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Abstract

Asymptotically Robust Tests in Unbalanced
Variance Component Models

Spjdtvoll (Ann; Math. Statist. 38 422-428) has obtained a tesf associated
with an uhbalancéd one-way layout for Model II ANOVA.  Under the assumption
of normality, his test possesses several optimum propertles Without the
normality assumptlon the s1gn1f1cance level is (in general) highly non-
robust. An attempt to remedy this situation using a test based on the jack-
knife techniéue, appears in Arvesen.(Ann. Math. Statist, 40 2076-2100). The
pPresent paper proposes as an alternatlve a jackknifed version of Spjgtvoll's ;
test The new test 1s not sensitive to departures from normallty, and
Monte Carlo sampllng and asymptotlc efficiency results suggest that it is more
. powerful than Arvesen s test. The paper also includes some general results
for use of the jackknife technique with non-identically diétributed random

variables.



1. Summary. We obtain in this paper an asymptotically robust test for the:

0 against A > 845 where A is the variance ratio in an

unbalanced one-way layout for Model II ANOVA. The test is based on an ex-

hypothesis A < A

‘tension of Arvesen [1969] using the jackknife. Theoretical and Monte Carla
results show the robustness of the proposed test for non-norinal data, and
that it peifbrms similarly to Spjgtvoll's [1967] test if the data are normal.
That is, the Pitman ARE of both'testslis 1 under normality, and fheoreticql
and Monte Carlo results show the robustness of.the propoged test for non-
normal data.

It is also ﬁossible to obtain a confidence interval for A using the
proposed test. Section 2 discusses the basic model, whiie section 3 digreséés
to discusé some general results concerning use of the jackknife with non- -
identically distributed random variables. Section 4 aﬁplies the results of

the previous section to the variance component problem, while sections 5 and 6

discuss asymptotic efficiency results and Monte Carlo results respectively.

2. The model. The basic model assumed in an unbalanced one-way layout for

Model IT ANOVA is

2

(2.1) Yij =W +a 4+ eij’=i =1,...,n, j = 1,...,Ji

where u is an unknown constant, '{ai} andv'{eij} are all mutually independent
. . : 2 .
normal random variables with zero means and variances 'oi and O respectively.

If we let A:= oi/oz, one hypothesis‘of iﬁterest is

(2.2) ' HO: A 5-A0 vVS. HA: A > AO .



For a spec1f1ed alternative A = Al, Spjgtvoll [1967] has obtained the
‘most powerful similar a-level test of Hy. The value 4, enters into the test
statistic. He also proposes an alternate test letting A1’+ °, tantamount to

achieving high powef for distant alternatives. It is this test we now con-

sider. Letting
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one rejects . Ho at.the a-level if

. T _
(2.4) (*-n) (-DTT>F

where 'b ;v denotes the upper o point of an F'.distribution with
v, v, degries gf freedom. Spjdtvoll also obtains a cenfidence interval for A,
although it is subject to the same criticism cohcerning its non-robust character.
| Note that when- J = J, or a balanced model results, the test as glven

by (2. 4) is the same as the standard F-test as g1ven in Scﬁeffe [1959]. It is
well- known (see Scheffe [1959]) that this standard F test is not robust 1f the
observatlons are non- normal espec1ally the random effect terms. The significance
levels are invalid except in the case b = 0.

In the balapced case, a competitor based on the jeekkﬁife has been proposed -

in Arvesen [1969], and its moderate sample size properties were examined by a

Monte Carlo computer simulation in Arvesen and Schmitz [1970].



'Also, in the unbalanced caée, a test based on the usual jackknife was
proposed in Arvesen [1969]. This test will be further discussed in sections.
5 and 6, where evidence is presented suggesting that in teims of power it

/is inferior to the test proposed in section 4.

3. The jackknife fdr,non-identically distributed random variables.

(a) Background. First let us describe the jackknife procedure. For a more de-
1"ff;XNi
be independent identically distributed observations from the cdf L Par-

tailed discussion the reader is referred to Miller [1964]. Let X

tition these N observations into n groups with k observations in each

group (N = nk). Then if eg is some estimate based on all n groups of
observations (all N observations), let e;_l, i=1,...,n denote the estim.:
obtained after deletion of the ith group of observations.

