Optimal and Admissible Designs for
Polynomial Monospline Regression*
by

Norman T. Bruvold

Department of Statistics
Division of Mathematical Science
Mimeograph Series #254

May 14, 1971

*This research was supported in part by the National Science Foundation

Grant GP 20306 and the Office of Naval Research Contract NO014-67-A-
0226-0014 at Purdue University. Reproduction is permitted in whole or
in part for any purposes of the United States Government.

a




Abstract - Optimal and Admissible

Designs for Polynomial Monospline Regression

by Norman T. Bruvold

n i ki n-j
We consider regression of the form 'Z- a;x + 11 by (x-§;),
i=0 i=1 J=li

where n-lzkizﬂizp, a<£1<...<€h<b and xe[a,b]. We define admissibility
in terms of a positive semi-definite difference of information matrices.
Some sufficient conditions for admissibility on the spectrum of a de-
sign is given.

When £1=1, h=1 and gl lies in the center of the interval [a,b],

“optimal experimental designs for the individual regression coeffiéients
are given. Some of the optimal designs afe not unique but are convex
combinations of two probability meésures. Three distinct bases are
considered.

Extrapolation and minimax extrapolation designs are given for

the centered knot situation along with some other special cases.
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CHAPTER I

INTRODUCTION

1.1. Introduction to Admissible and Optimal Designs.

Let f(x) = (fo(x), fl(x),...,fn(x)) denote a vector of n+l

linearly independent continuous functions on a compact space Z . The
points of X are referred to as the possible levels of feasible experi-
ments. For each level x ¢ % some experiment can be performed whose

outcome is a random variable Y(x). We assume that Y(x) has a mean of

the expliéit form

n
1.1.1. EY(X) = ) 6.f.(x)
: j=o 373

. 2 . . .
and a common variance ¢~ independent of x which is unknown. In most
instances we will assume for convenience that the variance is normal-

ized = 1. The functions fo(x),...,fn(x) are called the regression

functions and are assumed known to the experimenter. The parameters

0 ,On are unknown. The problem concerned with here is the estima-

0
tion of functions of the vector 8 = (90,...,9nj by means of a finite
. N
number N of uneorrelated observations {Y(xi)}
' i=1

An experimental design is a probability measure p concentrating

,xr where the values

mass Pys---sP, on the points Xpsees



P; N = n, i=1,2,...,r

~ are integers. The associated experiment involves taking n, uncorrela-
ted observations of the random variable Y(xi), i=1,2,...,r. An

experimental design determines the points at which the experiment

takes place, namely the X5 i=1,...,r and the number n, of experi-
ments at each level X, - Given a criterion of what a good estimate of a

certain h(0) is, the problem confronting the experimenter is to choose

the design possessing certain optimality properties.

Definition 1.1.1. Let u be an arbitrary probability measure on

the Borel sets 8 of Z where § includes all one point sets. M(u), the

n

information matrix of u, is defined as ||mij(u)||1 j
3

=0’ where

1.1.2. mij(“) =§:f fi(x)fj(x)u(dx).

The information matrix plays an important role in the following
chapters in determining the accuracy of estimates to various h(0).

If the unknown parameter vector 8 is estimated by the method of

least squares thus securing a best linear unbiased estimate, say O,

~

then the covariance matrix of @ is given by

~ ~ ' 2
1.1.3. E@-0)(6-8) = &M '

where p assigns mass pi=ni/N to the points xi, i=1,2,...,r.

If the matrix M-l(u) is "small" according to some criterion, or

M(u) is '"large', then roughly speaking 6 is close to 8. Most criteria



L]

for discerning optimality of an experimental design are based on maxi-

mizing some appropriate functional of the matrix M(n).

