637E 00
0.228E 01
0.163E 00
0.163E 00

-0.38SE 01

. 0.322E-01
- -0.507E 00
-0.709E 00

~ 0.322E-01
0.322E-01
0.163E 00
0.163E 00

-0.114E 01
0.163E 00
0.163E 00
0.322E-01

' SUMMARY STATISTICS
- MEANS VAR - T TEST

-0.2038E 00 0.1372E 01 -0. 717



Table (6) - JACKKNIFE APPLIED TO SLOPE

MEAN NO. OF PAT.

ESTIMATE - 11

VARIANCE STD ERROR

~2.466 23, 1.418 0.248
0.913 23. 0.956 0.204
0.425 23, 0.661 0.170
0.103 23, 0.201 0.094

21, 0.167 0.089

0.030

INITIAL ESTIMATES

SLOPE-LOG-VAR = VAR(X(1))

-0.3816E 00

0.3490E 00

INDIVIDUAL PSUEDO VARIATES

-0.982E
0.787E
0.504E

-0.580E

-0.999E

-0.249E

-0.180E

- -0.162E

-0.461E

-=0.646E
- 0.262E
~ -0.510E
0.172E
 -0.388E
0.346E

" 0.334E

-0.24SE

-0-2998

~0.444E

"=-0.859E

-0.610E

-0.620E

-0.60SE

00
00
00
00
00
01
01
00
00
00
00
00
01
00
00
00
00
00
00
00
00
00
00

SUMMARY STATISTICS
MEANS VAR

-0.3803E 00 0.

T TESTS

7178E 00
-2.183

VAR(X(2)) VAR(X(3)) '

-0.4512E-01 -0.4142E 00

!

35
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would sppear that the jackknife can be used in situations like this to detect
subtle perturbations in the results of continuing treatment. Attempts are now
being made to link this empirical observation to a reasonable mathematical model.
Now follows an example with no solution. This is the first example in
which the observationé were not independent. Consider normal observations,
1°° lednsv 0, variances 02, and Corr (Xi, xi+j) = pj. Think of .
xl,...,xn being responses from some phenomena placed on a line, each response

Xyr0.0,X

n
has the same marginal distribution, but neighbors are éorre{ated with a correla-
tion that decreases geometrically with an exponent pfoportional to the distance
of separation. There is essentially no problem to obtain MLE's. of p or 02,
at least iteratively on a computer. However, the ngthod of Brillinger to obtain
confidence intervals fﬁils due to the non-independence of the observations. It
‘remains to be seen, but perhaps the stochastic pro¢ess‘approach of Gray et al -
may prove successful when modified to treat this tyﬁe of case. This approach
may also be helpful in making adjustments for the fact that in general,
81""’8n of (1.1) are correlated. '

~ One final example in which a solution may be more readily available is to
obtain confidence intervals fo: variance components in the complicated mixed ANOVA
models considered for example by Hﬁrtley and Rao [1967].) Using a formulation in
terms of linear models, they obtain MLE's of variﬁnce components in wﬁat could
be complicated models involving several classifications, possibly unbalanced, and .
possibly both fixed and random effects. The technique'of Brillingef could
probably be extended to obtain confidence intefvals fbrithe variance components in
these complicated models. However, the question arises as to. whether one wants

to obtain intervals for all the parameters simultaneously. In much simpler situa-

tions, Miller [1966] shows that this is not an easy problem to resolve. Hence
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the use of the jickknife in such a problem of simultaneous inf&ence may prove
very challenginj as well as worthwhile. Of course.. the numerical analysis
problem involved in using iterative techniques (essentially non-linear pro-
gramming) is a problem that might prove equally difficult in actually obtaining
Hartley and Rao's MLE's. |

Finally, we note that there are two problems that are very important
from a practical viewpoint, and have received virtually no attention. These
are the problem of deciding if one's data is adequate for the asymptotic resul‘t
of (1.3) to hold, and what (if any) transformation should be used in conjunction
with the jackknife. Only limited Monte Carlo results give an indication of an
answer to the former question. Until a better answer comes along, the answei_*
to the second'question will probably remain that the so-called variance |
stabilizing transformation is the sppropriate one. Actually however, the
method proposed by Box and Cox [1964], namely to let the data give you the

trénsfomtioh, may be preferable.
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