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ABSTRACT
Chattopadhyay, Arun Kumar. Ph.D., Purdue University, June 1971. An
Asymptotic Distribution Theory And Applications in Multivariate
Analysis. Major Professor: K.C.S. Pillai'.

This thesis is essentially in three parts. 1) A maximization
problem 2) Applications to multivariate distributions and asympto-
tic expansions 3) Some asymptotic distributions using perturbation
theory. In 1), a theory is developed which generalizes the work of
earlier authors: Anderson, Chang, James, Li and Pillai. The first
chapter presents this theory based on the maximization of an integral
over the group of orthogonal matrices, the integrand being a hyper-
geometric function of symmetric matrix variates. The theory is
further extended to the complex case where the group is over unitary
matrices and the matrix variates are Hermitian.

In 2), asymptotic distributions are obtained for the first time
in the light of the above maximization theory, in a) MANOVA and b)
Canonical correlation. The results of the earlier authors were in
the case of covariance matrices for c) one-sample or d) two-sample
cases. However, while their results were only for distinct popula-
tion roots or for one extreme multiple population root, chapters II
and I11 present the asymptotic distributions for several multiple

population roots for a) to d) in the real and complex cases.




In 3), asymptotic formulae for the cdf and percentiles are de-
rived for the max-U ratio criterion suggested by Pillai for the test
of equality of several covariance matrices but studied here for the
two-sample case. Chapter IV presents this asymptotic study using
perturbation techniques and since Pillai's criterion involves ratios
of independent Hotelling's Toz's, the work of this chapter generali-
zes the work of Ito, Siotani and others. Finally chapter V gives a

summary.
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CHAPTER 1
ON THE MAXIMIZATION OF AN INTEGRAL OF A MATRIX FUNCTION

OVER THE GROUP OF ORTHOGONAL MATRICES

1.1. Introduction

In multivariate analysis, the distribution of characteristic
roots arising in testing the equality of two covariance matrices, in
MANOVA, or in the canonical correlation problem, involves the inte-
gration of a hypergeometric function of the following form
Q.1) 1= sFe(@1s--vs agsby,oi, b, AHRHY) d(H),

0(p) Tt
where O(p) is the group of orthogonal matrices @(p X p), é = diag
(21,..., gp),g = diag(rl,..., rp), &(@) is the invariant or Haar mea-
sure over the group O(p) normalized so that the measure of the whole
group Of(p) 1is unity SFt is a hypergeometric function of matrix
variates (James [9]) and Ayseeny as’bl""’ bt’ are functions of
d.f. and are positive real numbers. In the one sample (covariance
matrix) case, Anderson [1] has shown that the maximum of the integrand
(s=t=0) for all possible variation of R, the sample characteristic
ToOot matrix, .- uitained when H takes a special form. Chang {31, Li
and Pillai [13], [14], found the same form for H when maximizing the
integrand in the two sample (two covariance matrices) problem (s=1,

t=0). " in the complex analogue of both one sample and two sample




cases, Li and Pillai, [13], [14], obtained a similar form of the uni-

tary matrix U. The purpose of this Paper is to generalize their re-

~

sults both in the complex and real situations with YRR a_,

bl""’ bt’ satisfying some suitable éonditions.

We develop the idea in a series of lemmas and theorems and show
that the reSults of Anderson [1], Chang [3], James [10], Li and
Pillai, [13], [14], are special cases of our results. The generaliza-

tion has not only been in regard to SFt - hypergeometric functions

are equal within each of several sets.

but also when zi's We have

further proved that the integral under different forms of the matrix
A is invariant under choice of different submatrices of H and our

-~

general results cover some earlier ones of the above authors.

1.2. Maximization of Some Special Functions

First we prove the following lemma.

Lemma 1.1. Let f(T) be a real valued function of the elements of
the matrix T(p x.p) = (tij). Then

d f(T) = tr(g'd T)

where
- h
of of
_— dt ... dt
ot atlp 11 1p
Q and d T =
of of
L g dt ... dt
ot ’ ot 1
pl PP P PP

By ——



g aren

Proof follows directly from the definition. We give below some spe-

cial cases.
Case 1. If B be a nonsingular square matrix, then

(1.2) d|B| = 8| tr[8™ (a B)]

This is Hsu's result as reported by Deemer and Olkin [S], but we

proved in a different way.

Case 2. If in (1.2) we put B =1 + A HR H' where

l

(1.3) é = diag (21,..., lp) and B = diag (rl,. , rp) and
© > 21 > L. 2> zp >0, > rp > rp_1 > ... 2 T, > 0 and
He 0(p)

then we get lemma 1 of [3].

Case 3. Let us now take f(T) in lemma 1.1 to be of the following

form

(1.4) f(A HRH') = exp[-tr(A HR H")]

L ~ .

where A, R and H satisfy (1.3), and H is the onl:- variable matrix.

By lemma 1.1

d f(AHRH') = tr[Q'd(A HR H')] .

L -~ o e A

~

But Q in this case is a non-zero scalar matrix. Hence, )
. =

d f(AHRH'"Y) =0

- o e o=~

= tr [d (A HRH"]

0

-~ e e -~

= tr [A(AH)R H' + A H R(dH')] = O

-~ o~ o~ ~

(1.5)

= 2tr[R H'A H(H'dH)] = o

-~ . A e o~ -~




But (H'dH) is a skew symmetric matrix. Hence for all R >0

(1.5) @ RHAH is symmetric

~ o~ & o

2 RH'AH=HAHR

~ a o~ -~ -~

= H'AH

~ o~ o~

diag(u,,...,
gy, Hp)

as R in (1.3) is diagonal with distinct roots

-~

= H has the form

(i) H has + 1 in each row and column once and once only and zero

elsewhere.

Now taking H of the form (i) after some algebra gives Ander-
son's result [lj.

In the above two corollaries, the functions we have considered
though not exactly special forms of the integrand in (1.1) but are
equivalent forms. Hence the pérallel results in both the cases sug-
gest a similar approach for this general integral (1.1) but unfor-
tunately attempt in this direction proved futile. Hence we give an

alternative approach to handle this general problem and give special

results as occasions arise.

1.3. Maximization of I when li's are all distinct

At first we prove a lemma which will be used in the sequel. Let
S(p x p) be a symmetric matrix, Chi(S) denote the ith characteris-
tic root of S and CK(S) stand for the zonal rolynomial of the ma-

trix S corresponding to the partition x as defined by James [9].

Then we state the following lemma.



)
Lemma 1.2, Let chi(S) 20,i=1,,.., P. Then CK(S) is nonnega-

tive and increasing in each characteristic root of S.

" This may be shown by using the differential equation given by
James [11], since a) the coefficients of all terms of a zonal poly-
nomial when expressed in terms of monomial symmetric functions of the
characteristic roots of the matrix are positive and b) zonal polyno-

mials are themselves symmetric functions of the characteristic roots.

Now let us consider the integrand in (1.1), i.e. let

(1.6) f(@) = sFt (al,..., a;b.,..., b

sb Py AHRHY

t’
Also let
(1.7) a; > (1/2) (p-1), bj > (/2)(p-1), i = 1,..., s, j= 1,..., t .

Now, by James [9]

© - (al)K cen (as)K C
f(H) =
~ kgo E (bl)K Tt Fbt)K

where « = (kl,..., kp) is a partition of k and the multivariate

hypergeometric coefficient (a)K is given by

P
(@), = T (a - (1/2)(1-1))k
i=1 i
and
(a)k = a(a+l) ... (a+k-1)

Under (1.7)




© (a,) ... (a) C (A HRH")
(1.8) max f(H) = max ) (bl)K bS)K X £'~
HeO(p) = . HeO(p) k=0 ¢ “"1°x """ ( t'k )
) E (:1)K et (:S)K . C (A EIB H')
T k=0 « ( l)K e t)K HeO(p) )

Now to proceed any further we have to consider the maximization prob-
iem involved in (1.8). To this end we proceed as follows.

For A and R in (1.1) let us take (unlike in (1.3))

(1.9) w> 2, >8,>...> 2 >0and ©»>r) >1,>...>1 >0.

(The ordering and labeling of Ri's and ri's will be done in dif-
ferent ways as may be necessary. A and - R are more or less used in

a generic sense in order to avoid the use of too many symbols.)

Let us consider CK(H'A HR) = CK(H R H'A), where CK(Z) is the

-~ o~ o~ o~ ~ o~ o o~

zonal polynomial corresponding to the partition «k as defined by
James [9] and HeO(p). Let Chi(Z) denote the ith characteristic
root of Z.

_ Then

Chl(H R H'A)

-~ o A o~

| A

Ch,(H R BY) Chl(é)

~ o~ o~

it

Ch, (R) Ch, (A)

Chl(R A)

rlll .

Now if we take




ey T et o

]

(1.10) H

-~

where

Chy(H R H'A) = chy (1!

~ o~ o~ o~

where
-— 1
B=H) R, H) A
- and
(1.11) 82 = dlag(rz,.
Again let
2
(1.12) S =R and S

Hence we consider the matrix

Let

(1.13)

p§=ot

Then

o

——d

r. L 0]
) =r. 2
0 B 171
2
ces rp), 52 = d1ag(£2,...

dlag(sl,..., sp)
(Cij)

(say)

(h. )

Hz(p-l) is an orthogonal matrix of order p-1, then







1
Let us now take e, = o,..., 0,1,0,...,,0), i = 1,..., p (in the stan-

dard notation, i.e. 1 in the ith place and zero elsevwhere).

Then
[ E 2
ey Cep =1 P % < T2
k=1
(1.14)
iff (hyyseens hpl) $0
' E 2 0. is2
Also ey Ce; =, oM BTt i=2,.,p
-1
Let
(1.15) )f' = (Xl, , Xp) } )f' )f =1
Then

16) xrcxls T Ix Ix] e
1,)
=1 I Pleggl + T olx] Ixi] e
i 1 11 ifj 1 ] 1]




2
(igl x| /esl )

0 C 1 Iyl 2

| A

i=1
/T /r
2 2,2
=18 ( |x1| + Ile ;; + ...+ |xp| N ) I

Now for further reference we quote a theorem.

Theorem (Courant-Fischer). Let D(p x p) be a symmetric matrix with

characteristic roots Al > ... 3_Ap. Then they may be defined as

>
H

p = max (X' DX) / (X' X),
X - - A,

A, = min max (X*p Xx) / X' X)
oMYy w0 77T

(i=1,..., j-1)

J=2,...,p
or equivalently

A =min (X'DX) / (X' X),
p X ~ o~ ~ -~
Aj = max min X'DX) /(X' X)

= ) = ~ o~ o~ ~ -~

(Y{ Xi) =1 (K !i) 0
i=1, » J-1

where X, Yi are column vectors in Ep’ the Euclidean space of p

dimensions,



Now if R > 0 is such that ri/rl is negligibly small

(i =2,..., p) then applying the above theorem and from (1.16), we

get for all R > 0

max Chl(H R A H'Y) = llrl
HeO (p) Tt

iff equality holds in (1.14) i.e. iff

(1.17) (h21,..., hpl) =0 .

Now since H is orthogonal

(1.17) = h11 =+ 1,

Thus for all R > 0

‘max Chy(HRH' &) = ¢ 1
HeO(p) -

iff
H has the form (1.10)

If H has the form (1.10)

(1.18) SHAH'S =

where

By = SHAH,S, and S, = diag (s,,..., s )







Thus characteristic vector corresponding to the root rlll is pro- -

portional to e, and hence any vector belonging to Ep, Euclidean

space of p dimensions, and orthogonal to € is generated by

€ysenes ep. Thus when H has the form (1.10), the problem of finding

~ ~

the second maximum characteristic root of (1.18) simply reduces to

finding the maximum characteristic root of B1 for Hzeo(p-l). Thus

we proceed step by step as before, only that we are now dealing with

matrices of one less dimension. We also note the following

(1.19) Chi(H R H' A) f_Chl(A) Chi(H R H')

~ o~ - -~ -~ o~ o~

Chy (A) Ch, (R)

eri i=1,...,p.

Thus from the above discussion and from (1.19), using the fact that
zonal polynomials are symmetric functions of the characteristic roots
of the matrix and the monotonicity property of zonal polynomial as
proved in lemma 1.2, we get the following lemma.

Lemma 1.3. When (1.9) holds, for all R > O

(1.20) max CK(H' A HR) max CK(H R H' A) = CK(A R)
HeO(p) oo HeO (p) -t =T

If A is as in (1.1) and

\'

(1.21) = > Rp > £p_1 > ... 21 > 0, then

(1.22) min CK(H' A HR) min CK(H R H' A) = CK(A R) ,
HeO(p) - v = HeO(p) -t - s~




and

(1.23) max CK(H' A Hl R) = max CK(H RH"A) =C (AE) ,
HeO(p) T T HeO(p) -t K-~

where
? = diag (rp,...; rl)

The maximum in (1.20) and minimum in (1.22) are attained when and only

when H has the form
(ii) H(p x p) = diag (+ 1,..., + 1)

In (1.23) H has the form: H = HlD where H1 has the form (ii) and

D= e g
In proving (1.22) regarding the minimum value of the zonal poly-
nomial we used the following relations:

(1.24) Chi(H' A HR) = Chi(H R H' A)

-~ o~ ~

2 Chy (B R H') Ch (&)

~

Ch, (R) Chp (A)

and we proceed exactly as in the maximization problem but in this case
using the maxi-mini characterization of Courant-Fischer theorem. 1In

case of (1.23) we note that as HeO(p), HDeO(p) where

~

D= (ep,..., el) and ei's are defined earlier.

-~




Aiso the mapping H -+ H D is one-to-one and onto and hence in

(1.23) instead of considering CK(H R H'A) as HeO(p) we consider

~ o~ o~ o~

CK((H D) R (HD)'A) as HeO(p) or equivalently we consider

CK(H E H' A as He O(p) where

E=DRD
In the above discussions we note that if A and R has the same
ordering of the element then A R corresponds to the maximization

~ o~

problem and when their ordering is reversed it gives the minimum for-
mulation.

Thus we use (1.20) in (1.8) and we get the following theorem.
Theorem 1.1. If A and R are as given in (1.9), the class of
orthogonal matrices fér which f(@) in (1.6) subject to (1.7) and for
all 8 >0 is a maximum, is given by (ii) and

T oe @) - (@) C (AR)

(1.25) max f(H) = § 7§
HeO(p) - k=0 «k (bl)K e (bt)n ki

If the ordering of Ri's in (1.9) is replaced by (1.21)

® (a))e +. (@) C (AR
(1.26) min f(H) = ¥ K s "k
HeO(p) ~ k=0 E b, - I, "X

with H again taking the same form (ii).
This is one of the basic results in the chapter and we will subse-

quently generalize it to more complex cases. But first we give some

special cases.
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Corollary 1.1.1 If s=t=0 in (1.6) then

fOD = (FG(A IR ') = expltr AHRH']

~ o~ e e

and under (1.21) and R as in (1.9), we get for all R > 0O

max  f(H) = exp[tr E A] ,
HeO (p) - -

where
E = diag (rp,..., rl)

This is Anderson's result [1] mentioned earlier as case 3.