Definition 1.1.2. A linear.form

1.1.4 (c,0) =
i

C.90.
i7i

I~

0

is called estimable with respect to u if ¢ = (¢,,...,c_) is contained
. 0 n

in the range of the matrix M(u).
A criterion for optimality, formalized and interpreted in Kiefer
(1959), is as follows:
If ¢ is estimable with respect to u let
(€D’

1.1.5. V(c,u) = sup — —
(d,M(n)d)

where the sup is taken over the set of vectors d such that the denomi-
nator is noﬁ—zero. If ¢ is not estimable with respect to u we define
V(c,u) = ». If u is an experimental design and if we take n uncorrela-
ted observations according to u then the variance of the best lineér'

unbiased estimate of (c,8) is given by

0'2 g
n_ V(C:U) .

With this in mind we are able to define the concepts of admissi-

bility and optimality as used in this thesis.

1.2. Introduction to Admissible Designs.

. ] 1
If we have an experimental design u such that M(pg )-M(u) is non-

negative definite it follows that if C is estimable with respect to u
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p— !
.. then ¢ is also estimable with respect to u . Karlin and Studden

(1966 b, page 788). Since the set of vectors d for which the denomi-

— t )
nator of V(c,u ) is non-zero, say Du" is contained in Du we have that

—_ ! —
V(c,u ) is at least smaller than V(c,p). With this in mind we may
1
think of u as giving a better best variance than u for linear unbiased

estimates of (c,8). This motivates the definition of admissibility.

Definition 1.2.1. Let u and v be probability measures on X%. We

say u > v or M(p) > M(v) if the matrix M(u)-M(v) is non-negative defi-
nite and unequal to the zero matrix.

Definition 1.2.2. A probability measure or design u is said to be

admissible if there is no design v such that v > u. Otherwise u is in-
admissible.

Because inadmissible designs give at least larger variances fhan
their dominating designs and because every inadmissible design is domi-
nated by an admissible design, Van Arman (1968), we are interested in

the class of admissible designs.

Definition 1.2.3. Let p be a probability measure on X concentra-

ted on {xl,...,xr} such that

u(x) >0 for.x=xi i=1,...,r

=0 otherwise

1]
P

T
and .Z u(xi)
i=1

then the set {xl,...,xr} is called the spectrum of u (also the suppoft

of u) and is written as S(u). When we mention that u is supported by



_ the full set A we mean that S(p) = A.

The concept of admissibility of a design is essentially a property

- of the spectrum. In other words if v is admissible and u is an experi-

mental désign such that S(u) € S(v) then u is admissible. Elfving
(1959). It is clear from this that if two experimental designs have
the same spectrum they are either both admissible or both inadmissible.
Thds we may classify admissible or inadmissible designs by prdperties

of their spectra.

When f(x) = (l,x,...,xn) the class of admissible designs for

% = [a,b] have been completely characterized by Kiefer (1959). His

results show that a spectrum in [a,b] is admissible if it contains no

more than n-1 points on the open interval (a,b).

When we consider the interval [a,b] and choose h fixed points or

“"knots" &£.,..., such that a < £, < § <. .< <b , and the vector of
1 1 < & %

regression functions f£(x) is in the following form

l,x,...,xp
1.2.1. :
n—ki n-k.+1 n
(X—Ei)"' > (x_gi)"' ’...’(x-gi)‘l' 1= 1,2,...,h
where
0 X < g
m
1.2.2. (x-F,)+ = ,m=1,2,... ;
m
(x-8) ,x>§&

the class of admissible designs have been completely characterized by

Studden and Van Arman'(1970). Their results show that a design u is



) admissible if and only if the spectrum of n, S(p), has less than or

equal to

i+ n+k . +1
1.2.3. n-1+ y __32__

j=i+l

points on the open interval (gi,g 1) for i = 0,1,...,h-2;

i+2+
2=0,1,;..,h; (Here we let 50=a, €n+1=b and [x] denotes the greatest

integer in x.) A polynomial in the component functions of f(x) (1.2.1)

is called a polynomial spline function of degree n. Spline functions

have received considerable attention from mathematicians working in

numerical analysis, interpolation and approximation theory; (See
Karlin (1968),Rice (1969), and Shoenberg (1964), for further refer-

ences.)

