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Tﬁis paper may be di&ided roughly into two parts., One part consists of an
elemeﬁtary discussioﬁ.of spiines. The second part considers two types of opti-
mal designs: D and Io optimal designs. Section 1 is of an introductory nature.

The splines are considered in section 2 while sections 3 and 4 are devoted
to the D and Io optimal designs. 1In section 5 § 6 we consider some ex#mpies.and
computational procedures for obtaining optimalldesigns. The paper is mainly
expository, however it is restricted to a very small portion of design theory.

- The applications in section 5 are new.

-§1. Introduction. The design problem under discussion is as follows. Let

f' = (fl,...,fm) denote an m-vector of continuous functions defined on a com-
pact set X. The points of X are referred to as the possible ievels of feasible
experiments and thé variable x ¢ X is sometimes called the control variable. For
each level x € X' some experiment may be pefformed whoée outcome Y(x) is a random

observation with mean value

6, f. (x)

(1.1) “E Y(x) = 3 &5

o~

i=1

. 2 . . . . R .
and variance ¢~ independent of x. The simplest situation is, say, where X is an

1, fz(x) = x and E Y(x) = 91 + 92 X, .Thg-

.,fm are called the regression functions and are known to the

interval of the real line, fl(x)
functions fl"'

. . . . 2
experimenter. The regression coefficients or:parameters 91,...,9m and o~ are

unknown. On the basis of N uncorrelated observations we wish to eStimate some

function of the parameters 01,....00“. '

*This work was supported by the NSF grant GP 20306. Reporduction is permitted in
whole or in part for any purposes of the United States Government. '



" An experimental design specifies a probability measure U (usually d1screte)
- on X. The associated exper1ment involves taking observatlons at the level «x
17 xr and

Np; = Oi are integers the experimenter takes ni observatlons at X, . De-

proportional to u. Thus if y assigns mass pl, -+» P, to x

signs with NP; not equal to an integer can in practlce only be approximated.
If the unknown,parameter vector 6' = (@ 127 em) is estimated by least

Y

squares then the covariance matrix of the estimateS 0  is given by

. ) _2
(1.2) B - 0)(0 - 0) = T nT

The matrix M(u) = [ f(x) £'(x) du(x) is called thé (normalizgd) ihformatioﬁ.
matrix of the design u. The design problem we consider is to choose p so
that Mtu) is large in some sense.

Further discussion of the dgsignvproblem consideted here can be found in
Karlin and Studden (196L), Kiefer (|95?) and Kiefer and‘Wolfowitz (I?Co)

In the following we are interested in two problems 1) max1m1ze the deter-
minant of M(u), denoted by lM(u)l 2) m1n1m12e the quantity L[M~ (u)]
where L is a non-negat1ve linear funct1ona1 on the set of positive sem1def1n1te
matriceé, i.e.

L(a D1 + (1-a) D2) = L(Dl) + (1-a) L(D2) 0 faxl

(1.3)
L(D) > 0 for D > 0.

The first of these problems was considered by Kiefer and Wolfowitz (1960 ;

the second by Fedorov (\97t).

§2. Spline Functions. The term spline usually refers to a "piecewise polynomial.

Here the space X is an interval [a,b]. The interval [a,b] is divided into

——— ———— -



k ;\1 pieces by k "knots" 51,..., Ek where EO = a < 51 < ,.0 < gg <b =¢ K+1°
A function 8(x) on [a,b] is called a spline if 3$(x) 1is equal to a‘polynomial
on (gi, €i+1) (different on each interval) and satisfies certain differentia-
bility conditioné at the points El"f" Ek'
The simples; case stipulates the $(x) is linear on each interval
(€, &,9) 1 =0, 1,..., k and is continuous at each g0 1= 12 k. We
thus have a polygonal 1line segment. For the quadratic case we may consider
"S(x) to‘be quadratic on each interval with possibly continuity and also
différentiability at each Ei. Discontinuities of the second derivative of
g(x) are allowed to each Ei' |
Generally a function which is-equal to a polynomial of degree at most
n on each interval and has ‘n-l continuous derivatives at §; can be
written in the form
n

: S k
1 n
( 2. ' ) iZo ai X + izl Bi (x-gi)*‘

n

where (x)? = x" rfor X >0 and is zero for x < 0. Thus thé term (x-&i)+

is zero unless x.> gi. Variable degrees of differeptiability can be allowed
at Ei by using terhs .(x-Ei)f “for r < n,. h?wever we éhall not consider
these here.

Spline polynomials have received considerable attentioﬁ from méthematicians,
working especially in approximation theory. These functions seem to be extreme-
ly suitable for interpolating or approximatiﬁg &ata in real world situations
since in many cases the underlying functional from S(x) is different on
different parts of X. For example if S(x) ' denotes the distance or path a
roéket travels in time t = x, intermitant auxillary rockets may change the

form of S(x).



