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1. Introduction

Research in the area of order statistics has been steadily and
rapidly growing especially during the last two decades. The extensive
role of order statistics in several areas of statistical inference has
made it imperative and useful to gather these results and present them
in varied manner to suit diverse interests. The present paper is an

instance of such an attempt.

Historically, formal investigation in the sampling theory 6f order
statistics dates back to 1902 when Karl Pearson solved the problem of
findihg the mean of the difference between the rth and thé (r+1)th
order statistics in a sample of n observations from a continuous
population. Tippett (1925) found the mean of the sample range and
tabulated for certain sample sizes ranging from 3 to 1000, the cumulative
distribution function (cdf) of the largest order statistic in a sample
from a standard normal population. Asymptotic results were first obtained
by Fisher and Tippett (1928), who determined under certain regularity
conditions the limiting distributions of the largest and the smallest
order statistics as the sampie size increases indefinitely by a method
of functional equations. These early developments and subsequent
research over a period of nearly a quarter of a century have been
nicelybsummarized by Wilks (1948) in a survey paper. Since then, a
huge volume of research has been accomplished in this field dealing with
sgveral aspects of the problems involving order statistics. Besides
the basic distribution theory and limit laws, attention has been focussed

by several authors on problems involving order statistics in the theory



of estimation and testing of hypotheses and in multiple decision and
multiple comparison procedures. Many of these results are embodied in
books and monographs; mention should be made of Gumbel (1958), Sarhan

and Greenberg (1962), Miller (1966) and David (1970).

The modest objective of the present authors is to state some of the
basic results ip the thoery of order statistics, describe the trend of
the work done in certain areas by referring to what might be called 'land
mark' papers and indicate some of the recent results. 1In doing so,
certain areas where order statistics play an important role have not
been considered with no reflection on the nature of their importance in
applications; for example, multiple comparison problems and slippage tests.
A few topics have been treated to s very limited extent. The basic
theory (Section 2), results concerning moments and inequalities (Section 3)
and problems concerning estimation and hypothesez testlng (Section 7)
come under this categor&. Section 4 discusses some important asymptotic
results relating to the papers of Gnedenko (1943), Smirnov (1949), Rényi
(1953), Berman (1962), Pyke (1965) and Kiefer (1970a). Applications of
combinatorial methods in the general diétribution theory and fluctuation
theory have been described in Sections 5 and 6. These results are
mainly concerned with the applications of the ballot lemma and its
generalizations and the ﬁse of the equivalence principle proved by
Anderson (1953). The last section discusses the role of order statistics
in the subset selection problems and the algebraic structure involved

in identification problems.



2. Basic Distribution Theory

Let,xl, Xz,..., Xh be independent and identically distributed
random variables each having an absolutely continuous distribution
function F(x) and the corresponding density function f(x). Let the

ordered variables be denoted by
(2.1) ‘ X(1) < Xg) < +ee < Xny -

If the situation demands more clarity, X(r) will be denoted by Xr n
b
It is well-known that fr(x) and Fr(x), namely, the density and the cdf

of X(r) are given by
(2.2) £.x) = r(2) FlHx) [1-F(x)"Te(x)

and

n
) @ Feo [1reor

i=r

(2.3) F_(x)

IF(x)(r, ﬁ-r#l) :

where Ip(a,b) is the incomplete beta function defined by

T P o, b-1
(2.4) I (a,0) = ﬂé% J'o 21 (1-¢)"as,

a,b>0,0<p<1.

The joint density functi » i
J ity ction fr’s(x,y) of X(r) and X(s) (L<r<s<n) is

given by



independent and exponentially distributed with cdf = l-e'x(x > 0).

An important and very useful fact when dealing with order statistics
is that they form a Markov process. »To be precise, [X(r): 1<r< n}
is a non-homogeneous discrete-parameter, real-valued Markov process
whose initial measure is Fl(x) = l.- [1-F(x)]" and whose transition
distribution function P{X(r+l) < xlx(r) = y} is the distribution of
the minimum of (n-r) independent observations on the distribution f

truncated at y, that is,

(2.11) P[x(r+l)_5.x|x(i) =y} =1- tl-F(i)]n'r [1-F(y)]™7, x>y .

This Markov property was first pointed out by Kolmogorov (1933). Further

. -W r
it is clear from (2.10) that Y(r)/Y(r"‘l) = e ntl-r s, T = l,..., n are

all independent [Y(n+1) = 1]. Hence [Y(r)/Y(r+1)]r: r=1,..., n, are

independent and uniformly distributed on (0,1).

Now, the joint density of X(l)""’ X(n) is given by

]
n! f(xl)...f(xn) s Xy <%, < <X,

(2.12) f(xl,..., xn)

0 otherwise.
Define
2. = < =
(2.13) Dy = X3 X(po1y» T = 2500y m
Then D »+++,D_are called the spacing. For some distributions we may define
2! n

X(O) and X(n+1) suitably depending on F and let D1=X and Dn

@ ¥ +17%m+1) Xy

For example, if F is the uniform distribution on (0,1), then X, .=0 and X =1.

(0) (n+1)



M x>0, we will just define X = O. Thus, depending on

(0)
the particular ¥, the number of spacings considered could be different.

If F(x) = e

For the general spacing we see that the joint density'of D2,..., Dn is

given by
f @ n
n! J r§2 f(x+d2+...+dr)dx, dpseve, d >0,
- .
(2.14) ;2 (d2,..., dn) =
0 otherwise.
\
and the density of Dr is
® r-2 ’ n-r
_ n!
(2.15) fDr(y) = T J () [1-F(xy)] £(x)E(xty Jax.
- -]

In the case of ﬁhe'exﬁﬁnential spac%ngs Dl""’ Dn are independent
exponential random variables with parameters An, A(n-1),..., A.
Equivalently, the normalized spacings A(n-r+l)Dr, 1<r<n, are
independent and identically distributed exponentially with mean unity.
The exponential spacings can be looked upon as holding times of a
continuous parameter Markov process. The first unified approach to the
distribution theory of uniform spacings is given by Darling (1953). A
good discussion of spacings can be found in Pyke (1965). The use of

spacings in tests of hypotheses is discussed in a subsequent section.



3. Moments of Order Statistics and Bounds

Some important results are concerned with moments of order statistics
from specific distributions, particularly, the normal distfibutiéh, and
bounds for the moments under certain assumptionson the parent distribution.
When f(x) is symmetfic about the origin, we have

(3.1) | E(X_ ) = -E(X

r,n’ " n-r+1,n)
and
(3.2) . Cov(xr’n xs’n) = C°V(Xn-s+1,n’ xn_r+1,n)

In the case of the standard normal distriﬁution, the means, variances and
covariances have been calculated for different ranges of values of n by
Sarhan and Greenberg (1956), Teichroew (1956) and Harter (1961a). Bose and
Gupta (1959) have discussed the evaluation of the exact moments of order

statistics in the normal case. By defining

o]

2
(3.3) 1(a) = f i [0(ax)]™ e™* dx

they have obtained the recurrence relation

amel DAL @)
(3.4) I, = rZ1 :r 2m-r+l

which is used to obtain the moments up to n = 5.
Moments of order statistics from other continuous distributions have been
considered by several authors and tables are available to varying'extents.

