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Summary. In this paper we discuss the multiple decision
(selecticn and ranking) rules in a general decision theoretic
framework.” More specifically, we discuss the subset selec-
tion problem. The earlier part of the paper describes the
general framework and gives some known results for sake of
completeness; in the latter part of the paper we give some
new results dealing with th: subset selection problem for a
class of discrete distributions (Section 2). Some relevant
tables for these procedures are included. The derivation of
rules with some desirable property is made in Section 3 using

the likelihood ratio criterion.

1. Preliminary Definitions and General Formulation. We
are given k populations Hl,Hz,...,Hk where the population
Hi is described by the probability space CZ,ﬂ,Pi), where
Pi belongs to some family €. We assume that there is a
partial order relation (>) defined in @&. Pi > Pj is e-
quivalent to saying that Pi is better than or equal to Pj;

or, in other words Pi is preferred over Pj' For example,
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§(x,d) >0 and

(1.2)
] 8(x,d) =1

de#
where §&(x,d) denotes the probability that the subset d 4
selected when x 44 observed. The .individual selection
probab ity pi(x) for the population m, 44 then given by
(1.3) p;(x) = ] 8(x,d) ,

d3i
- where the summation is over all d containing i. 1§ the
selection probabilities p; (x), Py (X), ety pk(x) take on on-
Ly the values 0 and 1, then the selection procedure
§(x,d) 44 completely specified.
In general, we can assume that the selection of a subset

d €8 results in a loss. Let us consider the situation
where Pi = P(ei,x) and assume the loss
L(8,d) = L((8,,8,,...,8,),d) = ieg L,(6) where L (8) is
the loss if the ith population is selected. We may assume an
additional loss L if a correct selection is not made. The

overall risk for the nonrandomized rule & is;:
k

(1.4) R(8,8) = ) L;(8) Egp, (x)+L[1-P,(CS|8)]
i=1

In many problems it has been assumed that Li(e) =1 and
L =0, in which case, R(6,8) gives the expected size of
the selected subset. In general, our aim is to minimize the
risk R(8,8) which will be done under the usual symmetry
condition.

The subset selection problems investigated earlier have
been concerned with obtaining selection rules § which se-

lect non empty subsets and guarantee a correct selection
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with probability at least equal to P* i.e.

(1.5) inf P (CS|6) > P*
Q w -

where Q is the space of joint probability measures. The
points of @ are denoted by w = (Pl’pZ""’Pk)’ ?i e Q.
The condition in (1.5) has been called the basic probability
requirement.

In general, we wish rules with large probability of a cor-
rect selection and a small value of the expected size. The
ratio nw(G).= k Pw(CS|6)/Em(S|6) can, among others, be
considered as a measure of the efficiency of the procedure $
at w. It should be pointed out that both Pw(CSI5) and
Ew(SIG) depend on & only through the individual selection
probabilities and hence if we restrict our attention to these
quantities, we can define two rules § and ¢' as equival-
ent if they have the same individual selection probabilities
p(x) and p'(x) for all x. Hence, we can use the follow-
ing simplified definition, replacing & by R.

Def. 2. A subset selection nule R 44 a measurable mapping
grom Zk into Ek(k dimensional Euclidean space), namely,

R: x = (p;(x),p,(2),...,p (X)), 0 < p; (x) £ 1,
i=1,2,...,k

14 pi's are 0 or 1, the nule 4is nonrandomized; 4in this case,
§ can also be degined by the sets A = {x e Z*Ipi(x) =1},
i=1,2,...k Ay {8 the set of observations for which I,
45 Aelected.

Def. 3. R 44 unbiased i44

T, I., i= ce . > .
j > I, 1 1,2, ,k = Pw’J __Pm,1 gorn all w e Q

where Poi~ Ep;(x) = probability that I, 45 selected.

,1
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if & 1is a one-parameter family, Pi(x) = P(ei,x), we may
define: Pi > Pj iff ei Z_Bj. In many problems > denotes
stochastic ordering. Other partial orderings that have been
considered are: star-shaped ordering, convex ordering, tail
ordering.

In the above set-up, we assume that there exists a popula-
tion Hj such that Hj > Hi for all 1i. This populétion
Hj will be referred to as the 'best' population. In case of
more than one population satisfying the condition we will
consider one of them to be tagged as the best.

From each population we observe a random element Xi. The

space of observations is: Zk= {x=(xl,x2,...,xk), x; € z,

i=1,2,...,k}. In most applications Zk will be a real
vector space.
The decision space # consists of the Zk . subsets d

of the set {1,2,...,k}: to put it formally,
(1.1) 8 = {d|ld c {1,2,...,k}}

In other words, a decision d corresponds to the selection
of a subset of k populations.

A decision d e 9§ 1is called a correct selection (CS) if
j € d which means that the best population Hj is included
in the selected subset d. It should be pointed out that in
many subset selection procedures investigated earlier, the
null set ¢ 1is excluded from § to guarantee the selection
of a non empty subset.
Def. 1. A measwrable function & degined on 7,* X 8 48
called a selection procedure provided that fon each x e z?,
we have,
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Def. 4. R 48 monotone 444

I, >0, =P . >P . forall i,j and all w e Q .
J 1 w,] — w,l1

We shall restrict ourselves to selection rules which are
invariant under permutation.
Def. 5. A auwle R 48 Llnvariant unden pewmutation (or R is
symmetric) 44§

(0, (8X) .- P(ED)) = 8(p (x),.--,py (X)) for ALL XX, geG

whene G denotes the group of pemutations g of the .(nte=
gers 1,2,...,k. The minimization of the risk under the sym-
metry condition imposed by G 1is also discussed in [6].

In addition to the several desirable properties and cri-
teria for selection rules given above, one important concept
is that of "just" selection rules investigated in [5]. This
concept is examined in some detail in the present paper.

Let (%,8,P) be a probability space where a partial order
> is defined on % [y » x or, equivalently, Xx <y means
that y 1is better than x].

Def. 6. A selection nule R, defined by its individual se-
Lection probabilities pi(xl,...,xk), i=1,2,...,k 45 said
to be just if4

X. <Y,

x; ;yj,j+i R FLSATRRER W RE FACSFRREFLN)

For nonrandomized rules determined by acceptance regions
Al,AZ,...,Ak, we can give an equivalent definition of a just
rule in terms of increasing sets and general stochastic or-
dering. A subset A C Zk is said to be 4{ncreasing iff
xeA and y>x=y e A. P 1is stochastically better than

Q(P > Q iff P(A) > Q(A) for all increasing sets A e 8 .
St
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We note that if % 1is the real line and > stands for
>(or > ) then the increasing sets are the intervals [a,=)
and (a,») which induce the usual stochastic ordering on the
distribution functions.
Def. 7. R A& just 444

X € Ai

X, <Y, dmplies y e A,

X; > Y5, $i

As mentioned earlier, frequently we require a selection -
rule to satisfy the basic probability requirement (1.5).
Hence, a central problem in the subset selection theory is to

determine inf Pw(CS]R). For many rules investigated in the
we
literature, this infimum is attained in 0 where ,C A

is the set of w where Pi are identical. This could rea-
sonably be expected of a good rule, because in 9> Mo sta-
tisical information can be employed to find the arbitrarily
tagged population. It has been proved in [5] that this prop-
erty holds for a just selection rule i.e.
(1.6) inf P(CS|R) = inf Pw(CS|R), if R is just.