1.3. Introduction to Optimality

n
When estimating the linear form (c,8) where ci > 0 we are
i=1 '
interested in those designs that minimize the variance of the best

linear unbiased estimate of (c,0).

Definition 1.3.1. A probability measure or design p is said to be

optimal with respect to the estimation of (c,0) if u minimizes V(<,u).
We will also refer to the above designs as c-optimal.

If c=f(x) for some fixed value of xe% we shall write V(x,u) for
V(c,u). In the following discussions we will be mainly concerned with

the determination of Eﬁ—optimal designs where

Ep = (0,...,0,1,0,...,0)
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with a 1 only in the (p+1l)st component. If we consider polynomial re-
gression where

1.3.1 FX) = (1,%,...,x0) for xe [-1,1]

the cn—optimal design was originally given in Kiefer and Wolfowitz
(1959) while the remaining Eé-optimal designs are given in Studden
(1968). If n-p is even the unique cp-optimal design is supported by

the full set of Tchebycheff points s_.,s PsS associated with the

0°51°°"

functions (1.3.1). If n-p is odd the unique Eﬁ-optimal design is sup-

ported by the full set of Tchebycheff points t ,t_ ; associated

0°t17e 0 tn

n-l). Hoel and Levine (1964) showed that

with the functions (1,x,...,X

if f(x) is as in (1.3.1) then the c-optimal design for E:‘f‘(xo) with

lx »S associated

o 050

>) is supported on the Tchebycheff points s
with the functions (1.3.1).

Murty (1969) gives the cp—optimal designs for the set of regres-

sion functions

1.3.2. (l,x,...,xn,x+k,...,x+n) for xe [-1,1].

Essentially the regression parameters are separated into two groups de-

"

pendent on their relation to n and k. In both cases the Eb—optimal de-

signs are unique while one group is supported by the same set of
(2n-k+2) points and the other by a set of (2n-k+l) points.

Chapter II will begin with some statements of known results on
which the discussions following are dependent. Section 2.1 will pré-

sent these background lemmas along with discussions that permit us to



~._ Classify admissible experimental designs according to their finite

~

spectra. The remaining part of the chapter, section 2.2, is con-
cerned with determining the admissible designs for regression in the
functions

n
1,x,...,x

n-k. n-1

1.3.3. (x—gi) 1+,...,(x-gi) + xe [a,b]

i=1,2,...,h: n-1 > k,

< b.
1

>1, acx gl < 52 <...< Eh

In chapter III we are concerned wifh polynomial monospline regres-
sion with a single multip}e knot in the center. The optimal designs
for the individual regression coefficients are obtained for the regres-
sion function expressed in three different bases. Each of the bases
are handled in a different section. There are maﬁy similarities in the
treatments but each is distinct. Several examples are presented in
each of the sections.

In chapter IV we consider some special cases of monospline regres-
sion with non-centered knots. In section 4.2 we treat the almost cen-
tered knot that corresponds to the non-unique designs of chapter III.
Sectibn 4.3 defineé the Johnson monosplines and works with the optimal
designs for monospline regression with these special knots.

Chapfer V treats extrapolation designs for the basis of section
3.3. (Extrapolation designs are independent of the basis). Minimax
extrapolation designs are discussed and are found to be a particular
extrapclation design.

We conclude this introductory chapter with a discussion of an

early application of monosplines.



1.4. Thin Beam Monospline

A uniform heavy beam OP (see 1.4.1) of length 2a and weight W is
hinged at 0 and rests on two smooth supports, one at P and the other at
its middle point Q.

y

1.4.1.