Some of the distributions considered are uniform [Hastings et al (1947)], gamma



[Gupta (1960,1962), Breiter and Krishnaiah (1968)], double exponential
[Govindarajulu (1966)], logistic [Gupta and Shah (1965), Shah (1966),
Gupta et al (1967)] and Cauchy [Barnett (1966)]. As for the discrete dis-
tributions, the mean and variance of the smaller of two binomial variates
are considered by Craig (1962) and Shah (1966a). Gupta and Panchapakesan
(1967) have discussed»order statistics érising out of binomial population
and have tabulated the first two moment§ of the largest and the smallest of
M independent and identical binomial random variables, each denoting the
number of successes in N independent trials with ‘p as the probability of
a success, for N = 1(1)20, M = 1(1)10 and p = .05(.05).50.

In some cases we are interested in inequalities concerning the moments
of order statistics from distributions F and G which are partially ordered
in a certainsense in the space of probability distributions. Van Zwet (1964)
considers convex ordered and s-ordered distributions. Some special cases of
partial ordering and some properties of order statistics from partially ordered

distributions are of interest in selection problems. Suppose that X.,...,X

n
and Yl,...,Yn are two: independent random samples from continuous dis-
tributions F and G respectively. Let Xr n and Yr n (r=1,...,n) denote

3 2

the order statistics based on each of the two sets of observations. If F is
star-shaped with respect to G, that is, F(0) = G(0) = 0 and. G-lF(x)/x is
increasing in x > 0, then it has been shown by Barlow and Gupta (1969) that

is star-shaped with respect to that of Yr o Fur-

the distribution of X
r,n ’

»

ther, for 0 <c <1,

(3.5) P{max(xn/xl,.'..,xn/xn_l) > c} > Pmax(Y_/Y;,...,Y /Y ) > ¢},



M

a resulf which is used toobtain a lowerbound on the probability of a correct
selection. Comparisons between linear combinations of order statistics from

F and G have been studied by Barlow and Proschan (1966), where (a) F is
star-shaped w.r.t. G and (b) F is convex-ordered w.r.t. G. It is known that (b)
implies (a). These :esults have applications in life testing where the'under-
lying distribution has monotone failure rate or monotone failure rate on the
average. For illﬁstrating the nature of the results, we state the following

theorem proved by Barlow and Proschan.

Theorem 3.1. Let F be star-shaped w.r.t. G. Then E Xr n/E Yr n is (i) de-

creasing in r, (ii) increasing in n, and (iii) E X -/EY is de-
n-r,n n-r,n

creasing in n.
-X
If G(x)=1-e ©, x > 0, then F is an IFRA (increasing failure rate on

the average) distribution and from the above theorem it follows that

is decreasing in r and increasing in n.

Theorem 3.1 can also be used to obtain bounds on E Xr e If we assume
3

that F and G have the same mean 6, we obtain

(3.6) 8EY, /EY, <EX.  <OEY /E Y] porel

Barlow and Proschan have also obtained a number of interesting special results

when G is exponential and G-1 F(x) 1is convex.
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Theorem 4.4, If lim

=l L

=qgq, 0<qg<1, as n tends to infinity, then, for

- sufficiently large n,-

(a) F(E(xr n)) exists and

G"( _ .
n+l

2k+l . _ ,
(b) “'2k+1(xy;n)/° (Xr,r) exists (k = 1,2,....) and

/02k+l(x )

N

= g (1) (i (r,m)) K2

, G"(==) 1
R ﬁ"“ o,
n+1
E(X, ) -m(X_ )
(c) ( r’g(xr,zg £.0 exists and
B0 ) -0 ) p
(4.6) | o(X, o) 3/r (arior) (mea)

n+l-r)73 G"§r§n+l; -3
%{: (n+l)3 G'(r/n+l +o(n ).

The result for E(Xr n) is well-known [ see David and Johnson (1954)];
bl
the result for F(E(Xr n)) derived from it closely resembles the corresponding
. > .
expression given by Blom (1958), who obtains his result wnder slightly

different conditions.

One of the important areas where fruitful research has been accomplished
is the theory of extreme order statistics. Contributions have been made
in this area nearly‘ over a period of five decades by several authors
among whom notably are Fisher and Tippett (1928), Gumbel (1958, 1962)

and Gnedenko (1943).. The important problem is to find £, the family of



13

all possible (nondegenerate) limit distributions for sequences of the

form b;l(xk,n- ah)f where a  and bn(bn > 0) are constants.For k = n, a
complete solution with specification of domains of attraction was given
by Gnedenko (1943). His results were generalized by Smirnov (1949) who

obtained the following theorem.

Theorem 4.5. The family £k is given by

0 x<0,a>0
A§k)(x) = ¢
| [t
x¥
{ -t n-k
r___y J' dt v x<0,a>0
(4.7) Aék_)(x) = ¢ (=x)*
L 0 x>0, >0
Agk)(x) - T—y J‘ -t n-k at | < x <o
e

Bermen (1962) shows that the limiting distribution for the meximal order
statistic of a random number of independent indentically distributed
random variables under certain general conditions is a mixture of

distributions of a%f

Consider a sequence consisting of the sets of random variables

x_n,‘l,..., X n,N 3 ‘n = 1,2,..... Assume that E(xn,k) = 0, E(Xﬁ’k) < = and

the random variables in any set are independent.
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Let
Fn’k(x) = P{Xn,k< x} ,
k
(4.8) Sn,k(x)- = z xn,\) >
v=1 N
n
2 <
B = V(Sn,N ) = Z. V(xn,k) *
n 1
Suppose that
N
3 2
: . 1 . '
(4.9) lim = ) fx an,k(x) =0, ¢e>0.
T Pn kel [x|>eB

Under the above conditions the following results have been obtained by

Rényi (1953).

Theorem L4.6.

lim P{max
o l_§1~'~~_<_Nn

(a)

(b)

()

lim

[ X

2
«/%- I et /2 gt » x>0
. o]
S,k < B} = 4
L 0 s x<0 .
g I k- (2k+1)21f2/8x2
—? (-1)" e , X > 0,
"kfo (2k+1)
]l
ISn,k| < XBn} -
L 0 »x < 0.
- min S max S < xB_}
ey, T iy ME n
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- (2k+1) 202 /2 (x4y)
e
0

Sin[ (2k+1)mx/x+y]
2k+1

, x>0and y >0,

als
Ilo~18

k

0 » X < 0ory<0.

2 . . _
(d) Let An = V(Sn M ) with 1 f-Mn < Nn and 1lim An/Bn—A(0§}<l). Then

> n n--o
limP{  max |S_.| <y B}
N> Mn <k E.Nn n,k n
' . - (2k+1) %02 /8y? . |
4 X . k e 2 -u“/2
= 1" (1/= [ e du+p),y>0,
‘"k=0 2k+1 “Y/A k
= <
0 » ¥y 20,
~ R .
2 2(2k+1)1r/2
- 2 2.2 2
22 e y/ Aut/2y
where pp = —— f e sin u du.
27 y 0

If y = x, (c) reduces to (b). In the special case Mn=l (i.e; for A=0),
(d) is identical with (b). For the case where all the variables Xn X have
the same distribution, the parts (a) and (b) were proved by Erdos and Kac

(1946).