we we o
The above result enables us to restrict our attention to
0 for determining the infimum of the probability of a cor-
rect selection. Thus, in the case of a one-parameter family
of distributions the problem is reduced to finding the infi-
mum of a univariate function., This problem is even more sim-
plified in some cases; for example the rule studied in (3]
for selecting a subset of normal populations with means
01905000050 and a common known variance 02 is: Select

mo iff i'i g_imax- Do/ /i where D = D(k,P*) is determined
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to satisfy the P* condition. It can easily be seen that
this rule is just and that it is invariant under shift in
location. Since QO also is invariant under shift in loca-
tion, this implies that Pw(CSlR) is constant for w € QO'

Hence P (CS]R) > P* for some w, € Q, implies the P*-
Wy — 0 0

condition. It is also a reasonable requirement that Pw(CS[R)
be constant over QO because in stating the P*-condition,

we express that we are content if Pw(CSIR) is at least P*
and we are not interested in exceeding P*, at least not in -
QO where it can be achieved only by increasing the expected
number of populations in the selected subset.

Now we state a lemma which can be applied to construct
just subset selection rules with constant probability of a
correct selection in QO.

Lemma 1.1. Let Xl’ 2,...,xk be independent and L{dentically
distributed nandom variables with joint distribution P,.
Let T(Xl,xz,...,xk) be a sufficient statistic forn 6.

(1) 14 5(5(X1,---»Xk)|T) = P* for all T then E8 = P*
gor all 6. -

(ii) 1§ T 4is complete w.n.t. {P,(x)}, then
Ee(a(xl,...,xk)lT) = P* s also necessany fon E 8 = P* fon
all o.

The proof is simple and is omitted. This lemma plays a
role in some selection procedures discussed in the next sec-

tion.

2. Some Selection Rules gor Discrete Distributions. In
this section we discuss some new selection rules in the cases
of binomial, Poisson, and negative binomial distributions.

Very little work has been done under subset selection
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formulation in the cases of Poisson and negative binomial
distriburions. For the binomial distributions, a subset se-
lection rule was proposed and studied in [4].

Binomial Case: Let Myly,..., M be k binomial popula-
tions B(ei,n), i=1,...,k. Since ei's are the ‘unknown
parameters, £ = {w: w = (61,82,...,6k) and
QO = {w: w= (6,06,...,8)}. We will construct a just selec-
tion rule R for selecting the population with the largest ei’
which is also stochastically the largest, such that -
Pwoccsln) = P* holds for all w ¢ 2.
goal cannot be achieved with a nonrandomized rule, because
when w = (0,0,...,0) or w = (1,1,...,1) the observations

will be x = (0,0,...,0) or x = (n,n,...,n) with probability

It is clear that this

one, fequiring the use of individual selection probabilities
p;= P, i =1,2,...,k, 1in these cases.

The joint density for w € QO is

k k
" - (1_a 0K 9 n
(2.1) £, (x) %500 05%) = (1-6) exp[(% xi)log——l_e]llI( "i)
k
We see that T = ) Xi is a sufficient statistic for §.
i=1

Since we are interested in symmetric rules R it is suffi-
cient to know one of the individual selection probabilities,

say, Py- From the lemma of the previous section it follows

(2.2) E(pk(x)lT) =P* for T =0,1,...,kn.

The requirement that R be just leads to

yijyi,i=l,2,...,k-1
(2‘3) ‘pk(xl)xz)'")xk)fpk(YI,YZ""’yk)'
Y 2%
Figure 1 shows the partial ordering induced by (2.3) among
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the observation vectors for the case k = 3, n = 2. The in-
dividual selection probability ps(xl,xz,xz) defines a just
rule if its values are nondecreasing in the direction of the
arrows. Because of symmetry only one of the two permutations
(xl,xz,xs) and (XZ’XI’XS) is plotted. The numbers under-

neath the observation vectors denote the corresponding T

values.

(0 0,2)
(0, 0 1j"—————'. ‘L\\\\“(o 1,2) i
(01‘01 \(0 1 1)/;'(01242);.(1 1_42)
(Otlloj‘\/vcofzsl)é(lfl 1)/\'(1;252)
(0 2 o<( 120)/ L 2,1) (2 2,2)

11 / '\ 2*2 N

5

(2 2 O)

Figure 1. Partial Ordering for Binomial

Observations k = 3, n = 2.

The conditions (2.2) and (2.3) do not determine a rule u-

niquely. We propose the following rule RO:

( 1 if X > Cr
(2.4) Py (x) = { o if x =g
k o if X, < Cp
where p = p(T,P*,k) and Cp = cT(P*,k) are determined to

satisfy
(2.5) E(pk(X)IT) = P{X> cT[T} + oP{X, = chT} = pP* |
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The conditional distribution of Xk given T 1is hyper-

geometric.
@ (&-Dny
(2.6) PIX, = i[T} = 2 knT 1
&S

Let ZT have the same distribution as Xk given T. Then

(2.5) becomes

- = = p*
(2.7) . _P{ZT > cT} + pP{ZT = cT} P
.and the constant Cr is the smallest integer determined from
the inequalities
. *
(2.8) P{ZT > cT} <P
and
*
(2.9) P{ZT 3-CT} > P
From (2.7), we have
P* - P{Z_ > c.}
T T
(2.10) e = =
P{ZT = Cpl

Now, we show that R_. is just.

0
Theorem 2.1. RO 45 Just.

Proof: Llet x = (xl,xz,...,xk), y = (yl,yz,...,yk) and de-
note the pregerence nelation induced (2.3) by y > x. Let
k
T, = Ix,
X i
Case 1. Tx = Ty' In this case y Z X implies Y 2 X and

the assertion follows from (2.4).
{

Case 2. Tx ¥ Ty' It suffices to show that pk(y) :_pk(x)
for those pairs (x,y) where y ranks immediately above x

i.e. y > x and there is no y' such that y > y' > x
k k k
holds. There are two types of such y's for each x:
Type 1t yp = x+ 1, y; = %, L £ ki Type 2; y, = YioY3= %571,

for some j # k and Y= X for all other j.

10
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Type 1. Here Ty = Tx+ 1. If pk(x) = 1, then by (2.8)
P{ZT > xk} < p* holds, therefore,

(2.11) P{ZT > yk} = P{ZT a5 1} 5-P{ZT > xk} < px,
y X X
hence pk(y) =1 3_pk(x).

If pk(x) = p >0 then by (2.8), (2.9)

- *
(2.12) P{ZTX_> xk} < P* and P{ZTx z_xk} = P*, holds.