I 3 T 45-_)

a X

Q P
Let us suppose that the beam ié subjected to a force w per unit

length in the negative sense either due to its own weight or to a load
placed on it. Let the x and y axis be as positioned in (1;4.1). The
fundamental differential equation in the theory of thinvelastic beams
applied in this situation is

4 ,
1.4.2. k dy . . w

dx4
where k is a constant. Care must be taken in integrating (1.4.2).be--
cause discontinuities in d3y/dx3 occur when we pass an isolated load on
a support of the beam. There are no discontinuities in the bending mo-

ment hence no discontinuities in y, dy/dx, or dzy/dxz.

Such discontin-
uities would imply sudden changes in the height of the beam, in its
direction, or in the bending moment.

Integrating (1.4.2) and considering the initial conditions and

continuity requirements the equation of the two portions of the beam

can be written in the monospline polynomial form as

1.4.3. ky(x) = -1/48 masx + 1/16 max3-1/24 mx4 + 5/24 ma(x-a)3+.
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A more complete discussion of the above can be found in Synge and
Griffith (1942, pages 92-98). If an experimenter were interested in the
estimation of a particular parameter in (1.4.3) then the designs éon-
sidered in examples (3.2.3) and (3.3.3) would be strong candidates for
his consideration.

Piecewise'cubic polynomial functions of one variable with continu-
ous slope and curvature have long been used by draftsmen and engineers.
For practical design work mechanical splines have been used: thin

beams carrying loads Wy concentrating at points Ei’ according to the

classical Euler-Bernoulli theory. Such mechanical splines-(thin beams)
have been used as analog computers to fair curves through given sets of
poiﬁts. Birkhoff and DeBoor (1965, pages 165-166).

By using clamped splines one can represent very accurately hori-
zontal plane sections of ship hulls. Tyﬁically ship hulls have long
straight.midSections onto which a smooth pointed bow and stern are
appended. The types of curves required to represent a water line must
be continuous and have continuous slope and curvature or, what amounts
to the same, have continuous first and second derivatives. To some ex-
tent abatten or spline held in place by so-called ducks, as it is used
in the drawing of ship lines, can be approximated by a thip beam sup-
ported at a finite number of points.

The analogy between a spline and a thin beam gave rise to the name
"spline curve'. One of the reasons for choosing spline curves as typi-
cal ship lines was the fact that ship lines often contain straight por-

tions. A polynomial or any other analytic function cannot contain



11

. _straight portions as well as curved ones. For further discussion of

fitting ship lines by splines see Theilheimer and Starkweather (1961).
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CHAPTER II
CHARACTERIZATION OF ADMISSIBLE DESIGNS

FOR POLYNOMIAL MONOSPLINE REGRESSION

2.1. Introduction with Background Lemmas

In this section we present some known lemmas that will be used in
the remaining work in the chapter. The first lemma describes some basic

properties of information matrices.

Lemma 2.1.1. Let fx) = (fo(x),...,fn(x)) be a vector valued func-

tion composed of n+l linearly independent continuous functions defined
on a compact space X. Let M(u) be as in definition 1.1.1. Then
(1) - for each u, M(y) is positive semi-definite;
(2) det M(u)=0 whenever S(u) contains less than n+l points;
(3) the family of matrices M(u), as u ranges over the class of
probability measureé, is a convex compact set;

' s
(4) for each u there is a probability measure u concentrated on

(n+1) (n+2)
2

' L]
r points, T < + 1, such that M(u) = M(u ).

For a proof of these familiar properties of the matfices M(u) in
the above setting see Karlin and Studden (1966 b; page 787).

Part (4) of this lemma allows us to restrict our attention fo prob-
ability measures concentrafing their mass on a finite number of points.
If a probability measure in part (4) is not an experimental design,then

it can still be viewed as an approximate experimental design for large
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N. Since we may classify admissible experimental designs by their
spectra,we will restrict our consideration to those spectra with a
finite set of points. This next lemma allows us to consider admiss-

ible or inadmissible spectra.