The jackknife estimate of 6 is

[«> 203
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(3.2) 6. =nd® - 1y ot ., i=1 n .
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: o 2~;: -1 en Y
(3'3) » o o s»e\ = (n-l) Zi':l (ei e) ’

it is interesting to conjecture that if n is held fixed,



(3.4) . t=+ (é-e)/s5 §§; t .
as in Tukey [1958]. Miller [1964], [1968], énd Arvesen [1969] give a large
"class of situations.where this conjecture proves valid. In what follows, we
- will assume k =1, and hence N =n, and the convergence in (3.4) is to a
standard normal distribution.

Y‘Unfortunaﬁely, if one starts with *1""’Xn as 6n1y indepéndent, and
not necessarily idehtically distributed, the situation becomes more complica-
ted. In fact, the results given in Arvesen [1969] required ég to be of a

very special restrictive form. In the notation of that paper, let

£5 (X seeenX, ) be a symmetric kernel with the same expectation

. : m ‘ N

E[f*(xa ,;..,Xa )] = n for all Gyseeesl. Then the U-statistic (see Hoeffding
1 m '

[1948]) for estimating n is

(3.5) , U= 7 I £ (Xy seeesX, )
. n 1 1]

where Cn indicates the summation is over all combinations Bpseeerl of m
integers chosen ffom 1,...,n. Then theorems 10 and 11 of Arvesen [1969] show
that under mildrregularity conditions, the conjecture of (3.4) is valid. However
for many purposes, ‘including those to be discussed in section 4 below, the.re-
striction to kernels with'the same‘expectation is too.festrictive.

.(b) A modified jackknife estimate. To modify this restriction, let Xl,;..,Xn

be independent (not necessarily identically distributed) random variébles, and

assume

(3.6) E[ff*(X ,...,X )] =n u
: al (!m 01...am
where Ay a is a known constant, and u 1is an unknown parameter. Also,
1.-. ) m——— ) .



0 n,-1 - .0 . i -
let N = (m) : Ec N «e. , n=1lin n (which we assume exists, is finite and
n 1 "m -0 : L

and non-zero), and n =
. n-1 m n-1 1 "Bm oo

i n-1.-1 . . . ' c
= (7)) XC i nsl i where Zc 1  indicates the
sun is over all combinations of m integers (Bi,...,B;) chosen from

(1,...,i-1, i+1,...,n). Let

0 n,-1

Up= G Lo 40X, LX),

T 1 m

-y i _ m-1 ;1 . . .
U™ = (_7) ZC i f*(Xsl,...,Xel) .

n-1 m n-1 1 m
£x (KpoeesX) = ELEM(Xy,e o)X X i X, )Xomxy,en X =x ) |
c,Bl,. N -c 1 c 1 c Bl Bm—c 17 c
CC'(a a jé | B 3Y Y N
, 1 * e c 1 , o a8 o ’ m-c ’ ! 1 , LI BN ) , m- c
ov{f* X ,eu,X )£ N T A
Covi C;Bl"‘f’sm-c( al’ ’ ac)’ C3VyseeesY ( al’ qc) >

n-¢, .n-m, ,-1

4 =L C I )1 )
- PC(@y 0,0 ) m-c’ ‘m-¢ .. . .
1 c _ c’(al"'"ac)Bl"°"Bm-c’Yl’f"’Ym-c

where the sum is extended over all disjoint sets (Bl""’Bm-c)’ (Ylf'°'3Ym—c)

chosen from (1,...,n) excluding (al,;..,dc).' Let

) where this sum is over all combinations (al,..;,ac)

o, -1
S T () Z ¢ c

c(al,...,a

of ¢ integers chosen from (1,...,n). Then one can show that



O, _ m-1lem m, ,n-m
var () = G LoDy @ Gre) gg . Let
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where the sum is over all sets (81,...,Bm_1) chosen from the first n integers

excluding the integer v.

Now let
0 _ 0,0, ~i _ i i .
en - g(Un/Un), en_l = g(Un_l/nn_l)) 1= 1.,'...,!1 »
(3.8)
0=g() .

Then follow1ng (3 1), (3.2) and (3.3), we will be interested in the statistic
/n (e - e)/sﬂ, and conditions under which it is asymptotically standard normal.

