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ABSTRACT

Estimation of the Number of Terms in a Sum

Fixed sample size and sequential procedures are investigated for
estimating the parameter n from observations on a sequence of i.i.d.
random variables each of which is the sum of n i.i.d. random variables

with known mean and variance.
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1. Introduction. Let'{Xij: i=1,...,n; j=1,...} be a doubly

indexed set of i.i.d. random variables with non-zero mean 1 and finite
variance 02. Suppose that one can observe a fixed or variable number of
terms of the sequénce (Yj'; j =1,...) where Yj = :‘x1j+ +> an. Given
that u and 02 “are known, both fixed sample size and sequential proce-
dures for estimating the unknown parameter n are considered.

Feldman and Fox (1968) studied the problem of estimating the parameter
n of a binomial distribution on the basis of a fixed number of observations.
This corresponds to‘the case in which the xij arefBernoulli random variables
with known p. They also investigated estimators of the parameter u of a
normal N(u,u) distribufion and gave references to:several related problems.

The case ip'which the 'xij are Poisson with méan one corresponds to the
problem of estimating a Poisson parameter when it is assumed to be an integer.
McCabe (a) studied this problem and some_géneralizations to an exponential
family (b).

The procedures proposed in this paper are robust in the sense that their
properties can be evaluated in terms of the known parameters u and 02 only.
Invgeneral,'if the distribution is completely known, then sharper results can
be obtained. As an example, the normal casgbis treated in detail.

Since each of the Y's can be divided by the known mean u, we can and

do assume without loss of generality that the Y's are i.i.d. with mean n



and variance . no2 where 02 is known and n is to be estimated.

2, Fixed §ampie siié estimate.- Let n.i.(z) denote the nearest-
integer to z. For‘convenience‘in what follows, we édopt the convention that
n.i. (i +1/2) =i if i is an integer and n.i. (z) =1 if y < 3/2. Let
k be the size of the sample.

Motivated by the fact that ?k = (Y1+»... + Yk)/k is an unbiased esti-

mate of n, we consider the estimate

~

(2.1) n = n.i. @)

If the underlying distribution of the xij is continuous and symmetric then
n will also be unbiased; but in general, this will not be the case.
Let P(n) denote the probability that n is unéqual to n when n

is the true value of the parameter. Then

1/2

2.2)  P@) = P_(&/mY2T -n]/0 > (/m)'?/20) < 4oPnsk

by Chebyshev's inequality. In the normal case,

1/2

(2.3) P(n) < (8no’/mk)Y/? exp(-k/8na?) .

Following Feldman and Fox (1968) we define an estimate 6 td be a-con-

sistent for the parameter 6 if for any e >0,

Pe(lg -0|/6">¢eJ +0 as 8+

Let a>1/2 and € > 0 be fixed. Since
|n - n| 3_|Yk- n| - |n - Yklz_l?%— n| - 1/2 ,

it follows that



P (IR - n]/n® > &) < PC/mY2 [T~ n)/0 > k/m21/2 + en®y/0)
g_ncz/k(1/4 +en® +n%% a0

as n -+« . Therefore, for « > 1/2, n is o-consistent for n.

k)2 is an unbiased esti-

mate of noz, one could consider using n.i. (sz/cz) as an alternative to

n. For large values of n, however, the variance of Y will be less than

Since the sample variance s? = (k-l)'IZCYj- Y,

the variance of 52/02. In the normal case, var(sz/az) equals 2n2/(k-1) |
which is greater than 'noz/k, the variance of Y, whenever n z.oz(k-l)/2k.
It should be noted that”eyen for the normal case, the estimate A is
not optim;1,2 ih fact, if is,ﬁbt even a funétion of the sufficient statistics.
However, if'ﬁé'consider n to be a continuous parameter, the Cramer-Rao

bound for the variance of an unbiased estimate is
ncz/k(1 + az/Zn).

When n 1is large, this expression is approximately the variance of ?k,
whereas if 02 is large, it is close to the variance of 52/02.