The classical theory of the limiting distributioﬁ of the maximum in
sequences of independent random variables has been generalized in two
directions, namely, (1) when the random variables are exchangeable and
(2) when the number of random variables considered in the determination

of the maximum is itself a random variable Nn’ depending on a non-negative
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integer-valued parameter n. Let {Xh:n > 1} be a sequence of exchangeable
“random varialbes defined on (Q,G,P), i.e., the joint df denoted by

Gm(x .y xm) for each m is given according to the fundamental theorem

l,.'
of de Finetti (See Loéve (1960) p. 365) by

C(110) G (xpseees X)) = | G(xp)enuGy (%) aP(w)
Q

where for fixed x, Gm(x) is a random variable and for each w ¢ 9, Gw(x) is

a df in x. For any sequence X;,..., X P[X(n) < x} = EGg(x). The

n)

problem is to find sequences {an] and {bn] and a df L(x) such that

a > 0 and
n
. -1 , n
(4.11) I&g P{an (x(n)- bn) < x} = 1:'Lr‘1£°1 EGw(anx+bn?
= L(x)

for all x ¢ CL’

The following results.are due to Berman (1962).

the set of continuity points of L. Let Ai(x)=A£n)(x),i=l,2,3.

Theorem 4.7. Suppose that there exists a sequence of positive numbers

{ah} and a df F(x) in the domain of attraction of Al(x)such that lim Fn(anx)=
n->©

Al(x). Then (a) there exists a nondegenerate df L(x) such that for all x ¢ CL

lim P{a”'X < x} = lim BG(a_x) = L(x)
e (n) o
iff there exists a df A(y) such that
log Gw(u)
lim P{ms y} = A(y), for all y ¢ CA

b

where A(y) satisfies the conditions

A(®) - A(0-) =1 ; A(0O+) - A(0-) < 1.
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(b) L(x) is necessarily of the form

~

L(x) = <

J e aw x > 0.
0]

Berman has obtained similar results for the case where we have a sequence
of positive numbers {an} and a real m:.mber-xo and a df F(x) in

the domain of attraction of A,(x) such that lim F'(a _x+x ) = A, (x)
2 — n o 2

and for the case where there exist sequences {an} and {bn} (an> 0) and

df - F(x) in the domain of attraction of A.(x) such that lim Fn(a. x+b_) =
3 n" n
_ ‘ o
A3(x). The limiting distribution L(x) is a mixture of A2(x) and A3(x) ,

in each case, respectively.

Berman has also investigated the case of random number of random
variables. Let {Xn:nzl} be a sequence of independent random variables
with common df F(x) which is in the doma.in of attraction of A(x), oneof the three
extreme value df'é,Ai (x),i=1,2,3.Let {Nn’“il} be a sequence of nonnegative,
interger-valued random variables distributed independently of the sequence
[Xn}. Let Nn have :hedistribution given by P{Nn=k}=pn (k),k>0, where for

fixed n, pn(k)ZO, y pn(k) = 1. Define a sequence of random variables

k=0
wn as follows.
- N =0 ,
(4.12) W= > 'n
X(Nn) » N >0

Then the df of"wn is
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(4.13) P(W_ < x} = zpn(k) F(x) .
k=0

This df is not necessarily proper:

(b.1k) lim P{Wn < x} = pn(O) > 0.
X>=0

Suppose Nn = ® ip proba.bility as n - @, Then we have the following

theorem.

Theorem 4.8. There exists a df L(x) such that

). By(k) F(axem )
k=0

lim P{a.;l(wn- bn) < x} = lim
I e

L(x), for all x ¢ Cp,

iff there exists a df A(y) such that
lim P{n'an <yl= A(y) forallyec
e

where A(y) satisfies the conditions
(1) A(=) -A(0-) =1; A(0+) - A(0-) < 1

or (ii) A(o+) - A(0-)

0; 0 < A(») - A(0-) <1

or (iii) A(0+) = A(0-) = 0; A(=) - A(0-) = 1,

according as A(x) is Al(x) or A2(x) or A3(x). Further L(x) is a mixture

of the appropriate A(x) in each case..

if {Nn} and {Xn} are not necessarily independent of each other
and if there exists a positive number ¢ such that n-an - ¢ in prdbability,

then it has been shown that, for every X,

(35)  1m Plaj (W= b)) < x} = 1(x)

where 'Ac(x) is of the same type as A(x).
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. Nh
In the above set-up, let e N in probability where N is a random
- variable satisfying P{N < 0} = 0. It is known that, if E(Xl) = 0,
V(Xl) =1, then as n = =

(4.16) P{ j e” for all x

-§1|~

S
e
/T,

This result was broved by Anscombe (1952) in the case where N is constant
with probability '1.. Renyi (1960) extended Anscombe's result to discrete
random variables N. Finally, Blum, Hanson and Rosenblatt (1963) and
Mogyoré6di t1962),independently obtained a proof for arbitrary positive

N. Barndorff-Neilson (1964) proves the following result for th).

Theorem 4.9. Let [an] and {bn} be sequences of constants with a >0

for all n and A be a nondegenerate df The following three statements

are equivalent.

(1) P{X < a X + b } > A(x) for all x e C
(m)
(ii) P{X(Nn) < ay

n

A

[}

(iii) p{x(N y Sax b} fO[A(x)]SdP[N < s], for all x ¢ C,

n
as n > «,
The above theorem was independently discovered about the same time by

Lamperti. As is well-known, if (i) holds, then A is one of the three extreme
value distributions Ai,i=1,2,3. Equivalence of (i) and (iii) when N is constant
with probability 1 is the result of Berman (1964).

For a study of X(k) as a stochastic process with emphasis on limit theorems,
the reader is referred to Dwass (1964) and Lamperti (1964). Dwass discusses the
three possible extremal processes and Lamperti studies the joint limiting

behavior of X(n) and x(n-l) considered as a two-dimensional process. Limit

laws for maxima of a sequence of random variables defined



on a Markov Chain have been stuaied by Fabens and Neuts (19/U), and

20
Resnick and Neuts (1970).

Another area of research under asymptotic results is the theory of

spacings. Let us first consider n independent observations from a

continuous distribution F(x). Define

(2.17) _ | U = F(xr

r,n ,n)

Then U, (r=1,..., n) are order statistics from the wniform distribution
2 ’ .
on (0,1). For the purpose of notational convenience, let us define

slightly modified spacings

(4.18) Do = (e )(U, -0 ) )

Let {gn: n > 1} be a sequence of real Borel-measurable functions and

consider the random variable

qfl
(4.19) G, = Z, &, (D'nr) .
r=1

Many of the tests based on spacings considered in the literature are of this form.
As pointed out by Pyke (1965), prior to 1953 there was no.unified
approach to the problem of finding the limiting df of a statistic
. of the form (4.19). Earlier the asymptotic normality of G, was obtained
for special forms of gn(x) by Moran (1947), Sherman (1950) and Kimball (1950)
using different methods. It was Darling (1953) who provided the first
general method of deriving limit theorems for Gn by applying the method
of steepest deécent to a simple formula for the characteristic function
of G . Le Cam (1958) gave a more easily applied general approach to this
- problem. Suppose'gn is defined on [0,») and {Yr: r>1} is a sequenge. of
1 -
n 2 2,(Yr-l)'

n+l r=1

) g, (%,)

r=1

independent exponential random variables with mean 1. Set Sn

Then the df of Gn is the same as the conditional df of'Jn

given that Sn = 0. The approach of Le Cam is to use information about
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the joint limiting behavior of (Jn, Sn) to derive the desifed conditional
. limiting distribution of Jn, given Sn = 0. For the details of this
approach and othef results concerning the weak convergence of the
empirical distribution function for uniform spacings and limit théorems

for functions of general spacings, one may refer to Pyke (1965).