First, the.fbllowing two lemmas will be helpful. o

Lemma 1. Let X,,...,X ©be independent random variables, and assume for any

I n
6§ >0, and 0 < A <o, E[f*(X_ ,...,X .)]2+6 < A, Then if ¢ + . as
_ al am ' 1,n 1
L _1 n a.s.
> 0<g <+ 2 =0 Zlchl(l)(x)) — 5
PROOF.  .First.note that
n 1.-2 ¢n S
E(Zy) = n " Gpyp) Zl -1 Lytiey, IPTL ORI

where Z(i) denotes the sum is over all combinations_(31,...,Bm_1) of m-1 R

integers chosen ffom (1,...,i-1, i+l,...,n) and all combinations (Y yeeesY, )
, . 1 m-1



of m-1 integers chosen from (1,...,i-1, i+1,...,h). However, since

E[f*(Xa ,...,Xa )]2+§ < A, one obtains

1 m

Bz = CDOD T T Iyt * 0D

n-m, n-1,-1
7 GG e TR

From theorem A, p. 241 of Lodve, the result now follows.
Lemma 2. Let xl,...,xn be independent random variables, and assume for some

§ >0 and some .0 <A <,

: 2+8
"“m‘ <A, O0<E lf*(xal,...,xa 3 <A

(3.9) 0 < |n,
‘ “m

1
for_all‘(al,...,am) »

4

(3.10) E IhI(v)(xvn3 cwforv=1l,..,n, and
Gan w50 Ry 0O PVIEDG B(h, () a ¥ =0 .
o > .
0.02 P 2

- n i i
If g > g asn>® 05y <= then (n-l) P ORI GRS

PROOF. Let

ST o on i G0 02 e
(3.12) T, = (p—l) zi=1 (U -(n,_,/n,) U )“, and since
i

E(U

n—l) = "ntl u, we may assume u =0 .

0 i, 0
Let a, = (nng -(n-1) nn_l)/nn, then
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(3.13)

-1 52wl - e (ap-1) 19 (ne1))?

. n . : .
m-) L 0l -ud? e 0 L -0 men)

+ X - product term.

It will be shown that the first term of‘(3.13) converges in probability to
‘m2 Ly the second term converges in probability to zerd,'ﬁnd hence by the Cauchy-
Schwarz inequality, the cross-product term converges to zero in probability.

Note that if ' : . .

n .
_ -1 1/2 0 i 42
(3.14)- - v =n"" J. . (mhy 5y X5) - (@-1))7 2 - v )
‘and E(Vn) + 0, this fact and lemma 1 suffice to show that the first term of
(3.13) converges in probability to m? Zy -

Let

) LT ol - o)?

(3.15) Sn

a-1) () ©p” - na)?

"7 Il (enm®) ] B0y oeneaX, ) ECK

(nfl) nl ¢ g +e X))

m 1 m
as in (21) of Arvesen [1969] where Xc indicates that the sum is over all

combinations (al;"”am)r of m integers from (1,.f.,p) and all combinations
(Bl,...,Bm) of m integérs from (1,...,n) having ekactly ¢ common members.

 But now, as in the expression immediately before (47) of Arvesen [1969]
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(3.16) CEGY =mie 40 @ =nlg +0 ay .

We are done With the first term of (3.13) if it can be shown that

(3.17) BIIR by BO W0 - Uil =g v 0 )

To this end, note that

0 ., i
Un - Un—l

1 ;
=™ T i B, Xd,..,X i)
" b 1 o o
- "n-1 1 m-1
v -1 n-1.-1 . )
AT - YT LA B (Xgi,..,X i) SRR
com m Cn-l Bl Bm _ | .

where ZD i indicates that the sum is over all combinations of m-1 integers
n- ' 3

1

(ai,...,amfl) chosen from (1,...,i-1, i+l,...,n). Hence

E Fhl(i)(xi)(ug" URS)
£ 08y Kb X))

_ m-1,-1 n,-1 * | ' i
(3.18) = (m_l) () E[(Z*if 1;31,...,8m_1(xi))(20nf' m

1

aeli-1oni-l o

n-1,-1 n,-

= () 0T YA Toay. ) '

_ m-1 m 1 1(1))81:"" m_l,Yl"f-:Ym_l

* - | N ' - .

where - Z#i denotes the sum is over all combinations of m-1 integers (B,...,8 ;)
chosen from (1,.g.,i-1, i+1,...,n), and all combinations of m-1 integers
(Yl""’Ym-l) chosen from (1,...,i-1, i+l,...,n) . Summing (3.18) over i, and

using (3.9) one obtains (3.17), and hence E(Un) + 0.
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It-remains to show that the second term of (3,135 convérges to zero in
probability. First note that by Hoeffding's t1948] U-statistic Central Limit

Theorem for the noﬁeidentically distributed case, one obtains

p
(3.19) o wH? — o.
§lso note that since Inal...aml <A for all (al,,..,uﬁ)
o n-1¢ . n-1  n-l,-1 . a0
lai -1 = -1 | () Xan g g QT - O™ Lo i ?e}...ell/'“n'

1 %] a n n-1

m-1

A

(a-DIQ TG A+ (hH - O hEh a0

0
nl"

A

2Am/ |n
. 0 —
Since n, converges to non-zero n,

| | . -1 ¢ n 2,2, .2 ,=2
(3.20) lim (n-1) Zi=1 (ai-l) <A (Zm) / n" .
nro
- Combining (3.19) and (3.20), the second term of (S.ISj_converges to zero in

probability, and the lemma follows.