Lemma 2.1.2. Let u be an admissible experimental design concen-

trated on {xl,...,x } with weight P;>0 at x; such that 2 P; =1. Then
° i=1
T

the experimental design v with weight q; > 0 at x; such that z qi=l
' i=1

is also admissible. Elfving (1959; page 71).
| This lemma tells us that any measure concentrated on a subset of
the spectrum of an admissible spectrum is admissible, or tﬁat a sub-
spectrum of an admissible spectrum is admissible. It aiso tells us that
S if ﬁ is inadmissible, a measure whose spectrum contains that of u is in-
admissible.
The neit lemma guarantees that for aﬁy inadmissible design we can

find an admissible design that will be dominant.

Lemma 2.1.3. Let p be an 1nadm1551b1e design. Then there is an

admissible design v such that v > u. Van Arman (1968).

This lemma also tells us that we get best linear unbiased estima-
tion results by staying in the admissible design class.

The following lemma gives a characterization of the type of regres-
sion function we are considering.

Lemma 2.1.4. A function B(x) on [a,b] can be expressed in the form
k

2 2 ij(x—Ei)f-J

i=1 j= 2

2.1.1. B(x) =

II.MD
=]

1

where n-1 > k.

> L.
1.—

> 0
1—-
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if and only if
(1) B(x) is an ordinary polynomial of degree at most n in each of
the intervals:
[a,gl), (gl,gz) e (Eh_l’gh) 3 (gh,b];
(2) B(x) has n—ki—l continuous derivatives at gi, i=1,2,...,h;and

(3) the coefficients of x™ in (gi’£i+1) are the same as those in

(gi_l,gi) for m=n-2i+1,...,n.

Proof: For (1) and (2) see Karlin and Ziegler (1966, page 518).
This implies that (1) and (2) hold if and only if B(x) is of the form

k.
i h * n-j
a,x + Z 2 b.. (x-gi)+

B(x) =
0 i=1 j=g Y’

i

"o~

(3) implies that bij=0 for j=0,l,...,zi-1.0therwise the coefficient of
x™ would change going across intervals.

Next we consider an important result of Karlin and Ziegler (1966,
pages 519-522) paraphrased for polynomial splines.

Definition 2.1.1. For any vector of functions ?{x)=(f1(x),...,

fh(x)) and vector of constants t = (tl,...,th) where t.<t

<...¥<
1 < t,, we

2 -h

define M(t,f) to be the matrix with the vector'f(ti) in the ith row.

If t, values coincide then the successive rows are replaced by succes-

sive derivatives taken from the right.
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Lemma 2.1.5. Let f denote the vector of functions

1,x,...,xS
S 2.1.2.
s-Ay s
| (-804 Theen (X284 i=1,...,h.
— h ‘
Let T=(t,,...,t ) where r=s+l+h+ ) ., no more than (s-X.+1) t,
1 T =1 J i ]

values are Ei’ and no more than (s+1) tj values coincide. Then M(t,f)
is non-singular if and only if

2.1.3. t < E. <t
Y i s+2+yi_

i=1,2,...,h,
1 ,

(xj+1), i=1,2,...,h, yb=o._ For some further discussion

[ e 1

where Y =’
1

j
of this application see Studden and Van Arman (1969, pages 1561-1562).
The proofs of many statements in this thesis will require a some-
what delicate analysis of the zeros of polynomials in the functions
(2.1.2)- This is due mainly to the fact that spline polynomials are mot
infinitely differentiable and non-trivial spline polynomials may
vanish identically on intervals between knots. All systems of func-
tions we shall use will be linearly independent so that a linear com-
binafion of these functions will be trivial or identicélly zero on
(-»,o) if and only if all the coefficients vanish.
We shall use the foilowing conventions when counting the zeros of
a spline polynomial P(x) (See Karlin and Schumaker (1967).) ¢
(a) No zeros are éounted on any open interval (gi,gj) if
P(x)=0 there.