Clearly any reasonable analysis 6f this problem must specif}'the relation
between the quantities k and ncz. Feldman and Fox (1968) were interested
in k small relative to noz, whereas in the present work, we will focus on

the case where k is large relative to noz. In this context, the problem

may be viewed as a simultaneous test of the countable set of hypotheses:

{Hn: ’EYJ. = n,_ n=1,2,...}

For k large relative to ndz, the discreteness of the parameter space

becomes more important and the Cramer-Rao bound does not give an adequate
picture of the structure of the problem. Using the results of Chapman and

Robbins (1951), we can obtain a more informative bound on the variance of an



unbiased estimate of n for the nommal case as follows:
For any unbiased estimate n of n, let oﬁ(n) denote its variance.
Then

2" . -2
cn(n) 3_1/1Ef h En(fh+h

2,2
- e
where fh and En denote the density of Yl,..., Yk and expectation respec-

tively when n is the true value of the parameter. It is easy to show that

2.7 n 1 k -1
(2.4) o (n) > (( exp ( )" - 1) .
= w2 (n+1)0°

Although the Chapman-Robbins bound is not necessarily attainable, it
does indicate the pgssibility'of an estimate having variance which decreases
exponentially with the sample size. This property can be demonstrated for

n in the normal case as follows:

Let n be fixed and let aﬁ denote the variance of n. Then

R S
o = } m P (n=n+m) + )  m° P(n=n+m)
m=-n+1 ) m=1
<2 m2 P_(n+m-1/2 < Y, < n+m+1/2)
. n k~ ,
m=1 v
o m+1/2 2 » 2
<2 ¥ (X + 1/2)° aN(X; 0,nc“/k) ,
m=1 m-1/2

where

-1/2

dN(X;u;oz) = (2H02) exp(-(x-u)2/202)dx .

Combining the integral terms, performing the transformation

Y = X(k/4ng?)1/2

?



and letting
as= (k/4n<:r2)1/2
yields
(25) 2 <2 f (v 1722 avevso,1) .
a

Now, for a > 0,

/ exp(-Yz/Z)dY < a1 exp(-az/Z) ,

a
and
> 2 2
[ Y exp(-Y“/2)dY = exp(-a®/2) .
a - .
Also,since

[ (P-1) exp(-Y2/2)dY = a exp(-a%/2),
a .

it follows that

I Y? exp(-Y2/2)dY < (a + a1y exp(-a%/2) .
.

Substituting these bounds into (2.5) gives

(2.6) of < (80%n/m) /2 (1eno?/k) exp(-k/8nd?) .

3. Sequential Rules. In this section, two classes of rules are investi-
gated. A sequential rule consists of a stopping variable N and a terminal
decision function ﬁ. For each rule in the first ciass, the bound on the
error probabilities is calculated without reference to the original distribu-

tion except through the known parameter 02. Thus, given an arbitrary



preassigned bound .€, one can construct a rule which has the property that
the probability of error is less than or equal.to € for all n and for all
possible distributions of thé xij ,ha&ing the same value of 02. The second
class of rules exploits the properties of the normal diétribution and indi-
cates the type of.results that can be obtained if the underlying distribution

is known.

Class I}

Let € >0 be given and define
2 .
K = 2{1607/3e] + 2

where [-] denotes the greatest integer function. Define

(3.1) Ny =inf {k 2 K: k 2K T}
and

A~ -1
(3.2) n, = n.i. (N1K ) .

Theorem 3.1. For N, and n, defined above,$

(3.3) (a) Ean < @ for all n

and

3.4  ®  swPmimc<e .
n

Proof. Let n be fixed. Clearly, for k > Kn,

Pn(N1 > k) f-Pn(k <K Yk)

= P (k/n* k) 2 (kekm) < k/meDYYET )y



So,
(3.5) PN, > K) < no’K?/k (k-kn)?
by Chebyshev's inequality. Now,

Ean

kzo P (N, > k)

| A

[}
kn +1+ } PN, >k)
k>Kn

<Kn +1+ nosz Z k-l(k-l(n)"2

k>Kn

by (3.5). Since the sum is convergent, part (a) follows.