In conclusion of this section we briefly state some recent large
sample results concerning sample quantiles and the deviation between
the sample quantile process and the sample df;, It is fitting here to
mention some of the remarks made by ﬁeiss (1970) and Kiefer (1970b).
In deriving the asymptotic distribution of a set of sample quantiles,
the usual approach is to study the joint probability density function
as the sample size increases. This technique gets complicated enough
when each element of the sample is itself a k-diménsional random variable
and we seek the joint asymptotic distribution of a quantile of the first
co-ordinates in the sample, a quantile of the second co-ordinates in
the sample,...., a quantile of the k-th co-ordinates in the sample.
The simple approach used by Weiss studies limit probabilities of events
concerning sample quantiles by rewriting them as events concerning multinomial rando

variables. Weiss (1970) illustrates the use of this method in some nonstandard case

Let Xl, X2,.... be independent and identicallyldistributed with
coamon twice differentiable ynivariate df F on the unit interval I.

Assume that inf F'(x) > O and sup F'(x) < @ and let £ = pl(p).
Xel xel p
Also let S and Yp p denote the sample ¢f and the sample quantile of order P,
b

' respectively, both based on (Xl,..., Xn); i.e.

(k.20) nS (x) =[mumber of X, <x, 1<ic<n
and
(h.21) Y, o= inf{x: s (x) = p}.
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Define

(k.22) R(p) =¥, -8, +[8,(8) - p/F'(5)) .

The study of Rn(p) was initiated by Bahadur (1966). Later Kiefer (1967)

showed that, for u > O,

(4.23) Lin P{n3/hF'(€P)Rn(p) <u} =2 r@(k'%u) clk.@(k/op)

(o}

and that,

‘ 1
(4.24)  lim sup = F'(§p)Rn(p)/[253'%3§n'3(10g log n)31% = 1 with probability 1

n — o

i
2

where ¢ is the. standard normal df, cp = [p(1-p}]2 . Let

f

+
R, =suwp * F'(fp) R (p)
pel

(L.25) <

* (R, R)
anma.?c n’ n’ °

-

Kiefer (1970a) proves the foilowing results.

*
Theo 4,10, = R" -
orem ForQn Rrl or Rn or Rn s
3/4

1
(a) n Qn/(Dnlog n)2 = 1 in probability as n = © where

1
= n2 -
D =n s;.p| Sn(x) F(x)| .

- L 1
(b) 1lim sup n3/h(log n)"2(1log log n) * Q, = 2 * with probability 1.
n— o

The consequence of part (a) is that, for t > 0,

® 24
(4.26)  1im P(n3¥(10g n)"% Q>th=2 ) (-)HlEm s
/e m:l

For some of the consequencesr of part (b) and a list of open problems, the

reader is referred to Kiefer (1970a).
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5. Combinatorial Methods in Order Statistics

- One may see that some elementary combinatorial arguments are always
involved in the study of order statistics, for example, in writing the cdf
of the r-th order statistic based on n observations. But in order to throw
light on applicafions of combinatorial methods of deeper significance we
interpret order statistics in a broad sense to include Kolmogorov - Smirnov
statistic which requires knowledge of the actual ordered observations in the
sample only up to a monotonic increasing transformation. Many combinatorial
problems arise when we want to compare theoretical and empirical distribution
functions. A fundamental theorem of much application in this area is a
generalized version of the classical ballot theorem. A brief but interesting
summary of the historical development of the classical ballot theorem and
some of its generalizétions is given in Takacs (1970) to whom the following
theorem is due.
fheorem 5.1, Let k k2,...,kn be nonnegative integers with sum

1,
k. +k, +...+ k < n. Among the n! permutations of (kl, k ,...,kn) there

1 2 n 2
r
are exactly (n-1)!(n-k) for which the r-th partial sum z ki is less than r
1

for all r = 1,2,...,n.

The above theorem was first obtained by Také;s in 1960 and the proofs first
given by him (1961, 1962) were based on mathematical induction.Later in 1967
he gave a direct combinatorial proof of the theorem. Recently this theorem has been
formulated by Takacs (1970) in the following slightly more general form.

Theorem 5.2. Let X .,xn be exchangeable random variables taking

1’ xzs"

on nonnegative integer values. Set Sr = X1 + X2 +... Xr for r = 1,2,...,n.
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Then
k

l-— for k = 0,1,...,n,
n .

(5.1) P{Sr <r forr = 1,...,n|Sn=k} =
' 0 othgrwise,

where the conditioﬁal probability is defined up to an equivalence.

As an examplébf;lusefulapplication of Theorem 5.1, consider n random
points which are distributed independently and uniformly on the interval
(0,t). Let x(u) (0 <u < t) be ¢ times the number of points in the interval
(0,u] where c is a positive constant. Then, by using Theorem 5.1 [see
Takacs t1970)], we can show that

1—2%- for 0 < nc < t,

(5.2) P{x(u) <u for 0 <u < t} =
0 otherwise.

Another important combinatorial theorem which togethef with Theorem 5.2
leads to many applications is the following theorem which is due to Andersen
(1953) and Feller (1959).

Theorem 5.3. Let Xl,-Xz,...,Xn be interchangeable random variables taking on
real values. Define Sr = Xl +...+ Xr for r = 1,2,...,n and S0 = 0. Denoteby
Nn and N; respectively the number of poéitive and nonnegative members in the
sequence Sl’ 82""’Sn' Denote by Ln and L;, the subscripts of the first

and the last maximal members in the sequence SO’ S "Sn' We have

10"
(5.3) - P{Nn=j} = P{Ln=j}

and

(5.4) | . pﬁqn=j} = p{Ln=j}

for j = 0,1,...,n.
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Theorems 5.2 and 5.3 can be combined to yield the following interesting
result.

Theormn5,4(Takécs 1970). Let Xl’ Xz,...,xn be interchangeable random

variables taking on nonnegative integers. Set Sr = X1 +...+Xr for

r=1,2,...,n and SO=0. Denote by An the number of subscripfs

r=1,2,...,n for which Sr < r holds. If E{Sn = n-1} > 0 then we have

. 1
(5.5) P{An=J|Sn = n-1} = =

for j = 1,2,...,n.

Takacs (1970) has proved a number of auxiliary theorems which can be
used in the theory of order statistics Allthese theorems are consequences
of Theorems 5.2 and 5.3 and are concerned with the distributions of Aﬁc),
the number of subscripts r = 1,2,...,n for which Sr < r+c where ¢ = 0, + 1,
t 2,.... In particular, An = Aéol

We shall now.indicate the applications of these results to the problem
of comparing a theoretical and an empirical distribution function . Let

X e Xy be mutually independent random variables having common df

1’ X2,.
F(x). Let Fn(x) be the empirical df , i.e., n F (x) = the number of variables

< Xx. Consider

(5.6)

o
n

sup [F () - F(x)]

-0 X <o

]-T:fn [Fn (X (I')) - F(X (r))] .

If we assume that F(x) is continuous df , then the joint distribution of

Gn(r) = Fn(x(r)) - F(X(r)) (r = 1,2,...,n) does not depend on F(x) and
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consequently the distributions of D;, Ph and p; are also independent of
F(x), where o, denotes the number of non-negative elements among Gn(r)

(r =1,2,...,n) and p; denotes the largest r for which dn(r) attains its’
maximum. By using the auxiliary theorems we can obtain the distributions
of D;, Py and p; . These distributions have been obtained earlier by
several authors [see Takacs (1970)] and are given below.