(b) The multiplicity of a zero z#gi, i=1,2,...h,is counted in the
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usual manner, i.e., z is a zero of order r if
P)(zy=0, j=1,...,2-1, P ()10,

(c) If P(x)=0on (gi_l,gi) and # on (Ei’€i+1) the zero at
gi is counted as in (b) using right hand derivatives. Simi-

iarly we use left hand derivatives for P(x)#6 on (Ei_l,gi)
and =0 on (gi’€i¥1)f

(d) If P(x)#0 on (&, ,,&;) or (& ,& ;) and
P ey = pD g =0 j=0,1,...,1-1,

and if A=P(r)(gi-);£9(r)(gi+)=8,

then Ei is a zero of order

(i) r if AB>Q;
(ii) r+1 if AB<0;
(iii)r+1 if AB=0 and B-A>0;

r+2 if AB=0 and B-A<0.

It is easily seen that a zero of order r of P(x) is a zero of
ordep r-1 of P'. We let Z(P) denote the number of zeros of P accor-
ding to the above conventions.

Lemma 2.1.6. A non-trivial polynomial P in the functions
s

1,x,...,x

2.1.4.
s

P .
(x-t;j)+ ,...,(x—t’,j)+ » J=1,2,...,h,
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. where 1 <Py LS has

h
Z(p) <s + ) (s-p;+1).
=1

For a pr¢~7 see Studden and Van Arman (1969, page 1563).

2.2. Admissible Designs

In this section of the chapter we will be concerned with classi-
fying the admissible experimental designs relative to regression of the

form

n i h ki n-j
2.2.1. B(x) = ) ax + ] ] by (x-85)4
i=0 i=1 j=1

where n-1 z_ki >1,1i=1,2,...,h; a <'g1 <,..< Eh < b and xe {a,b].

We call regression of the form (2.2.1) monospline regression. We will
first establish a moment condition for admissibility. Next we will re-
strict the élass of admissible designs for (2.2.2) as a proper sub-
class of the admissible designs for (1.2.1), and then we will give a
sufficient condition for admissibility. Following this will be several
examples illustrating the delicacy of the problem.

The next two lemmas are needed in the proof of theérem(Z.Z.l)and

can be found in Studden and Van Arman (1969,pages 1559 and 1560) .

Lemma 2.2.1. Let A be a matrix of the form

(AL AL ... A ]
0 1 k
AI‘ AI‘ AI‘
Ao 1 1 k
AI‘ AI‘ AI‘
L k k k
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. Then A > 0 (non-negative definite) if and only if

O0#A_>A > ...>A_>0;
T.— T, — = -~

o~ T1 T

A>0 (positivé definite) if and only if we have that one of the

inequalities above is strict, i.e., Ar > Ar for some i,
i i+l

i=0,...,k-1.
Proof: We need only notice that
. k

X Ax =) = .Z (A, - A, +1) (x, +.x o4 X] )

xix.ai .
RS e T N S

where Ar = 0.
k+1

- Lemma 2.2.2, If M = (mij) is a symmetric non-negative definite
matrix and a diagonal element m, .= 0 for some i, then mij= 0 and

mji= 0 for all j. (mji= 0 since M is symmetric).

The next theorem gives moment conditions for admissibility. It
was motivated by and gives a slight generalization of a theorem of
Studden and Van Arﬁan (1969, page 1559). All the integrals in the fol-

lowing will be over [a,b] unless specified otherwise.