Theorem 1. Let xl,...,xn be independent random variables, and assume that

(3.9), (3.10), and (3.11) hold. Let g bea functioﬁ‘défined on the real line,

which in a neighborhood of y has a bounded second derivative. Let 8, the jackknife-.
estimate of 0 = g(u) be as defined in (3.10) with 60 = Tg(Ug/ng). Then if

+clasn+w,0<';1<o'o,.

(3.21) 51’n
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1/2

the distribution of (0 - e)/(g'(u)(Var(Ug/ng)) ) is asymptotiéally nermal

with mean zero and variance one.

PROOF. Without loss of generality, let M = 0, and also let

n-1

Y = (m-l

Sy .o, G s .
3 ) ZD i .f (Xi, Xal,...,xal). Noting that

n-1 1 m
E(Yi) = Var(Yi) + (E(Yi))2 :-cl(i) +A+1 forn sufficiently large, the proof -
follows from that of theorem 10 of Arvesen [1969] until we expand terms in a

power series to obtain

6 - 8) = (ng(ug/ng) - @-n°t zizl g(Unil/nnil) - g(0))
(3.22) = [g(Ug/ng) - g(@] - (n—l)n'l[g'(*gfﬂ Ziﬁlcunflfﬂnfl-ug/”g)
n

n

+ Liny (Unfl/“nfl - Ug/ng)z_g"(ii)/Zl

where Ei lies between Untllnnil and Ug/ng. “First ndte.that

P

3.2 - 2wt m w01l w - B O — o

since ((ng)2 - (nnil)z)/(nnfi)z

=:(n2 - nnfl)(ng + nni‘l)/(nn,jl)2

2

<D 02+ 0t/ P)? by (3,200
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and (3.9) assures there is a 0 <M< = such that

0 i

i2 N | .
n_+.nn—1l/(nn-1) < M, and using lemma 2, (3.23) follows..:

In

Since 1lim ng =1 #°0, the second and third terms of (3.22) converge to
Copoe ' S ' .
zero.using the proof of Arvesen [1969] (note that the Cauchy-Schwarz inequality

handles the second term).

Theorem 2. Let X ,...,Xn' be independent random variablés, and assume thél'
“hypotheses of _Ath"eorem 1. Then
P

(3.24) " 2 ~n? o et m? .
‘ : " 0 .

where s% is given by (3.3). ‘
0 .

PROOF. The proof follows theorem 11 of Arvesen [1969]. However noté that:

s - (-1t P 6)2
o

-1 5% @ttt 1Y s im0

n i, i 0,0, ,
=1[(Un_1/nn_1-Un/nn)g ()

(n_ 1) Zi
-l ¢n o 0 o . )
-n Zj=1 (Unillnnfl - Un/nn) g'(*j)] :

(3.25)

a-DL2 1 e ©) + (unfl/ngfl;ug/ng)cg'(ri)fg'(o))f

-7 Ly /2 -0y g'(tj)lzv



= @0 L2 w092 @)
N AN TRV R AN T T R B -

O/ 2) g'(Tj)]z + X-product term

. i i 0
3 e . /
where T lles_bptw en Un_l/nn_1 and Un,n

=«

. Now from (3.22), and lemma 2,

’) . — !
the first term of (3.25) converges to m” cl(g'{O))z/(n)Z. The second term may

also be readily shown to converge to zero in probability; Hence the result
follows., | |

Combining theorems 1 and»Z, one obtains the result that Vﬁ(éue)/sﬁ is
asymptotically standard normal. In the original grouping N = nk, if 2 remaing
finiﬁe as N.+»w, theorem 7 of Arvesen [1969] can be readily extended to obtain
. convergence tb a  t distribution with n-1 dégreesqu freedom;' Again, in
what follows, we ﬁill assume k = 1, |
(c) Functions of several U-statistics. The generalizétion of theorems 1 and 2
to functions of several U-statistics is-straightforward; proceeding along the
lines of theorems 12 and 13 of Arvesen [1969]. First however, let us define
some‘notation; Let Xl,...,Xn be independent random.vectors of p components,
and U(l),...,U(q) be suchbthat |

vl - (1’»]"1)'1 I £ ) (X, seeesX, 3, jo=1,....q

j 1 m.
J n j

where as in (3.6), .
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Blf 0x, ,...x )1 =n w,
o 0. ...0
1 m, 1 m
j 3
1 () n-1,-1 PN
(G0 Rl S =, D)L d i i)
mJ c, 9 o i} Ch-1 61 'Bm i
J J
and M. " *a is known, ugJ) is unknqwﬁ. Let g be a,real-valued_function of