From (2.11), we get

(2.13) P{ZT > yk} < p*
y

If also

(2.14) P{ZTy > yk} < p*

holds, then

p () = 12p (x)
If (2.13) holds but (2.14) does not, we have
p* - P{ZT > yk}

- y
P (¥) = PlZ, > ¥ -1} - Py > 0y

Y
(2.15) _
p* P{ZT > xk}
> 2 = p,. (x)
=P{Z, > xk-l} - P{Z, > xk} k
X k
* o . _
where the inequality is of the kind Pb—z 3.B§T%' with

0 <ac<A < P* < b <8B and is seen to be true as follows:
P*-a > P*-a N P*-A
b-a — B-a — B-A
the expression in the middle is a decreasing function in a.

where the second inequality holds because
The third possibility pk(x) = 0 is trivially true.

Type 2. Here Ty = Tx-l. The proof is analogous to that for
type 1 with (2.11) replaced by

11
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> xk} < P{ZT > X, }

(2.16)  P{zp >y} =Pz, .

y X X
This concludes the proof of Theorem 2.1.

Table 1 gives the values of <r and p for several se-
lected values of P*, k and n. Since T takes on the val-
ues 0, 1,..., kn these tables become very extensive for
large values of k and n. Therefore it is desirable to find
approximations for Cr and p. The normal approximation for
the hypergeometric distribution gives good results when n
is large and T is not extreme (close to 0 or kn). The ex-
pectation and variance of ZT are u = % and
c2 _ T(kn-T) (k-1)

(kn-1)k

totically ZT is N(u,cz), we obtain approximate value ?%

respectively. Using the fact that asymp-

given by
?ir

where Q_l is the inverse of the standard normal cdf and

= [%-+ w- oo e

[x] is the integral part of x. For p we get the approxi-
+ 0.5 - (0 - 0¢-1(P*)). The exact and

~

mate value p = E}
approximate values of Cr and p were compared for

k = 2,3,5,10; n = 5,10,20; and some selected values of T
and P*. The results showed no change in the values of Cr

and T. and small derivations in the values of p and .

TheTnonrandomized version Ro' of RO,

RO': Select Hi iff X; > Cp s is conservative in the
sense of meeting the basic probability requirement. However,
RO' may not be just and it selects large subsets if the ei's

are close to zero or one.
The performance of a rule R,

R: Select @1, iff x, > max x.- D ,
i -
1<j<k

12
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was studied in [4] and a table was given for the expected
proportion under various slippage configurations
(6,6,...,6,8+8). A comparison of R0 and R 1is difficult

because inf Pw(CSIR) is not known. Since it takes place
Q

near 6 = %3 the P*-value for R_. was chosen to satisfy

Pw(CSIR) = P* with w = (%3%3.7.,%0 which makes the compar-
ison slightly more favorable for R. The numerical computa-
tions showed that R0 yields better results for small values
of 6§, while R 1is better for large 6. Hence R0 should
be applied if small differences in the success probabilities
are expected. This disadvantage of RO becomes more evident in
the case of equally spaced configurations, where almost sure-
ly more than half of the populations will be retained in the
selected subset if the number of observations is increased
indefinitely, whereas R will eventually select only the
best one. In Section 3 a rule will be proposed, which com-
bines the advantages of both R and RO.
Poisson Case:

A selection rule similar to the rule RO for the binomial
case has been constructed for the Poisson case. The condi-
tional probability in this case is
T (e

X T

(2.17) PIX, = x|T} = (
k

The rule is of the same type as RO defined in (2.4) and the
constant c. and p are determined as before except that

the conditional distribution is now given by (2.17). Table 2
gives the values of Cr
Negative Binomial Case:

A selection rule for large © for the negative binomial

and p for various k, T and P*.

13
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distribution with probability function (i:i)9§(1-6i)x_r is
similar to RO except that pi(x) =1 or O according as
X; < ¢p or > ¢... The evaluation of the constants St

and pT is accompIished as before. Table 3 gives values of
these for selected values of k, P* and r.

Similar selection rules have also been computed for
Fisher's logarithmic distribution [5].

Remark 2.1. It should be pointed out that the rules discus-
sed in this section overcame the difficulty in the evaluation
.of the infimum of the probability of a correct selection en-
countered in rules of the type R for the binomial case that
was studied in [4]. The conditional rules of the type R,
lead to P(CS|R0) which is constant in QO which is not the
case for rules of type R .

3. Some Rufes with Constant P(CS|R) 4n 2 derndived from
the LikelLihood Ratio Crniterion. From a likelihood ratio test
under slippage hypotheses a derivation was given in [1] for
the following rule for selecting a subset containing the one
with highest mean from several normal populations. This de-
rivation can be generalized for Koopman-Darmois families and
more general hypotheses.

Let Xi’ i=1,2,...,k, have the probability densities
(3.1) £(8.,X.) = c(e.)eQ(ei)T(xi) h(x.)

i’7i i i
If we make the usual assumption that Q(ei) is strictly mon-
otone, say increasing, so that we can consider Q(ei) as the
parameter and rename it ei, simplifying (3.1) to

. 9.T(x.)
(3.2) £(9,,X;) = c(8;)e 11 h(x;)

14
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Let us assume we know that the ei take on the values
ei j_eé <. f_eé , but that the correct pairing is not
known. Consider the set of hypotheses

M = L 1 =
(3.3) Hpo 0, =8); i=1,...k,

i.e. Hi is the hypothesis that Si corresponds to 9&
without specifying the parameters of the remaining (k-1)
populations. If Qi, i=1,2,...,k, denotes the subset of
2 where Hi is true, then the likelihood ratio test of Hk—

against the alternatives Hl,...,Hk_1 yields the region of
acceptance:
k

max I f(ei,xi)

weR, i=1 LeNf{Tr. .- T.q]
(3.4) x = —XK - S B £ R

max i f(ei,xi)

wef, i=1

k

where the T[i] are the ordered values of Ti= T(xi),

i=1,2,...,k, and Tti]
1 = - ! = -
i 1,2,...,k-1, T[k] Tk' Let r be the rank of Tk a

are the ordered values of Ti’

mong the Ti s, i.e. T[r] = Tk. Then (3.4) becomes
) )

(3.5) 6. (TL.,-T..,) = (6, ,-8.)T ..+(8, -6 )T, > c. .
IR LY B Y - A M E R N S

Under slippage configuration W = (ei,...,8£)=(6,...,6,9+6),

(3.5) simplifies to

(3.6) - GT[k] + GTk >4
or

(3.7) Tk i-T[k] - <,

[f 8 and § are known this gives rise to the selection rule

15
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(3.8) R: Select Hi if Ti 2-T[k] - <
where c, = cz(k,P*,B,G) is determined from the P*-condi-
tion
- —3 *
(3.9) Pmk{Tk :_T[k] cz} |

The rule given in (3.8) was introduced by Gupta [1,3]. It
can easily be seen that this rule is just, hence if we keep
9 fixed the minimum of P(CS) takes place of when & = 0,

in which case (3.9) becomes -

O

(3.10) j F’;'lcucz)dpe(t) - pr

where Fe is the cumulative distribution function of T. For
2 in
(3.10) does not depend on 6. For this case the constants <,

normal distributions with 6 as location parameter, ¢

are tabulated in [2]. In general <, depends on 8 and if 8 is
not known an estimator for 6 may be used in (3.9). Since ZTi
is a sufficient statistic for 9, this leads to a selection
rule of the form

