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1., INTRODUCTION. Let X ,X,,...,X ,... be a sequence of independent
~~~~~~~~~~~~ 1°72 n

and identically distributed (i.i.d.) random variables taking on real

values. Let for n = 0,1,2,;.., S =

X., where S. =X =0. We
n 1

0 0

o~

i=0

shall be concerned here with the random variables

1) n, = max(0,8,,8,,...,5 ), n = 0,1,2,... .
We assume that EIan <« andwrite a=EX. Let
(2) n= lim n_ = sup S .

n-—> o n 0 <n <o n

The random variable n is nonnegative, but possiblyiimproper. We shall
call the process {nn} subcritical, critical and supercritical according as
a <0, equal to zero and a > 0, vrespectively. We shall assume that

P(Xﬁ = 0) <1, for in the trivial case where P(Xn = 0) = 1, we have

P(nn 0) =1, for all n. We summarize in the following few known asymp-
totic results concerning n,- The exact distribution of Ny is of course
covered by the celebrated Spitzer's identity [6].

(1) In the subcritical case, P(n < «) = 1, whereas in the remaining cases
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P(n = ») = 1. (See Takidcs [7]j.

(ii) If a=0 and Exﬁ = 1, then
20(x) - 1 for x>0
(3) lim P(nn//i <x) =
noe 0 for x <0 ,

where ¢(x) is‘the standa?d normal-distribution fUnction. (See Erdds and
Kac [3])

(iii)» An asymptotic-result for the supercritical céSe is given below in
the form of a theorem. Although, this result is known (See Chung [2]), we
provide here a much simpler proof.

THEOREM 1: If a > 0, then nn/n a8 a, as n>o, lf.moteover,

Var xn = 1, then

n - na
4) 1lim P(
n > o vn

< x) = ¢(x) .

Proof. The almost sure (a.s.) convergence of nn/n follows from the strong

law of large number and from the fact that for a seqﬁence '{bn} of real numbers

n

, 1 _ .1 _
(5) 1lim [= .2 b;] =b= lim 7 max(0,b;,b,+by, ... ,b +. . +b )=max(0,b).
n->e = i=l . N >w

Again since Xn's are i.i.d., it follows that the distribution of n, is

same as that of En = max(o,xn,xn+x . xn+...+x1). Thus proving (4) for

n-l’.l
n is equivalent to proving it for £ On the other hand
(6) En = max(O,Sn-Sn_l,...,Sn) = Sn+ max(O,-Sl,-Sz,...,—Sn),
so that

- ;n-na i Sn-na . max(O,-Sl,—Sz,...,-Sn)

% v /n




Now using the fact that max(O,-Sl,-SZ,...,-Sn) corresponds to a subcritical
process, (taking -Xn's instead of .Xn's) it follows from (i) that
max(O,-Sl,-Sz,...,-Sn) tends in law to a proper random variables, so that
the last term of (7) tends to zero in probability as n + «», Hence the
theorem follows from (7) by using the central limit theorem.

The aim of the present paper is to establish the above asymptotic
results for nv(n) :as n +» where v(n) is a positiye integer-valued
random variable for n > 1, which convérgeé in probability to + = as
n + « , -For the caée, wﬁere it is assumed that for any n > 1, v(n) is
independent of the random variables n (n=1,2,...) the abovg results
are easy to esfabliSh. However, in the present work we make no such assump-
tion. A more general result in this direction was originally established
by Anscombe [1] under a condition of uniform continuity in probability of
the random variables involved. Rényi ([4],[5]) gave a simpler proof of
Anscombe's theorem for the speciél case of simple sums of i.i.d. random vari-
ables and established a central limit theorem. While proving the above results

here, in a sense, we shail be showing that Anscombe's result holds for the

present case of nv(n) as well.

2. SUBCRITICAL CASE. Here we assume that a < 0, and prove the following

R L

theoren.

THEQREM 2: Let a < 0. Let v(n) denote a positive integer valued random
p—— — —————— — —— -

variable for every n = 1,2,..., such that as n -+ «, v(n)/f(n) converges

in probability to a constant c¢ > 0, for some sequence of positive numbers

f(n) with f(n) >~, as n > «. Then nv(n) 14 n as n >,
Proof. Since v(n)/f(n) LS c > 0, there exists a ndnincreasing sequence

e 0 with e, 0 as n~+ w; such that



‘ v(n ' '
(8) P( [?%E% -c|>c € S €, m=1,2,.., .
Let IA(n) denote the indicator function of the set

AM) = {e(-e)E@) <'v@) < Ove)e £

and let Nl(n) =_[c(1-en)f(n)] and Nz(n) = [c(1+en)f(n)], "where [+--]
denotes the integral part of the number in the squaré bracket. Also we shall

occasionally supress the arguments of N1 and N2 for convenience. Since

a.s. 3 » ’ P )
an(n) > n, it suffices.to show that Inv(n) - an(n)l >0, as n -+ o,
However,
) Mym)™ ! = Oy W@ * v W ! TR

where R(n) denotes the complement of A(n). Again since, IR(n) R 0,

the last term of (9) tends to zero in probability. On the other hand
0 < (n -n )1 < sup (n, -n ) =n -n <n-n ,
v(n) Nl(n) A(n) N1<k:N2 k Nl(n) Nz(n)_ Nl(n) Nl(n) ‘
and since the last quantity tends to zero in probability as n » =, the

theorem follows.