1 m,
q arguments dnd

‘9 = g(p(l),...,u(q)) s

(3.26) 00 = gD y@y,(@y

o= 80P/ D,y Dy @)

i

' 1. * (3 o

where Umij) = (;.1) 1 ZC i1 f(J)(XBi,...,XB i). Also, let the jackknife based
: n- m. A

J ' '

~

on eg be as defined in (3.1), (3.2) and (3.3). Let ci’él’j)" be as definé&
. X ) ? | .

in Arvesen [1969] immediately before theorem 12.
Theorem 3. Let Xl,...,xn be independent random vectors of p components.

~Assume that (3.9), (3.10), (3.11) and (3.25) hold for each

£ x5 =1 and that
122 /s s+005q, :

j
1 ,E'l’l) — clcl’l) >0 fori=1,...,q, and
R TPy

Let q be a real-valued function defined on RY, which in a neighborhood of

(u(l),...;u(q?) has bounded second partial derivatives._ Then
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7o ~ £ N0,1) as n |
n (6~ e)/s; —> N(0,1) as n — » .

PROOF. The proof is identical to theorems 12 and 13 of Arvesen [1969] with the

modifications of theorems 1 and 2 of the present paper.

4. An asymptotically robust test. The results of the previous section will now
be used fo obtain an asymptotically robust test of (2.2). Consider the model
specified in (Zfl):without thé normality assumption, but assuming moﬁents of
order at leasf four plus ¢ for any & > 0.

Temporarily iet us assume that we are on the bouﬁdary of HO as given in

: 2,2
(2.2), that is A, = oA/oe. Let

O.
Y,
-1
J.
L 7 _ -1 i _ -1
X = o Vel T Ly Yige vy = (800 T
i 2
Z‘J--l_(Yl_] Y1 )
. : _vn
i=1,...,n, W = 521 Y1 o
*(1) T v A2
f X X )Y=w w (Y -Y )%/2,
1 % 1% %1, %,
JC!
*2),y y_ v 1 T a2
£ (X“1)'- Lia1 (Y“1j Yal )" . Note
* - -1
E [f (1)(xa ’xa )] = Yo, "o (oi * °:(4ai ¥ Jaz)/z)

1 %2 1 %2
1
1

2 -
_ % Ya,"a CAO * (Ja

+ 32,
1 72 2

(3, -1) o2.- Thus if

*(2) .
E [£ ““Yx )]
| 1



e

=<

)

e wd)

(4.1)

E u®)

Also, note that

.

(4.2)

Hence letting

(2)

D7 L £ P, x )

a0, 1 %

= PN w0,

=W

it

-1 ¢vn- N a
=1 " Yi- o

n, -1 * '
O L £

J,
-1 ¢n i T 42
n Ly L 007,

n,-1 2 R §
(2) 0e za1<a2 walwaz (AO * (Ja;

-1
+J )/2)
1 %2

7" of [agO - L7 wdy + ZiZi(w’wi)wiJill/z

Woi/n ,

(N*-n)o:/n .

-1 1 -1
) wow (At (374 37N)/2)
2 algaz 0 e 0 Ty oy
vW/n ,
=-(N*-n)/n .

16
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MO

| S @ @
(4.3) . E g(u R u ) LI e ol

the hypothescs of.thgorem Sfﬁre satisfied as long asl‘d: _is non-zero and’
max (Jl,f..,Jn)iré@ains boundéd-as n -+ e, Note that (2}4) and (4.3) arec identical.
Finally, nbtéﬂthat under the assumption of normality'in (2.1), the
numerator and'denpminator of (4.3) are independent rapdém'variables, each dis-
tributed as a cénstant times a chi-square random variable. This was shown by
Spjétvoll. Thus, use of the jéckknife in conjunctionfwifh the log transformation

‘is suggested, and}hénce let

o . pm

o . L MOFNO I
_Ndfe;that the-vériances of U(l), U(z) g0 to zero as ﬁ,f o .aS'shown by

Tukey [1957]. Horéover, fdr oi,ld: arbitrary, follpwing_Tukey

e 0 e B e 5 e
C@s | -

e Wi s 0P - I WD g:/‘.(?x'(n-l)) ,

‘and hence under H .U(l)i ¢ouv9rg§;~iﬁaprobability,toféjguantity gteater.thanrl,~ o

Ly _ .
'f-quln,  on.the=bouhdaryjof 'Ho and H,, p@® convergesfin probability to
»vi_WO:/n, and in the interior of Hy» U(l); convergéds in §r§bability to a quantity.