As a second application of our theorem 1.1, let us consider the

following. Let
gH) = [T + AHRH'| ™™ - Fo, - AHRHY

where A and R are as defined in (1.21) and (1.9) respectively and

~

n > (1/2) (p-1)
As it stands, theorem 1.1 is not directly applicable to this
function. So we write, following Khatri [12],

[T+ AHRH'| = |1+ Rl |I - (I -A)HR( + R)'1 H'|

~ o~ - ~ -

We now assume Chi(A) <1l,i=1,..., P. This is no loss of gener-

p
ality, since for k >0, |I+ Kk AHRH'| = T (1 + ka;) where
STt e s i=1

a. = Chi(A HRH'Y >0, i Thus the problem of finding the

1

1]
[
-
-
o

maximum or minimum of |I + A HR H'| with respect to HeO(p) 1is the

same as that of |I + k A HR H Thus




T+ AR < 1w R™1 - (1 - ay R (1. N T

b4

~ o~ o~ e

1+ g|™" 1Fo(m, B C HY)

where

=
1

(E - é) = dlag(bl,..., bp)

and

@]
n

-1
R(I + R) = diag(c,,..., ¢
-(- ~ & ( 1 p)
Hence from (1.21) and (1.9) we get

1>b,>...>b >0 and 1> c,>¢c,>.,..>¢c >0 .
1 P -1 2 r

Thus g(H) = |1 + RI-n 1Fo(n, B HCH') and now we can apply the
theorem 1.1 and get the following corollary.

Corollory 1.1.2. Under the conditions stated immediately above

max g(H) = |I + R|™™ max 1Fo(n, B H C H")
HeO(p) - - HeO(p) R

([

1)1 rytn, 8 )

T + AR|™TD

This corresponds to Chang's result [3]. We now restate the above two

results in a different form,

p
Corollary 1.1.3. Let (1.3) hold. Then E L.r, and I (1+2.r. )
41 1 1j i=1 i7i,
are both minimized when r, = L i=1,..., p. They are both maxi-
j
mized when rj = rp-i+1’ 1=1,..., p.

j




;% : The latter two results are implicitly assumed in Anderson [1]

and Chang [3].

In fact, we can go a step further and get the following. Let f

be a non-ncgative, non-decreasing function defined on [0,=]. Then

fciglﬁrij) < f (121

g~

p
liri) and f(.¥

O 0) < £0T - Qegr)

j i=1

under (1.9). These results follow directly from the above discussion

but are mentioned separately since they cover a broader ground in the
sense that with modification, the results apply to positive convex

combinations of two symmetric matrix functions.

1.4. Maximization of I when the zi's are equal in set

To this end let us consider the following form for A.

~

k k k.
1 2 i
(1.27) .ﬁ = dlag(ll,..., 21, 22,..., 22, li,..., li ,
2 ,...,2)
k1 + ... 4 ki+1 P

and o > 21> 85> 0> L > lkl v .. +ki+1 > 2p > 0 and 8 is as

given in (1.9).

For the sake of simplicity in presentation we consider the case

when i =1, and k1 = 2, i.e. let

(1.28) é = diag(ll,ll,ls,...,zp), and « > 21 > 23 > ...> 8 >0




This is no loss of generality, as will be seen from our discussion -
the more gencral case corresponding to (1.27) is a straight forward

gencralization of the same technique.

Procecding cxactly as in the earlier case of all unequal roots

we get,
2

] -

(1.29) e; C € =1, g hy 4 < T4
k=1
iff

(hgysevos Bypd) f 0,

where

C=SH AHS and S, H as
defined earlier and A as in (1.28)

. 2 _ .
i.e. S" =R = d1ag(r1,..., rp)

~ ~

Hence proceeding exactly as in the earlier case we get for all R > O

t
Chy(SH'AHS) <r2,

Now equality holds in (1.29)

3 ' [ —
1.e. Chy(SH' AHS) = r g

(1.30) iff (h31,..., hpl) =0,

Now when (1.30) is satisfied we get by actual matrix multiplication
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B . ]
™ 0
(1.31)  SI' ANS = i
0 G
0 :
| ]

_ . . .
where 92 = §2 ll2 62 ﬁz §2, §2, H2’ 62 are defined earlier and

l;lzeo (P‘l)
As is clear from (1.31), the characteristic vector corresponding

to the root rlkl is proportional to €, and hence any vector be-

longing to Ep - the Euclidean P-Space and orthogonal to 2] is

generated by €osunnsy ?p'

Now the problem of finding the Chz(S H' A H S) when (1.30) holds

-~ o~ o~

is reduced to finding Chl(Gz).

Again

(1.32) Chl(gz) Chl(ﬁé A, H 82)

]
Chy B, Ry Hy 4,)

< Ch) (A)) Chy (H R HS)

Ch;(A)) Chy(R)

llrz .

Proceeding exactly as earlier we get that equality in (1.32) is

achieved for al} variations of R. > O

2

(1.33) iff (h32,..., hp2) = 0.

Again when (1.30) and (1.33) are satisfied we get by actual matrix

multiplication




f_ —
rlll 0 0
(1.34) SH' ' ANS = 0o rzll 0
0 ° G
where
- 1 -
G3 = S Hy AL Hy Sy, HieO(p-2)
. 2 L
and 63 = dlag(ls,..., zp), §3 = 83 = dlag(r3,..., rp)

Now in order to find the form of H3 so that ChS(S HAH'S is

~ o e om ~

maximized subject to (1.30) and (1.33), we find from (1.39) that we
are back to the problem of all distinct roots in 63 with the dimen-
sion of @ reduced by 2. Hence following our earlier technique step
by step we get

Lemma 1.3.1. Wnen (1.28) holds and R is as in (1.9), then for all

variations of R > 0, we get

max CK(H' A HR) = max CK(H R H"A) = CK(A R)
HeO (p) R HeO(p) - -

If R is as in (1.3), then
(1.35) min C (H* AHR) = min CHRH A = CK(A R)

Heo(p) * - -~ -~ HeO(p) * - -

and this maximum or minimum value of the function in respective cases

is achieved when H has the form




(1.36) N =

~

where nl(z X p)

[Jpe =t
[S%]

H

| -2

is arbitrary but otherwise satisfying the ortho-

gonality relation of H and

~

where 9 = 9((p-2) X 2) and gzz((p-Z) x (p-2))

tion (ii) of lemma 1.3,

In practice it is more frequently useful that A

Hy=(0,H

22) >

taking form (1.28) often satisfies the following

(1.37) A

~

and

=
fl

H

dlag(ll,ll

diag(rl,..

,23,...

s 2)and »«> g > .. L, >
P P

. rp), @ >Tr. >, > ...

1 2

>0.

instead of

[4Y)

satisfies the condi-

The protlem in this case more or less remains the same with the follo-

wing changes.

Now instead of considering CK(H R H' A

CK((H D) R (HD)' A) as HeO(p), where D = (ep

~

consider

C (HE H' A
K

~ o~ o~

where E

-

di r ,...
ag ( o

HeO(pj we note that the form of H

-~

~ o~ - -~

as HeO(p) ,

, rl).

s e

we consider

.y ?1) i.e,

we

Also as HeO(p), H DeO(p), by earlier

argument we get our results. Thus considering CK(H R H' A) as

-~

in this case is

H D where H

-~ -~ -~




41

satisfies the form (1.36), or more explicitly

(1.38) LiliX CK(H R H'" A) = max CK((H D) R (H D) A)
KcO(p) T HEO(p) -t~ - ~
= max CK(H E H' A
HeO(p) - .-
-6 G

and it is attained when H has the form.

(1.39) H = ' D

t

where the left hand matrix is defined in (1.36). Here of course we

note that zonal polynomials are symmetric functions of the charac-
teristic roots of the defining matrices and so long as the charac-
teristic roots of a matrix are unchanged, zonal polynomials defined
on them are also unchanged. |

Now as a further remark we note tﬁat the above proof though sta-
ted for orly one set of two equal roots is quite general, for at each
Step we just consider one root at a time and as can be noted that
had there been three equal roots in a set, then after (1.34), we
should have gotten a corresponding reduction and that it will work
generally. Thus our earlier technique shows us that each set of equal

roots divides the orthogonal matrix in groups of rows and thus we get

more generally

4
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Lemma 1.3.2. When (1.27) holds and R .is as in (1.9), then for all

variatioos of Kk > 0

7
mes G ANR) = max C (HR U A) = ¢ (4 R)
LR , . N K
Helr (1) - HeO(p) D o
and if R satisfies (1.3)
min C (H" AHR) = min C (HR H' A) = CK(A R)

HeO(p) K-~ - s HeO(p) Kie v -

The optimum values are attained iff H has the following form

EN

(1.40) @ = ﬁi ,
L1+l
where
ﬁl(kl * ), j = (Qj’ ?Jl) ’
05 = 00k x (kg + oo v Ky 3), Hyy = Hoy(ox (poky - k510,
) =2, » 1,
and
Hivr = Oqpps By ) s

04y = OLIP-Cy % ot + kD) % (K + ...+ k),

Bag,1 = Mg (oG v e o k) X (- Ll ki)

and ”i+1,1 satisfies (ii) of lemma 1.3.

-~
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Hence from the above form of H we note that the optimal values

of the zonal polynomials are invariant under changes of

”j’ =100, 01, up to the extent to which they are already deter-

mined,

Now with these discussions we get

Theorem 1.1.2. If A is given by (1.27) and R by (1.9), the class
of orthogonal matrices for which f(H) in (1.6), subject to (1.7) and
for all R > 0, is a maximum, is given by (1.40) and

2 @), (), C (A R)

max f(H) =
HeO (p) ~ kZO g (bl)K Tt (bt)K ki

If (1.9) is replaced by (1.3) but A is as in (1.27) then

@) ... (a) ¢ (A R)
min  £(H) = z z 17k S°K Tk~ o~
HeO(p) ~ k=0 « (bl)K Tt (bt)K ki

The maximum above is attained when H is of the form (1.40) and the
minimum when H is of the form HD where H is given by (1.40) and

D= (eyseens e)).

Remark 1. 1In case of equality of smaller Ei's in A in several

sets, we get a similar result as in (1.39) and H. takes the form H D

~

~

where H is of the form (1.40) and D = (ep,..., el). Of course, as

-~

earlier, we must note that zonal polynomials are symmetric functions

of the characteristic roots of the defining matrix.
Remark 2. In the case of one set of equal elements in A, while

considering the optimal values of the zonal polynomial CK(H' A HR),

~ o~ o~

WE can get a direct proof of invariance of IIl in (1.39) but subject
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to the condition that H is orthogonal. We give this proof as a di-

rect varification of certain results of James [10}, Li and Pillai

[13), [14].

o < COlr- 1 = . t
Let us consider f(g) sFt(al""’ as’bl"°" bt’ ? e ﬁ B)
where ai's, bj's, H, R are as defined earlier and let
(1.41) é = diag(2,..., %, 2k+1""’ lp) and
°°>2,>2.k+1> ...>Ep>0.
Partition H as
1)
(1.42) H = ,
B,
where Hl(k X (p-k)) and H2 is the completion of Hl’ Then
H* AHR = ¢ R + H'BHR s
where
o o |
9 = diag (0,..., O, £k+1 -2, , L -2) = ,
°© 5
and

L,..., 2 -2)
P

By = diag (4 ;-

Also we partition H in (1.42) and R as follows:




— — -
H) PP P Ry o
(1.43) H= = » R = s
[ Ez fs f4 9 54

where the partitions are appropriately done so that the

following ma-
trix products are defined.
{
| T I 1T T T
. pt
ST & T I R SRS Y I LT
i H' AHR = 4R +
' pt
2 R > B P Py| [0 R,
[ — L - = B B ]
L
- 3By P3 Ry PyB PR,
[ ) '
: = 2R +
: i »
: 1 1
| 4B P53 Ry PyB, PR,
] ]
X ! X
= %R + B R
H, )

where X(k x p) is arbitrary but otherwise is a completion of HZ'
Thus under (1.41),

f(H) is invariant of the choice of H1 in
This result with suitable modifications gives the results of James
[10}, Li and Pillai [13], [14].

H.

~

1.5. Complex analogue of previous results

The complex analogue of the preVious problems arises from the
following consideration.

Here instead of the problem of evaluating
1

in (1.1) in an asymptotic scnse we have the parallel problem of

25
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Proof. To prbve that CK(U*A U R) 1is real, we

26

finding an asymptotic expansion of

- N .
(1.44) 1] = IU(p) JFelag,o, a5 by,..., b, UAUR) d(g) s

t)
L

where U(p) is the group of p x p unitary matrices and dU) is

the invariant measure on U(p), normalized to make the total measure

of the whole group unity, A, R as defined earlier, ai's and b.'s

‘are still functions of d.f. and hence are positive real numbers.

But here considering the definition of hypergeometric functions as

given by James [9] we will put the following restrictions on a.'s

and b.'s.
J

(1.45) a; > (p-1), by > (p-1) i=1l,...,s,3=1,..,¢t,

UeU(p), 1i.e. an element of the group of p x P unitary matrix such

* *
that UU=UU = I(p).

In this context we have the following lemnma.
Lemma 1.3.3. Let A and R be as defined in (1.9). Then

EK(U*A UR) is real and for all variations of R > O, we have

~ e A

max CK(U*A U R) = max CK(U R U*A) = CK(A R)
UeU(p) R UeU (p) R -

If A is defined by (1.21) instead of (1.9)

’

min éK(U*A UR) = min C_(URU*A) = C_(A R)
Uel(p) “ -~~~ wgeu(p) ¥~~~ - - -

note

~ e e e




Z/

Chp(U*A U) Chp(R) f_Chi(U*A UR) < Chl(U*A U) Chl(R)

L ~ o -

i.e. ChI_(A) CLP(R) < Chy (U*A U R) SChy(A) Chy(R), i =1,...,p.

~ o~

For the rest we put as earlier 82 = R where

~
~

S = dJag(sl,..., sp), R = dlag(rl,..., rp) i.e, s, =17

Then let C Hence

H
[¥5]
[y
>
o
tn
i
_
(]
[N
Cade
| g
[+})
=
o,
T
]
r~
[
| -

~ o~ e o~ o

cij = s sj kgl ukiukak , i,j=1,..., P)

Now we proceed exactly as in the real case replacing H by U and

get

Theorem 1.1.3. Let R be as given in (1.9) and A as in (1.27), then

the class of unitary matrices for which f(u) =

-~

sFt (al,..., a;b

., b
S

10 £ U*A U R) subject to (1.45) and for all

R >0 is a maximum, is given by

r——-U -—l-
oy |
(1.46) U= . ,
U,
-1
gifi
where




~] -
O = OUyx(ly + ...+ kj 1), Uy =
U)l(ﬁjx(b~k} - - kj-l))’ b= 2,000, 0,
and
Y1 = Opps Yy )
vwhere

01q = O((P-Ck, + ... + N A

-~

~

Yier,1 = Uien,1 (-0 + o0 s k.)) x

P-Ck) + ...+ k),

0 stands for null matrix and Ui+1 1 is a diagonal matrix of the
~ ~ >

order indicated in the parentheses and with diagonal elements

e J,O 5_6j < 2w, !kl’ k=2,...,1i, and U
c3s subject»to the condition that U in (1.46) is unitary.