Theorem 5.5,

(a) If 0 < x < 1, then

( ) (1-- x)? (14x- la" j

+
G.7y PO <x}=1- L J
nx<j<n
(b} For j = 1,2,...,n,

ii-1 in-i
(1 59 .

1" &

[ 8

(5.8) Plo =i} = Plp_=j} =

=R

i=1

Also of interest is the problem of comparing two empirical distribution

functions. Let X,, X,,..., X and Y
1 2 m

samples from the distributions F(x) and G(x), respectively. Denote by

1° Y2""’ Yn be independent random

Fm(x) and Gn(x) the empirical distribution functions of the two samples.

Define
(5.9) D (m,n) = sup [F (x) - G (x)]
-0 X <0
= max [F (Y _,) -G (Y. ,-0)].
teren M @) (r)

Let Yc(m,n) denote the number of subscripts r = 1,2,...,n for which
Fm(Y(r)) < Gn(Y(n)) - ¢/n, where ¢ = 0, + 1,..., *(n-1) and let t(m,n)

d = .. o _ - .
enote the smallest r = 1,2,...,n for which Fm(Y(r)) Gn(Y(r) 0)‘atta1ns
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its maximum. If F and G are identical continuous distributions, then

the distributions of D+(m,n), yc(m,n) and t(m,n) do‘not depend on F.

When n = mp, these distributions can be derived easily by appealing to
the auxiliary theorems discussed earlier and a simple probability result
relating to the drawing of the ith white ball at the (i+s)th draw when
the balls are drawn without replacement from a box containing m black and
n white balls. We state below the results relating to D+(m,n).

Theorem 5.6.

(a) If n = mp where p is a positive integer, and ¢ = 0,1,...,n, then

1 c+l (sp+s-c-1)(m+n+c-sp-s)
(m+n) n+c+l-sp ] m-s

(5.10) - P{D’ (m,n)<c/n}= 1-
: ' (c+1)/p<s<m

(b) For 0 < x < 1 and n=mp,

(5.11) 1im P{D* (m,n) < c¢/n} = p{DI’;l < x}
p>e

where ¢ = [nx] .

For more details, the reader is referred to Takacs (1970).
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Vincze (1970) observes that proofs of Kolmogorov - Smirnov type
distribution theorems can be simplified by using a certain generalization
of the ballot lemma by G. Tusnidy stated below.
Theorem 5.7. Let AO’ Al”"’An be a complete system of events, for which
P(A0)=q and P(Aj)=P, j =1,2,...,n holds. Making n independent observations,

let vi be the number of cases in which Ai occurred. Then

(5.12) P{ i v; < j: j=1,2,...,n}t = q.
i=1
The above theorem is equivalent to the following theorem of Daniels
(1945).
Theorem 5.8. If Fn(x) denotes the empirical distribution function corres-

ponding to a sample of size n taken on a random variable with distribution F(x)

which is uniform in (0,1), then

Fn(x) - F(x)
F (x)

y

(5.13) P{ y+1

<y, 0 <x<1} =

(0 <y < =),

The equivalence of Theorems 5.7 and 5.8 was utilized by K. Sarkadi to give
an independent proof of Theorem 5.7. Vincze (1970) also refers to a generalized
ballot lemma of E. Csaki which is closely related to resﬁlts of Nef (1964) and
gives the following formulation of the generalized ballot lemma in terms of
the empirical distribution function.

Let Fn(x) be the empirical distribution function belonging to a sample of
size n taken on a random variable distributed uniformly in (0,1). Let X denote
the number of (horizontal)intersections of the graph of Fn(x) with the straight

line y = %ﬁ-x (np < 1). Then

(5.14) PIR > 2} = 2t () p* (2 =0,1,2,...,n).
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- 6. Some Combinatorial Methods in Fluctuation Theory and the Distribution

of the Maxima.

In this section we describe some results concerning the partial sums of
a sequence of random variables. Although fluctuations of partial sums of -
random variables have been investigated in special cases for a long time, and
even in more general cases for the purpose of finding limit theorems, the
idea of using combinatorial methods for aﬁalyzing the partial sums of a fixed
finite set of more general random variables goes to the crédit of E. Sparre
Andersen who made a fundamental contribution in this area.

Let {Xk}, k =1,2,..., n, be a sequence of independent and identically

distributed random variables, with partial sums S0 = Q, Sl = Xl""’
S =X, + ... +X. Let
n 1 n
N_ = the number of positive S among S.,..., S_.
n n 1 n
(6.1) |
L_ = the smallest index k(= 0,1,...,n) with S, = max S .
n - k m
0<m<n
The variable N, serves in a way as a "measure' of the ups and downs of
the sequence SO’Sl""’Sn' For any permutation o: il,'...,in of the integers

1,2,...,n define Nn(o) and Ln(c) as in (6.1) in terms of the partial sums

Sk(o) = Xil+ el ¥ xik of the permuted variables o(Xl,...,Xn) = (Xil,...,Xin).

By the basic assumption it is implied that N (o) and L (o) have the same
distributions as ‘Nn and Ln' As a matter of fact, if we consider the whole
class {Nn(o)}(o) of n! variables, each element of the class has the same
distribution as Nn‘ By successfully seeking properties of the whole class

which do not depena upon the particular values of the variables Xl,...,X s

n

we can as well carry out the analysis for a set of numbers x X_ instead

12 %,
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of the variables Xl,...,Xn. The following theorem due to Andersen (1953)

gives the equivalence principle.

tn

{pn(o)}

(0)

Theorem 6.1~ ‘{Nn(o)} (o)

There are two essential facts connected with the above theorem. First,

: Nn(o) and Ln(o) are int?gers between 0 and n, so that there will be
multiplicitiés'among the integers which are assumed by the n! terms in each
set. The theorem asserts that these multiplicities are exactly the same in

the two sets {Nn(c)}(c) and {Ln(o)} Secondly, the identity holds for

(0)°
all sets of numbers XyseeesXy and, therefore, it is not directly concerned
with probability theory.

Theorem 6.1, restated in terms of the sequence of random variables, gives
(6.2) P{Nn =jl = P{Ln =j}

This is exactly (5.3) of Theorem 5.3. Thus, the equivalence principle permits
us to translate statements concerning the position of maximal terms into
statements concerning the number of positive terms: usually the statements of
the first kind are more readily proved whereas those of the second kind are

more important. Further, Andersen (1953) has shown that, if X ,X_ are

100X,
independent and identically distributed with continuous and symmetric distri-
butions,

(6.3) p{Ln =nmn} = (;m) (22:im) 2'2n’ 0<m<n

It should be pointed out that the joint distribution of Nn and Ln is not
distribution-free.

Let RﬁO‘z-Rnl > ... z-Rnn be an ordering of the partial sums S »S

0°°1°° " *°,"

Since the distribution of X1 is continuous, there is a unique index m such
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that Rnk = Sm, with probability one.We define Lnk =m if Rnk = Sm'
Darling (1951) found the distribution of Lnk in terms of products of
binomial coefficients, but he gave no results for joint distributions.

Baxter (1962) has proved the following theorem.

