On the Asymptotic Distribution of the Maximum of Sums of a Random Number of I.I.D. Random Variables

bν

PREM S. PURI*

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 265

September, 1971

This investigation was supported in part by research grant GM-10525 from NIH, Public Health Service, at the University of California, Berkeley.

On the Asymptotic Distribution of the Maximum of Sums of a Random Number of I.I.D. Random Variables

bу

PREM S. PURI*, PURDUE UNIVERSITY

1. INTRODUCTION. Let $X_1, X_2, \dots, X_n, \dots$ be a sequence of independent and identically distributed (i.i.d.) random variables taking on real values. Let for $n = 0, 1, 2, \dots$, $S_n = \sum_{i=0}^n X_i$, where $S_0 = X_0 = 0$. We shall be concerned here with the random variables

(1)
$$n_n = \max(0, S_1, S_2, ..., S_n), n = 0, 1, 2, ...$$

We assume that $E|X_n| < \infty$ and write $a = EX_n$. Let

(2)
$$\eta = \lim_{n \to \infty} \eta_n = \sup_{0 \le n < \infty} S_n .$$

The random variable η is nonnegative, but possibly improper. We shall call the process $\{\eta_n\}$ subcritical, critical and supercritical according as a < 0, equal to zero and a > 0, respectively. We shall assume that $P(X_n = 0) < 1$, for in the trivial case where $P(X_n = 0) = 1$, we have $P(\eta_n = 0) = 1$, for all n. We summarize in the following few known asymptotic results concerning η_n . The exact distribution of η_n is of course covered by the celebrated Spitzer's identity [6].

(i) In the subcritical case, $P(\eta < \infty) = 1$, whereas in the remaining cases

^{*}This investigation was supported in part by research grant GM-10525 from NIH, Public Health Service, at the University of California, Berkeley.

 $P(n = \infty) = 1$. (See Takács [7]).

(ii) If
$$a = 0$$
 and $EX_n^2 = 1$, then

(3)
$$\lim_{n \to \infty} P(\eta_n / \sqrt{n} \le x) = \begin{cases} 2\Phi(x) - 1 & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases}$$

where $\Phi(x)$ is the standard normal distribution function. (See Erdös and Kac [3])

(iii). An asymptotic result for the supercritical case is given below in the form of a theorem. Although, this result is known (See Chung [2]), we provide here a much simpler proof.

THEOREM 1: If a > 0, then $\eta_n/n \stackrel{a.s.}{\to} a$, as $n \to \infty$. If moreover, $Var X_n = 1$, then

(4)
$$\lim_{n \to \infty} P(\frac{n - na}{\sqrt{n}} \le x) = \Phi(x)$$

Proof. The almost sure (a.s.) convergence of η_n/n follows from the strong law of large number and from the fact that for a sequence $\{b_n\}$ of real numbers

(5)
$$\lim_{n \to \infty} \left[\frac{1}{n} \sum_{i=1}^{n} b_i \right] = b \Rightarrow \lim_{n \to \infty} \frac{1}{n} \max(0, b_1, b_1 + b_2, \dots, b_1 + \dots + b_n) = \max(0, b).$$

Again since X_n 's are i.i.d., it follows that the distribution of η_n is same as that of $\xi_n = \max(0, X_n, X_n + X_{n-1}, \dots, X_n + \dots + X_1)$. Thus proving (4) for η_n is equivalent to proving it for ξ_n . On the other hand

(6)
$$\xi_n = \max(0, S_n - S_{n-1}, \dots, S_n) = S_n + \max(0, -S_1, -S_2, \dots, -S_n),$$

so that

(7)
$$\frac{\xi_{n}-na}{\sqrt{n}} = \frac{S_{n}-na}{\sqrt{n}} + \frac{\max(0,-S_{1},-S_{2},\ldots,-S_{n})}{\sqrt{n}}$$

Now using the fact that $\max(0,-S_1,-S_2,\ldots,-S_n)$ corresponds to a subcritical process, (taking $-X_n$'s instead of X_n 's) it follows from (i) that $\max(0,-S_1,-S_2,\ldots,-S_n)$ tends in law to a proper random variables, so that the last term of (7) tends to zero in probability as $n \to \infty$. Hence the theorem follows from (7) by using the central limit theorem.