3. CRITICAL CASE. We prove here the following theorem, the analogue of (ii).

THEOREM 3: Let a = 0 and EX2 exist. Also without loss of generality let
= — e n

Exﬁ = 1., Let v(n) be as defined in theorem 2. Then

29(x) - 1, for x>0
) n .
(10) lim P—8L <y -

n +> V\)in; v .
: L for x < 0.

Proof. Consider the following identity
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Since Ix(n) 3 0, as n + », the last term of (11) tends to zero in prob-
ability. Again since v(n)/Nl(n) K 1, as n »», it follows from (3) that

the second term on the right side of (11) tends in law to that of (10). Thus,

‘since ‘-
@) W ™, "N,

in order to completé the proof, it suffices to show that the right side of
(12) tends in probability to zero. This we achieve as follows. For any

arbitrary constant b > 0, we have

- c -
(13) {ny - ny 3bvﬁ1'} max(Sy ,qse-+2Sy ) 2y * bv’N_l_}
2 1 1 2 1
| ) A
c { max X. >8-S, + bi
N oo, teNer N TN 1
1 =2 T |
k
c{ mx | Xll 3bv’1q} <
N k<N, i=N;+1

On the other hand, by Kolmogorov inequality

N,() - N (@)

k
(14) P( max | } X|2bA) <— ’
N1<k_i_N2 i=N1+1 b N1 m) !

and since the right side of (14) tends to zero as n + «, we have

lim P(nN - Ny >Db Nll/z) = 0, This'completes the proof of theorem 3.
n -+ 2 1 '



f LY

4. SUPERCRITICAL CASE, We need the following theorem in order to prove ti:o

main result of this section.

THEOREM 4. Let a > 0. Then
b - — . ——

15 ' lim P(n-S_ <x) =W ,
(15) | lim Pl S, £ %) = WG

where W(x) is a distribution function of a nonnegative;proper random vari-

able. Furthermore, this distribution is same as that of the limit of a sub-

critical process obtained bzrrep1301ng__xh by -Xn, for all n.

The proof of this theorem is omitted as it follows along the lines of
the proof of Theorem 1 and in particular from (6).'Finally, we have the fol-
lowing theorem as the analogue of theorem 1.

THEOREM 5. Let a >0 and Var X = 1. Let v(n) be as defined in theorem
s ——— ——— n —

2. Then
n - asv(n)
(16) 1im P(—®) . <x) = o(x) .
n + o Yo(m)

PROOF, Consider the following identity.
—— .

nv(n)-v(h)a ”v(n)’”Nl‘("(“)‘Nl)a

- 1/2
a7 - I (o (4 /Y ()
A s A@y T
.~ Nla
* e Ty 3 Oy )2
1

nﬁ(n)' v(n)a
’ _ o I3
/o) | A(n)

As before since I;(n) 1< 0, the last term tends to zero in probability.
Also, since v(n)/N1 4 1, it follows from theorem 1 that the second term

on the right side of (17) tends in law to a standard normal random ﬁariéble



as n +«», Thus to complete the proof, it suffices to prove that the

sequence

-1/2
sup Ink-an-(k-Nl)al-N1 / y

N, <k<N,

tends in probability to zero, as n + », However, since

(18) sup |my-ny -(k-NDa| N2 < sup |my -Sy - Ge-Na] -Nj /2
N,<k<N,. & 1 N, <k<N 1
1k, 1k,
-1/2
+[ng =Sy N7 C s
NN

and the last fe;m of this by ?irtue of theorem 4 tends to zero in probab-
ility as n » ®, it is sufficient to show that the first term on the right
- side of inequality (18) tends to zero in probability. .Let 0 <B<a. be
two arbitrary constants. Let & > 0 be another arbitréry constant. Then

depending upon §

since (n, -S )N-l/2 e 0, we can find an integer n
N Nl 1 0

1

and B, such that for n > nys

(19) P(y -S> BN/%) <6 .
1 N

Thus we have for n > n, ,



(20)  P(_ sup |[n.-S N, (kN)aIN __a)

N1 <k <N2

+

< 8§+ P( sup Imax(nN =Sy Sy 41 sN,...,k N) (kN)al > oN;
1 .

N1<k<N2 1 1 1
and ny -5, < BNl/ 2
1 1
< s 1/2
<8+ P( sup |max(SN +17SN_ 200258 ) (k-N )al > aNy’ )
- N, <k<N, 1N

| A
o
+

' 1/2
P(N 3:5N |y atee ) - eNpal 2 oyt

k
172
P( sup | } (x;-a) | Z_aNl/
N1<k§N2 i=N1+1

Nz(n) - Nl(n)

A
[e ]
+

) .

| ale(n)

Here for going from first inequality to the second, among others, we have
ﬁsed the fact that B < a. The last step of (20), of course, follows from
Kolmogorov inequality. Now since (Nz(n) - Nl(n))/Nl(n) tends to zero as
n >« and 6 being arbitrary, the theorem follows.

We close with the remark that all the above results can easily be

extended to cover the case where S, = X. is a nonnegative random variable.

0 0

When v(n) is nonrandom and is equal to n, this case has recently been

considered by Takidc [7].
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