Also the maximum in this Case is given by

~

(1.47)  max f(U) = max F, (a;,..., a; b s++«s b_, U*A U R)
Uel (p) - Uel (p) st 1 s 1 S A

~

= sFt (al,..., a_; b,,..., b, A R)

where SFt (al,..., a; bl""’ bt’ g) is defined in James [9]1,
) [2,] ... [a.]. C (2)
. . _ 17k S$°K K=
AN CTRRRE M N bys2) = )

k=0 « [bI]K tee [bf]K

T e e e

28

1 are arbitrary matri-
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and the complex multivariate hypergeometric cocfficients are as

fOl 1 OwWS
P
[z_-]F = I (a - i+1)
' izl "1
where x = (kl,..., kp) is a partition of the integer «. When the

ordering of the eclements of é is reversed a result parallel to

that of (1.26) holds. This last one is the most general result we
have had so far. As special cases it gives some alfeady known re-
sults. For example putting s =t = @ and k1 =...=k; =1 we get,

i
for all R > 0O

max  F (WA UR) = F (AR) ,

Uel (p) 00 00V~
which is a variant of the result of Li and Pillai [13], [14]. Simi-
larly putting s = 1, t = 0 and after some manipulation as shown in
the corresponding real part we get for all variation of R » 0

max ; (n, -U*A U R) = E (n, - AR) .

Vel (p) 1’0 -~ . 10 -~ -
Here, of course, n satisfies (1.45) and A and R are given by
(1.9). This is also a variant of the result of Lj and Pillai [13],
[14].

Again considering only one set of equal elements in A we parti-

tion U as follows:

(1.48) U =
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where gl(k x p) and 92((p-k) x p), é = diag(e,..., 2, Rk*l""’ zp)

and « 214] cen P > and w5 carlier ve get for o)l vari-

\’
=
\I
b
v
\I
*©
\
o
-

b, U*A U R)

= F (al,,.., a_; bl""’ b_, AR)
iff U2 in (1.48) takes the form

»/-—161 T
U2 = (0,D), O((p-k) x k) and D=diag(e e q) where

q=p-k and 0O g_ej <2m,j=1,...,q, ai's and bj's are assumed

to satisfy (1.45). This form of U in (1.48) immediately asserts
invariance results of Li and Pillai [13], [14]. 1In fact obtaining

the form of U as in (1.46) is in short the most general result ob-

tained in this dissertation.
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CHAPTER 11
ASYMPTOTIC EXPANSIONS OF THE DISTRIBUTIONS OF

CHARACTERISTIC ROOTS IN MANOVA AND CANONICAL CORRELATION

2.1. Introduction

An asymptotic expansion of the distribution of a sample covari-

-ance matrix (one-sample case) was studied by Anderson [1] and James

[10], and extending their work, an asymptotic representation was ob-
tained by Chang [3] in the two-sample case when the population roots
are all distinct. Li, Pillai and Chang [14] generalized Chang's re-
sults [3] to cover the case of a single extreme multiple population
root. Li and Pillaj [13], [14], have further obtained the second
term of the expansion in the two-sample case and also extended the
results to the complex case. In this part, asymptotic expansions

are derived in the MANOVA and'canonical correlation situations both

~in the real and complex cases.

2.2. Asymptotic Expansion for Canonical Correlation --

Population Roots all Distinct

Let x.,..., x s X

P , < be distributed N 0,1),
1 P p+q’ P 24 _ (0,2)

p+1’”
where
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P.r§;1 ?1;_
(2.1) o=
41y §%EJ
P q
Let ?2 = diag(pf,..., p;), where pi, i=1,..., p, be the reots of
@2 7y 5, 8y - 6 Ial=o0

~ ~

and let P2 = diag(pi,..., p;), where 9?» i=1,..., p, be the

~

maximum likelihood estimates of pi, i=1,...,p, froma sample of

size n > p+q from the above population. ‘Then the joint density of

~2 e
(2,3) P" =R = dlag(rl,..., rp)

~

is given by [4]

(2.4) D, | F, Gn, iny 9, v auR) am) |
1 2’1 2" 3" 39, H' AHR) d(H
0(p) /
where
(2.5) P2 = A = diag(l,eees 2], 1> 2 > ... 54 >0

1 P — ?

d(H) is the invariant or Haar measure defined on the group O(p) of

p x p orthogonal matrices

E? n
(2.6 Dy = (0 1 GR/T GO TG0 T Gp) 1Al
1 1
7(@-p-1) Z(n-a-p-1)
IR|? T - »|? IR

i<j
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where
pip-1)
. T4 P S
Tp(t) i BT (- (1),
3=
and the hypergeonctric function of the symmetric watrix Q is given

by [4]

- (a) -oe (a), C (@
W@ 23 Byseens B, Q= ] ] (by) (b, kb

where a,,..., a , b seesy b are real or complex constants and the
P
1 H 1 n

multivariate hypergeometric coefficient (a)K is given by

(a)K

1}
N =2'o

(@ - 3G-1)),
1

i=1

where

(a)k a(a+l) ... (a+k-1)

The group O(p) has volume

2
& 1 L
v(p) = J a) = 2P n {Pp(zp)}
o) -~
Let us order the ri's in R as
2.7 1> > .. 0> >0 .
(2.7) r) T,

The denéity (2.4) involves an integral and following Anderson [1],

Chang [3], Li and Pillai, [13], [14], our main objective is to




maximize this integral. Let us now denote the integral by

(2.3) E. oFy Gosst, e B Y d(n
a(p) ¢ e -

>

.. . . - 1 i
where, foi niuciional simplicity we put s = i and t = %.Q

Now with mild restrictions on s by theorem 1.1 we find thav

for variation of HeO(p), .F (s,s3t,H'A HR) is maximized when N is
b SR

~ o~ A -~

given by (ii) in lemma 1.3 namely, 2F1(s,s;t,A R). But here we pro-
ceed to obtain an alternate form which is more useful. First we use

Kummer's formula and get

IS

(2.9) F; (s,s3t,H'A HR) = lf - H'A H R|"(%5-1) Py ((t-5),

~ e o a

(t-s)5;t,H'A HR)

-~

Now  following results of the previous chapter, varying H over N(I),

the neighborhood of I(p xp), i.e. varying H'A H R around A R,

~ o~ e e -~

we get
(2.10) 2F1 (t-s,t-s3t,H'A HR) = 2Fl(t-s,t-s',t,A R) + 0(e) .

We prove below a more general result,
Lemna 2.1. If HeN(I), a, > 2(p-1), by 23D, i= 1,

i=1,..., n, then

provided.




1;j - € < ch_; (H'A H R) < tj+e, vhere

ti = ch. (A Ky, 151,000, p .

Pro-f Let #]ﬂ) = “Fn(al,...,au; bl""’hn' U'Q ? E). Then by lemma
1.2 f(?) it »uv increasing function in each of itse charecteviztic
roots. Thus varying ﬁsN(I), we note that first partial derivatives
of f(g) wiih respect to each characteristic roct exisy, e€xcept
éossibly over a set of zero measure. Again as f(@)lH=I exists, the
mean value theorem applies and hence the lemma. o

Now application of lemma 2.1 in conjunction with Kummer's formu-
12 (2.9) gives (2.10). Following Anderson [1], Chang [3], Li and
Pillai [13], [14], and using (2.10) we get for large values of (2s-t)

E=2P [ |rwam R|‘(zs‘t)d(u)zFl(t-s,t-s;t,A R) + 0(e)
N(D) < -~ - - - -

Furthier we concider

2.1) F=2P [ |1 -mwanr]"@gqy

N(D) - -~~~ - -
The integrand in (2.11) is quite similar to that of Chang [3] and
hence what follows is essentially his technique;as modified by Li and
Pillei, [13], [14]. For the sake of continuity we write down the es-
sential steps as applied in our case omitting the details to the above
references with suitable modification.

Let us use the transformation

(2.12) . H = exp(S] ,



where S(p x p) is a skew symmetric matrix. Then by Anderson |1)

(?.13) J(Sn) < A p-ry v trs” 4 [(8~P)/{A‘6£)]({TS4)

(57 - 20p + 14) (L.é!)}(rrx%)l .

Undcr this transformation N(I)} » N(S - 0). However as shown by
Anderson |1] und Chang [3], for large (2s-t) we can approximate  F
in (2.11) by integrating not exactly on N(S = 0) but simply over

intervals - « < si. < » for each sij' Under the transformation

j
(2.12) we have
T - HAHR] = |1 - AR[[T+ (5} + (52} & (%) » ...
(2.14) |1 - yp g )~ (25-1) T - aAR|7ESY) 1 | g)-(25-1) ,
where
G =18} + (%} + (%} + ..,

.Henceforth for notational ease we will write 2s-t = vy i.e. (2.14)

is rewritten as

[1 - H'a nR|™Y

~ o~ e A

[T - aR|I™V]1 4 7Y,

. \ -1 . . . ; . .
Let T= (1 - R} 7. Since A in our cace is a fixed dizgonal ma-

-~

trix and R has random entries corresponding to szmple canonical cor-

relations, we neglect the set in which T is undefined as at most it

will contribute z set of measure zerc. Thus without loss of generality
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we can write

| tl G ();
. i
, !
0 t}. ¢
(2.15) T=(r-AR!A-
0 .. t
L__ p

where

Then

{s} =

¢ =3

(R

[ Y]
H
w
-
~—

{8°} =31 2SR s - S%R - R §2)

-~

N
tn

and {Sj} and other terms are obtainable with modification from Li
and Pillai [13], [14]. Further we quote a lemma.

Lemma 2.2. Lew bj be the jth characteristic root of B(p x p)

such that

max b.] <1
isp

>

—t
l/\

then

|1+ B]Y = exp{v tr(B - %B“ + %BS .9

~ .

For prdof see Chang [3].




linder transformation (2.]2), N(TY -+ N(S = 0 ang toding &

sufilcic“LIy Cioce we U we cun take o pwoxina o

Y LR ruot

O be less than unity  Hence Chirvans lons

77N pet nadey

(2.12)

[T -wane]™ o)., RI™Y |1+ |V

~ N

I AR ety sy - 15 L sh .y
where
[s1 = (s} ,
19 = (5% -

and [83] and other terms are available from Li and Pillai, [13],
[14], with obvious modification. Now putting S = (sij), and

S' = -S e have

tris] = o,

2 2
tr[S"] = ¢ .. S.. ,
- i< ij ij
vhere
2 . = - = (..
(2.16) Cij (tji titjrij)rij 51
tij = ti - tj’ rij = ri - rj

Thus we note that the above and other éxpressions follow from those
of Li and Pillaj [13], [14)] changing R to -p and with accompa-

nying cﬁange of notation. Hence following Li and Pillaj [13], [14]




we get after somc lengthy algebra

where

(2.17) a(p) = p(p-1) (2p+5)/12 .

Thus substituting back this value in E we get the theorem:

Theorem 2.1. For large n, an asymptotic expansion of the distribu-

tion of Tysenn, rp (the squares of the canonical correlation coeffi-

cients) where 1 > r, > .2 T, > 0 and the population parameters

from (2.2) are such that 1> 21 > il > 2p > 0, is given by

_ 20 2 T oguens 1 -1
(2.18)p. B 1 (=) |1 - A R| 1 +5—x[1 cf
1 1< (2n—q)cij ~ L. 2(2n-q) i<j ij
P v Y R Gaen),taemiiaa R) ¢ 0gey |
r s 2°1 zq ) q »§Q»~ N ’

where R, Dl’ Cij and a(p) are given by (2.3), (2.6), (2.16) and

(2.17) respectively and B = 2P cil.

2.3. The Asymptotic Expansion for Canonical Correlation-One

Extreme Population Multiple Root

James [10] has studied the distribution of smaller roots given
the larger rocts of a sample covariance matrix and has Tfound a gamma
type approximation with linkage factors between sample roots corre-

sponding to smaller and larger population roots. 1In their study of

- —
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the two-sample case, Chang [3], Li and Pillai [13]1, [14), have found
a beve iype approrination in the samc context. Ko opvrain below g
sumilay huele '.typ.@ arproxbmation in the cwonicil ool mion ok,

Ler ur assume

(2.19) 6 = diag(zl,..., lp), L>o,>2,> ... >0 > =

and 8 = d1ag(r1,..., rp), 1> > ...>r >0

The joint distribution of Tisenns rp in this case is given by (2.4)
with appropriate changes in definition of A and as earlier we consi-

der (2.8). Here we partition H as follows

(2.20) H

-2

i.e. gl(k x p) and @2((p-k) X p). Under (2.19)-we note that our
integrand in (2.8) is invariant under choice of 52 up to the re-
striction'that the matrix @ is orthogonal. Becéuse of the above
we can integrate out 92 in (2.20) using the formula

(2.21) ¢; [ odm) =c,am) ,
i

where

>

(2.22) ¢ = 1P /2 {rp(le)}'1 and c, = n°P/2 tr, &t
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where d(@?) denotes the invariant volwie clement of the Stiefel-
manitold oi Gounonormal k- frames in p-spece normaliaet to ke its
intngrnf ity Now {ollowing Chang ty, La and birioe [13], {14],
the iutagrafv&fuxlﬁ.s) can be closely &ppioxinated fo, ierge § wheh

H has the ia?)owing form

-
lo(k) :;T

£ (2.23) H

n

~2

- _

where Io(k) = diag(+ 1,..., + 1) and is of dimension k. Now re-

stricting ourselves to orthogonal matrices we apply the following

transformations

(2.24) H=-exp [S] |,
where
[ ]
S11 | S12
(2.25) S = ,
]
52 ©

and 517(k ¥ k} 1is a skew sywmetric matrix and Slz(k x (p-k)) is a
rectangula: matrix. The jacobian of transformation (2.24) is given by

(2.13). Alsc we have by analogy with Auderson [1}, (James [10]),

_(2.26) CZd(EI) = c3d(§11) d(?lz)(1+0(squares cof sij's)) s

where




F‘
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2
1
(2f27) Cqy =1 {Tq(iq)} ) qQ = p-k ,

k k P
d(S,.) and d(S8,,) stand for I ds,. and | I ds
~117 12 i<j=1 ij isl  jek+l ij

respectively. From equations (2.24) and (2.25) we get
1 2 .
h.. =1 .= E S .. i<k
ii 2 j=1 ij -
and

hij = sj5 higher order terms, 43, Sij = =Si;

J1

Now using the transformation (2.24) and following the technique used

earlier and remembering that qQ = p-k of the roots of A are equal,

we get
trls’] = igj 1555 * i]=Z(1 Jjﬂ 55 Sy

where

(2.28) ¢ = (iji - titjrij)rij =G50 L=l Kk, i<,

(2.29) cgj = (1:J.i - titjgierij, 1=1,...,kj= ktl,..., p,

and

li/(l—rili), 1=1,...,k

/(-1 ), i=kel,..., p

t.. =t. - t. and r.. =r., - r,



Thus following Li and Pillai [13], [14], we get

[T - H'a 5 g|~(25-1)

k
= |1 - A Rl'(zs-t) n exp[—(ZS-t)c..s?.]
AR - - i<j=1 131
k P
n Il

exp[-(ZS-t)cci).s2
i=1  j=k+] J

: 2
iJ-] {1+ O(sij)}

Now for large (2s-t), and remembering that ip the present context

the integrand (2.11) is invariant of the choice of H

2 in (2.20) and
using (2.21) and (2.26) we get

.
y .

11 Sy i<i=1

(2.30) Fe=2Xc ol o, R|™(2s-t)
31 11 - AR s

exp[—(2$—t)cijs§j] dsi.

k P o 2 : 1
I I eXpl-(2s-t)c .s7.1 ds.. {1 + 0 }
i1 jekn SPLs0CHsT g as (e
Again when (2s-t) is large and zi's and ri's are well spaced
i=1,..., P),

most of the integral in (2.30) will be obtained from
small values of the elements of §

S11° §12. Hence to obtain an asymp-
totic eéxpansion, we can replace the range of elements of s
real values of thenm.