The aim of the present paper is to establish the above asymptotic results for $\eta_{\nu(n)}$ as $n \to \infty$ where $\nu(n)$ is a positive integer-valued random variable for $n \ge 1$, which converges in probability to $+\infty$ as $n \to \infty$. For the case, where it is assumed that for any $n \ge 1$, $\nu(n)$ is independent of the random variables η_n $(n = 1, 2, \ldots)$ the above results are easy to establish. However, in the present work we make no such assumption. A more general result in this direction was originally established by Anscombe [1] under a condition of uniform continuity in probability of the random variables involved. Rényi ([4],[5]) gave a simpler proof of Anscombe's theorem for the special case of simple sums of i.i.d. random variables and established a central limit theorem. While proving the above results here, in a sense, we shall be showing that Anscombe's result holds for the present case of $\eta_{\nu(n)}$ as well.

2. SUBCRITICAL CASE. Here we assume that a < 0, and prove the following theorem.

THEOREM 2: Let a < 0. Let $\nu(n)$ denote a positive integer valued random variable for every $n = 1, 2, \ldots$, such that as $n \to \infty$, $\nu(n)/f(n)$ converges in probability to a constant c > 0, for some sequence of positive numbers

f(n) with f(n) $+\infty$, as $n + \infty$. Then $\eta_{\nu}(n) \stackrel{p}{\to} \eta$ as $n + \infty$.

Proof. Since $\nu(n)/f(n) \stackrel{p}{\to} c > 0$, there exists a nonincreasing sequence $\varepsilon_n > 0$ with $\varepsilon_n + 0$ as $n + \infty$, such that

(8)
$$P(\left|\frac{v(n)}{f(n)} - c\right| > c \epsilon_n) \le \epsilon_n, n = 1, 2, ...$$

Let $I_{A(n)}$ denote the indicator function of the set

$$A(n) = \{c(1-\epsilon_n)f(n) \le v(n) \le (1+\epsilon_n)c f(n)\},$$

and let $N_1(n) = [c(1-\epsilon_n)f(n)]$ and $N_2(n) = [c(1+\epsilon_n)f(n)]$, where $[\cdots]$ denotes the integral part of the number in the square bracket. Also we shall occasionally supress the arguments of N_1 and N_2 for convenience. Since $n_1(n) \stackrel{a.s.}{\longrightarrow} n$, it suffices to show that $|n_{\nu}(n) - n_{N_1(n)}| \stackrel{p}{\longrightarrow} 0$, as $n \to \infty$. However,

(9)
$$\left|\eta_{\nu(n)} - \eta_{N_{1}(n)}\right| = \left(\eta_{\nu(n)} - \eta_{N_{1}(n)}\right) I_{A(n)} + \left|\eta_{\nu(n)} - \eta_{N_{1}(n)}\right| I_{A(n)}^{*},$$

where $\tilde{A}(n)$ denotes the complement of A(n). Again since, $I_{\tilde{A}(n)}^{\sim} \stackrel{p}{\to} 0$, the last term of (9) tends to zero in probability. On the other hand

$${}^{0} \leq ({}^{\eta}_{V}(n)^{-\eta}N_{1}(n))^{1}A(n)^{\leq} \sup_{N_{1} \leq k \leq N_{2}} ({}^{\eta}_{k}^{-\eta}N_{1}(n))^{-\eta}N_{1}(n)^{-\eta}N_{1}$$

and since the last quantity tends to zero in probability as $n \rightarrow \infty$, the theorem follows.

3. CRITICAL CASE. We prove here the following theorem, the analogue of (ii). THEOREM 3: Let a = 0 and EX_n^2 exist. Also without loss of generality let $EX_n^2 = 1$. Let v(n) be as defined in theorem 2. Then

(10)
$$\lim_{n \to \infty} P\left(\frac{\eta_{\nu(n)}}{\sqrt{\nu(n)}} \le x\right) = \begin{cases} 2^{\Phi}(x) - 1, & \text{for } x \ge 0 \\ 0, & \text{for } x \le 0. \end{cases}$$

Proof. Consider the following identity

(11)
$$\frac{\eta_{\nu(n)}}{\sqrt{\nu(n)}} = \frac{\eta_{\nu(n)} - \eta_{N_1}}{\sqrt{N_1}} I_{A(n)} (N_1/\nu(n))^{\frac{1}{2}} + \frac{\eta_{N_1}}{\sqrt{N_1}} I_{A(n)} (N_1/\nu(n))^{\frac{1}{2}} + \frac{\eta_{\nu(n)}}{\sqrt{\nu(n)}} I_{\tilde{A}(n)}$$