Theorem 6.2. For all 0<m, k <n, (n>1),

, | .
So$.2m, 2n-2k. ,-2n-2m+2k
(1/20) () (0752 , m<K,
(6.4) P{an =0, Lnk =n} = ﬁ 0 , m=k,
2k, ,2n-2m, ,-2n-2k+2m
(1/2m) (O (M2 L mo>k
\

We note that L__ = 0 is equivalent to N =m. Also, L, = n means that
nm n nk

there are exactly k partial sums greater than Sn' Thus Theorem 6.2

provides the joint distribution of the number of partial sums less than

So(= 0) and the number of partial sums greater than Sn.' In particular,

for k=0,

_ _ ~ 2n-2m, ,-2n+2m
(6.5) P{Nn =m, Ln =n} = (1/2n)( n-m ) 2 T, 1<m<n

Now, we consider again a sequence of mutually independent random variables

with a common distribution function and define

s . -
a = P{s >0}, ax P{Sn > 0},
(6.5) < W, = P{Sn > Sj’ j=0,..., n-1}, n>1,
* o | 5 = -
ur = P{Sn z_Sj, j=0,..., n-1}, n>1

Then, the generating functions u(t) = Zun t"  and p*(t) =Zuﬁ t"™ have been

obtained by Andersen (1953, 1954) and also by Spitzer (1956) in the form:



32

(6.6) u(t) = exp —%— " and
- :
o a*
(6.7) u*(t) = exp Z LI
;0

The above result shows that the knowledge of the sequences {a } and {ar}
suffices for the calculation of the distribution of the position of the

maximal term and of the number of positive terms in {S .,Sn} .

0"
The probability

(6.8) vk = P{S; < 0,..., S_< 0}

has the associated generating function

' o J-a
n -1
(6.9) vE(t) = exp ) n“ t o= [(1-t)u(t)] ™ .
' 1 ,
Let
(6.10) Py.n = P{Sk >8; for j <k, § >8; for k<j<m

Then Feller (1959) gives the folloWing theoremn.

Theorem 6. 3. Prn = Y V;_k

As we can see, Py n is the probability that the first maximum in
3
(SO,Sl,...,Sn) occurs at the place numbered k. 1If pﬁ'n “denotes the
) 2

probability that the last maximum occurs at the place numbered k, then

(6.11) Pi n - ui vn-kr

Instead of a = P{Sn > 0}, 1let us consider more generally the truncated

distribution function
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(6.12) Fn(x) = P{0 < Sn <xt, x>0
with the Laplace transform

oo

(6.13) o ¢n(x)=fo e ™ dF_(x)
: +

Define
(6.14) Hn(x) = P{Sj <S§ <x, j=0,...,n-1}, x>0

and

feMa ),h0,t) =1+ ] h () 8
0 1 "

(6.15) h ()

The following theorem is due to Spitzer (1956) .

o n
Theorem 6.4. h(A,t) = exp ) E—-¢n(x)
. 1
For A = 0, this theorem gives (6.6)
Again considering a sequence Xl,Xz,...,Xn,... of independent and

identically distributed random variables, having continuous distribution
function, let us define Xn to be outstanding if it is larger than all

previous observations, that is X_ > max Xk. Let A.n be the event that
' 1<k<n-1
Xn is an outstanding observation (n = 1,2,...). Renyi (1962) has obtained

some results concerning the outstanding observations based on the simple

but surprising fact that the events A ,Ah,... are independent and

12"

P(An) = 1/n. The results of Renyi are contained in the following theorem.

Theorem 6.5. Let XV > X 5..., X ,... be all the outstanding observations of

1 2 Yk
{Xk}, k =1,2,... . Then
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(a) 1lim  v;/k =e with probability 1 and
k > '

(b) (log Ve - k)/kl/2 is asymptotically (k + «») normal with mean 0
and variance 1.

If we define oy as the number of outstanding observations among'

. _ o |
gk N . Sas

Xl,...,XN, then Theorem 6.5 says that 1im Tog N~ 1. with probability 1

N >
and the distribution of (aN -~ log N}/ (log N)l/2 is asymptotically standard

normal.
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7. Some Estimation and Hypothesis Testing Problems Based on Order Statistics.

Order statistics have been employed in many problems of estimation énd
testing of hypotheses. The usual methods, in some cases, lead to estimators
involving order statistics. An example of practical interest where the ob-
servations arise in an ordered sequence is a life test experiment where a certain
number of units aré put on test and their failure times are observed. The
literature has grown so enormously in this area that any attempt to survey all
the results will be beyond the aim of the present paper. We will be content
with a brief outline of some of the problems investigated.

An important paper is that of Lloyd (1952) in which he considers the
least-sduares estimates of location and scale parameters using order statistics.
Suppose that Xl, Xz,.;;, Xn are independent observations on X havihg a continuous
distribution F(féHJ, ¢ > 0, where u and o are not necessarily the mean and
standard deviation-respectively. Define U = (X-u)/o. Then U(r)=(X(r)-u)/o
(r=1,2,...,n) cgn be regarded as ordered observations on U.‘ Let E(U(r))=ar,
V(U(r))=vrr’ Cov(U(r); U(s))=vrs and V be the matrix (Vrr)' Under the gene?alized
Gauss-Markov linear model, one can obtain p* and o*, the least-squares (%.s.)
estimates of the parameters u and o. The formulas for the estimates and their
dispersion matrix simplify considerably when X has a symmetric distribution, in
which case we can take p to Be the center of the distribution and ¢ a symmetric
measure of dispersion. Since the g#.s. estimatés are linear compounds of the
ordered observations with minimal variance, V(u*) f_gﬁ-, where 02=V(x).

Lloyd has obtained conditions to determine when V(u*) < cz/n, i.e., the &.s.
estimate is more efficient than the sample mean. It turns out that V(u*)< cz/n

unless u* is the sample mean, a result due to Downton (1953).
Blom (1956, 1958, 1962) addressed himself to the problem of unbiased nearly

best linear estimates where one settles for an estimate with nearly minimum
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variance. He investigated how such an approximation to the best linear ésti-
mate can be found. He has also dealt briefly with relaxing the unbiasedness,
seeking nearly unbiased, nearly best estimates.

Bennett (1952), in his unpublished thesis, studied the asymptotic properties
of estimates which are linear functions of the order statistics with continuous

weight functions. Following Bennett (1952) and Jung (1955, 1962), let

n .
T = n"1 X J(—l—a X. where J(*) 1is a well-behaved function. Bennett ob-
n 551 n+l” “j,n

tained asymptotically optimal J's for both the uncensored and multi-censored
cases, but did not derive  the asymptotic normality of thevestimétes. Some of
ﬁis results were independently obtained by Jung (1955) under rather restrictive
conditions. Plackett (1958) and Weiss (1963) independently considered the case
where all observations below the p-th and above the q-th sample quantiles

(0 <p <q < 1) are censored and obtained asymptotic normality for suitable
linear combinations of the available order statistics. Chernoff, Gastwirth and

Johns (1967) obtain a quite general theorem concerning the conditions under

-1

‘which the statistics of the form Tn =n " Ic ) are asymptotically

h(X.
( J,n

j,n
normally distributed. They specialize their results to the case where

C. = J( —1—0. These theorems involve the decomposition T_= u + (G + R,
n n ‘m n

where Uy is non-random, Qn = n_1 L a (Zj-l) where Zj's are independent

n1/2

j,n
and identically distributed exponential random variables, Qn is asymptot-
ically normal and R.rl is asymptotically negligible. Results overlapping with
those of Chernoff et al have becn obtained by Govindarajulu (1965) whose technique
is based on some unpublished results of Le Cam and whose main result requires

bounds on J(u) and J'(u) as u-+0 or 1, which is not necessary for the

results of Chernoff et al.
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Problems of estimation of parameters using censored data from normal as
well as non-normal distributions have been studied by seﬁeral authors. Among
the non-normal distributions considered are Gamma [Harter and Moore (1967)],