(3.11) Select 1., if T. » T, . - c(IT,,P*).
1 1 — 1

(k]
By Lemma 1.1 this rule has constant P(CS) in QO’ if
c(ZTi,P*) is determined <o satisfy:
- * = Dx
P“‘o {T, _>_T[k] c(zZT,,P )IZTJ.} p
(3.12)

for all ZTi, wyE QO

However it is not known whether (4.11) is a just rule.
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Table 1. r and Pr for Binomial Distributions
= 2 N =25 K=25 N =25 (Cont'd.)
P=.75 | P=.9C |P=.95 | P=,99 P=.75 {P=.90 [{P=.95 |P=.99
T ¢r OplCp opfc orlc Pr T cr Prlr Pr o or|Sr Pr
0[O0 .75 0 .90| O .95) 0 .99 13 2 .65 1 .30 1 .71}y 0 .33
110 .50 0 .80} 0 .90y 0 .98 14 2 .45y 2 .98 1 .53 1 .99
211 .95 0 .55} 0 .78 0 .96 15 2 .221 2 .85y 1 .241 1 .91
311 .60 1 .96} 0 .40| O .88 16 3 .95 2 .69 2 .95] 1 .80
411 .05/ 1 .68}] 1 .89 0 .58 17 3.77] 2 .471 2 .81} 1 .60
512 .63 1 .03{ 1 .54f 1 .94 18 3 .58 2 .13] 2 .63] 1 .19
612 .05 2 .68} 2 .89 1 .58 19 3 .34 3 .89 2 .31| 2 .93
713 .60 3 .96 2 .40| 2 .88 20 3 .01 3 .71 3 .94| 2 .77
8|14 .95/ 3 .55 3 .78} 3 .96 21 4 .81 3 .44y 3 .78} 2 .39
9|4 .50 4 .80 4 .90| 4 .98 221 4 .62] 4 .98) 3 .48 3 .94
0lS .75} 5 .90] 5 .95} 5 .99 23 4 .35 4 .80} 4 .95} 3 .70
K = N=5S 241 5 .94| 4 .50 4 .75] 4 .95
25 S .75 5 .90f 5 .95 5 .99
010 .75 0 .90} 0 .95] 0 .99
110 .63 0 .85| 0 .93 0 .08 || X=?2 = 10
210 .42} 0 .771 0 .88 0 .98 0 0 .75 0 .90 0 .95] 0 .99
5|0 .05 0 .62| 0 .81| 0 .96 1 0 .50 0 .80} 0 .90/ 0 .98
471 .78/ 0 .35| 0 .68] 0 .94 2 1 .98 0 .58 0 .791 0 .96
St1 .53 1 .95 0 .40 0 .88 3 1 .63] 0 .05 0 .53 0 .91
611 .17} 1 .77{ 1 .97{ 0 .76 4 1 .171 1 .77 1 .97} 0 .77
712 .83 1 .50{ 1 .81} 0 .46 5 2 .72) 1 .38} 1 .75 0 .38
82 .54 1 .00 1 .54} 1 .97 6 2 .26] 2 .88 1 .31 1 .93
912 .15} 2 .78 2 .99] 1 .82 7\ 3 .77 2 .51] 2 .85} 1 .69
3 .791 2 .451 2 .78 1 .42 8 3 .31 3 .94} 2 .47 2 1.00
3 .48 3 .93} 2 .37} 2 .91 9{. 4 .791 3 .57 3 .90f 2 .77
4 .98 3 .65| 3 .87 2 .55 ||{10{ 4 .334 4 .96{ 3 .51} 2 .14
4 .68 4 .99 3 .481 3 .90 11 5 .79 4 .57} 4 .90 3 .77
4 .251 4 .70} 4 .85| 4 .97 12 5 .31] 5 .94] 4 .47 4 1.00
5 .75 5 .90| 5 .95} 5 .99 13 6 .77 5 .51 5 .85 4 .69
- N =5 14] 6 .26 6 .88} 5 .31 5 .93
15 7 .72 6 .38} 6 .75} 5 .38
0 .751 0 .90} 0 .95y 0 .99 16 7 .17\ 7 .77V 7 .97 6 .77
0 .69 0 .87 0 .941 0 .99 17 8 .63} 7 .05{ 7 .53 7 .91
0 .61| 0 .84} 0 .92{ 0 .98 18 9 .98/ 8 .58/ 8 .79] 8 .96
0 .50{ 0 .80! 0 .90| O .98 19 9 .501 9 .80] 9 .90} 9 .98
0 .35| 0 .74} 0 .87 0 .97 |{20] 10 .75|10 .90{10 .95/ 10 .99
0 .14f 0 .66} 0 .83] 0 .97 :
1 .93 0 .54 0.77| 0 .95 || X =3 N=10
1 .78 0 .38] 0 .69} 0 .94 0f 0 .75| 0 .90} 0 .95 0 .99
1 .63] 0 .14} 0 .57} 0 .91 1 0 .63 0 .85] 0 .93 0 .98
1 .46 1 .94| 0 .39 0 .88 2 0 .43} 0 .771 0 .89 0 .98
1 .25 1 .83} 0 .12} 0 .82 3 0 .11 0 .64} 0 .82 0 .96
2 .99 1 .701 1 .94 0 .75 4 1 .821 0 .43} 0 .72 0 .94
2 .82t 1 .53{1 .84} 0 .59 5 1 .58] 0 .08) 0 .54 0 .91
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Table 1 (Continued)