[13]1,

. for all
1]

With this stipulation, following Li and Pillai,
[14], we get after some lengthy algebra

43
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1
k =
-1 -(2s-1) )| 2
(2.31) F = 2R ¢ [T - AR] )
K0 U S A i<j=1 (25-t)ci.
k p I %
n I (———)

k k -1
1 -1 o
{1+ [ T cits ) f €i5 *tal,K)] + ... ),
T NG T j=k+1 1]

where a(p,k) is defined below. Now using this value of F as in

(2.31) and proceeding exactly as in the case of distinct roots in the

matrix A we get the following theorem.

Theorem 2.1.1. For large N, an asymptotic éxpansion of the distri-

bution or Ti12++-5 T , where 1 > r, > ... > rp > 0 and the para-

p
meters from (2.2) are such that 1 > 21 > ie0 > lk > £k+1 = ... =
lp >0, is given by
-1k - 3n-q) k a7
(2.32) DIC3C1 2 II - A R, I (m——)
> - i<j=1 temma)eyy
k P 21 %
I I (—

. 1.0
i=] J—k+1' (2n q)cij

1 X 1, K § o™t
{1+ oo C.. + Cii *ta(,k)] + ...}
2(2n-q) [i<§=1 TS jeker 13 T O]

1 1 1
2F1 Gla-n), 3(q-n); 29 AR) +0(e)

o . . '
where Dl’ Cys Css cij and cij are defined in (2.6), (2.22), (2.27),
(2.28), (2.29) respectively and

(k) = 50 (k-1) (ake1) + 6(p°-k%)) .
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2.4. Asymptotic Expansion for MANOVA -

Population Roots All Distinct.

Let B be the Between S.P. matrix and W the Within S.P. matrix,
Then B(p x p) has a non-central Wishart distribution with s d.f.
and matrix of non-centrality parameter A, and W has a central

Wishart distribution on t d.f., the covariance matrix in each case

being I, and

(2.33) A=

BN =
=
H =
™
-

where u(p x s) is the matrix of the mean vectors. Then the proba-

bility distribution function of the roots of the matrix

(2.34) R=B(B+ W

’

is given by [4]

»

1 . 1 L]
(2.35) Ty [ (F GGse)s 3s, A HR) d(H)

0(p)
where
2
g— 1 ‘ 1 1 1 -1
T1 =1 Pp(i{s+t)) {Pp(it) Fp(is) Pp(ip)} exp[-tr é]
P 3(s-p-1) p 3(t-p-1)

(m r,) I (1-r,) I (r.-r.)
i=1 * i=1  * ij 1)

Let

¢

(2.36) R = diag(rl,..., rp), 1> ry2>r,>...>r >0
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where R ahd A are otherwise specified in (2.34) and (2.33), o(p)
and d(H) are as specified in the earlier problem.

As stated earlier, as in relation to the canonical correlation

problem we consider the following:

(2.37) By = [ B} Gls+); 7 A HR) d()
0(p)

The integrand as it stands is not easy to work with, hence we apply

the confluence relation (James [9]).

‘ e _
(2.38) Lt 2Fl(a,c,b,c §) = 1Fl(a,b,§)

C > o

Applying the dominated convergence theorem, since the functions in-

volved are well defined, we get using (2.38)

Lt [ F (G(s+t), a; s, a'lg'A HR) d

a+ = 0(p) 2 STt
. 1 1. -1
= [ Lt ,F, ((s+t), a; 55, a = H'A HR) d(H
1 1
= f FiGG(s+t); 55, H'AHR) d(H) = E
1712 27 00O 1
0(p) :

Thus, for evaluating El’ we consider, for large a,

(2.39) E, = J oF1(F(s+t),a555,a" "H'A H R) d ()

0(p)

~ e~ e~ . ~

Thus we note that we can apply the earlier technique but with slight
modification as would be noted in the process. For notational sim-

Plicity we use



(2.40) m=3(s+t) and n = s
Now, using Kummer's relation given by James [9] we get

(2.41) F (m,a3n,a WA H R) =

~ o~ A A

II—a_IH'A H R -2 2Fl(n-m,n-a:n,a_lH'A HR)

Again
-1

|I-a™"H'A HR| =

[T + H'A HD| |I-(I+H'A D W YHAHD + a lHA H R) |
and

-1

(2.42) D =R

Thus we get from (2.41)

(2.43) F (m,a;n,a WA H R) =

~ o~

IT + H'A HD|™™|1-a 14ra B R|7#|1- (1+H'A H D)~]

~ e~ o o ~ m e e ow

(H'A HD + a lyrp H R)]n_szl(n-m,n-a;n,a-IH'A H R)

L ~ o~ e~ T

Also the integrand in (2.37) is maximized under the present set up
when H has the form (ii) in lemma 1.3. Now if we expand the last

three factors in (2.43) around HeN(I), applying lemma 2.1, we get

(2.44) LF (m,asn,a WA H R) =

~ o e

{1+ HAH p|~(m-n) ¢(m,n,a,A,D,R) + O(e)

~ o~ o~ .

~



where

¢(m,n,a,A,D,R) = |I-a”!a R|™®|1-(14a p)-]

~ o~ .

(AD+ a1a R)I'(m-n) zFl(n-m,n—a;n,a_lA R)

~ o~

Thus using (2.44) in (2.39) we get for large m

E, = 2P [ [T+ H'AH D|'(m'“)¢(m,n,a,A,D,R)d(H) + 0(e)
N(I) =~~~ ~ ~es s -

Further we consider the following

Eg=2P [ |1+ wanp 0y
N(I) - ~

’

where

D =diag(d;,..., d ), »>d > ...>d, »>1
D g(dy p) p

and A 1is as defined in (2.36). The integrand as it stands corre-
sponds to that in Li and Pillai [13], [14], and hence following them

as m >n and for large m we get

>

1
(i mo P I -~
E; = 2P| e ap ®™m o 17
3 - - - i<j=1 (mm)ey,
1 -1
{1+ —— [ cI,+ a(p)] + ...},
4 (m-n) i< ij
where
(d.-d,)(2.-2.)
(2.45)y . ¢ = 4 J 1

_— > i<j ,
ij (1+2idi)(1+2jdj)

g . ..




and a(p) givenrin (2.17).

Thus putting al} these results together we get the theorem:

Theorem 2.2. For large t (and hence for large sample size), ap
asymptotic expansion for the distribution of the characteristic Troots
of R 1in (2.34) with parameter matrix A as in (2.33), where R

-~

and A satisfy (2.36) is given by

1
-1 P 2n .7 1 -1

T, 2Pt oy e s (s cii +alp)] + ... )
i<j=1 ij i<y 1

exp[tr A R] 1Fl(- %t; %s, - AR) + 0(e) ,
where Tl' is given by (2.35) and cij by (2.45)

2.5. Asymptotic Expansion for MANOVA -

One Extreme Population Multiple Root

The problem involved here is quite similar to the Previous prob-
lem with the difference that the matrix A = diag(il,..., zp) defined

in (2.33) now satisfies (2.46) instead of (2.36)

(2.46) °°>21>22>"'>£k>2k+l=,"‘=2p=£10'

again, following the arguments and algebra as in Section 2.3, we get
the following theorem (details of algebra are available from Li and

Pillai [13], [14], with slight changes.).




Theorem 2.2.1. For large t (and hence for large sample size) an

asymptotic expansion for the distribution of the characteristic

roots of R in (2.34) with parameter matrix satisfying (2.46), is

given by
1 1
=~ k P d
Tiegei’2® m E2 0 1 & 57 fer R]
i<j=1 ij  i=1 j=k+1 ¢c°, -
ij
' k t -1
1,. 1 1 -1 0
Fllogtsss, AR {1+ 5[ ] i+ E cs .
Pz ST SRS B A
+a(p,K)] + ... } +0 () ,
where

Cys Cq and T1 are given by (2.22), (2.27) and (2.35) resp:zc-

tively, and €53 and cgj are defined as follows:

(2.47) cij = (tji - tltJrlj)rl., 1,3=1,..., k, i < j, (cij = Cji) ,
. = (t,. - t.t.r. Jr.., i= 1, > k,
ij ji 1 j 137715
. °c _ o
J“k+1:-“’ P, (Cij = cji) >
where
t.. =t, - t., r.. =r. -r, ,
1j 1 J 1] 1 J

/(142 di)’ i=k+l,..., p .

a(p,k) = %5-{(k-1)(4k+1) + 6(p2 - k2)}
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and
D = diag(d d) = R-l
b 12000 4y R .

2.6. Asymptotic Expansion for Canonical Correlation in the

Complex Case - Population Roots all Distinct

Let x X_,

100 X
normal NC(O,EC), where

xp+1,..., xp+q’ P £ q be distributed complex

—__Z z
p Zc11 Ze12
z =
-C
T
L § cl2 §c22
P q

Let Pz = diag(pi seaey pz ), where pz »i=1,..., p are the roots

1 P i
of
' -1 o, 2 1L
(2.48) 12202 2020 g - P Ll =0,
and let p2 = diag(p2 seeesy p2 ), where p2 »i=1,..., P, are the
~C ¢, cp c;

maximum likelihood estimators of pz
i

»i=1,..., P, from a sample of

size n > p+q from the above population. Then the joint density of
"2 .

(2.49) p- =R = d1ag(r1,..., rp) ,

~-C

is given by James [9], as

"D, [ _F.(n,n,q,U*A U R)A(U) ,
2 2 S oL Ndl
u(p) .
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where

2 .
(2.50) ?c = é = dlag(ll,..., zp), 1> 21 > 22 > ... > Ep >0,
d(U) is the invariant Mmeasure or the Haar measure defined on the group

U(p) of unitary matrices of order p,

~

- mP@-1) T oy : Al R19-P
(2.51) b, = [n p M/ Ty M-I (@)1, ()] [1-a[" R

[T -RIP9P p o C g2
LD i< j

Hd

NI
i

fp(t) =1 I T(t-j+1)

where the hypergeometric function of the Hermitian matrix Z is defined

in [9] as

N O CEA [au] €2
(2.52) qu(al""‘ a3 by,..., bp» Z2) = kgo g ) D N Y
where
p
[a] = I (a - i+1)k ’
i:l 1

and k = (kl,..., kp) is a partition of the integer k.

Let us now consider the elements of R apd A as in (2.7) and

(2.50) respectively. Then as in the real case we consider the follow-

ing integral:

J 2El(n,n;a,U*A U R)d (U)
u(p) I
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To study the above integral let us consider a lemma analogous to lemma

2.1 in the real éasc.

Lemma 2.1.1. 1If UeU(p), and ai's and bj's are real (i = 1,..., u,

3 =1,..., n), then

-~

(1) an(al,..., au; bl"“’ bn, g*é UR) is real and if

(2.53) UeN(D), a, > (p-1), bj 2 (p-1), (i =1,..., y, i=l,..., n)

then
ii) F cees a3 bo,..., b, Ut =
(ii) u n(al’ au 1 bn 9 é g B)
an(al,..., au; bl""’ bn’ é B) + 0(e) ,
provided
t. - e <ch, (UXA U R) <t, +¢ ,
i I R S S 1
where

ti = chi(é 8), 1=1,...,p.

For proving (i), in view of (2.52), and ai's and bj's being real,
it will suffice if we can show that CK(U*A UR) 1is real. This has

been shown in lemma 1.3.3.

Now.as chi(U*A UR) 1is real i=1,..., P), and nonnegative
in this case, under (2.53), we get (2.52) is an increasing function
in each characteristic root. Result (ii) now follows by arguments

similar to those in lemma 2.1,
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Now as is done in the real case using Kummer's formila we get

zFl(n n3q,U*A U R) = |1 - UA U R| (2n- q)

~ o~ A

F,((g-n), (q-n)3q,U*A U R)

~ N e

~ o~ o~ oA

and using lemma 2.1.1 and following Li and Pillai, [13], [14], we get

the following thcorem.

Theorem 2.1.2. For large n, the asymptotic expansion for the dis-

tribution of Tyseees rp, in (2.49) where 1 > r1 > a..>r >0

and the parameters from (2.48) satisfy (2.50), is given by

)

0;'p, (~—H\){1+~—~[26—1+B()]+ }
472 e G, 302 ij P e

~

) .
|1 - ARl (2n-q) ,F1 ((q- n) (@-n); q, A R) + 0(e)

where B(p) = pP(p-1) (2p-1)/12, R, A and D, are given by (2.49),

(2.50) and (2.51) respectively and cij are defined as in (2.16)

with Ty and Lj being replaced by corresponding elements of (2.49)

and (2.50), D, = nP(P'l){fp(p)}'l.

2.7. Asymptotic Expansion for Canonical Correlation in the

Complex Case - One Extreme Multiple Population Root

In this case we have the same model as in the distinct root case

with the change that A defined in (2.50) has the form

2 .
(2.54) ?c = é = dlag(ll,.w., lp), 1> 2y > Ly > ol > Ly > %

where Pi is as defined in (2.48). Now, with necessary modifications
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in our procedure in the real case, and using lemma 2.1.1, and follow-

ing Li and Pillai [15] we get the theorem:

Theorem 2.1.3, Tror large n, the asymptotic expansion for the distri-

bution of Yyseen, rp, where 1 > T > ... > rp > 0 and the parame-

ters from (2.48) satisfy (2.54), is given by

k k P k
] I I 1 -1
Py ! (mmae— T n (— .1 [ ) )
TS e Greade L Jekel - (aneq)cy, 32n-q) 7, 5 i

k o1 - (2n-q)
+ 7 E €15 * BPK)] + ...} |1 - A R| (2n-q
i=1 j=k+1 1J R

2Py (@), (@m)3a.A B + o(e)

where

= alq-1) .7 -1
Dy = 1 {rq(q)}

and q=p-k, D2 is as in (2.51), cij and cgj are as in the real
case with ri's and lj's substituted from (2.49) and (2.54) and

B(P,K) = X{(k-1) (2k-1) + 3(p-k) (p+k-1)} .

2.8. Asymptotic Expansion for MANOVA in the Complex Case -

Population Roots all Distinct

Let ?i be the Between S.P. matrix and W, the Within S.P,
matrix in a complex multivariate normal case. Then ?1 (p x p) has
a complex non-central Wishart distribution with s d.f. and matrix
of fnoncentrality parameter é and WI has a complex central Wishart

distribution on t d.f., the covariance matrix in each case being Zl,
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and

. 0
= '
(2.55) - Aeumnr

~

where Hy{p x £} is the matrix of the mean vectors. Then the density

of the roofs of the matrix
_ -1
(2.56) R=B,(W +58)

is given by [9]

T, 151((s+t);s, U*A U R)d(U) ,
U(p) T
where
-1 ~ ~ ~ t-
2.57 T, = PP DL ity F )7 (4 1-r|tP
(2.57) =1 p ST/ T, (I ()T (£)] [1-R|
]R](S'p) n(r,-r,)? exp[-tr A] ,
~ s.s 137 -
1<) -
where
(2.58) 3 = diag(rl,..., rp), 1> Ty > e rp >0
A=

diag (21,..., 2p), © > 21 > ... Rp >0

?

and d(U) is as defined earlier. Now as in real case we consider

1}?1((s+t); s, U*A U R)d(U
U ) R

/

But as stated in the real case, the integrand as it stands is diffi-

cult to work with and as such we consider, instead, for large a



57

| F ((<+t), a; s, a “lyra v R)d (U)
21 - - -
U(p)
Thus proceeding ¢ before and by Li and Pillai [13], [14], we gct the

theorem:

Theorem 2.2.2. For large t (and hence for large sample size), the
asymptotic Lxpiosion for the distribution of the characteristic roots

of R in (2.56) where R and the parameter matrix A in (2.55)

satisfy (2.58), is given by

-1 -1
D, T, T (t - {1 + 3;-[ z cij + B(P)] + ... } exp [tr A B]
i<j ij i<j

-~

1F1 (-t; s, -AR) + 0O(e) ,

where cij is given by (2.45) using A and R from (2.55) and
(2.56) respectively, T2 is given by (2.57) and B(p) = p(p-1)
(2p-1)/12.