Log normal [Harter and Moore (1966)], Déuble,Exponential [Govindarajulu (1966)],
Weibull [Cohen (1965), Gumbel (1958)] and Logistic [Gupta, Shah and Qureishi
(1967)]just to mention a few. The published literature on life testing and
reliability problems is quite vast and the rgader is refefred to the bibliog-
raphies of Mendenhall (1958), Govindarajulu (1964) and a short classified list
of David (1970, p. 124), |

In fhe problems of estimation using only some of the order statistics, an interesti
question is how to choose or 'space' the order statistics to obtain good esti-
mates. Let us choose 0 < A, < Ay <eee < A < 1. The sample quantiles are

1
X(n.), j=1,...,k, where n, = [nAj] + 1. Ogawa (1951) considered esti-
j .

J
mation of the location (u) and scale (o) parameters based on sample quantiles in
large samples. In these cases, the relative efficiency of an estimate which is
a function of the chosen order statistics as compared to those which are based
on the whole sample'is defined by the ratio of the amounts of information in
Fisher's sense in the two cases. The best linear unbiased estimator in each
case is found to be efficient for a given spacing Al,..., Ak. However, the
efficiency can be raised by suitably choosing the values of Al,..., Ak for
which the relative efficiency of an estimator attains its maximum. Such a set
of Al,..., Ak is'called an optimum’spacing. Ogawa (1962a) has shown that, in
the case of normal distribution, the optimum spécing for the location parameter
u 1is necessarily a symmetric one. Ogawa (1962c) has also conSidered optimum
spacing for the scale parameter of the exponential distribution. The problem of

optimum spacing for the asymptotically best linear estimate (ABLUE) of p when o

is known has so far been considered for three symmetric distributions with support
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(-»,®). For the normal and logistic distributions it has been provedrespectively by
Higuchi (1954) and Gupta and Gnanadesikan (1966) that the'optimumrspacing

is symmetric. The question of whether the optimum spacing for the ABLUE of

4 when o is known is symmetric for any distribution which is symmetric and

has the support (-«,~) has been raised and answered in the negative by

Kulldorff (1971b) who gives a qounter—examp}e. Optimum spacings for the ABLUE

of the location parameter u of an extreme value distribution of Type I ‘
(Agn)(x—u) given by(4.7)) and the scale parameter ¢ of an extreme value distribu-
tion of Type II or III (Afn)(ga or Agn)(ga given by (4.7»,havé been considered by
Kulldorff (19715) by making use of the previous results for the scale parameter

of an exponential distribution. The problem of determining the optimum choice

of the ranks n, <n, < ... <n

1 2 k

n for estimating the parameters of the exponential distribution

of order statistics in a small sample of size

F(x) =1 - e~ (x-a)/o (x > o, ¢ > 0) has been dealt with by Harter (1961b) and
Siddiqui (1963) for the case k > 1, and by Ukita (1955), Harter (1961p) Sarhan,
Greenberg and Ogawa (1963) and Siddiqui (1963) for k = 2. The case of general
k has been investigated by Kulldorff (1963).

The problems of testing of hypotheses in life testmodels illustrate the use
of order statistiés. Some quick tests based on order statistics have been
used in several situations; see David and Johnson (1956). Tests for outliers and
slippage are further specific problems where test statistics are based on ordered
observations. \

As regards the use of spacings in tésting of hypotheses, Ogawa (1962k) con-

sidered the test for the hypothesisH: p = for the normal mean and the test of

"o
the homogeneity of several means. He also discusses selection of the optimum

spacing for testing purposes. In another paper(1962d) he discusses the test for
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H: o= % where ¢ 1is the scale parameter of the exponential.‘ Pyke (1965)
gives limit theorems for general spacings which are useful in obtaining
asymptotic results on the power of goodness-of-fit tests based on spacings.
Proschan and Pyke (1967) have discussed tests for monotone failure rate using
test statistics based on spacings. Recently, Sethuraman and Rao (1970) have

discussed the Pitman efficiencies of tests based on spacings in the goodness-

of-fit problem.

8. Multiple Decision (Selection and Ranking) Problems.

The goal in selection and ranking problems can be roughly described as

follows. Suppose there are k populations Mysese which are ranked in a

sTx
certain sense. There are two basic approaches. We may either want to select
one of them as the 'best' or select a subset of the given populations so that
the selected subset contains the 'best'. Obviously, basing our inference on a
sample, we will be content if we can say that the probability of our selection
being a correct selectidn tCS) is at least P*(1/k < P* < 1). In the case of
selecting a subset we can achieve this regardless of the true.states of the
distributions. In the case of selecting one of them as the best, we shall
réquire that the cpndition on the minimum probability of a correct selection
be met whenever the true best population is sufficiently apart from the second
best. This is the indifference zone formulation of Bechhofer (1954) in its

simplest form. The former, known as the subset selection formulation, is

due to Gupta (1956).

For a detailed account of subset selection formulation one can refer to

Gupta (1965), and Gupta and Panchapakesan (1969, 1971). The monograph of
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Bechhofer, Kiefer and Sobel (1968) describes the basic formulation of selection
and ranking problems using indifference zone approach.

Many of the multiple decision problems encountered in practice have a
rcommon algebraic structure and these problems are called identification problems.
Let {xij}’ i=1,...,k, be k independent sequences of random variables. For
i=1,...,k, the Xij have a common distribution F?i , where‘(Fgl,...,F?k) is a
permutation of k knownvprobability laws F?,...,Fg. The space Q={(F?1,...,F?k)}
can be viewed as the permutation group Sk on k elements. We denote a typical
element of Sk by (a(1),...,a(k)) = (al,...,uk), which is the result of the
permutation a on (1,...,k). We may briefly use o to denote an element of Sk'
Now, Sk can be regarded either as the space of all possible states of nature
or as a group of transformations (permutations) operating on Q. As a result
of this dual interpretation of Sk’ if a, B € Sk’ then Bo can be considered as
the element of Q arising from the permutation B operating on element a of Q.

We say o is the true‘element of @ if the sequences {xa.j} have the distri-
butions Fg, i=1,...,k. If a—l denétes the inverse permut;tion of a, then we

can also say (when a is true) that Xij has the distribution Fo_1 (i=1,2,...,Kk).

a (1)

It is also convenient to think in terms of k numbered populations
Tis TosenesTy with the sequence'{xij} coming from m. . By saying that a .is the
true element of @ we mean that the population TS has the distribution FO_1 s
a (i)

or more briefly, a_l(i), i=1,2,...,k. Thus the correct pairing of the

populations with the distribution functions can be written in two equivalent

ways,
F(l) Fg Fl‘z Fo_l Fo_l . Fo_l
o (1) o (2) a (k)
(8.1) -
Tral 'ﬂ'az . ﬂak 1T1 1T2 Trk
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An identification problem must safisfy certain :equireménts. Let D'
deﬁoté the space of possible decisions and d a typical element of pt. Then
we requjre that there exists a group I' of transformations homomorphic to Sk
and operating on Dt. In other words, if g, is the elemen£ of T correspondiﬁg
under the homomorphism ¥} to &, then gagBd = gaBd for a,B ¢ Sk and d ¢ Dt
Further it is also required that the loss function W(o,d) has the invariance
property, that is, W(a,d) = W(Ba, gBd) for a, B € Sk and d ¢ Dt.