The spline polynomials are the least oscillatory functions for interpolating
data. For example the differentiable function S(x) which interpolates thé -
values y; at Ei (i.e. S(gi) = }i) and minimizes f(S"(x)lzldx_is a cubic
spline of the form (2-[§fwith knots at Ei' (and'is linear below 51 and

above Ek).

In using the functions

|

(2'1) . 1 xlﬁ"'; xns (x"gl)z:"' (x-gk):"

one is sometimes interesting in knowing for which set of x values
X)» Xpseees X +k+] ¢€an one interpolate an arbitrary set of ordinates
Y12 Yoseees Ynek+1 using a unique linear combination of the functions (2L).

- This is the case if and only if

(;,3 ) X; < Ei <X isl i=1,2,...,k
This results says that we cannot overburden any given interval with t@o

| many X3 values. For example, if n = 1 and k= 2, we use

1, x, (x-£1)+: (x-Ez)+ and the inequalities (-3 ) say that Xys Xys Xg5 X,
must satisfy X, < El‘< Xq and x, < Ez < X4

For further and more complete discussion of splines we refer the reader

to Rice (14b§)»  Rivlin (|§b4) and Schoenberg ({qb9). \

§3. Optimal Designs. In this section we discuss'two-typeé of problems;
1. Maximize I[M(n) | with respect to u. |
2. Minimize L[M'l(u)]'where L is a linear functional on the set éf
positive semidefinite matrices such that L(A) >0 for A > 0; i.e.
A positive semidefinite.
A.solution to problem 1 is called a D-optimal désign and a solﬁtion to problem 2

an L-optimal design. Wc are particularly interested in certain special’ L-optimal



de§igns which we denote by Izoptimal designs. These will be considered near -
the end of this séction. For the D-optimal designs we have the following
' "Equivalence Theorem" of Kiefer and Wolfowitz (19b0) which shoys that the
D-optimal and minimax degiéns are equivalent.
Theorem 3.1 The conditions

.(i) u* makimizes lM(u)I

(ii) u* minimizes sup f'(x) M-l(u) f(x)
x e X

(iii) sup £() Ml £x) = m
' xeX

are equivalent.. The set B of all u satisfying these conditions is convex and
closed and M(u) is the same for all yp e B. - »

We recall here that M(u) is the information matrix and, f'(x) M-l(u) f(x)
is proportional to the variance of the estimate of the regression function at
the point x. |

Recently V. V.‘Fedorov has generalized the§9 ;esults to problem 2 and has
shown the following. |
Theorem 3.2. The conditions

(i) w* minimizes LM '(w)]

(ii) u* minimizes sup L[M'l(u) f(x) f'(i) M‘l(u)]
X e X

(1ii) sup LM £00 £100 MIG0T = L i)
xe X

&re equivélent. The set of designs satisfying (i), (ii) or (iii) is.convex.
The second problem is the problem of ""quadratic loss". That is, any
function L satisfying the required conditions can be put in the form
L(M'l) = tr M} C where ¢ is positive‘semidefihite and tr denotes the
trace of a matrix. The term quadratic loss is used here since the expected

value of (8 - 6)' C(6 - 8) is proportional to '.tr'M'1 C. The design giving



~

information matrix M is used to obtain the estimates 9. Thus, minimizing
the expected value of the quadratic form (6 - 8)' C(6 - 8) is equivalent to

minimizing L(M™7) = tr M°! C.

Both of these theorems may be provén using a variational technique. We

consider the design

= - *
By = (1-a) u* + au

where ¥, concentrates all of its.mass at the singlé point x. The proof con-
sists of showing that u* minimizes L(M'l(u)) if and only if the'dérivative of
gla) = L[ M1((1-0) u* + au,)]

is >0 for a=0 for all x. This in turn is equivalent to part'fii) of
theorem . | | B |

. We are particularly interested in thosev L which are invariant under a
basis change of the regression functions fl’ fZ""’ fm. Further we would like
explicit expressions or characterizations of the optimal designs for the case of
spline regression. . |

One of the invariant functionals L for Tﬁeofem 3,2 is the integral of'

the variance of the response surface estimate, Thus if dg¢ denotes'a measure

on X (or possibly on a larger domain) then

J£09 M) £x) dox) = [ tr M ) £00 £1(0) dax)

tr.M'l(u) M(o).