To calculate the error bound, we first observe that

. - _ -1 _ L -1 1
(3.6) Pn(nl* n) =P N,K" <n-3) +an(N1K >n +3) .
Now,
P_(N k1< n.- Loy (k > K, for some k = K K(n- l-))
n-'l - 2 nt ="k o 2
=P (Z.,+ + Z >(nkK-k2)/K for some k=K K(n- -1-))
n 1 LI k—- . o0y n 2 .
where

Z. =n-Y, .
i i

Note that K. and K(n- %—) are integers by the definition of K. Clearly

. . . . 2 .
the Zi are i.i.d. with mean zero and variance no” . Since

min (K (kk-k*)} = K(n- 22,
Kek<K(n- 3)

it follows that



-1 1, 1 o
Pn(NlK < n- EQ f-Pn(Zl+"'+zk > K(n- 59/2 for some k=K,...,K(n- %9).

Now, applying the Kolmogorov inequality, we obtain

1

- 1 2 1
(3.7) Pn(NIK - < n- 39 < 4no”/K(n- 59 for all n .

On the other hand,

_ -1 1 v 1
Pn(le >n + 59 f-Pn(Ym <n + 59

where
m = K(n * %0 .
This can be bounded by the Chebyshev inequality to give

1

(3.8) P (NK'>n+3) <4o’n/Kn+3) forall n.

Substituting (3.7) and (3.8) into (3.6) yields

P_(n, 4 n) < 80°n/K(n?-1/4)

3202/3K

A

< g for all n.

Obviously the rules in this first clas§ are rather crude and the methods
used are most elementary in nature. Nonetheless, this class constitutes a
solution to the problem of estimating n with a uniformly small bound on
the probability of error.

The rules in this class can be easily modified so that N can only take
on the values K(j + %9, j=1,2,... . This would eliminate the necessity
of calculating Y at each stage and the observations.could be taken in groups

of size K.



Class II: We now assume that fhe ‘Yj are normal with mean n and variance

ncz. For any € > 0, let

A = log(l + 2/¢€).

Define

(3.9) N, = inf{k > 1: I?k- n| f_%—- A(n+1)02/k for some n}
and let

(3.10) \'ﬁz = n.i. @)

Let

kn = 2A(n+1)o2 .

Theorem 3.2. 1If the Yj are i.i.d. normal with mean n and variance noz,

then for N2 and n, defined above,

(3.11) (a) PN, < w) =1

and _

(3.12) () sup P (n,4m) <e .
. n

Proof. Let n be fixed and let k = r kn where r > 1. Then,

= 1l r-1
P (N, > k) f.Pn(lYk' n| > 559)

HY2 T nl > 3ED tmedy/?

P ((k/no )

|A

4r ncz/kn(r-l)2 .

Taking limits as k (or equivalently r) goes to infinity gives (a).

Let Ak,m be the set of values of Yl""’ Yk such that N2 =k

~ -

and n, = m. Note n,= m implies k > Km. Now,
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(3.13) ?h(n2_+ n) min P (n,= m)

fn(Yl,...,Yk)le...dYk

mén kgk
Za *,m

n k_>_km Ak,m | 2no” i=1
Observe that

k K

2 2 ’ -

Z (Y;- m)*- iz (¥;- m)° = k(n-m) (n+m-2Y, ) .
Now, for. n > m,

Yk «m + %-- A(m+1)02/k on 'Ak,m
Hence,

X 2 K 2 |

)y (Y;-n)" - ) (Y;- m)° > k(n-m) (n-m-1+k_/k)

i=1 i=1

= (n-m) (k(n-m-1) + km)

But since k > kln on Ak,m’ it follows that
k k
I o-m° - ) ;- m? > k_(n-m)?
i=1 i=]l ,

In a similar manner, it can be shown that

.
Loy m? -

(Yi- m)z, > km(n-m)2
i=1 i

Hes x

1
on Ak,m for n < m.

Therefore, for any m $ n ,

| ) k
m§ I [ emd)yViepe Lo § o -mPay, ..

ldY
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’ k 9 k 5 2
(3.14) exp(—cj1 (Y;-n) '-210{1’"’) )/2n0*)
1= i=

5_exp(—km(n-m)2/2n02)
= exp(-A(n-m)%(m+1)/n)

on the set Ak o
3

Using (3.13) ahd (3.14), we obtain

o
) 2 _Lo- 1 ogem?
P_(nydn) < inexp( Anm) @)y 7§ (2mo?) Zexp (A ——av,...av,
m kzkm Ak,m 2no

Now, since the function to be integrated is a density for each m, it follows

that
k
2
| L -1 () |

I f ) ?eptm— av ay, <1

kzkm Ak,m 2ng ,
Hence,

Pn(52+n) <. ¥ exp(-A(n-m)z(m+1)/n)

mfn :

Since

(nfm)(m+1)/n >1 for m < n-1
and

(m-n) (m+1)/n > 1 for m > n+l |,

it follows that

Pn(52+ n) <. ;n exp(-A|n - ml)

ms

<2/(" - 1)

re.
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Although the assumption of normality was used to calculate the error

bounds, the stopping rule can be investigated in greaterigenerality.