Finally, many decision procedufes which are used in conjunction with an
identification problem have a corresponding invariant structure under a group
of transformations g, isomorphic to Sk' Let a§ﬂ = a(xlj,...,xkj) = (xalj,...,xakj),
where xij is a ?ealization of xij' Let A denote a subset of pt and Pm{A|§} » the
probability of arriving at one of the decisions belonging to A on the basis of
the observations X = (51,...,§m). Then for an invariant procedure,
Pm{AIE} = Pm{ga(A)lag}, where ax = (afd,...;afm).

The description of the basic structure of identification problems given
above is on the lines of Bechhofer et al. They have provided several examples
to illustrate the basic structure and the properfies of minimal invariant sets.

Before we pass on to discuss the role of order statistics in the context

of subset selection procedures, we will briefly explain an identification problem

and its connection with a ranking problem. Let Tys Moseees Ty be k populations

and Fe. be the distribution associated with ni(i =1,2,...,k). For the
i

identification problem, we assume that ranked values of the ei, denoted
0 o o R
by e[l] 5;9[2] < ... §_O[k], are known a priori. However, the true pairing
of the m;,  with the B?j] is unknown to the experimenter and he has no apriori
knowledge relevant to the true pairing of the ™S with the e?j](i, j=1,2,...,k).
' o
Suppose that e[k_1] < e?k]. Then an identification goal would be '"to identify the

population T, associated with e?k]". For a ranking problem, we assume that

the ordered values of the 6. denoted now b 0 <9 < ... <8
SRERE & Y Uy =023 S 29 e
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unknown a priori and that the true pairing or any knowledge relevant to the true
pairing of the ™. with the . e[j} (i, j = 1,2,...,k) is not available to the
experimenter. The ranking goal corresponding to the identification goal stated
above would be ''to select a population LAY associated Wifh e[k]." But the
formulation of the ranking problem will be complete only if the experimenter
specifies certain_constants, and then states an associated probability require-
ment involving these constants which must be guaranteed. Several ranking pro-
cedures have been investigated for specific cases under this formulation by
several authors, notably, Bechhofer and Sobel among them. Generally these pro-
cedures have been proposed on heuristic grounds. As one can intuitively see
that the decisions in all these cases depend on the sample observations through
the ordered values of statistics Ti(i =1,2,...,k).

We now discuss the role of order statistics in subset selection problems.
Let Tys Toseresty be k independent populations with continuous distributions
Fei(i =1,...,k), B; € ®, an interval on the real line. We assume that {Fe} is
a stochastically increasing family. The ordered values of the unknown parameters

9. are denoted b ) <9 < ... <80 . The ulation associated with
i Y iy 2021 =00 20k Pop

0y (or 9[1]) is called the best. In the case of a tie, we assume that one of the

contenders is tagged as the best. The objective is to select a subset of the
given populations@d claim that the probability that the best population is
included in the selected subset is at least P* (1/k <VP*‘< 1) regardless

of the true configuration of the parameters. Let Ti be a suitable statistic based
on n independent observations from "i(i_= 1,2,...,k). The selection rule
proposed in most of the specific situations fer selecting a subset containing

the population associated with e[k] (9[1]) is of the form:

R: Select =, iff T, >T -d, (T, <T . +d)) or

max 1 i — min
R: Select =, iff ¢ T, 2 Toax (T3 e Thind
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where Tmax = ma;(Tl,...,Tk), Tmin = m1n(T1,...,Tk) and the constants

c . c
1’ €2 >1 and dl’ d2

requirement is satisfied. The above rules are particular cases of a general

> 0 'are to be determined so that the basic probability

class of rules discussed by Gupta and Panchapakesan (1970). Usually, Ti is

a sufficient statistic for 04 and preserves the stochastic ordering. In all
these cases, the standard technique is to obtain the expression for P{CS|R},
the probability of a correct selection using the rule R, evaluate its infimum
over all parametric configurations and determine the constant of the procedure
by equating this infimum to P*. Because of the stochastic ordering of the Ti’
the infimum of P{CS|R} is to be found over only the equal parameter configura-
tion, namely, el = 92 = ... = ek = 0 (say). Exceptional situations arise in
certain procedures for multinomial cells and in some rules using rank sums. In
most of the probleﬁs we can establish the monotonic behavior of P{CS|R} in 6 by
verifying certain sufficient condition [see Gupta and Panchapakesan (1970)].

Thus we obtain the infimum of P{CS|R} and depending upon the type of the proce-

dure used, we get one of the following relations:

P AT, 2 Thax = 43} = P*
P {TliTmin"'dz} = p* ,

(8.2)

e\

PleTy >T 1 =p%,

P {T

1 S Tmin} =P,

where Tl""’Tk are independent and identically distributed random variables

with a common distribution G(say). Define

[
[}

| = max {Tl-Tk, Tz-Tk,...,Tk_l—Tk} s

(=]
[}

6.5 , = min {Tz-Tl, T3—T1,...,Tk-T1} s

Vy = max {T /T, T,/T,,...,T, ,/T,},

V, = min {T2/T1,_T3/Tl,...,Tk/T1} .
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It should be pointed out that V1 and V2 arise when the Ti -are non-
ﬁegative random variables. We see that the constants in (8.2) are either
appropriate percentage points of the éistribution of the random variables in
(8.3 or related to these percentage points. The constants are given by the

appropriate equation of the following set:

(’A(k, ap = | Gk;l(x+d1) dG(x) = P* ,
6.9 | 80,4y = [ [ - 6(x-d,)1%! d6(x) = Pr
Ik, ¢)) = [ Gk_l(clx) dG(x) = P* ,
0
e k-1
Ik, c)) = [ 1+ G(x/c,)] dG(x) = P* ,
L 0

In each problem we know the specific form of G. Tables of constants are
available in the literature in several special cases of G for selected values

of k and P*,

Gupta (1963) discusses among other things, the integral

[+4]

8.5) Fy;0) = [ B2 v 1) (1-0)"V2) ar(ny

where F denotes the cdf of a standard normal variable. It can be seen
that FN(H; P) is the probability that the maximum of a set of N equally
correlated standardized normal random variables does not exceed H or the
probability that the miniﬁum of-this set exceeds - H.

Consider, for example, the rule

R: Select w, iff T. > T -d
i i — "max 1°

in the case of k normal populations with unknown means 61,...,6 and a

k

. 2
common known variance o¢“, where the Ti are the sample means. One can see



45
clearly the possibilities of using procedures which involve more oxder statistics
than just T . If T <T < e <T are the ordered means, then Seal

! max [1] =21 = =K

(1955) considered a class of procedures Dc defined below.

Dct Select the population corresponding to T[i] if and only if

(8.6) T[i] 2 < T[l] + ...+ i1 T[i-l] tcs T[i+1] + ... *

€1 T[k] - ot(P*,c)/ vn

where ¢ = (cl,...,ck_l) is a v;c;?r whose components are arbitrary real
numbers such that ¢; >0 and 'gl c; = 1 and, t(P*,c) is chosen so

as to satisfy the basic probabilzzy requirement. It is possible to propose
procedures involving other functions of all the order statistics

T[l]""’T[k]’ but these essentially present difficult distribution problems

in terms of evaluating the infimum of P{CS|R} and explains to an extent

the absence of complete investigations of such procedures in the literature.

The authors wish to thank Mr. T. Santner for a critical reading of

the paper and some helpful comments.
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