RN

L[M ~ ()]

For fixed o we wish to minimize this quantit} with respect to the design u,
Note that the expression tr M-l(uj M(o} 1is invariant under basis change -

of the regression functions. In this case if we know that the minimizing



. . . * %
B = u*_'concentrates its mass on m points Xgseoes X (m = the number of

regression functions) then we can use as a basis the ~ Lagrange functions
zi(x) defined by the conditions zi(xj) = 6ij i, j=1,..., m,
Lemma - (Fedorov) If for given o the design u* minimizing L[M'l(u)}

* * ! - .
concentrates mass. on  X;,..., X then the corresponding weights are propor-

tional to Ki{z where K.. = | 2 (x) do(x).

Proof This follows by noting that for the Lagrange basis

-1 ™ Ky
tr M () M(o) = ] ==
i=1 Pi
Schwarz's inequality then gives
1/2
2——2_ (K3
1P
withrequality only if p; = K?(z.

Note that if the I -optimal design concentrates on m points

* * .
Xpseoes Xp then the design problem reduces to minimizing

: 5 /2 .

g (f 27 (x) do) with respgct TO Xy,. .. X,

For the minimax design the corresponding expression is

max y 2?(x) .
L %4
xeX 1

§4, Comparison of D and I0 optimal designs. In compérihg the two types of

designs we shall assume that both designs are concentrated on the same set of

* * . R
oints X,,..., x_ and that X = [-1, 1]. If p concentrates mass p, on
p 1 m 1

*

X i=1,..., m and li(x) denotes the Lagrange functions corresponding to
* *

Xyoeoes X then



£1(x) M;l(u) f(x) = 2'(x) M;l(pj L(x)
| 2
i

Here we denote the information matrix for the basis f. = (fl,..., fm)
by Mf and for the Lagrange basis by Mz‘ For the Lagrange basis the matrix

M, is diagbnal with diagonal elements Pys Pys.ees p . For the D-optimal'

£ m
*

design u* on x;,..., xm the weights are equal and
-1 2
£10) M (u*) £(x) = m | 25 (x),
i

. *
Moreover this function reaches its maximal value m at the points X, .
. T : ” -3
If the weights p; at x; are not taken equal then f'(x) M l(u) f(x)

is raised at those X5 for which p; < %- and lowered if P; > %u For o wuni-
form on [-1,1] the I - design will produce varlances f'(x) M~ f(x) which afe
low in the middle and higher at the ends in order to m1n1mlze the 1ntegra1

For a given ¢ the minimum value of f f'(x) M f(x) do(x) =
tr M'l(u) M(o) will Be (1 K;{Z(o))z where K;3(0) = f Z?(x) do(x), The
optimal weights are proportional to K;(z. Using the D- opt1ma1 de51gn with equal
weights gives a value tr M'l(u) M(c) = m z K (c) Thus we should compare
(z Kl/z(o)) with m Z K (o), the former of course being the smaller of the
two. '
§ Examples. All of the examples below are concernea with polynomial or

polynomial 5p1ine regression,

Example 1. Polynomial regression. It has been known for sometime [see Guest

(1958)] that if £ (x) = xi° 1 i -1,2,..., el and X = [-1,1] then the

* %*

D-optimal design concentrates equal mass on the zeros Xy = -1 < X} <.
* * ' _— ’
< xn_l'< xn =1 of (l-xz) Pn(x) where Pn is the nth Legendre polynomial,

orthogonal on [-1,1] to the uniform measure.
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"~ Recently Fedorov has shown that the I-optimal design for the uniform
measure do = dx 1is also supported by this same set of'points. The weights
in this case can be shown to be probortional to IPn (xz)l-l. ,For the case
n =2 this gives weight .25, .50, .25 to -1, 0, 1. For n =3 the design
has weight .154, .346, .346, .154 at the points -1, -.447, 4+.447 ,+41. .One
can choose the meésure o with mass outside of X, For example if o is
uniform on (-a, a) and n = 2 the resulting design is again on -1, 0, 1 with ‘

weights pfoportional to the square roots of

11 1 12 1 11 .1
e+ == F-Ist s i+ )
4’5 " (2 572 8 45 " 2

Note that the weights are the same for a =1 and a + =,

Example 2. Linear-splines. Here are considered the set of regression functions

1, X, (X - 61)4' e (X - Ek)*‘

on the.1nterval [-1,1] where -1 = EO < §1< eve < Ek <_£k’1 =1, Thls example

is fairly easy to work with since we may restrict ourselves to designs concentrating
mass only on the k+2 points Egr Eys-cs & s By p. With the aid of the Lemma in
§3 it is fairly easy to show that the Io;optimal design for o uniform on [-1,1] '

has weights proportional to

R e R S S (S S L LN AR L L

. Referring to the discussion iﬁ §4 we note thaf if we have a pair of intervals cioSe
together the regression variance at the middle Ei will increase,considerably, For
the case where the Ei are equally spaced thé wgights are proportional to
1:vV2:4/2:...:V/2Z:1. For k = 1 this gives weights .293, .414 and .293

(approx.) on -1, 0, 1.
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Example 3. . Quadratic and Cubic Splines. For quadratic splines we consider the

regressidn functions
- 2 2 2
) 1, x, x ,\jx-£1)+,..., (x-Ek)+

on the interval [-1,1]. It is known (see Studden and Van.Arman (1969)) that we
can restrict ourselves to designs concentrating mass at m = k+3 points; two of
which are the endpoints and one in each of the intervals (gi, £i+1), i=0,1,...,k.