Since $I_{A(n)}^{\sim} \stackrel{p}{\to} 0$, as $n \to \infty$, the last term of (11) tends to zero in probability. Again since $\nu(n)/N_1(n) \stackrel{p}{\to} 1$, as $n \to \infty$, it follows from (3) that the second term on the right side of (11) tends in law to that of (10). Thus, since

(12)
$$\left| \frac{\eta_{\nu(n)} - \eta_{N_1}}{\sqrt{N_1}} \right| \cdot I_{A(n)} \leq \frac{\eta_{N_2} - \eta_{N_1}}{\sqrt{N_1}} ,$$

in order to complete the proof, it suffices to show that the right side of (12) tends in probability to zero. This we achieve as follows. For any arbitrary constant b > 0, we have

$$\{ \eta_{N_{2}} - \eta_{N_{1}} \ge b\sqrt{N_{1}} \} \subset \{ \max(S_{N_{1}+1}, \dots, S_{N_{2}}) \ge \eta_{N_{1}} + b\sqrt{N_{1}} \}$$

$$\subset \{ \max_{N_{1} \le k \le N_{2}} \sum_{i=N_{1}+1}^{k} X_{i} \ge \eta_{N_{1}} - S_{N_{1}} + b\sqrt{N_{1}} \}$$

$$\subset \{ \max_{N_{1} \le k \le N_{2}} |\sum_{i=N_{1}+1}^{k} X_{i}| \ge b\sqrt{N_{1}} \}$$

On the other hand, by Kolmogorov inequality

(14)
$$P(\max_{\substack{N_1 < k \leq N_2 \\ i = N_1 + 1}} |\sum_{i=N_1 + 1}^{k} X_i| \ge b\sqrt{N_1}) \le \frac{N_2(n) - N_1(n)}{b^2 N_1(n)}$$

and since the right side of (14) tends to zero as $n \to \infty$, we have $\lim_{n \to \infty} P(\eta_{N_2} - \eta_{N_1} \ge b \ N_1^{1/2}) = 0.$ This completes the proof of theorem 3.

4. SUPERCRITICAL CASE. We need the following theorem in order to prove the main result of this section.

THEOREM 4. Let a > 0. Then

(15)
$$\lim_{n \to \infty} P(\eta_n - S_n \le x) = W(x) ,$$

where W(x) is a distribution function of a nonnegative proper random variable. Furthermore, this distribution is same as that of the limit of a subcritical process obtained by replacing X_n by $-X_n$, for all n.

The proof of this theorem is omitted as it follows along the lines of the proof of Theorem 1 and in particular from (6). Finally, we have the following theorem as the analogue of theorem 1.

THEOREM 5. Let a > 0 and $Var X_n = 1$. Let v(n) be as defined in theorem 2. Then

(16)
$$\lim_{n \to \infty} P(\frac{\eta_{\nu(n)} - \underline{a \cdot \nu(n)}}{\sqrt{\nu(n)}} \le x) = \Phi(x) .$$

PROOF. Consider the following identity.

(17)
$$\frac{\eta_{\nu(n)}^{-\nu(n)a}}{\sqrt{\nu(n)}} = \frac{\eta_{\nu(n)}^{-\eta} \eta_{1}^{-(\nu(n)-N_{1})a}}{\sqrt{N_{1}}} I_{A(n)}^{*} (N_{1}/\nu(n))^{1/2} + \frac{\eta_{N_{1}}^{-N_{1}a}}{\sqrt{N_{1}}} I_{A(n)}^{*} (N_{1}/\nu(n))^{1/2} + \frac{\eta_{\nu(n)}^{-\nu(n)a}}{\sqrt{\nu(n)}} \cdot I_{A(n)}^{*} .$$

As before since $I_{A(n)}^{\sim} \stackrel{p}{\to} 0$, the last term tends to zero in probability. Also, since $v(n)/N_1 \stackrel{p}{\to} 1$, it follows from theorem 1 that the second term on the right side of (17) tends in law to a standard normal random variable as $n \to \infty$. Thus to complete the proof, it suffices to prove that the sequence

$$\sup_{N_1 < k \le N_2} |\eta_k - \eta_{N_1} - (k - N_1) a | \cdot N_1^{-1/2}$$

tends in probability to zero, as $n \rightarrow \infty$. However, since

(18)
$$\sup_{N_{1} < k \leq N_{2}} |\eta_{k} - \eta_{N_{1}} - (k - N_{1}) a| \cdot N_{1}^{-1/2} \leq \sup_{N_{1} < k \leq N_{2}} |\eta_{k} - S_{N_{1}} - (k - N_{1}) a| \cdot N_{1}^{-1/2}$$