2.9, Asymptotic Expansion for MANOVA in the Complex Case -

One Extreme Multiple Population Root

As in the canonical correlation case with one extreme multiple
population root, here again the model is the same as in the dis-
tinct root case with the change that A defined in (2.55) has the

following form

1. A = diag(2., y R )5 > 8. > > 2, > 2 =

(2.59) ulul 1 A 17" p 1 .o K K+1



~

where Hys El are defined as in the distinct root case. Now proceed-
ing as in the earlier case with necessary changes and following Li and
Pillai [15] we pet the thcorem:

Theorem 2.2.5. for large t (and hence for lafge Sample size), the

asymptotic expansion for the distribution of the characteristic roots

of R in (2.56) where 1 > Ty > oo > rp > 0 and parameter matrix

A in (2.55) satisfy (2.59), is given by

k k p k
D;1T203 R S T Ho){1+%z[z el
i<j=1 ij i=1 j=k+1 ¢t C1J i<j=1 J
k P o1
MU SRS SR TN I exp[tr A R]
i=1 j=k+1 J ~ -
1Fp t5 s, - A R) + 0(e)
where

D, = n4(a-1) ¢ fq(q)}’l, B(p,k) = %{(k-l)(Zk—l) *+ 3(p-k) (p+k-1) }

and q = p-k, c. i and cgj are as defined in (2.47) but the Ty and

2j's being taken from (2.58)and (2. 59) respectively,

2.10. Remarks

As will be noted from the following there are some general re-
marks which apply to alr cases dlscussed above and some others which
pertain only to spec1a1 cases,

1. The method as outlined above is a generalization of Anderson's Tre-

sult [1] and all his comments are applicable here also. Note espe-

cially the following one.




2. No proof has been given to show that we have an asymptotic expan-
sion of thc integrals involved in each case, but application of an ex-
tension of Laplace's method as given by Hsu [6] can be utilized to
show that in <uch case the first term gives an asymptotic represen-

tation and has been explicitly shown by Chang [3] and hence we just

refer to his result,

3. In approximating an or an by Kummer's formula we note that
if we take N(I) involved in each case to be sufficiently close to

I, which is possible for large enough sample size, we can neglect
O(e) 1in each case for good enough approximation.

4. The direction of ordering of roots in each problem is immaterial
and as such the only restriction is that the roots of the sample and
populatlon matrices should be ordered in the same direction.

5. From remark 4 it may be seen that the expansion for one extreme
multiple population root covers the largest root although the re-
sults given in the Paper are for the smallest.

6. Each formula, as given, gives a considerable simplification in

the an function since each population root goes along with its
sample counterpart.

7. In the real case when a in (a)k is a negative integer the
hypergeometric function involved reduces to a polynomial. 1In the com-
Plex situation a constant being negative u;n always reduces to a‘
polynomial expansion.

8. When all the population roots are equal we see that O(e) term

in our expansion is identically zero. Here we have to take any empty

product to be unity.

e T




9, Though in Chapter 1 the limits of the elements of the

matrices
A and R are taken to be the whole real line, it does not matter
even if we 1ake it to be any interval [a,b], where a and b are

two distinet soul numbers.,
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CHAPTER 111
ASYMI'TOTIC EXPANSIONS FOR THE DISTRIBUTIONS
Or CHARACTERISTIC ROOTS WHEN THE PARAMETER

MATRIX HAS SEVERAL MULTIPLE ROOTS

3.1. Introduction

In the preceding chapter asymptotic expansions for the distri-
butions of characteristic roots of matrices arising in MANOVA and
canonical correlation case are obtained when the parameter matrix has
a single multiple root, extreme or intermediate. However, in extend-
ing the work further to the case of several multiple population roots,
the method used in [10] was not found to be suitable in view of the
fact that the invariance of a function with respect-to the choice of
a sub-matrix in the orthogonal (unitary) matrix used there does not
extend to the simultaneous invariance with respect to the choices of
severil submatrices as is needed to extend that method. In order to
overcome this difficulty we proceed in a different manner without re-
course to the invariance property and restate lemma 1.3.1 in a more

detailed fashion before demonstrating the new approach,

3.2. The Maximization Procedures

Let us define B = dlag(rl,..., rp); © > r1 > rz > ... > rp > 0.

< kl k2
(3.1) e = diag (21,..., 21, 12,..., lkl . kz FEETPR lp) ,




and let HeO(p), where O(p) 1is the group of orthoponal matrires
of order p. i n we state the following lemma.

Lemma 3.1. T1f (3.1) holds, then for all variations of R > 0

~

beo  C (HU AN R) = max C AR EY A) = ¢ (4 R)
HeO (p) v HeO (p) ~ s oo~

and if the ordering of the elements of A is reversed then

~

min  C (H' AHR) = min CK(H RH'"A) =C (AR) .
HeO(p) "~ =~ ~ - HeO (p) ~ -~ K~ ~

The optimum values are attained iff H has the form

k1 k2 q
o0 o] i
He |0 om0k
o o 1|

where q = p - kl - k2 and Eo(q) = diag (+ 1,..., + 1),

Proof. By lemma 1.3.2, we get H must have the form

oy H, H,

H o= 0 H, H,,
0 0 5

| ]




But, because of the orthogonality of H, we get, le = H22 = 0 and

which in turn gives H_ H! = ' H_ = I(k?). Thus, H]

2 22 202 1 = 0, and hence

~

the proof.
The preef just outlined is general and also goes through in the
complex analogue of this problem when H jg replaced by U, where

UeU(p), and H{p) is the group of unitary matrices. Thus let us

consider the following formalization.

= di w0 > >
8 dlag(rl,..., rp), Ty r, > ... > rp >0
. k1 km
(3.2) é = dlag(ﬁl""’ 21""’ 2m""’ lm’ zk +...+k #1202 zp) g
1 m
o > 21 > 22 > ... 3> lm > Zk b4k 41 > e > lp >0,
1 m

and let HeO(p). Then

Lemma 3.1.1. 1f (3.2) holds, then for all variations of R »> 0

max CK(H' A HR) = max CK(H RH'"A) =C (A R)
HeO (p) R HeO (p) o~ - K'v o

and if the ordering‘of the elements of A is reversed then

min C (H' AHR) = nmin C.(HRH' A) = C (A R)
HeO (p) T T T T Heo(p) -~~~ - K-~

and the optimum values are attained iff ' has the form
H = d1ag(gl,..., Ho., Io(p-k1 Teee - kD)),

where Hj (kj X kj) is an orthogonal matrix of order k., i=l, ..., m,

and




Eo(p-k] - e - km) = diag (+ 1,..., + 1)

In vides i facilitate the subscquent generalization to the com-
plex casc . +¢ an analogue of leamwi 5.1.1, the proof being self-

evident irom picvious discussion.
Lemma 3.2.2. i (%.2) holds, then for all variations of R > O

max - EV(U* AUR) = max EK(U R U* A) = EK(A R)
UeU(p) ~~ ~ ~ ~ UeU (p) -t - -

and if thc ordering of the elements of A is reversed then

min € (U* AUR) = min C_(URU*A) = C (A R)
UeU (p) R UeU(p) - - -
and the optimum values are attained iff U has the form

9 = diag (!1,..., Hm’ gm+1), where !j(kj X kj) is an unitary matrix

of order k., j=1,..., mand U . = diag (e'/'—1 °1,..., e’ %)
J ~m+]
0 5_ej <2m, j=1,..., q, and q = p—kl - . - km'

Using the above results we get corresponding results for theorem

1.1.2 and its complex analogue theorem 1.1.3.

3.3. Asymptotic Expansion for the Distribution of the

Latent Roots of the Estimated Covariance Matrix --

Several Multiple Population Roots

Let B = diag (rl,..., rp), © > Ty > e rp > 0, where ri's

are the latent roots in discending order, of a sample covariance ma-
trix C with n d.f. calculated from a sample from a normal popula-

tion with covariance matrix . Let the diagonal matrix of the latent

“Toots of g} be A and A has the form

-~ -~



1 m
A = diag (&,,. ey R, R R y L , » L R > £ ),
(3.3) - 1 q q+l q+1 q+m g+m
R = diag (rl,. , T ), ® > T, > T, > ... > rp >0,
(3.4) o« > qim > e > 2q+1 > zq > e, > 21 >0
where p = kl oL, 4 km + q. Then the joint distribution of
Tisenes rp, is
(3.5) ¢, | exp (- %tr H' AHR) d(H)
o) o
where
2
™ P np n
c, =n® % , [22 o G rdn K 2,2
1 p2° "p-2 i=1 i
m nk p p
| ') f noor, ('EELU Ho(ry -r)- 0 dr,
j=1 I 4 : i<j i=1

Now by lemma 3.1.1. and as shown in chapter one, the integrand in
(3.5) is maximized for all variations of R > 0, when H has the

following form

(3.6) H=diag (I (q), Hysevuy HY

where

Hi (ki X ki)’ i=1,...,m, are orthoganal matrices.

As stated carlier we do not resort to the invariance technique

as used by ecarlier authors. Now following Anderson [1] we use the

L
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transformation
3.7) : H = exp [S] ,

where § is a- px P skew symmetric matrix. Now under !3.4), the
transformation (3.7) reduces the integrand in (3.5) to a form which
does not yield to direct evaluation. Hence to avoid this difficulty
We note that if 3.9 holds, then for ali 8 > 0 the integrand in

(3.5) is maximized when H has the fornp (3.6). Also when n ig large

where S1 is a p x P ' skew symmetric matrix but has the following

form
- —

¢
fo
?
bt

S
S
(s

S0 @xp); s, %i1° i 855

t\n
n

G Gy x @k Ki-1)> S35 O x k) =
9, §i$ (ki X (ki+1 + oo+ km)), 1 =1,..., m-1 and §m =
(§ml’ Sn2) s Sm1 Ckp x (p—km))’ Sn2 (e, x k) = 0.

This is no 1oss of generality provided the constant factor is adjus-

ted, as for .large n the integrang is concentrated around its unique




-

maximum and at least omne maximizing set is covered by this substitu-

tion. Let g = p-km. Then

t (B ALKR) = tr (AHR H')
= I h;i?' 2. r.

LI}
o~
o~

©
L]
=
e N
+
Foo)
-+
=]
o
o-’
1
=

since

i=g+e1 Y i

For large n and Ri's and rj's well spaced, most of the integrand

in (3.5) will be given by small values of Sl'

Now under (3.8)

.1 g 2 .. : \
T 1 5 sh sij + higher order terms in sij s
h.. = 8.. + higher order terms in s,.'s,
ij ij ij
Thus we get

9 o anw g, |

o+ § g (2, -2 ), s2, 4 higher order terms in s..'s.
i1 j=1 1 q+m’ “j “ij S &




fl
Kol
-
=
~10
-~
LSV
-+
o~
~~
>
[
)
=
| —
o]
1
N t~1a
~~
n g

j=1 i=1 a+m i1 1 fqen) 13
+ E k +m T, s.. + higher order terms involving
i=1 j=1 q
S..'s ,
1]
> q 2
= Loty - ) (R.-2 ) r Es..-
S = I S
2
§ (2.-2 ) r, E st .
i=qel 1 oqemt i jo1 1
2 2
+ E E . r. s.. + f § (2, 1 r. S.. +
i=1 j=1 4 q+m Jj Tij i=q+l j=1  ° ij

higher order terms involving sij's .

E 2 T, ? E (2 -%. )(r -T, )s +

i=1 =
i <'j
PYT :
(2.-2.)(r.—r.) s, .
o7 o & 1375 717 Cij
usli W T+l
+ higher order terms involving sfj s
i-1
(3.10) where 9, =q+1, q; =q + ) kj +1,i=2,...,m+1 .
j=1

Substituting (3.9) in (3.5) we note that the integrand tends to
Zzero as each sij > @, Also for large n and for zi's and rj's well
- Spaced we can apprdximate the integral over N (§1 = 0) by varying -

each sij_over the whole real line i.e. - w < sij < = for each pair




69

(i,j) which involves in our representation (3.8). Thus for large n,
noting that thc maximum of the integrand in (3.5) is attained when

H has the form (3.6), we get, following Anderson [1]

n
{ erp |2 tr N AHR] A(H) = 2% g o, w-il
0(p) Tt =g+ 0
1 q .-1 1
qQ p 5 T tu+l p 5
exp [-Dtr AR] NI T (;1-2-’1—)2 11 I (2;’ )2
S 1=1 j=1 ij u=1 1=q, J=qu+1 nc ij
i<j
1 1 m Gy+17! ool
[1"'5,'1"(.3 .g cij+z.2 _E cij)+ . ]:
i=1 j=1 vu=1 1=q 3=, 4

i<j
where

(3.11) cij = (zi - R,J.)(rj - ri), 1=1,...,q,j=1,...,p

and

cgj = (li - zj)(rj - ri), i and j varying over the indicated set where

it is non-zero.

k2 p?
P ki -1 2 1
= “Lyy3t sl = Pyy-
wi - n {rki (2 )} 2 1 1,"', m.‘ wm+1 H {rp (2)} *

The factor involving w, accounts for the fact that integrand in
(3.5) is maximized when H has the form (3.6). Thus we get the
following theorem: |
Theorem 3;1. An asymptotic expansion of the distribution of the

roots Tiseens rp, of the sample covariance matrix C for large
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degrees of freedom n, when the population roots satisfy (3.4) is

given by
q -1 1
_ m q p 5 m u+d P
Wl e M o (& 32 1 q I @52
mtl j=1 1 1 i=1 j=1 0¢ u=1 j= ( ne®
J J qu J qu+1 ij
i<j

P o
where q = p - Ll - e - km, and 6, B, q; (i=1,..., m+1), cij's,
cij's are defined by (3.4), (3.3), (3.10) and (3.11) respectively.

3.4. Asymptotic Expansion for the Distribution of the

Latent Roots of § SZ - Several

1

Multiple Population Roots .

The problem of finding the asymptotic expansion of the roots of
S1 S; in case of one extreme multiple population root has been
studied by Li and Pillai [14], [15], we here extend their results to
the case when there are several multiple population roots.