K = 3 10 (Cont'd. K=5 N=10 (Cont'd.)
=.75 [P=.90 | P=.95 [P=.99 P=.75 |P=.90 |P=.95
Ticr P 4t Pr o1 Tiep  ep iy Pr
1.2911 .87 0 .23)0 .85| |12] 2 .96/ 1 .72 1 .98}0 .
2 .94 1 .67/ 1 .94|0 .74{ |13 2 .80] 1 .58 1 .90 0
2 .68] 1 .41| 1 .78|0 .54| |14} 2 .64] 1 .41 1 .80( 0
2 .38{ 21.00] 1 .57}0 .15 15| 2 .46 1 .20{ 1 .69| 0
2 .0002 .80]l1.2211 .93} |16| 2 .27 2 .97{ 1, .54{ 0
3.730 2 .s54| 2 .91|1 .80} {17/ 2 .04 2 .85} 1 .36} 1
3 .43 2 .18/ 2 .70|1 .56| |18| 3 .86| 2 .72| 1 .11 1
3.05| 3 .86| 2 .3801 .110 19| 3 .69 2 .56] 2 .94 1
4 .75| 3 .60| 3 .96|2 .89 |20| 3 .51 2 .36} 2 .82] 1
4 44| 3 230 3 .7412 67| |21] 3 .31 2 .12] 2 .69| 1
4 0504 .87) 3 .42|2 .26 |22| 3 .08 3 .92| 2 .51|1
5 .74] 4 .60| 4 .96|3 .90| |23| 4 .88/ 3 .78} 2 .29] L~
5 .420 4 .19 4 .73]3 .66 |24] 4 .70| 3 .61} 3 1.00{ 2
5 .00 5 .84 4 .36{3 .15} |25] 4 .52 3 .41 3 .88 2
6 .700 5 .53|5 .91]4 .85] |26/ 4 .31] 3 .16] 3 .73 2
6 .36] 5 .04|5 .63|4 .50| |27/ 4 .07| 4 .94 3 .56{ 2
7 .94] 6 .75!5 .13]5 .9a| |28/ 5 .87 4 .78] 3 .32| 2
7 6316 .37|16 .79|5 .67 |29 5 .68| 4 .60 3 .01| 3
7 .24l 7 .90!6 .39|6 .98 30| 5 .49| 4 .39 4 .87 3
8 .84| 7 .57 7 .88l6 .72} |31 5 .27| 4 .11} 4 .71] 3
8 .50| 8 .98| 7 .52]7 .97| {32/ 5 .o0{ 5 .90] 4 .50| 3
8 .01{8 .68[8 .91|7 .66| [33] 6 .82| 5 .73] 4 .22| 3
9 .68/ 8 .03|8 .52|8 .90 {34/ 6 .63 5 .52 5 .95| 4
9 .2519 .70|9 .85)9 .97| |35/ 6 .42| 5 .26/ 5 .79| 4
10 .75/10 .90 {10 .9510 .99 |36 6 .17| 6 .96] 5 .59| 4
) N - 10 371 7 .93! 6 .80] 5 .31] 4
38| 7 .74 6 .59] 6 .97 S
o{o.7510 .900.95/0 .99 39| 7 .53| 6 .33 6 .81|5
110 .69/ 0 .8810 .94}0 .99 (40} 7 .30| 7 .98 6 .59| 5
210 .6110 .841{0 .92|0 .98]| |41} 8 1.00| 7 .81} 6 .28} 5
310.50l0 .00 .90)o0 .98 |4z2| 8 .81| 7 .60| 7 .94} 6
410 .3710 .75|0 .87|0 .97 | [43] 8 .60| 7 .30 7 .75| 6
5/10.2000 .68{0 .84}0 .97 | laa| 8 .36| 8 .94} 7 .48| 6
61 .98]0 .59 {0 .79]0 .96 45! 8 .04] 8 .75/ 8 .99| 7
7{1 .84|0 .46 {0 .73}0 .95 | |46| 9 .82| 8 .49| 8 .81} 7
811 .69]0 .3010 .65{0 .93 {a7] 9 .62| 9 .99| 8 .52{ 8
9/1.54/0 .08{0 .54|0 .91 |48 9 .35/ 9 .81l 9 .96]| 8
1001 .3701 .9310 .39|0 .88} |49/10 .94} 9 .50} 9 .75|9
111 .17y1 .83 1|0 .19|0 .84} |sol10 .75}10 .90|10 .95 |10




for Poisson Distributions

Table 2. cT and o
K =2 K = 2 (Cont'd.)

P=.75] P=.90 | P=.95] P=.99 P=.75] P=.90 | P=.95 | P=.99
S T S B Tler  egcr  °rir PriSr Pr
of o .751 o .90}l 0 .95 o .99| |a1|18 .18/16 .12{15 .30|13 .47
1l o .sol o .80] 0 .90 o .98| 42|19 .71/17 .69|16 .85[14 .98
2l 0o0.00l 0 .60/ 0 .80l 0 .96]| |43|19 .2317 .23|16 .44|14 .63
3] 1 .671 0 .20 0 .60 0 .92| |44|20 .76/18 .78{17 .95|14 .20
a4l 1 .251 1 .8s5{ 0 .200 o .84| |as{z20 .20{18 .34|17 .56{15 .80
s| 2 .80l 1 .s6{1 .88 0 .68| |46l21 .s0l19 .86|17 .08]15 .41
6|l 2 .40l 1 .10| 1 .63 0 .36] |a7l21 .34{19 .43]|18 .68|16 .94
71 3 .91l 2 .771 1 .23 1 .96| |48l22 .85/20 .94|18 .22|16 .58
8l 3 .s2| 2 .41l 2 .86 1 .81| |49{22 .39/20 .53|19 .78{16 .11
ol 3 .02l 3 .94| 2 .s71 1 .sa| |sol23 .s0l20 .03[{19 .35|17 .73

10 4 .62/ 3 .61|2 .11 1 .08} [

11| 4 .1s| 3 .16/ 3 .79 2 .85 .

12 s .71l 4 .78{ 3 .43 2 .58 ol 0 .7s] o .90 0 .95/ 0 .99
15| 5 .26/ 4 .38 4 .94 2 .13 11 0 .63 o .85 0 .93 0 .98
14 6 .791 5 .92| 4 .63 3 .84 2l 0 .44 0 .771 0 .89 0 .98
15| 6 .35 5 .56| 4 .22 3 .55 3 0 .16 0 .66] 0 .83| 0 .97
16| 7 .87 5 .08 5 .83 3 .07 4l 1 .87 0 .49l 0 .75/ 0 .95
170 7 .43 6 .70| 5 .46 4 .80 st 1 .64 0 .24/ 0 .62]0 .92
18] 8 .94/ 6 .27\ 6 .97 4 .47 6l 1 .38 1 .95/ 0 .43|0 .89
19| 8 .51 7 .83 6 .65 5 .98 711 .07 1 .80 0o .15{ 0 .83
200 8 .o1| 7 .43l 6 .21 5 .72 gl 2 .80l 1 .61| 1 .93|0 .74
211 9 .58 8 .94| 7 .80 5 .34 ol 2 .54/ 1 .371 1 .80l 0 .62
22 9 .100 8 .57 7 .42 6 .91| |10l 2 .25{ 1 .05/ 1 .62|0 .42
230 10 .65 8 .09| 8 .94 6 .e1| |11 3 .93 2 .84} 1 .40{ 0 .14
24/ 10 .18 9 .69] 8 .39 6 .17! 12| 3 .68 2 .64l 1 .09|1 .95
2si 11 .72l 9 .24| 8 .12 7 .81 13l 3 .39] 2 .39 2 .89|1 .85
26| 11 .25/10 .80| 9 .74 7 .a6| |14} 3 .07 2 .07] 2 .71|1 .73
271 12 .78l10 .38 9 .32 8 .97{ |1s| 4 .79 3 .84] 2 .49| 1 .55
28| 12 .32111 .91|10 .87 8 .68| |16/ 4 .51] 3 .62{ 2 .21|1 .30
29 13 .83(11 .soli0 .48 8 .26| [17| 4 .21] 3 .35] 3 .93| 2 .99
3ol 13 .38/11 .o00l{11 .99 9 .8s| |18/ 5 .90l 3 .o02| 3 .75|2 .88
31] 14 .89/12 .e2|11 .63 9 .so| |19 5 .62 4 .80f 3 .52{2 .73
52| 14 .44l12 .15y11 .17 9 .ool| |20l 5 .32| 4 .s7] 3 .24|2 .53
550 15 .95/13 .72|12 .76/ 10 .70| |21 6 .99} 4 .28| 4 .95|2 .27
4] 15 .so{13 .27|12 .34/ 10 .28 |22l 6 .72| 5 .97] 4 .76} 3 .97
35| 16 1.00{14 .82|15 .88 11 .86| [23| 6 .43 5 .74| 4 .s2|3 .84
36| 16 .55/14 .39{13 .48/11 .50{ |24/ 6 .11| 5 .48| 4 .24|3 .66
57| 16 .06/15 .91l14 .99l 11 .o1| l2s| 7 .si| 5 .18 5 .94|3 .43
38! 17 .e1j15 .s0(14 .6212 .69 |26] 7 .s2{ 6 .90| 5 .74|3 .13
59 17 .12l16 1.00]14 .15{12 .26 |27 7 .21l 6 .66] 5 .49]4 .91
10{ 18 .66{16 .60|15 .7413 .84| |28/ 8 .89 6 .38/ 5 .20|4 .74