- :1¢ss-fhan  ugz/ﬁ.lﬂthus;_;pplyihgv(S.ZG), one'obtaihs.dﬁ-asympfqtigally robust

and unbiased test of (2.2) by rejecting Hy at the a-level if
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(4.6) o A%z,

where Za .is the upper a -pﬁint of a standard normal distribution.

Finally, in practice (and to be conservative), one_might replace the.
cutoff point in (4.6) by the uppér a point of a t tdistribution with (n-l)'
degrees of freedcm. This point will-be discussed again in section 6.

Unfortunaieiy, it is not possible to readily use (4.6) to 6btain a lower
confidence bound for A since the cutoff value 8 of (2.2) appears in the

original statistic 92(1); However, note that in testing

Hy: A <4
. : *
. HA' A> A

at the a-level using the proposed jackknife technique, if

* » - L3 : 3 . . .
AAcc = .{A ; HO is accepted}, and A = inf AAcc’ then éL < A forms an asymptot;c
~ lower (1-a) x 100% confidence bound for A. Spjgtvoll's proposed confidence
interval also has this unpleasant property. Note this technique can be
readily used to obtain a two-sided confidence interval, or an upper confidence

bound for A.
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5. Asymptotic efficiency results. Section 4 of this paper suggésts that
HO: h f_AO be tested by applying the jackknife procedure to the logarithm of
g/
Spjgtvoll's F ctathtlc (F = (2) @) in the notation of section 4) Section
U /n '
3(c) of Arvesen [1969] proposed the use of the jackknife with the statistic

H = MSA/MSE, where

~ - -1 ¢n -1 en 2
MSA = (n-1) zi=1 (Y; -n 1= Yy )
MSE =n ' TP -7t ZJi (Y. .-Y, )2
. i=1 i j=1 “'ij i.t ¢
-1 i
and Yi = Ji j=1 Yij‘ In this section we find the Pitman ARE of F versus H

‘when all effects are assumed to be normally distributed.  The log transformation
and jackknifing do not affect the ARE, so the result holds for the comparison 6f
tests based on the jackknifed versions of log F and log H respectively (these
tests were used in the Monte Ca:lo study discussed in thevnext sectipn).

Recalling that F is the ratio of independent randomzvariabies, each distri-
buted as a constant times a x2 vériable (in particular; for 4 = AO,

F ~n Fn 1. N* n), and using (4.5), we readily find that the Pitman efficacy of F is
-1, N*- _

i
|

lin(m-1)"2w - 1, wirw)®

(5.1) _ | n —
: lim 2J/(J - 1)

= _ -1y
where W, = J. /(A J. +1) W= i= 1 and J = P i=1 qi'

Ignoring ferms of order n'1 and smaller, EGH)= A+ j, where

-_—ln -1
= n zi:l J;. Also
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var{MSA) = 202[(n-1)-1(A + 3)2 + (1'1-2)11'1-(n-1)-2 Z?=1(J£l - 3)2]',

.4 -2t -1
var (MSE) = 20, n zi:l(Ji'}) » and

cov({l4SA, MSE) = O (Tukey [1957]). Hence, ignoring terms of order n'1 and smaller,

; %2 -1 -1 -1 tn -1 5.2
'n var(H)=.2[(A +‘3) (1 + n zi=1(Ji-l) )_+ n Zi___l(Ji -N7] .
The Pitman efficacy of H 1is therefore

(5.2 n/1im 2008y + D2+t B0 en Pt - Y

If all J; =J, both (5.1) and (5.2) reduce to nJ(J-1)/2(4J+1)°, and

- the Pitman ARE of F versus H is?l. If the Ji are not all equal
(and lim n"1 22=1(J;1 - 3)2 > 0), then the ARE is > 1. This can be seen by
noting that

n 2

-2 iy 2 %12 -1 4y-l
(-7 - I Wity + Ha e BT 007
ARE > 1im '
J/@-1)
-1 5n -1,-1) 2 -1 vn 1,-2 -1 ¢n -1,-1,-2 } 2
- 1im | Lizy (8o * 3307 n-n Ly (8H0g )T T Fi o (agr3g ) )
- . -1 vn -1.-1 ' n-1 ' '
(B + 1" Lioy 93) o