Let Si be independently distributed as Wishart (ni, P, Zi),
. -1 S |
1 =1, 2, and let T, = chi (§1 §2 ), zi = chi (§ EZ ),
i=1,..., P, and let R = diag (rl,..., rp); © > T > ..o>r >0

k1 S

(3.12) l~\-=diag (2)senns Bar fque1reees Lqe1-e s qrm? > Yqan) -

and « > g > .. > 2 > > L. 8

q+m g 2q+m-1 qtl q 1 —
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where p = kl LA km+q. Then the joint distribution of the roots

Tisenes rp, is given by
_n
(3.13) ¢ [ |y + ' A HR| 2 d(H)
oGy - v T T N
where P? n
= n.+n n n —_—
3 12 M. "2 -1 2
cy = rp(z){rp(z)rpcz)rp(g)} |l
nl—p-l
()
IR| (2, -2.)
o~ i<j J
p(p-1) P
and n=n +n,, T (x) =1 I P((X-—{J -1))
1 2’ 'p 4 j=1

d(H) is the invariant measure on the group O(p). Again; as earlier,

by lemma 3.1.1 and as is shown in Chapter One, the integrand in (3.13)

is maximized for all variation of R > 0 when H has the form (3 6).
Agaln we nake a substitution of the form (3. 8) and after lengthy

‘algebra similar in line to that of Li and Pillai [14], [15], we get

for large n, and Ei's and rj's well spaced (i, j = 1,..., P)

n n
m ———
/ 1 + H' A H R| a) = 2% 1 W ”;11 |1 + A R| 2
o(p) -~ i=1 R
1 SIS 1
qQ p 5 m fudl T p 5
I 0 (%%— 2 1 o1 ) (31; )2
ifl jfl ij u=l i=qu j=qu+1 nc ij
1 <)
3 Gys17! 51
1+ 7n ( g § cij + Z z g cij + al(P»Q)
i=1 j=1 u=1 1-—qu j=qu+1
1 <3 :

+ az (P: q, k1’°-03 km)) + ... ] »

~ k-



/4

where cij = (t.., - t, t. rij) T

ji i5j ij ?
£3.14) tij =1, - tj, t, = JLi(1+JLiri)'1 s
rjj =i- rj, i=1,..., q, 3 =1,...,p, i< o,
and cgj i¢ similarly defined as cij but subscripts varying over

the indicaved sotv where it is non-zero,

@) (s @) = {5 ((a-1) (4g+1) + 6(p?-q%)}

and

i=1
ki(p-q-k1 - eeenn - ki)(p—q-k1 - e - k.-1)
: 5
+ , k.k.k, + = k.k.
i<j<p=3 13 2 i<j=2 17

Thus we have the following theorem:
Theorem 3.2. For large degrees of freedom n = n) +n,, an asympto-
tic expansion for the distritution of the roots = > Ty ... >r

> 0 when the population roots satisfy (3.12) is given by

n 1
m - ¥ 4 P 5
29 o, Wl oc l1+arl 2 1 1 @2
. 1 m+l 72 -~ - . . nc, .
i=1 i=1 j=1 ij
i<j
m Gu+1! ) 1
2% 2 1 -1
I I I ( o ) [1 + E( CiJ +
u=1 1=q, J=q,,, nc ij i=1 j=1

i<j




m qu+1 ) o-l
Z g c.. + al(p,q) + az(p,q,kl,..., km)) + ... ],

1)
where the coustants are defined by (3.14).

In the following we give the asymptotic expansions for the roots
of relevent matrices for MANOVA and Canonical correlation cases and for

complex analogue of all these problems. Detailed ground work being

already done in earlier chapters and above we just state the problems

and the corresponding solutions omitting the details.

3.5. Asymptotic Expansion for MANOVA -

Several Multiple Popﬁlation Roots

Let B_ be the between S. P. matrix and- W the within S. P. ma-
trix. Then B(p X p) h;s a non-central Wishart distribution with s
d.f. and matrix of non- centrality parameter A and w has the cen-
tral Wlshart distribution on t d.f. s the co-variancq matrix in each
case being I. Let A=y p' g1 and R = B(W + B)-1 and in terms

~

of the characteristic roots let

(3.15) 8 = diag (rl,..., rp), 1> ry > Toseees > rp >0,
k1 km
(3.16) é = diag (21,..., 2q, 2q+1""’ 2q+1,..., 2q+m""’ £q+m) s
where
© > 21 > e > Eq > 2q+1 > i, > q+m >0.

Then we have the following theorem:




Theorem 3.3. For large t (and hence for large sample size) an
asymptotic expansion for the distribution of the characteristic roots

of R in (3.15), when the parameter matrix A satisfies (3.16) is

given by
1 q .,-1 1
n _ q p m  u+l P 5
2V mow Wl om on @42 o I U
3 =1 1 m+1 i=1 3=1 tci. u=1 j= £,
1 ) J S TR At N ij
i<j
" Que1” .-l
SRS TP AR AR B A SR
i=1 j=1 u=li=q ~ j=q,,,
i<j
t s
* ay(p,asky,..., km)) + ... } exp[tr A R],F, (- 55 35 -~ A R) + 0(e)
where
p? 1 )
5(s-p-1
=% r Hr S @)yl 2
Cp = Pp(2 (s+t)) {Fp(z) Pp(z) Pp(z)} exp[tr e] |8]
1 .
7(t-p-1) .

i>j
and

(d -d. )(2 -2, ) . .
cij = (1+1 d )(1+2 d. ) »1=1,...,q, j=l,..., p, i1 <j

cgj's are similarly defined as cij but the subscripts varying over

-1 .
the indicated set such that cgj is non-zero and D = R il.e,

~ ~
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3.6. Asymptotic Expansion for Canonical Correlation -

Several Multiple Population Roots

Let Xiseees xp, xp+l,..., xp+f, P < f be distributed N(?, F),

where

p f__
I 212 P
)X =
512 Lys £
s ——

Let P2 = diag(pf,..., p;), where pg, i=1,..., p, be the roots of

-1 ' 2 =
Epn e, -0 Inl=o
and let P2 = diag (plz,..., ppz), where piz, i=1,..., P, be the

maximum likelihood estimates. Also let

(3.17)  P? = R = diag TS
2 k1 km
P® = A = diag (2qs..., 2q, zq+1,..., zq+1,. . zq+m,..., zq+m)
where
1>r1> ..... >r >0,1> ¢ >22> ..... > % >2q+1>
..... > 2 +m>0

Then we have the following theorem:
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Theorem 3.4. For large n, an asymptotic expansion of the distribu-
tion of Tiseees rp, (squares of the canonical correlation coeffi-

cients) when population parameters satisfy (3.17) is given by

1
m -=(2n-f)
-1 2 1 -1
c, 29 1w, o |1 - A R| {1+ (‘z‘ Ec..-f
4 j=1 + m+l 1] -~ 2(2n-f) i=1 j=1 ij
i<j
m Yuerd g o1
u=1 ig L cij * al(p,q) * 02(p’q’k1""’ km)) *
"qu J‘qu+1
} P GEn), Leen); Le, A R) + 0ge)
""" 21432 > 3 3t AT ’
where
cij = (tji - titj rij) rij = cji R

>

_ -1 . ] . .
ti = li (1 - rizi) » 1=1,..., q, j=1,..., p: i<j

and cgj is similarly defined as cij but the subscripts vary over

the indicated set such that cgj is non-zero. And

2 .
{ng— r & d 5 r ®1 |1 A|% IRI%(f_p-l) I

c = — — —— - «. =X,

.q P 2 l m q‘u+1-1 P 27 %

2
I 1 0 R | I ——)
B T (2n-£)c},
1 <3

3.7. Complex Analogues of Previous Results

In the following generalization of the above results to the com-
plex case we refer to lemma 3.1.2 and the corresponding results of

theorem 1.1.3 and proceed as above, the details of algebra obtainable




from Li and Pillai [14], [15] with suitable changes. Complex ana-
logues of theorem 3.1 - 3.4 are as follows:

Theorem 3.1.1. For large degrees of freedom n, an asymptotic ex-

Pansion of the distribution of the roots of the covariance matrix

S when the parameter matrix 2-1 has roots li's and satisfy (3.4),

~

is given by

q. . .-1
m .1 9 P - m  ‘u+l p .
D. I o, @ I 0 ) I I ) ( )
B T T A °
J J q, J--qu+1 nc ij
i<j
q ,-1
m “u+l -1
{1+ %—-(‘g E il ) E el )+
n ., . ij . & ij
i=1 j=1 u=1 i=q 3=q, 4
i<j
..... } exp [- g-tr AR] ,
where
plp-1) % . = ny-1 o n-p P 2
Dy = {r ) r_m [z]"V° [r] I (2;-2.)
p p -~ ~ i<j=2 J
and
k.(k,-1) .
S S | - -1 .
ei =7 {rk. (ki)] » i=1,..., m,
i
- . P-1l, p
= P(p-1) -1 = P (557) s
6m+1 = {Pp(p)} , Pp(n) m 2 iflr (n-i+1) ,

cij and cgj are similarly defined as in the corresponding real

case.

S




Theorem 3.2.1. For large degrees of freedom n = n, +n,, an asymp-

totic expansion of the distribution of the roots of Sl 851 in the

complex case when the population roots satisfy the form (3.4) is

given by
m 2 a4 P . m Iy+17? P .
D, T G, 6 I T (—9 n 1 i ( )
T T e T j= nc®
= 1= J u= "qu J—qu+1 1J

where

D, = LE 1

. - - - _p nz-p
7 Tply + m /0, ®) T(n)) Ty} [A]P IR

™ (ri-r.)2 ,
i<j J

(o) . . .
where cij and cij are defined as in the corresponding real case,

B (@3 = 3 {(a-1)(24-1) + 3 (p-q) (p+q-1)} ,

and
3 D
Bz(p)q,kli' » k ) = -2— izl kl (p"q"kl “ eeesse - ki)
p-q - ..... - k.-1)
m m
+3 3 k.k.k +3 7 k.k
i<j<e=3 ] L i<j=2 J

——
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Theorem 3.3.1. For large t

(and hence for large sample size) an

asymptotic expansion of the distribution of the sample roots in the

complex MANUVA case when population rootg satisfy the form (3.16) is

given by
Q-1
o, noe el 0 oR iy §owt P
3 j=1 1 mtl i=1 j=1 tci. u=1 ji= . (t o )
J J W 19,4, tc ij
i<j
1 § f 1 m sl E o1
T (i-l o1 437 ugl iz = ‘15 Pi(Paa) ¢
=1 3= Q  I59,4
i<j
Bz(p,q,kl, » k) + ..., } exp.[tr 6 8] 1Fl(-t;s, -é B) + 0(e) ,
where

= [P(P-1) % ~ - n _ olt-p
Dy = [m Fp(s+8)/T (P) T (s) (] |1 - R

IRI(S-P) n (ri-rj)2 exp [-tr A]
~ i>j -~

and c.

o, . . .
ij° cij s are as defined in corresponding real case,

Theorem 3.4.1. For large n,

an asymptotic expansion for the dis-

tribution of the canonical correlation coefficients when population

coefficients in the complex case satisfy the form (3.17) is given by

m _
-1 -(2n-f) 1 -1
Dy T 8; 0 |1 - AR {1+ ( g E C.. +
Pas t ol 3Cn-£) 421 55 6
i<j
m _qu+1_1 § 0-1
uzl izq L cij + BI(P.Q) + Bz(p,q,kl,..., km)) + o }
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2Pl ((f-n), (f-n); f, A R} + O(e) , where

plu- 1Yy - L., ~ ~ o n f-1, -
) = T Vaa/r - T T A 3
U L O0/E (- f) r, () rp(p,, i {_l |;3!
it .Q. (1i~1%)
-
q p . no eyl P y
] ‘- : . s Lo .y -y
1=} j.-! BN St R L R "dn"':ii
i<

3.8. Remarks

1. As will be scen from the above formulae, they give the already
known results of Anderson [1], Chang [3], James [10}, Li and Pillai
{14], [15] as special cases.

2. Though we have taken the sets with muitiple roots in the popula-
tion parametric matrix at one extreme, actually it does not matter eQen
if they were ctherwise. By pre and post multiplication by suitable
permutation matrix, all multiple roots can be brought.to one extreme
place without affecting our distribution'problem but, of course, care
should be taken in defining cij and cgj coefficients.

3. Since, for all variations of R > O, the appropriate integral in
each case takes the identical maximum when the corresponding ortho-
gonal or unitary matrices take definite special forms, we can take
pérticular transformations like (3.8) or its complex analogue to
approximate the integrand around one such optimum and hence adjust
for all such optima.

4. As will be evident, our technique being a generalization of tech-

niques of earlier authors, the restrictions made by earlier authors



also apply in our case.

5. As said earlier we tacitly avoided the "invariance" technique
used by James and subsequently followed by others. Moreover, our
technique pives their result as a special case and hence gives a dif-

ferent interpretation of their results.




CHAPTER 1V
ASYMPTOTIC FORMULAE FOR THE DISTRIBUTIONS OF SOME

CRITERIA FOR TESTS OF EQUALITY OF COVARIANCE MATRICES

4.1. Introduction

Let m S1 and n 82 be independently distributed W(m, p, 21)

and W(n, p, 22) respectively. Then the asymptotic expansions for

the distribution and percentiles of T =m tr S 82 have been ob-

1
tained in this paper upto terms of order 1/n. It may be noted that

T=n U(p),r where U(p) is the criterion studied by Pillai [16] for
the test of ?1 = §2, and the power of this test against alternatives
of a one-sided nature was discussed by Pillai and Jayachandran [17].
Further, asymptotic expansions for the distribution and percentile

are derived for F!' = (ml/nl) (tr §1 §;l/tr S, §;1), where

m, §1, m, §2, n, S, and n, §4 are independently distributed Wis-

~d

hart matrices with degrees of freedom m, m,, n,, n, respectively
and each of the pairs (Sl’ 52), (SS’ S4) has a common covariance ma-
trix. Also the asymptotic distribution is obtained for the maximum

F' in a special case (see section 4.5). Pillai has suggested F‘m

[18] for test of equality of the common covariance matrices of the

pairs above.

If in F', S1 and 82 are computed from independent subsamples

of the sdame sample and so also are S. and 84, F! is an alternate

3 max

to the U(p) test above.




‘T

4.2. An Asymptotic Expansion for Percentiles of

In this scction we will derive an asymptotic cxpansion for the

-1
1 22 °

By definition earlier, let m S1 and n 82 be distributed

percentiles of T=mtr S, S

-] -1 . 1
W(m, p, B 1) and W(n, p, A7) respectively, where F = Zl and
A-1 =L,. Then it is well known [2] that the statistic y = m tr S1 A

is a linear function of central chi-square variables i.e.

~

y = E -Aj x?(m) where x?(m)'s are independent central chi-square
j:l . :

variables with m d.f. and Aj's, j=1,..., p are the characteristic

roots of U = AB~)

-~

ie. XA's satisfy A - aB| =o0.

Let G(6) = Pr {m tr S A2 8} and replacing A by B we get
R
(4.1) Primtr $, B<20) =6 (0) =[T(] [ e t* a
R "0

where p = mp/2.

Now since for large n we may use 'S2 as an approximation of

A we can use as a first approximation

-~

(4.2) ~ G(®) = Prim tr S,

s;' <2 6} .