For k=1 the following table indicates the optimal points of allocation for the

D-optimal design. The design is on -1, X1» Xy, 1 and the weights are all equal.

2 0 .2 .4 .6 : .8

X, -.390 -.312 -.239 -.166 -.089
x, +.390 +.476 .573 - .687 .825

- Further calculations show that X, is always less than zero and approaches zero
as £ » 1,
For k=1 the I-optimal design for the uniform measure is given below, The

Xy, Xz = 1 with weights Pg» Pps Pys P3-

design is on points x0 = -1, X
& X % Po P P, P3
0  -.400  -.400  .164 .33 .336  .164
.2 -.325 .481 .176 356 317 .151
-4 -.253° 574 187 .378 . .298  .137
.6 -.180  .684  .200 .403  .280 . .117
8 -.099 .82 217 435 .260  .088

Generally speaking the points X, and X, are about' the same. For £ less than

about .5 they shift slightly towards the endpoints *1, The weights P; however on
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S~

the ipterior points Xy and X, becomé considerably-heavief than on the endpoints.

The results for the quadratic case using k > 1 are somewhat similar, For
.example if £, = -.3 and Eé = .3 the D-optimal design has edual mass on -1,
-.569, 0, 569, 1. |

For the cubic we take

1, x, x2, xs, (x-E)f -1<x<1
and consider only the D-optimal design. Our computations agaih-show that the
number of points used in the D-optimal design is the same as the number of

regression functions, in this case m=5. (This has not been proven and does not

follow as in the quadratic case). Here we label the points -1, Xy X9, Xg, 1.

£ 0 - .2 .8 .6 .8

x, . -.629 -.584 -.547 -,5;5  -.484
x, 0o 104,193 .273 .352
xg 629 .679 .733 .796 .877

We note, as expected, that the middle points X, is not equal to £,
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§6. Computational Procedures. Let the design 1 concentrate mass

Pg» Pps---s Ppyy at the points xo, Xpseers xr+1. We shall restrict atten-
tion again to polynomial or polynomial spline regression o [-1,1]. 1Ia this

case we know that the optimal designs havenx0 = -1 and x +1, We wish

T+l
gse+vs X, and

Pgr Pysevvs Pryp subject to the qondition 5pi =1, If f(x) = (fl(x),..., fm(x))

to maximize |M| or minimize tr M-1 C with respect to Xy» X

and g(x) denotes the corresponding vector of derivatives one can easily show

that for minimizing tr M_1 C the X; and p; are solutions of the equations

£1(x;) Moy ¢ M £(x;) = A i=0,,.., r+l
(6.1) £ ) Ml Mo gx) =0 i=1,.,., T
Ip, - 1=0

: - :

Here A 1is an unknown multiplier equal to A = tr M'l(u ) C, For maximizing
- *

|M| we have the additional information that f'(x) M 1(u ) f(x) <m and the

corresponding equations are

i
=]
=

1]
o

-
e

-
L]

+
—

£1(x) M) £(x,)
(6.2) :

£1(x,) ML gx) =0  i=1,..,7

These equations are for the most part impossible to solve by hand, howevgr
standard computer routines seem to give answers fairly quickly at least for
r up to four or five.

In Obtaining optimal designs the main difficulty is in choosing the poiats

X X - The weights Pyse-+s Py aTE usually easy to determine. Recentiy

120
Fedorov (1971) (see also Wynn (1970)) has investigated the problem of determining

* .
the optimal u by iterative methods. We shall indicate the procedure for the

D-optimal designs. At the kth stage we have a design My We determire X, S0
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that"

£05) M) £x) = sup R Moy £
’ X € .
The new ”k+1 is then _

Vel = O 1y * (l_ak)pxk

where concentrates all of its mass at X+ The scalar o, is given by

. - m
d -1
= - where = £'0x ) M T(u) £ ) .
o IH;‘TT?E. d X )
The procedure converges rather slowly at the rate k-1

However in

carrying out the procedure one can proceed from M (uk) to M (”k+1)

w1thout recalculat1ng this m x m inverse. Moreover the problem is reduced

essentially to finding sup £'(x) M) £0x).
' xeX
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