$$+ |\eta_{N_{1}} - S_{N_{1}}| \cdot N_{1}^{-1/2} ,$$

and the last term of this by virtue of theorem 4 tends to zero in probability as $n \to \infty$, it is sufficient to show that the first term on the right side of inequality (18) tends to zero in probability. Let $0 < \beta < \alpha$ be two arbitrary constants. Let $\delta > 0$ be another arbitrary constant. Then since $({}^{\eta}_{N_1} - S_{N_1}) N_1^{-1/2} \stackrel{p}{\to} 0$, we can find an integer n_0 depending upon δ and β , such that for $n > n_0$,

(19)
$$P(\eta_{N_1}^{} - S_{N_1}^{} > \beta N_1^{1/2}) \leq \delta.$$

Thus we have for $n > n_0$,

$$(20) \quad P\left(\sup_{N_{1} \leq k \leq N_{2}} | \eta_{k} - S_{N_{1}} - (k - N_{1}) a | N_{1}^{-1/2} \geq \alpha\right)$$

$$\leq \delta + P\left(\sup_{N_{1} \leq k \leq N_{2}} | \max(\eta_{N_{1}} - S_{N_{1}}, S_{N_{1}+1} - S_{N_{1}}, \dots, S_{k} - S_{N_{1}}) - (k - N_{1}) a | \geq \alpha N_{1}^{1/2} \right)$$

$$= \alpha d \quad \eta_{N_{1}} - S_{N_{1}} \leq \beta N_{1}^{1/2} \right)$$

$$\leq \delta + P\left(\sup_{N_{1} \leq k \leq N_{2}} |\max(S_{N_{1}+1} - S_{N_{1}}, \dots, S_{k} - S_{N_{1}}) - (k - N_{1}) a | \geq \alpha N_{1}^{1/2} \right)$$

$$\leq \delta + P\left(\sup_{N_{1} \leq k \leq N_{2}} |(X_{N_{1}+1} + \dots + X_{k}) - (k - N_{1}) a | \geq \alpha N_{1}^{1/2} \right)$$

$$\leq \delta + P\left(\sup_{N_{1} \leq k \leq N_{2}} |\sum_{i=N_{1}+1}^{k} (X_{i} - a) | \geq \alpha N_{1}^{1/2} \right)$$

$$\leq \delta + \frac{N_{2}(n) - N_{1}(n)}{\alpha^{2} N_{1}(n)} .$$

Here for going from first inequality to the second, among others, we have used the fact that $\beta < \alpha$. The last step of (20), of course, follows from Kolmogorov inequality. Now since $(N_2(n) - N_1(n))/N_1(n)$ tends to zero as $n \to \infty$, and δ being arbitrary, the theorem follows.

We close with the remark that all the above results can easily be extended to cover the case where $S_0 = X_0$ is a nonnegative random variable. When v(n) is nonrandom and is equal to n, this case has recently been considered by Takác [7].

ACKNOWLEDGEMENT. The author is grateful to Professor L. LeCam for some helpful discussions and in particular for drawing his attention to Rényi's work ([4],[5]).

REFERENCES

- [1] Anscombe, F. J. (1952). Large-sample theory of sequential estimation, <u>Proc. Camb. Phil. Soc.</u>, 48, 600.
- [2] Chung, K. L. (1948). Asymptotic distribution of the maximum cumulative sum of independent random variables, Bul. Am. Math. Soc., 54, 1162-70.
- [3] Erdös, P. and Kac, M. (1946). On certain limit theorems of the theory of probability. <u>Bull. Amer. Math. Soc.</u>, 52, 292-302.
- [4] Rényi, A. (1957). On the asymptotic distribution of the sum of a random number of independent random variables, Acta. Math. Acad. Sc. Hung., 8, 193-199.
- [5]R Rényi, A. (1960). On the central limit theorem for the sum of a random number of independent random variables, Acta. Math. Acad. Sc. Hung., 11, 97-102.
- [6] Spitzer, F. (1956). A combinatorial lemma and its application to probability theory, <u>Trans. Amer. Math. Soc.</u>, 82, 323-339.
- [7] Takacs, L. (1970). On the distribution of the maximum of sums of mutually independent and identically distributed random variables, Adv. Appl. Prob., 2, 344-354.