Theorem 2.2.1. Let f(x) consist of the vector of regression func-

tions

2.2.2. f(x)= T (x-£), P,...,(x-gp)+ P ~ xe [a,b]
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~.._and let g(x) consist of the vector of regression functions

'l,x,...,xzn_1

n-k 2n-§ £ when 2_#0
2.2.3. g(x)={(x-£ )+ p,...,(x-g )+ p where & = P
P P 1 when £p=0

=1,2,...,h; k_,2 ,h, same as in f(x).
p = 1.2, TIPS ()

Then v > u (or M(v) > M(u))> (v and u designs for f(x))
if and only if
(1) [ g(x)d(v-u) =0 and
| - 2n 2n
(2) 0#[x " d(v-w) 2 f(x-£, ), d(v-u) 2...2[(x-€, ), d(v-u) 20

‘ 1 m
where rj, j =1,...,mis the ordered set of i's for which li=0,_0§m§h.
Proof: We prove sufficiency first.

Let M = M(v)-M(n). Since v and u are both probability measures,
the first row and column of M has zero elements. This gives the fol-

lowing:
(@ fx'dv-w) =0 i=1,2,...,n and
j
) f (x-gp)+d(v-u) =0 j = n-kp,.,.,n-zp; p=;,...,h

by lemma (2.2.2).
From (a) with i=2, the second row and column have all zeros. Continu-

ing in this manner, we obtain




[y

Let T

[ x*dv-w)

=0 i =
/ xi(x—ap)i dv-u) = 0 i =
j =
p =

3
Note that f xn(x—gp)+vd(v—u)=0, j=n—kp,...,n-6p,since the column with

2.
diagonal term f (x-&_’,p)+J d(v-u)=0, j=n-kp,...,n-6p.

and any p=1,2,...,h, we have that

n-6 +r T

n-6

Now for r <n

[ g, P odevmn=f (g, (x-g )¢ »pd(v-u) =

8

T i n-
_20 a, [ x (x-£.), P av-m=o0.
i=

Therefore [ g(x) d(v-u) = 0,

20

which means condition (1) holds. At this point we know that M has all

diagonal elements = 0 except possibly the elements

f xzn d(v-u) and

2n '
[ (=€), d(v-u) when L, -

1= smallest p for which 2p =0,
T, = mext smallest p for which 2
r, = largest p for which zp =0,

and define Ar as
i

o,

TR T
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2n
Ari= I (x'gri)+ d(\"U)’ 1= 1:‘---,m,

A= [ XM dv-p), i = o.
To

column, s<t, is

The element corresponding to the r_ TOW and T,

n

n n n
/ (-8, ), Oty ), d(v-w) = [ x (x-g, ), d(v-1) =

2n

[ (x-§_), d(v-w) = A, . So the conditions of lemma(2.2.1)are
-t .

t
satisfied and this implies céndition (2).
In order to prove necessity, we note that if conditions (1) and
(2) hold, and M=M(v)—M(u), we see fhat M > 0 by lemma (2.2.1).
' The following lemma restricts the class of admissible designs for

(L.2.1) to the class of admissible designs for (1.1.6).

Lemma 2.2.3. If u is admissible for

/ n
1,x, s X
n—ki ' n—zi :
b(x)= ¢ (x-’c:i)+ ,...,(x-ii')+ ; i=1,2,...,h; xe [a,b]
L n-1 >k, > &, > 05 a < gy<i..<g < b

then p is admissible for

n
[ 1,X,...,X

n-ki n .
2.2.4. f(x)= ﬁ (x-gi)+ )...,(x—gi)+ i=1,2,...,h; xe [a,b]

\ki’h’gi’a’b same as in (2.2.4).
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-\“\Proof: Assume u is admissible b(x) and inadmissible f(x). Since u is
inadmissible f(x), there exists a v admissible f(x) such that
- M(v) > M(u). See lemma (2.1.3). Let M'(v) and M'(u) represent the
submatrices of M(v) and M(u) corresponding to b(x). Since u is admiss-

. ] )
ible b(x), we have that M (v)=M (u). By theorem (2.2.1) this implies

2n 2n
that fx dv = fx dy which in turn implies that M(v)=M(u), the de-

sired contradiction.