%

Table 2 {Continued)

K = 3 (Cont'd.) K =5 (Cont'd.)
P=_75T P=.90 ] P=.95 | P=.99 F= 75 | P=.00] P=.95 ] P=.99
TJer ey egep opfer opf T ISp  Ppicr. PHSp PrSr P
2908 .61l 6 .05 6 .92] 4 .53 f1a]l2 .79l 1 .64 1 .06l 0 .77
0l s .30 7 .81l 6 .70 4 .2s| {is|2 .eal 1 .51l 1 .89 0 .72
s1{o .97 7 .s5| 6 .44| 5 .96 16| 2 .48/ 1 .36 1 .81] 0 .64
3219 .69l 7 .25 6 .130 5 .79 |17l 2 .3111 .19 1 .71] 0 .s6
3309 .30 8 .04l 7 .870 5 .s8| |is| 2 .12} 2 .99l 1 .61 0 .44
3419 .06 8 .70l 7 .64l 5 .32| |19]| 3 .oal 2 .89 1 .48 0 .31
35110 .77 8 .420 7 3706 .99] {2003 .79l 2 .77 1 .33} 0 .13
36l10 .47 8 .10] 7 .0s| 6 .83 l21|3 .63 2 .es] 1 .16 1 .98
37110 .15] 9 .83 8 .s1| 6 .62| |22 3 .46l 2 .s1| 2 .98 1 .04
38|11 .84l 9 .57 8 .57 6 .36| |23| 3 .28 2 .36| 2 .89| 1 .88
39|11 55| 9 .270 8 .28/ 6 .03| {24| 3 .00l 2 .18l 2 .79| 1 .81
40|11 .23l10 .95| 9 .96| 7 .84 |25| 4 .o1] 3 .oof 2 .e68] 1 .74
a1l12 .91l10 .70| 9 .74] 7 .63 |26\ 4 .76{ 3 .87 2 .s5| 1 .64
42|12 62|10 .42\ 9 .48 7 .38 |27/ a4 .59l 3 .74] 2 .a1] 1 .54
a3(12 .31l10 .10 9 .17]| 7 .os| |28l a4 .a2| 3 .61 2 .24] 1 .40
44|13 .98{11 .83{10 .s9| 8 .85| |20]| 4 .24] 3 .46 2 .0s| 1 .25
45(13 .e9l11 .sel10 .65| 8 .63 |30l 4 .04] 3 .29| 3 .93 1 .06
46|13 .38{11 .26l10 .37 8 .37| |31|s .87l 3 .10l 3 .82 2 .95
47|13 .osl12 .oal10 .04l s .os| {32ls .71l 4 .04l 3 .70] 2 .38
48l1a .75012 .e9|11 .s0|'9 .s4| 33| s .s4{ 4 .81 3 .57 2 .s0
aol1a .asliz .a0l11 .sal 9 .62l |34l s .36l 4 .67 3 .42{ 2 .71
sol1a .13{12 .os{11 .25|9 .35 {35! s .17| 4 .s2| 3 .25] 2 .60
—— 36| 6 .98| 4 .36l 3 .06] 2 .47
371 6 .s81| 4 .18} 4 .93 2 .3
0]o .7510 .90]0 .95]0 .99 |38|6 .65/ 5 .99f 4 .81 2 .14
1{0 .690]0 .87{ 0 .9al0 .99 |39|6 .47 5 .s6| 4 .69 3 .98
210 .61l0 .84l 0 .92/ 0 .08} |40l 6 .20l 5 .72| 4 .55 3 .90
310 .51{0 .80 .90{0 .08 41| 6 .09| s .s71 a4 .39] 3 .81
4o .39|0 .76l 0 .s8lo .08 {az| 7 .91|s .a1] 4 .22| 3 .71
5 1o .24/ 0 .69l 0 .8s{o0 .o70 fa3| 7 .74l s .23 4 .02 3 .so
6 |0 .os{o .e2{0 .81|0 .96| |a4| 7 .57/ 5 .03 5 .o0| 3 .16
711 .89]0 .s210 .76]10 .95/ las| 7 .39] 6 .so| 5 .77] 3 .30
8|1 .7510 .4000 .70\ 0 .o4f |46 7 .2016 .75| 5 .64] 3 .12
911 .62/0 .25|0 .63/ 0 .93 la7] 7 .01l 6 .60] 5 .49 2 .06
101 .4710 .07{o0 .55\ 0 .o1] |48l 8 .84} 6 .43 5 .33 4 .88
11 |1 31|11 .94{o0 .a2/0 .88 lao| 8 .67l 6 .26l 5 .14] 4 .78
12 |1 121 .8s|lo .2700 .85| |sol s .49l 6 .06] 6 .96| 4 .66
152 9a|1 .75l0 .09lo0 .s2
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Table 3. c. and o3~ for Negative Binomial Distributions

1]

]

T

S K=23 r=2>5

P=90 | P=.95 | P=.99 95 [ p=.90 | P=.95
Y U e Tler PpiSr °r|Sr Pr
5 .90l 5 .95 5 .99| 15| s .75] 5 .90 5 .95
6 .80{ 6 .90l 6 .98] |16l 6 .25/ 6 .70l 6 .85
7 631 7 .821 7 .96| |17 6 .70| 7 .20 7 .60
8 .37 8 .69l 8 .o4| |18} 7 .10 7 .78 8 .03
8 .99l 9 .20/ 9 .90| l19] 7 .s8| s .33 8 .76
9 .79|10 .21|10 .84} {20 7 .95| 8 .83 9 .35
10 .s4l10 .o4l11 .76 l21| 8 .43 9 .38 o .88
11 .22011 .77112 .es5| l22| 8 .83 9 .8s{10 .s1
11 .91l12 .56{13 .s1| |23l o .26]/10 .4010 .98
12 .66l13 .31]14 .32| |24/ 9 .e8l10 .87/11 .63