Theorem 3.3. If the Yj are i.i.d. with mean n and variance noz, then

forany 6 >0

' . -1 -
(3.15) lim sup P Nk~ <1+86)=1

A+ow

where
k= 2A(n+1)o>
n
Proof, Let 6 > 0 be fixed and let k = kn(1+6). For convenience, it will

be assumed that k is an integer. Now,

-1/2

PN, > k) < P((c’n/k)" ?|T, -] >k/n) Y2 §720(148))

< 4no® (1+6)%/ke?
= 2n(1+8)/A(n+1)6° .

Taking limits as A » = gives the desired result.
With the imposition of moment conditions which are trivially satisfied
in the normal case, stronger results can be obtained.

= 242 =
Let c -_20 (n+l1). Then kn = an.

Lemma. If EY; < » (or equivalently, if Exgj< w) ‘then for any c¢'>c> s
there exists a constant M, which depends on ¢ and n but not on c¢' or

A, such that

: . )
(3.16) - PN, >i) <M ,

where



13

i = c'A is an integer.

Proof. First note that
. - 2,.
1>n(N2 >1i) < Pn(IYi— n| > 1/2 - A(n+1)c/i)

<P (|Y;-n]| > B)

where
B=1/2 - (n+1)02/k .
Furthermore,
(3.17) P(N, > i) < B2E (F.- m)*
' 2 - n i

by the Markov inequality. Let Y be a random variable with the same distri-

bution as each of the Yj' Then,
E (V.- m* i 4G E o-m* 30h + 31%6h
n i n .
j_i-z max(3c4, En(Y-n)4)
By assumption, En(Y-n)4 < o ., Therefore, letting
4 4

M=B ' max(3c, En(Y-n)4)

and substituting into (3.17) gives the desired result.

4

Theorem 3.3. If EYj < « then
: . -1 -
(3.18) : 1:?+§2P kn En(Nz) = 1

Proof. Let n be fixed and let c > . Then,
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EN, = ] P (N, >i)
n 2 j=0 P 2
<cA+ § P (N, >i) .
i>cA n*2
Moreover,
EN <cA+ J M2
n2-—

i>cA

by the previous lemma. Obviously, the above sum is convergent and hence goes
to zero as A »> », Since c was arbitrary subject only to ¢ > Sy (3.18)
follows. |

Although a small unifprm bound for the error probabilities cannot be
constructed for fixed sample size rules, a rough comparison of the fixed and
sequential schemes in the normal case can be made.

Let n be fixed. For k 1large, the error probability for the fixed

sample size procedure (2.1) is approximately
1
(3.19)  (8n/mK)? o exp(-k/8no?) .

For A large, the sequential procedure requires apprpximately kn= 2A(n+1)c2

observations and the error bound is
A
(3.20) 2/(e - 1) .

Equating (3.19) and (3.20) and assuming that A and k are large, we find
that k is approximately 8An02. Thus, for n large, the sequential plan
requires on the average only 1/4 as many observations as the fixed sample

size procedure.



[1]

(2]

[3]

[4]

15

- REFERENCES

Chapman, D. G. and Robbins, H. (1951). Minimum variance estimation
without regularity assumptions. Ann. Math. Statist. 22, 581-586.

Feldman, D. and Fox, M. (1968). Estimation of the parameter n in
the binomial distribution. J. Amer. Statist. Assoc. 63, 150-158.

McCabe, G. (a) Sequential estimation of a Poisson integer mean.
(to be published in Ann. Math. Statist.).

McCabe, G. (b) Sequential estimation of a restricted mean parameter
of an exponential family. (submitted for publication).