Now we may, as suggested in [7], obtain a function h(SZ) in

the elements of 82 such that

-1
G(8) = Prim tr S §2 <2h (§2)}




and then write h(Sz) as a series with the first term being a linear
function of chi-square variables and successive terms of decreasing

order of magnitude. We get

SRS | - -1
(4.3) Prim tr $) €7 < 2n(S,)} = IR Prim tr 8, S,° < 2h(S,) | 8,}

Pr{ds.}
iz

where Pr{d 82} is the probability element of the central Wishart

distribution of 52 and R is the domain of integration of Sz. Now
let
— —
11 ° olp
(4.4) Al - :
O . «.. O
pl PP
L pu—
We expand the integrand in (4.3) around A"1 in Taylor's series
and get -
-1
Prim tr §, S, < h(S,)) | S}

0
| = {gxp [_g. (sij - oij) ao..]} Pr{m tr §

A <2n (A1)
i<j=1 i) - -

1

= {exp [tr (82 - A_l) 3]} Pri{m tr S

A < 2h (A'l)}

1

where

o
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—
8 1 2 1 3
) 3011 2 3012 2 aolp
(4.5) a(p x p) = (1/2 (1+Gi.) 5———9 =
_ - J oij
1 3 P 9
2 90 2 90 o
pl p2 PP
. —
where
Gij =1ifi=j
=0 if i1 #j

Now integrating term by term for sufficiently large n we get [7]
G(0) = [ exp [tr (S, - A™)) 3] Prin tr s;,A<2h @ahy
R - ~ - -1 ~
Pr{d §2}

= € Prim tr S1 A<2h (A-l)}

where

(4.6) @ exp [-tr A} 3] (I'p(n))'1 |A|“/2 f ISZI(H-P'l)/Z
. ~ ¢ A g 1

exp[tr(Sza - (n/2)A Sz) d82

=ep [-tr AT 2] 1= 2/m) A7N| "0V
= exp [-tr A719 - (n/2) 1o 1 - @m) a7t ) )
= exp [-tr 5'13 + (n/2) {tr (2/n) 5'13 .

1/2 tr (2/n A7} 9%+ 0 @3N

=1+ (1/n) tr A 19)% + on 2




=1+ (/n) Lo a3 +o0mY .

rs “tu %st ur
Further, we expand h(Sz) around 6 as
h(S)) =6 + hy(5)) + hy(5)) + ...,

where. hi(S7) is o™ ).

Hence we get

Prim tr S, A < 2h A1 = exp [{h, al .

hy(A™) + ..ID] Pri{m tr S, A < 260)
=1+ {h (A +h,(A™) + ...} D+ ...] Prim tr s, A < 20},

where

4.7) D=

e
<

Hence we get -

Ge) = [1+1/mzo 9., 9 _ + O(n-z)]

o
rs tu st ur

[1+ hl(A-l)D + O(n-z)] Pr{m tr S1 A < 28}
Now equating terms of successive order [7] we have

-1 _
{h1 (é )D+1/nt 9 %u ast aur} Pr{m tr §1 é <28} =0.

Hence to evaluate hl(A'l) we have to find

ast N Prim tr §

A < 26}

1
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Here we use the perturbation technique [8]. Let

(!

J = Prim tr S1

+e)7} < 26}

where e(p x p) is a symmetric matrix sufficiently close to

O(p x p). By Taylor's theorem we get

4.8) J={1+1 O g ars +1/2 ¢ €rs €ty ars atu +

Prim tr S, A <2 6} .

1
Also by definition we get

' (@ » @72 IR P bz 2 R Y

where m S1 =YY', Y(pxm) and R:{Y: m tr Sl(A-lﬂ-:)"1 <28},

Now let TI(p x p) be a non-singular matrix such that
1—r' Br=1(@(mExp) -D
2. 2L - -n
- -1
+ €) I = I(p x p)

for e(p x p) sufficiently close to O(p x p) and Dn =
diag(nl,..., np). This is possible as B and A  are p.d.

Let Y(pxm) =T(pxp) Z (pxm). Then
J=|1- Dnl(m/2) po@m/2 g -trz 2zt -z 2] g,

~

[mtr Z2Z' < 0}
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m
= 11 - D l(m/Z) - (pm)/2 [ exp - [ E (1 -n) _{1 ZijZ]
J:
[E ) 255
i=1 j=1
P Mt
I n dz,
i=1 j=1 13
b b b
= ’(Pm)/z l~ Pnl(m/z) z (nlll nllm nppl nppm)
byyse-es b =0
1 2
LD B CD IR () [ exp - 151 le 243
[§ IENCPYY
i=1 j=1
k P m 2b.. p m
| x n z..Y9 " n az.
i=1 j=1 41 j=1 I
b, b
= o (Pm)/2 |1 | (m/2) Z (n, o nppm)
byyseees B0
P(by, + 1/2) ... F(b, + 1/2)
(b, D T (G
m
8 R bjj + (mp)/2-1
1 -t i=1 j=1 _
X 3 [ et t dt
P(zlJ bij + 2) 0
(1/2) .. (b,. - 1/2) b,. b.
=|I-D|(m/2)2 n [ ® H nlJEIJG(e)]
- i 10

= lr-p 1™/ 1. B2 ¢ g

|1 -, E| "2

= |‘T|—) SN C)




where p = mp/2 and E is an operator such that EGp(e) = Gp+1(0).

Now let E = A+ 1. Then

e
‘

b hI/II ) ?nl =|I "0 - D AI/II - Dl

= |1 -7} @l &)l - I] a|

~ -~

i
T
i

by (say). | ‘

‘Hence

J=|1-xa"®/2) G, (0

~

Exp [(-m/2) log [I - X All G, (8 .

Now if B A=14+F such that lch, (M| <1,i=1,...,p, then

for e(p x p) sufficiently close to O(p x p) we get

leh, ()] <1,i=1,...,p, and

J=[1+ (m/2) (tx X) &+ {@?/8) (tr X)% + (m/4) (tr X2)} a2

« {n/6) tr X +@%/8) tr X + (03/48) (tr )5} 43 4+ ...] G, (6)

Now using Taylor's expansion for A-1 + £ we get

x=Blats ol ropl @l N B
- ~ ~ -~ -~ -~ - rs _.Ts -~
=l eze aahylaog
~ -~ rs . .rs ~ ~
o -1 -1 -1
=B (r-z s A Ars * 2 €rs ftu (é érs)(é A '7)6 I

(B'1 A-1)-zc¢

-~

-1 -1
rs BT A (A A) +

-1 -1 -1
: ; ers €tu (9 é) (ers 5) (étu A)....

~




where A;: is the p x p matrix obtained by operating 3. on Al
. th 1 . .
1.e. it has its (i, j) element as > (Gri st + Gsi Grj). Now using
the notations

tr (A2 a) = (rs)

rs o
tr (a71 Ay @l = (rs|tu)
~TL . ~tu o
tr P (A1 a) @l = (F|rs|tu)
~ ers 00 Vg 2 o d

-1 -1 -1
TN G Al

(I + Flrsltu)

tr F = (F)

tr 52 = (flf) | etc.
we get
49 = [1+ /2 E) 8+ (@¥/8)(F)? + (n/4) (E/F)} a2

* L/ FIFIF) + ?/8) (F) (FIF) + m>/48) (£)%) 2% 4 ...
+Ie {-(mIZJ(E + flrs) A+ ( (-m/2)(§|f + §|rs)
-m%nqng+ym))ﬁ+(-mmuyﬂ}+ym)

+ (mz/é) {(-2(F)(F[1 + Flxs) - (F|F) (I + Flrs)}

- 3 m/48 (13)2 (I+Flrs) ) 8%+ ... ...,
* e e, {@/2)(1 + Flrs|tw) 8+ ( (m/a)

{(X + Flrs|I + F|tu)

+

2 (F|1 + Flrs|tw)} + m®/8) (1 + Flrs) (1 + F|tw)

o+

2 (F)(1 + Flrs|tw) D 4% + ((0/6) (3(F|1 + Flrs|1 + F|tu)

+

3 (FIFIT + Flrs|tw)} + °/8) ((F[F)(1 + Flrs|tu)
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+ (F)(I + Flrs|I + Fltu) + 2 (I + Fltu) (F1 + Flrs) + 2 (F)
(FIT + Flrs|tu)} + @%/48) (3 (F)2 (1 + Flrs|tu)
. 3
+3 (F)O + Flrs)(I + Fltw)}) 4° + ...
ceen 8) .
] Gp( )
(o Ar -1 -t _p-1
Also we notie uup(ﬂ) = -E gp(O) where gp(e) = [T(P)] e " t .

Comparing the two expressions for J in (4.8) and (4.9) and equating

coefficients of ¢ we get

€
tu rs

~1 -
hy(A™) = 1/4n ] Ost Oyr [4m (I + flrsltu)E
r,s,t,u

+

(2m {(I+Flrs|I + Fltu) + 2 (F|I + Flrs|tu)}

+

m2 {(I + Flrs) (T + Fltu) + 2 (F)(I + F]rsltu)}) E(E-1)

+

(4n {(F|I + Flrs|I + Fltu) + (FIF|I + F|rs|tu)}

+

n® {(F|F)(I + Flrs|tu) + (F)(I + Flrs|1 + F|tu)

+

2 (F|I + Flrs)(I + Fltu) + 2 (F) (F|I + Flrs|tu)}

+

(n°/2) {(E)? (1 + Flrs|tu) + (F)(I + F|rs)

(I+Fltw)) B(E° - 2E+1) + ... ...] g,(®) [6'(®)]! .

The result as it stands is not convenient for practical use. In

order to make some simplification we assume that terms involving

fij fkl are negligible, where fij in the (i,j) element of f.

Also we note

1.
-Z 9%¢ Sur (rs|tu) = sp (p+1),
r,s,t,u

-r T T e i iy s e o




I o (xs) =p,
T,s

}

r,s,t,u

O ¢ Oyr (¥S)(tu) =p ,

Lo 0y (Flrs)(tu) = (F,
T,s,t,u

and ) Ot Tur (flrsltu) = (F)(p + 1)/2 .
r,s,t,u

Hence under the above assumptions we get
h, Yy = 1/4n [4m (@ (p + 1)/2 + (p + 1) (F)/2) E

*@mip (p+1)/2+ 4 (B + 1)/2) + n? (2 F)y+ ®)ph+1

PPIECE -1« (n (B) @+ 1/2 402 {(F) p (p+ 1)/2

| .
FZEN @D O E - 28] g6 [6 (@)

Recalling that (mp/2) = p and putting 2 6 = y and noting

ol .
plo + D...(p+1-1) &®

i
E 8,(8)
. We get
(420 T=mtrs ;' =y+1/2n [20p + 1)1 + (F)/p)y
P DA B/ Y GFm -1+ /p)

CE+®Pre+rD+py Gm- @@ @)/

Y]
+m (B + 1)/2 + 2(R)/p) + (m2/2)(€)) Y Caprayopea)

Tyt D) g,(0) [6'(®] 7 + 0 (%

Hence we have the following theorem.

L= PR RO




Theorem 4.1, Let mSl and nS2 be independently distributed

W(m, p, B-l). W(n, p, A-l) respectively and let

i) 87} A= T+ ¥ and lchi Uj)l <1l,i=1,...,p

-~

(ii) terms involving fij fkl be negligible, where fij is the

(i,j) element of F.

~

Then an asymptotic expansion for the percentile of T = g tr S1 Sél

is given by (4.10).

Here as defined earlier

(4.11) | y=§ y x?(m)
| j=1

and xg(m)'s are independent central chi-square variables with m d.f.

and Aj's are ch. roots of U = A B_l.

~

Special case.

As a check we put F(p x p)

O(p x p). Then
' 2
y =x (mp)
is a central chi square variable with m pd.f. and G(8) = Gp(e).

Hence we get

2

2 2 2 X
T=X"+1/2n [2(p + 1) X° + p+1)X (mp+2 -1)

. 2 - -
mp)/p X* Gz -D1 g,(0) g, 17} + o)

+

x2 4 1/2n [((p+m+l)/(mp+2))x4 + (p-m+1)X2] + O(n-z)

where X2'= Xz(mp). This agrees with Ito's result [7} up to the indi-

cated order.
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4.3. An Asymptotic Expansion for the c.d.f, of

we write
- -1 :
Prim tr s S," <28} = fR Prim tr s, S, < 2e|§2}Pr{d $,)
= BPr{mtrSIAize} .
where

8- -2
1 f 1/2 ¢ g %y ast aur + 0 (n )

we get

Prim tr §, $7! < 2 6} = prim tr S; A<26)

-2
+1/2 ¢ %s %eu ast aur Pr{m tr §1 6 228} +0m™9

Now using the value of ast aur Pr{m tr S1 A <206} as before,

we get

Prim tr 5, 5>! < 2 6} = go) - 1/n [hy ™)) 6' (o) + o (%)
and under the assumptions (i) and (ii) of theorem 4.1,

(4.12) Primtrs; 53! < 26) = 6oy - 1/an [4 @+ D+ () %

TEP D4 ) w2 (F) + () p (p + 1) + p})

9(:]:+2 -1) + IZ’ (2 (f)(p +1) + (f) P (p+ 1)/2




2
com (B ¢ nlp (B)/2) © (Gegiemay - ey * 1) ,(®)

+ 0(n" %)

Hence we have the following theorem.
Theorem 4.2. Under the assumptions (i) and (ii) of theorem 1, the

astptotic expansion for the c.d.f. of T = m tr S1 Sél is given by

(4.12).

Special case.

Here again as a check we put F(p x p) = O(p x p) and we get

-1

Pr{m tr §, S,” <2 0}

. =6,(0) - 1/2n [(p-wvD) + 2 (prlem)/ (mpr2) 071 £,(0) + 0 (™)

and this agrees with Ito's result [7].

4.4. Asymptotic Expansion for the c.d.f. and Percentiles of

_ -1 -1
F' = (mltr §1 §4 )/(n1 tr §3 §2 )

Let m1§1, m2§2, n1§3, n2§4 be distributed independently
W(m,, p, 6_1), W(m,, p, é_l), W(n,, p, 9_1), W(n,, p, g'l) respec-

tively where Sl’ Sz, SS’ S4 are four covariance matrices. Then

(4.13) Pr{F’

(m1 tr §1 l})/(n1 tr §3 é) <68} =1L (8)

where L(8) is th: distribution of ratio of two independent quadra-

tic forms. Now when A = B we get

L(e) = G (8, pla pz)




(nle/ml) is the tabled F value with m,p and n,p d.f. for a

given probability and

(4.14) (my p/2) = py, (0 p/2) = o, -

Also
0 .
G(B, Py, Py) = IO B(t, Py, Py) dt

where

1 P! Pyte
(4.15) B(t, pys py) = [B (o), o1 e ! /sty P

As in the earlier part, our problem here is to find a function
h(Sz, S4, 8) = h (say) such that

-1

, <h}=L(8)

1
Prim, tr S, §,"/n; tr 55 §

As before we now write h as a series with the first term as

the ratio of two independent quadratic forms and successive terms of

decreasing order of magnitude i.e. we put

(4.16) h=206=+ h1 + h2 + ieenn
where
_ _ -2 .
(4.17) hi =0 (m ) and m = min (n2, m2) .

Proceeding as in the first part we get




S e

Pr{m1 tr §1

-1
§4 /n1 tr S, S,” < h}

-1

51 54 .
< < hls,, S,} Prid §,} Pr {d S)}

ny tr S, S DA - -

=3 -2

where Pr{d Sz} and Pr{d 84} represent the probability element of

§2 and §4 respect

gration. Now

m, tr §
Pr{ 1 1

ively and R1 is the appropriate range of inte-

5-1

ny tr S,

{exp [tr(S,

m, tr S
Pr{nl tr S1
1 -3
where A} is given
and
a(1)

Hence we get

= (1/2 (1 + Gij)

4 _
T <hlS,, 83 =

%2

- E'l) 8(1)]}'{exp [tr(s, - 6-1) 3(2)]}

Apl . App
L

(/2 (1 + Gij)




Le) = [ fexp [tr (5, - B71) 3]} fexp [tr (s, - A7) 2]
R1
motr3 8 -1 -1
Pr{nl o 53 X §_h(§ , § )} Pr{d §4) Pr{d §2}
P 1 -1
=l e @, B
1 3.
where
-n,/2
® = {exp [-tr B! 8(1)] | 1 - (ﬁza a (1) | 2 }
- - - , -
-m,/2
{exp [-tr Al 3(2)] |1 - (2/m,) 2 () | 2 }.