13 .37113 .99;15 .08 25{10 .08{11 .41{12 .14
14 .03|14 .81|15 .94 2610 .53f11 .88|12 .73
14 .77(15 .60j16 .84 27110 .92f12 .42113 .28
15 .49416 .35117 .71 2811 .36)12 .89|13 .82
16 .17{17 .05j18 .57 29111 .76|13 .42|14 .40
16 .87|17 .84119 .40 30112 .18{13 .89|14 .91
17 .60118 .62}20 .20 31112 .60j14 .42]15 .50
18 .30(19 .37{20 .98 32912 .99(14 .89;15 .99
18 .97(20 .08|21 .87 33|13 .43)115 .41]16 .60
19 .70(20 .85122 .74 34|13 .84|15 .89j17 .10
20 .41121 .63123 .59 35|14 .26416 .41117 .68
21 .09122 .38|24 .42 36{14 .67|16 .88]18 .22
21 .80(23 .10}25 .23 37115 .07|17 .40{18 .77
22 .52123 .86}126 .01 38|15 .50{17 .87}19 .32
23 .2024 .63|26 .88 39115 .90(18 .39{19 .85
23 .901|25 .3827 .74 40116 .33|18 .87{20 .41
24 .62)26 .11}128 .59 4116 .74119 .38{20 .93
25 .31126 .87|29 .42 42117 .15|19 .86{21 .50
5 .99(27 .64|30 .23 (43{17 .57[20 .37}22 .00
26 .71128 .39{31 .02 4417 .96|20 .85(22 .59
27 .42§29 .12}31 .88 4518 .39(21 .36{23 .11
28 .10129 .87|32 .74 46|18 .80|21 .84|23 .67
28 .81|30 .64|33 .58 47119 .21(22 .35{24 .20
9 .52(31 .39(34 .41 48119 .63(22 .83{24 .75
30 .21(132 .12}135 .22 49120 .03{23 .33}25 .30
30 .91}32 .87136 .02 50{20 .46(23 .82)25 .83

31 .62|33 .64|36 .88 51120 .861{24 .32|26 .39
32 .32134 .39137 .73 52121 .28{24 .81{26 .91
32 1.00135 .12|38 .57 53|21 .69(25 .31{27 .47
35 .72135 .87139 .40 54122 .10(25 .80{27 .99
34 .42136 .64|40 .21 55122 .52|26 .29{28 .56
35 .11137 .39(|41 .01 56122 .92126 .78}29 .08

35 .81138 .12}41 .87 57123 .34(27 .28}29 .64
36 .52138 .87(42 .71 58123 .75(27 .77}30 .17
37 .21139 .64143 .55 59{24 .16(28 .27[/30 .72
37 .91}140 .39(44 .38 60124 .58{28 .76{31 .26
8§ .62j41 .12145 .20 61124 .98|29 .25[31 .80
9 .32}41 .87145 1.00 62125 .41)29 .75]132 .35
40 .001(4z .64]46 .85 63125 .81(30 .24;32 .88
40 .71145 .38147 .70 64126 .23|30 .73]35 .43
41 .4244 12|48 .53 65126 .64131 .2Z2]33 .95
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Tabie 3 (Continued

K=5 =5 K=2 r=10
P75 T P=.90 | P=.95 ] P=.90 P= 75— P=00 P=.95 P=.09

T [<r o71St Pt PdSt e |{T S °r S °r 7 °r °1 Pt

>l 5 .75 5 .oo| 5 .95 5 .99| |[20]10 .75/10 .90{10 .95[10 .99
26l 5 .9ale .sol 6 .75 6 .os| |21}11 .so|11 .sol11 .90[11 .98
571 6 .34l6 .83 6 .oof 7 .78] |22{12 .o05|12 .e2{12 .81|12 .96
28l 6 .62 7 .14 7 .63 8 .16| |23/12 .70/13 .30{13 .65/13 .93
29l 6 .84l 7 .sol 7 .92l 8 .81| |24]13 .32/13 .92{14 .38/14 .88
0l 7 10|l 7 .87l 8 .40l 9 .24| |2s|13 .88{14 .69|14 .98|15 .79
1l 7 4218 220 8 .77 9 .78 |26{14 .51{15 .37|15 .81|16 .65
321 7 .67/ 8 .e0| 9 .07 10 .18 |27/15 .06/15 .96|16 .57|17 .42
33l 7 90ls .87 9 .ss|1o .72 |28{15 .68{16 .70{17 .24{18 .09
4l 8 1719 .21 9 .sel11 .os| lzol16 .27{17 .37}17 .91j18 .92
sl 8 4619 .s57110 .24011 .63 |30l16 .84|17 .97/18 .68[19 .78
6l 8 7019 .86l10 .64l 11 .96| |31|17 .44{18 .68/19 .39{20 .59
371 8 .93l10 .18/10 .9312 .s2| |32/17 .99|19 .34|19 1.00[21 .33
8l 9 .20lt0 .s3l11 .35]12 .so| |33/18 .e1]19 .95/20 .77}21 1.00
290 9 .ag8lio .82(11 .71113 .37 |34l19 .18{20 .65|21 .49{22 .85
a0l 9 .72011 12011 .99 13 .79] |3s{19 .76|21 .30{22 .13]23 .67
a1l 9 .9sli1 .asl12 .42114 .21} |36]20 .35/21 .92{22 .84|24 .43
42110 22111 .78l12 .76/ 14 .e8| 37|20 .92|22 .e61]23 .57|25 .13
43110 .a9l12 .06l 13 .08 15 .02 |38{21 .s2{23 .25{24 .23125 .90
aal10 .73l12 .42013 .48 15 .54| |39{22 .08{23 .88/24 .90/26 .72
4s{10 .96l12 .73l13 .81/15 .01} |40|22 .67|24 .56[25 .63|27 .49
46|11 .24112 .99l14 .15/ 16 .38] |41|23 .25/25 .19{26 .31|28 .21
47111 .sol13 .36/ 14 .54l 16 .79| |42]23 .82{25 .84[26 .96|28 .94
agl11 74113 .67]14 .86/ 17 .20] 143|24 .a1|26 .51{27 .69{29 .75
49011 .97|13 .94l15 .21117 .e6| |44|24 .97{27 .1328 .38/30 .52
sol12 .25114 .28/15 .58 18 .o1| |45{25 .57|27 .79{29 .02{31 .25
5112 .s1l14 .e0l15 .90118 .51| |46|26 .14|28 .45{29 .75{31 .96
52112 .75l14 .89|16 .26/ 18 .89| |47{26 .72|29 .07} 30 .45/32 .77
53112 .98lis .2116 .62/ 19 .34| |48|27 .30|29 .73 31 .10{33 .54
sal13 .25(15 .s4l16 .93 19 .75| {49{27 .87/30 .39|31 .80|34 .28
ssl|13 .s1l1s .83117 .31]20 .15| |s0l28 .46{30 1.00{32 .50{34 .98
s6l13 .75l16 .13117 .66/ 20 .61| |s1l29 .02|31 .68/33 .17]35 .78
57113 .99 16 .46/17 .97020 .97| |s2l29 .e1|32 .32/33 .85/36 .56
sgl1a .26116 .76|18 .35|21 .44} |s3|50 .19]32 .95|34 .56|37 .29
solia .sili7 .osl1s .70l21 .84| |saf3z0 .77|33 .62/35 .23 37 1.00
6ol1a .76117 .39/19 .01l22 .26| |s5|31 .35|34 .25/35 .90{38 .79
61l14 .99l17 .70l19 .40|l22 .69| |se[31 .92{34 .89|36 .61{39 .57
62115 .26117 .98/19 .7a}23 .07] |s57|32 .so|35 .ss{37 .28/40 .31
63115 .s1l18 .31l20 .os|23 .s3| |ss|33 .07({36 .18/37 .94{41 .0l
64115 .76118 .62/ 20 .43123 .91 |s9|{33 .66|/36 .8338 .65/41 .80
65115 .99l18 .91l20 .77024 .36| |e0|34 .23|37 .49|39 .34}42 .57
66116 .26119 .23/21 .10l24 .77 61|34 .81|38 .11{39 .99/43 .31
67116 .s1l19 .ss|21 .47125 .18| |e2|35 .39{38 .77/40 .70|44 .02
6816 .76119 .sal21 .sol2s5 .e2| |63|35 .96{39 .42/41 .39{44 .80
6916 .99|20 .15/22 .14{25 .99| |e4al36 .s4la0 .04[42 .04[45 .57
70117 .26120 .47022 .sol26 .45| (65|37 .11l40 .70{42 .75/46 .31
71117 .s52120 .77022 .83|26 .84 66|37 .70|41 .35{43 .44|47 .02
72117 76121 .07123 .18(27 .27| l|e7|38 .27{a1 .97/44 .10{47 .80
73117 1.00121 .40l 23 .54{27 .69| |68|38 .g8ala2 .e4|lda .79{48 .57
74|18 .26121 .70{23 .86/28 .08| |e9|so .43}a3 .28/45 .48{49 .31
75118 .51]21 .99|24 .21|28 .s53| |70{39 .99|43 .91{46 .15/50 .03
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Table 3 [Continued)