-1 ¢n -1
1+n L 0D

. -1 tn -1
5 R S CU VR JRELS §)

The first and third factors of this expfession are > 1 by Jensen's inequality,
and the limit of the second factor is 1, since the Ji are assumed to be
boUndeq. Suppose that the Ji have values 2, 3, and 4 in equal proportions, and °

that AO = 1 (which is the case in the Monte Carlo simulation of section 6). Then’

the ARE of F vs. H is 1.1.
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6. Monte Carlo simulation. To _obtain some information about thé small samplé
behavior of the teéts discussed in the preceding sections, a Monte Carlo simu-
lation study was made. The pfogfam was run on the CDC6500 at Purdue University
using procedures described by Rubin [1971]. The model selected to test the

jackknife procedure was:

(6.1) Y..=a, +e,.,i=1,...,15, 3§ =1,...,J. ,

Jpm =g =2, 0= o= 0023, 0 = .= =4,

and the {ai}, {eij} are_mutually independent random variables witﬂbmean'zero,
variance oi, 02 'fespectively. As in Arvesen and Schmitz [1870], three dis—
tributions were considered for the {ai},'{eij]: both sets normal random'variablesf
both sets double'exponéntial random variables (kurtﬁsis of_3), and both §ets‘unim
form‘randdm variablés (kurtosis of -1.2). | |

The Monte Carlo study compares thé empirical pdwef funétions of the

Spjftvoll F test to the jackknife procedure in testing -

: 2,2
(6.2) , Ho. A= oA/oe <lvs.8>1.

The jackknife was used with

~

' 3 M, ay
(6.3) - 6?5(1) = log ( 5T57§:T7T ) whgre

U(l), n(l); i = 1,2 are as given in section 4, and with
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6.4) ,egs (2) = log (MSA/MSE) where

13-l ¢ n -
LSO R A A D ML A L

. J. '
cp = o1 n -1 ¢71 2
MSE = n =1 J5-1) j=1 (Yij-v.,) ,

1

end Y,. = g1 Ji Y
i i Lj=1 "ij°-

Of course n = 15, as sfated above. In terms of the decompo.ition N = nk, -
k =1 for this study. |

There wereIIOOO sets of {ai}, {eij} generated_accor&ing to the threc dis- .it:%
tributions. They were first generated with A =1, and then scaled so that |
A=.5,1.5, 2.5, 4,6, 9. Hence 180,000 pseqdo—randomfnumbers were generated
‘in all., As mentidned ih section 4, thefe is some confﬁsion as to whether the
t-1 distribution'(tl4 in th?s cese),or fhe standard nermai should be used in
pracficevwith moderate samples. The latter seems to be preferable for reasonable
significance levels as the results in Taele 1 demonstrate. Results are given
separately‘for @ = .10, @ = .05, a = .01. Finally, J{é?s(l)) J(égs(Z)).denotes
the jackknife proeedure using'(6;3) and (6.4) respectively, and they are used
‘either with the t14v distribution (w/t) or with the sfendard normal diseribu-

tion (w/z) to obtain critical values.
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TABLE 1

Values of the Monte Carlo Power Function for Testing (6.2)

.

_ 2,2 - - o
A= oA/oe | .5 1.0 1.5 2.5 4 6 9

‘Normal distribution

a = ,10
Spjftvoll F test  .010  .109 .305 631 .889 977 995
367 (1)) /1) .009 .091 .276 595 - .852 959 .90
I @)Wty - .012 .093 280  .569  .833 .952 985
J(é?s(l))(w/z) .o .109 .300 .619 869 .966 .993
363, (2)) (#/z) .013 109 .299 .585 844 956 .986
a = .05
' Spjgtvoll F test  .001  .053 184 .516 813 - .048 .990
3 (63 (1)) (/1) | .001  ,039 - .154 449 743 913 .980
JE (@) W/r) 002 .043 147 - 433 .706 885 .970
J(égs(l))(w/z) .03 .06  .178 488 775 .927 .982
300 ) w/z) . .004 - 052 181 471 .739 906 .974
a = ,01
Spj#tvoll F Test = .000 .006 .051 282 .600 .849  .965
383 (1)) w/t) 000 008 .041 91 457 707 .888
369, (2)) (w/t) 000 .009 .038 185 .43 664 .837
'J(égs(l))(w/z) .000 .015 066 272 . .550 788 .927