Hence we get

(4.18) ®=1+ I/n, tr (87" 2152+ 1/m, tr (a7 2212 |, om™Y
- n @) (2),(2)
=1+ 1/“2 z Ars Atu ast 8ur * l/mz Z.Urs 0tu ast'aur
+om?) ,

where
1) _ 9 (2) _ 3

s = 1/2 (1 + 6rs) FY N s = 1/2 (1 + Grs) 90
s TS
Hence
- 1), (D (2).(2)
L(e) = {1+ 1/“2 L Arsktuast aur * 1/m2 z Orsctuast aur

+ O(m_z)}




m, tr S

2 2 -3 1 ~1
[1+lllD+{hZD+1/2th}+0(m )]Pr{W

>l
| A
[ae]
Nyt

where D 1is dcfined in (4.7). Now equating terms of successive

orders [19], [20], we have

1) () (2) ,(2)
(4.19) {h1 D + 1/n2 z Ars ktu ast aur + 1/m2 Lo Oy, ast aur }

m1 tr S1 B
Pr{———=——F <06} =0
oy tr §3 Q
etc. Hence to find
m, tr S, B
, 1 (M) 1 ~1 ~
{22 My %t Qur !} Pr{—————nl T S, A < 8}
m, tr S, B
) .(2) 1 b
and {To o, 9 3.} Pr{—————-——--nl tr 5, A <8} .

We again apply the perturbation technique as in James [8}. Let

my tr§, (B 4 e(1)y-1
= < 8}

a1 (2),-1 —
P tr Sy (AT + e )

where 5(1) (p x p), €(2) (p x p) are symmetric matrices correspond-

-~ -~

ing to small increments eg;) and egg)

As before by Taylor's theorem applied on Bl + e ana Al

-~

(2)

, Wwe get

m

-~




(4.20) J, =[1+ZLc¢

1
4+ X e(l)

TS

TS

m ,m,
s rs

(2) ,(2)
Ty’ s

()

a(l) 3(2) + 1/2 {2 C(l) E(l) 8(1) 3(1)
tu TS

tu TS tu TS tu

(D) 4@ 4@,

tu TS

We can alsc find Jl as follows

|A\m1/2 lBln1/2
- = - t '
Iy = Gy o el @ X{ + B X3 X)) dX; dXq
171 R!
(2m) 1
where
= ' = '
X, (p x m), X5 (@ xmy)s 5y = Xy X303 Xs X3
and
ml tr §1 (B-l + e(l))'l
R': [X,, X;: — - — < 8] .
1 -1 -3 n, tr S, (A 1, e(z)) 1
1 ~3 . -
‘Now let G(p x p) and H(p x p) be nonsingular matrices such
that

172 G a7t +
1/2 G' B G

-1
1/2 H' (B™" +

1/2 H'A H

- o~ o~

SRR RS

= I(p x pP) - 9(2)
M- 10 x9)

-1 xp) - 0V

R e ——



where n®) = aiag (0,..., ()

H

“(2) diag (ngz))'-" n£2))

This is possible as At B! are p.d. and e(l), and e

-~ -~ ~ -~

are sufficiently close to O(p x p).

Now let

(7
t
]
(7

Then we have

3 =11 - O P O L T W m)p/2
(1) (2) ,

exp[-tr {(I - n Z,Z) + (1 - Z,Z'}) d 2,42
IR' pl (-0 zyzp s 0 -n) 2525142, d 2y

1

where
oM ELEh
Ry + [20s 250 gz, zp 201

Now following Siotani [19], [20] we get

|I _ g(l) E}_‘ -ml/z IE _ n(Z) Ezl -n1/2

J, ={ } { } G (8, pys Py)
1 Ty - n®| 1° P2

where

a _ b _.
El f(pl, pz) = f(pl + a, pz) and Ez_f(pl’ p2) - f(pl’ pz + b)

for any positive integer a and b and function f(pl, pz).
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Now as in the previous sections we get

) 1 '

TR AT EE N RN
and l1 - n(?) E,|/11 - =1 -y A, |
where X = a7t (B-1 + (-:(1))'1 -Tand Y = gt (A"1 + 6(2))—1 - 1.

Hence
—m1/2 —n1/2

Jl = {lz = )E All ‘E - ! Azl } G(o, pl’pz) .
Now if B'_1 A=1+F and A-1 B=14+E such that lchi(F)|< 1,
|chi(E)| <1, i=1,..., p, then for e(l) and e(z) sufficiently

~ -~

close to O(p x p) we get ]chi(X)\ <1, |chi(Y)| <1,i=1,..., P

Hence
(4.21) J, =[1+m /2(tr X)a, + {m /4 tr(xz) + m2/8(tr X)z} A2 + ..]
: 1 1 AR | 1 . 1 - 1 o

x [1 +ny/2(tx V)b, + {n)/4 tr(!z) + ni/B(tr !)2} ag + ]

G(6, Py> 92) .

Also
xeals-n-rePalne; -
- AR rs o 2ltrs .
e o) W mag B D -
mi  ve@la-D el @ @0

(2)

Is

(2) -1 -1 -1
re €tu (9 é) (érs é) (étu 5) ot




Now using similar notations as before i.e.

SRR

o 7 DO 0 = sl
tr (B’1 B) = [rs]
IS .
er (8} BY(BDY B) = [rs|tu]
IS - ~tu o
tr (A'1 B) = (I + E)
tr (B'1 A) = [I + F] etc.

; s o W @ @ M ( )
and equating coefficients of €s Ctu ’ € Ftu ’ €rs in (4.20)

and (4.21) with the assumption that terms involving eij €1’ eij fkl’

fij fkl are negligible, where eij and fij are (i,j) elements of E

and F respectively. We get

tr S
(1) (D) my tr $; B )
(4.22) 8 7 3. ° Pr {nl = 53 < 0} _

= [1+ (n1/2)(€) Az][ml(z + ?\rsltu) A+ ((m,/2) (I + §|rs

|1 + Eltu) + 2 (E|I + Elrsltu)} + (m /4) (1 + E\rs)
(1+ Eltu) +2 (B)(L + Elrsltu)}) Al] G(8, Py» Po) -

mtr

(4.23) a(z) a(z) pr{{

{1+ y/2) (B) 8,1 [T+ Flsjtul 8, + (()/2)

{[1 + Flrs|I + Fltu] + 2 [f]l * §|r5|tu]} + (h§/4) {[1 + f\rs]




(1+ Fleu] + 2 ()L + Flas|ew)) £3) GCo, 0y, 0)

™

(1) .(2)
(4.24) o " 2, Pr {nl

tr §1
T < 8}

3

| 1

=1/2 {m; ny I+ glrs) (1 + gltu] by 8,) G, by, py)

Now note that

. 6 ‘
Al G(e» pl’ pz) - B; B(e; pl» pz) ’

=0
Az G(G, pl’ pz) = pz B(e, pl, pz) )
(p, - 1) Py + P,y
2 1 2 ]
(p1(1+p1) 6 - 91(1+pi) 1+e) B(e: pl’ pz) ’

2
Al G(eJ p1’ pz) - =

Py ¥ P2 g

2 _ 8\ o
AZ G(e: 919 92) - (02(1+p7) 1+0 - B;a B(e, pl’ 92) »

Ay B, GL8, 0y, py) = B, 8y G(8, pq> py) =

Py*P
0 128 -
750 B8, s ) s

Py P1 P2

2 2 '
AI AZ G(ea pl’ pz) - Az Al G(e, pl’ pz) Az Al Az G(e’ pl’ pz)

i} (pl+pz)(pl+pz+l) 92 , (pl+pz) g2 - (py + CPY P
Py Py (v 1) (1+8) p, P, (1+6) p,(1+p,) 140

-

0
+ 5;) B(8, pys Py)
and

2 2
Az Al G(e, p1’ pz) Al Az G(e’ pl’ pz) - AIAZAI G(e) plx pz)




(pyte,*1) (py*0)) g2 (01407) o (py*Py) g2
Py P2 1+6 ‘p1(1+pl) 148

T (92 Py T+ e))  (140)2

o .
+ :;) P‘(ea p1) pz) .

Hence we have from (4.19)

. -1 20
(4.25) - hl(A , B7) D[L(®)] = - {[(m1/2n2)(1 + E) np
- - ~ a0 my

- (n1/2m2)({ + E)(P + 1) %%53 + [(ml/znz)(P(P + 1)/2

v 2 (B)(p + 1) + m/any(p + 2 (B) + B)p (0 + 1]

[(“1p -2) 3 (M) P g
(2 + mlp) m,p ml(mlp + 2)p 1+86

1 -1 (n1/2m2)-

Gl + /2 +2 B+ D)+ @i/m)E +2 @ + () p+i)]

(m +1,)p
171 20 206
[nl(nlp+2)p 1+6 nlp} - [(ng m1/4n2 ) (f) p+1)

(m + n.)p
20 1 1 20 .
+ (m, n1/4mé) (E) (p + V)] [mlp - 2 1+67
mnP

+ [(ay/2n,) (F) (myp (p* 1)/4 + mi p/M]

mp+n P2 +n)p 52 )P 26°
ml(z +my p)1+86

[ m, n, (2 +m, p) 2 (1 + 6)2
1M 1 P) P

(m, + n,) p

1 "M P e 20

- 510 ' m p} - [(my /2m) (E) (my P(p * 1)/4
mmP 1

mp+n p+2m +n)P ;42

2
+ n] p/A1I
! mom, (2+m PP Q+ )’

-



m +n) Pyl | (my + 7)) P 29 20
+ 1}
1+6 n1(2 + nlp) pl+6 mnp

m, n 2
M P

B(B pln pz) .
. -1 -1 .
Using hl(A , B7) 1n (4.25) and the

m1 tr S

B
— tr S, A —
n, tr §3 § 1 ~3

Pr {

1

where © is defined in (4.18) we get

-1

m, tr S, S ‘
(4.26) Pr { "1 74 <6} = L(O) - h (A7, 1) p[L(e)] + 0@ )

tr S

n 3 52

where L(8) is defined in (4.13) and D in (4.7).

Also noting the expansion h=2©06+ h1 + h2 F oL as in (4.16)

we have

-1 -1 -1 -1 -2
' = =
(4.27) F (m1 tr ?1 §4 )/(n1 tr §3 §2 ) 0+ hl(é ,? ) + O(m ),

where © is the percentile corresponding to the ratio of two quadra-

tic forms. Thus we have the following theorem.

Theorem 4.3. Let §1, §2, §3, §4 be covariance matrices having
W(m,, P» 5—1), W(m,, P, é'l), W(n,, P, 9_1), W(n,, P 9_1) respec-
tively. Then the asymptotic expansions for the c.d.f. and the per-

centile of the statistic
F' = (m, tr Sy S;)/(a, tr'S s-1y
1 "1 .4 1 3 22

are given by (4.26) and (4.27) respectively.




Special cases.

If A = B and m, = 0, = n then noting

2
. m. tr S, A m. tr S, A
0 1) pp (2 1= gy = 23 9@ pp (2 1 - < p)
T tu n. tr S, A — rs tu n S, A
1 <3 - 1 -3
tr S, A
_ L) (@) b W U
=25 2w Pr {n tr S, A < 8}, we get
1 ~3 ~
m1 tr § A 2
ars Btu Pr {'ﬁ_—t_r_s—_l_\_ < 8} = 1/2 [(rsltu) {m1(2 Al + Al)

1 23 -

+n (2 By Ag) + 1/2 (rs) (tw) () A + 7y A2)2] G(6, py» 05)

which agrees with Siotani's result [19], [20].

4.5. Distribution of F' max. (Special Case)

Denoting

F! = max (
max

n. tr S, S.° m, tr S S,

we have then the following theorem.

Theorem 4.4. - The asymptotic expansicn for the distribution of F&ax

i.e. Pr{F' max < 6} is given by

0if 6 <1

Pr{F' max < 6}

H(ml, ny, 8) - H(ml, n, 1)

+

-2
H(nl, m,, ) - H(nl, m, 1) + O(m 7)

if & > 1, where H(m , n, 8) = L(6) - hl(A‘l, 871y D [L(6)].




Proof. This directly follows from the following two relations.
a) 1 <F' max < =,
and

-1 -1
' -
b) Pr { F' max <8} =Pr { 1< (m trS, S5, /n, tr Sg ;) < 0}
. . . -1 -1
+Pril < (ny tr §3 %2 /m1 tr §1 §4 ) < 8} where 6 > 1.

Now we apply the previous results.




CHAPTER V

SUMMARY AND CONCLUSION

In this thesis, a general theory has been developed first for
obtaining asymptotic expansions for distributions of sample char-
acteristic roots of matrices from real as well as complex multi-
variate normal populations. The general theory has been discussed
.in the light of a maximization.problem, namely, that of an inte-
gral over the group of orthogonal (unitary) matrices. The maxi-
mizing sub-group of the group of orthogonal (unitary) matrices has
been obtained for a class of symmetric (Hermitian) matrix-valued
functions as integrand. All this work has been presented in the
first chapter. i

Next, the above theory has been epplied in Chapters II and III,
to obtain asymptotic expansions of the distributions of the charac-
teristic roots arising in a) MANOVA, b) Canonical correlation and
tests concerning covariance matrices either in c) one-sample, or d)
two-sample cases. In each of the above situations, our technique
haé been to find an asymptotic expansion of an integral involved in
each problem by using Laplace's method. The integrand in each case
consisted of a hypergeometric function with matrix arguments which
had to be integrated over the group of orthogonal (unitary) matrices

of certain fixed order and with respect to invariant Haar measure




defined on it. Using results in the first chapter we have obtained
the sub-group of the whole group fo¥ which the integrand attains

its unique maximue under different assumptions regarding the para-
meter (populaiion characteristic root) matrix and with mild restric-
tion on the coefficients of the hypergeometric functions involved.
The most generzl results obtained have been under the assumption of
several multiple population roots. For large sample size, the inte-
grand is localized around its unique optimum value énd by Laplace's
method as generalized by L.C. Hsu, the integral has been evaluated
around the optimizing set giving terms in decreasing order of mono-
tonic functions of sample sizeﬁ.

In Chapter IV we have presented asymptotic formulae for the
c.d.f. and percentile of the max-U ratio criterion suggested by
Pillai for the test of equality of several covariance matrices but
studied here only for the two-sample case. Perturbation technique
has been used to obtain these expansions. -

In summary, the first threechapters generalize the methods of
Anderson, Chang, James, Li and Pillai for the study of one or two co-
variance matrices to the case of MANdVA and canonical correlation.
Though considerable simplification has been obtained by ordering
terms, yet the expansions remain complicated enough. This is mainly
because of thé nature of the hypergeometric functions involved. In.
some cases at least, the functions involved reduce to polynomials and
simplify the situation further. But the basic point to be made here
is that this gives an approach to handle a hypergeometric function

of the stated form satisfying somre restrictions, and as such can be

T TP —




used in similar cases. The asymptotic expansions derived for MANOVA
and Canonical correlation still involve hypergeometric functions
and furthcr rescarch is needed to bring them, if possible, in forms
similar to tlicse of the covariance matrices.

The 4th chapter is just the first step in solving a more general
problem. Much more work has to be done in extending theorem 4.4 to
more general case i.e. increasing the humber of populations. The
mutual dependence of different U-ratios is the main difficulty. Fur-

ther work on this line could be carried out.
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