K=3 r = 10 K=5 r = 10
P=.75 | P=.90 | P=.95 [ P=.99 P=.75 | P=.90 | P=.95 [ P=.99

1 N O N L . ey eler  oplSr oS Pr
30]10 .75{10 .90{10 .95 10 .99 sol10 .75{10 .90f10 .95(10 .99
31{11 .25]11 .70{11 .85/ 11 .97 51|10 .94f11 .s50{11 .75{11 .95
32|11 .e9)12 .15/12 .s8 12 .92 52111 .34{11 .82{11 .98{12 .77
33112 .07{12 .75|12 .97} 13 .77 5311 .62(12 .10}12 .60{12 1.00
34{12 .56{13 .23|13 .70} 14 .43 s4l11 .84]12 .56|12 .89}13 .75
35|12 .92{13 .75|14 .17 14 .95 55{12 .08({12 .83|13 .29{13 .99
36|13 .38|14 .22|14 .76{ 15 .72 56|12 .40{13 .12{13 .69{14 .65
37|13 .77|14 .72|15 .27]16 .28 57112 .65(13 .52|13 .94{14 .94
3814 .17/15 .17{15 .80} 16 .87 5812 .87[13 .79{14 .38{15 .48
39114 .59{15 .68{16 .32/17 .54 59|13 .12{14 .03|14 .72{15 .84
40|14 .95{16 .10(16 .82/17 .99 60| 13 .41]14 .43}14 .97|16 .23
41|15 .40{16 .62|17 .35/18 .71 61l 13 .65(14 .72[15 .39{16 .69
42{1s5 .78{17 .02{17 .83/ 19 .25 62{ 13 .87/14 .95{15 .72{16 .97
43|16 .18{17 .55/18 .36/ 19 .83 63l 14 .12{15 .31|15 .97{17 .47
44|16 .59{17 .96|18 .84/20 .45 64| 14 .40|15 .62[16 .37|17- .82
45|16 .96|18 .48[19 .36{20 .94 65| 14 .64{15 .87{16 .70{18 .17
46|17 .38[18 .90|19 .84j21 .59 66| 14 .86|16 .16[16 .95/18 .62
4717 .77|19 .39{20 .35/22 .08 6715 .10l16 .49{17 .33|18 .92
48|18 .16/19 .83|20 .8322 .72 68| 15 .37/16 .76{17 .66|19 .36
49|18 .57{20 .30{21 .34]23 .26 691 15 .62{17 .00{17 .92}19 .73
50|18 .94{20 .75121 .8223 .82 70| 15 84|17 .35/18 .28|20 .02
5119 .36f21 .20{22 .33]24 .41 7116 .07|17 .64118 .61120 .49
52|19 .75121 .67|22 .81/24 .92 72| 16 .34{17 .89|18 .88j20 .82
53{20 .13{22 .09{23 .31}25 .53 7316 .58[18 .19}19 .21}21 .18
54120 .54{22 .58[23 .79}26 .01 74| 16 .81[18 .50[19 .55)21 .59
55[20 .92{22 .99[24 .28{26 .65 75| 17 .04{18 .77{19 .84|21 .50
56121 .33|23 .48|{24 .77/27 .16 76| 17 .30{19 .02{20 .13j22 .30
57{21 .72|23 .91|25 .26/27 .75 77017 .55]19 .35[20 .49|22 .68
58|22 .10{24 .38|25 .75l28 .30| |78 17 .78/19 .63|20 .78)22 .97
59/22 .51{24 .82|26 .2328 .84 79 17 1.00/19 .89{21 .05[23 .41
60|22 .89|25 .28{26 .72{29 .42 8o} 18 .26|20 .18|21 .41}23 .7
61{23 .29|25 .73|27 .20{29 .93 81 18 .51|20 .48[21 .71j24 .07
62{23 .68/26 .17|27 .70/ 30 .53 82[ 18 .74{20 .76|21 .98)24 .49
63/24 .06[26 .64[28 .17131 .02 83 18 .96/20 1.00[22 .33{24 .83
64|24 .47/27 .06{28 .67|31 .63 84 19 .22/21 .32{22 .64{25 .18
65{24 .85/27 .54|29 .14/ 32 .15 8s| 19 .47|21 .61{22 .92)25 .57
66|25 .25/27 .96/29 .64|32 .73 86/ 19 .70|/21 .87|23 .24]25 .89
67{25 .64{28 .44{30 .10{33 .27 719 .92[22 .15|123 .57{26 .27
68{26 .02{28 .87/30 .61{33 .82 88 20 .17|22 .45(23 .85{26 .64
6926 .43]29 .34{31 .07134 .38 89l 20 .42f22 .72{24 .15]26 .95
70{26 .81{29 .78|31 .58/ 34 .90 90l 20 .66{22 .97|24 .49|27 .3S
71127 .20{30 .23]32 .03/35 .49 91 20 .88|23 .28{24 .78|27 .71
72|27 .60 30 .68[32 .55/35 .98 321 .12|23 .57|25 .06y28 .01
73127 .98/ 31 .12{32 1.00{36 .58 93 21 .37|23 .83|25 .40{28 .42
74|28 .38/ 31 .58{33 .52[37 .09 94 21 .61|24 .10{25 .70{28 .77
75{28 .77132 .00/33 .97 37 .68 99 21 .84|24 .41§25 .97{29 .09
76| 29 .16/ 32 .48]34 .49 38 .21 94 22 .07|24 .68[26 .31|29 .49
77129 .56/ 32 .91{34 .94/ 38 .76 97 22 .32|24 .94]|26 .62{29 .82
78129 .94{ 33 .37/35 .45 39 .32 98 22 .57/25 .23126 .90{30 .17
79 30 .34/ 33 .81{35 .91 39 .85 99 22 .8025 .52{27 .21}30 .55
8ol 50 .73 34 .270136 .11 40 .42f {104 23 .08/ 25 .79{27 .53130 .88
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