3(5?5(2))(w/z) | .000°  .014  .064  .264 - .532 743 .906



TABLE 1 contiqped

1.0 1.5

2.5

Double exponential distribution

a = ,10 .
Spjdtvoll F test_‘ .023
J6T ()Y w/E) . .012
383 (2)) (w/t) .018.
J(égs(l))(w/z) '". .016
IO ()W) .02
a = ,05

- Spjédtvoll F.test.v .012
.J(égs(l))(w/t) .004
J(e?s(Z))(w/t)' .006
J(6?5(1))(w/z) | .007
J(é?s(z))(y/z) - .011
a = ,01

Spjdtvoll F test . .002
I N M/r) 000
J(ags(Z))(w/t) . .000
J(é?s(l))(w/z) .000

J(é?s(z))(w/z) .001

™

.143 .300
092 .199
.088 .210
.100 .220
.093 .229
.084 .219
045  .108
046  .107
.055 .128
057 .135
031 .094
.010  .038
012 - .032
.018 .055
.020  .052

.559

.430

.437.

.464

.466

461

.289

.297

.330

.331

,287 -
" .101
.100

.154

.149

.799
.681

.668

695

.683

. .725

536

.527

574

.566

522

.248
.257
.320

.335

.916
.831

'826
.843

.838

.861
.718
.713
.749

.748

.763
433
.424
.536

.525

977
.934
.928 .

.946

.939

058
868
.860
.886

.877

. 895

.617
.608
712

.703



@ = .10
Spigtvoll T test
363, (1)) (/1)
J(63, (2)) (w/t)
3(635 (1) (/2)

3 (635 (2)) (/)

a = ;05

- Spjdtvoll F test
I (695 (1)) (w/1)
363, (2)) (/1)
3895 (1)) (w/2)

30695 (23) /2

a= .01
Spjgtvoll F.test
3635 (1) (w/t)
3 (095 (2)) (w/t)
3005 (1)) (w/2)

I (875 (2)) W/2)

.005

.005

.007 -

.006

.008

.003
.004

.004

.004

. .005

.001

+.000

.000
.002

.001

TABLE 1 continued

1.0

Uniform distribution

.060
.074
.084
.088

.097

.023
.026
.031
.040

.044

.004
.005
.006
.010

.009

1.5

.230

.277
.279
.299

.299

©.161

161

.190

.021

.036

1,042

.066

.067

2.5

.672
.728
.693
.749

719

.519
.572

.546

.612

.584

.201

.280

.251"
- .361

.338"

.939

.952

.930

.956

..934

.881

.892

- .853

.916

.882

.655
676
.620
.760

722

993

.994

.989 .

.995

.992

.982

.983
.976
.986

.980

0917
.898
.860

.947

917

Qo

.000
.998
.998
.999

.999

.999
.997
.996
.998

.997

.987
.977
976
.990

.984
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Examination of Table I produces several interesting results.

(i.) The definite non-robustness of the significance level of the Spjéevoll
F test is readily_apparent. Actually comparison with an even more leptokuriic
distribution then the double expomential could further emphasize this factc

(ii.) It was felt that the jackknife would workvwell at a = .10,
giving poorer results at o = .01. Actually, at a = ,10, tﬁe jackknife using
J(éls(l))(w/z) is an excellent competitor to the Spj¢cvoll F test even if the
data are normal, and gives a more appropriate empirical signi€icance level even
if the data are double exponential or uniform. ﬂ

(111.) At o = .10, J(els(l)) appears to be sllghtly more powerful than
J(é?s(w))' using either t. or 2z critical values. Of_course this is also

essentially shown by Spjgtvoll and in section 5.

(iv.) At o = .10, the use of 2z critical values appear to be recommended;,
as t critical values are too conservative. Note‘that et a = .01, t wvalues
appear to be recommended but then the power of the Jackknlfe procedure is too
low to recommend 1t as a competitor to Spjgtvoll's test of course, a larger
sample size would correct this situation. Thus there appears to be an interest-

ing question as to the connection between sample size and the general asymptotlc

results.

In conclusion, it appears that if the jackknife works well, it should be
used mith J(Sgtl))(w/z). A researcher will have to be careful to see that n
is large enough to use the normal approximation. In the Monte Carlo study given,
for n =15, a = .10 results are excellent, o =‘.05 results are good, a= .01

results are poor.
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