This lemma tells us that if p is inadmissible for f(x) then u is
also inadmissible for b(x). In order to completely classify the ad-
missible designs for b(x), we need only list those designs that are (i)
admissible f(x) and (ii) inadmissible b(x) since the admissible designs
for.f(x) are given by (1.2.3). This task appears somewhat formidable
as the remainder of the section is devoted to the solution for several

. general cases.

Lemma 2.2.4._ Given a design u such that

i+ [n+k.+1 : ‘
(1) S(u) has < n-1 + ———l—— points on the open interval
= vl 2 P
j=1+

(gi,gi+£+1) for i = 0,1,...,h-2, & = 0,1,...,h, we can always

add a set B of points in [a,b] such that
(2) BN S = ¢

and

(3) S(w) U B has < n-1+ ] points on the open in-

i+g n+k.+1
2

j=i+l

terval (g;,& ) fori =0,.,...,h-2, £ = 0,1,...,h, where

i+2+1

equality holds for 2=h when i=0.
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.. Proof: The proof will be by induction on the number of knots. Let u

~

be a design satisfying (1) for which the number of knots h=1.

. n+k _+1 _
If there were < [ 21 ] points in [El,b), we would add distinct

points to [gl,b) until equality would hold. If kl=n-1, then one of the

oints in [£,,b) either contributed or present in S(u) would be £,. If
poir 1 P 1

in the remaining piece (a,gl) there were less than n-1 points, we would

add distinct points until there were exactly n-1 points in (a,&l)._ Let

B be the set of points added. It is easily seen that (2) and (3) hold.

- ' n+k1+1
If there were r > 5 points in [El,b), we would let

n+k_+1
seTr - [ > ] and note that (1) requires that we have < n-1-s points
in (a,gl). If there were < (n-1-s) points in (a,gl),we would add dis-

tinct points until equality held. Let B be the set of points added.
We have now shown (2) and (3) for the case of one knot.

Let u be a design for which the number of knots h=m+l. If there

n+k +1
were < [}——E%l——] points in [£m+1,b), we would use the induction hy-

, .
pothesis to require S(u) U B to satisfy (2) and (3) for the interval

(a,t ) and add necessary points to the interval [§ b) to have the
m+1 m+l,

n+km+1+1
interval total = — . If km+1=n-1, then £m+1 would be a

counted point. Let B be the set of all points added. B < B and again

(2) and (3) hold.
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» n+k 1 v
“. If there were r > [——Jg%l—%]. points on (€m+l ;b), we would use the in-

!
duction hypothesis to require S(u) U B to satisfy (2) and (3) on
: n+k_ . +1 ’ |
m+1 !
(a,g_ .). Let s=r - |————=——]| and note that B has at least s
m+1 2
points, othefwise assumption (1) would be contradicted. We now remove
. 1
the largest s points of B and call the remaining set B. All that re-

mains is to check the requirement (2) on subintervals that contain

[£m+1,b). Let (Et,b) be any interval that contains points in B. Since

(£, +Ep,,) has

m n+kj+1
<n-1+ % 5—| - s

j=t+l
points, we have that (gt,b) has

m+l [n+k.+1
<n-1+ y 23 points.

j=t+l

If (£t,b) does not contain points of B, the subinterval requirement is

a part of our assumption (1).

This completes the discussion since (2} and (3) hold.

Remark: We can delete any number of points from B and condition (1)
would hold for S(u) U (B deleted).

‘In the next two lemmas we develop properties of spectra that when
used with the preceding lemmas and the moment theorem will give a large
class of admissible designs. Essentially we will be able to classify
as admissible those designs for which the moments f g(x)du prohibit
the existance of a v admissible f(x) such that v > u. The results will

be stated in theorems (2.2.2) and (2.2.3).
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Lemma 2.2.5. If a design u is such that
i+% | n+k.+1
S(u) has <n-1 + 7§ ——§l~—

j=i+1

points on the open interval (Ei,g 1) for i = 0,1,...,h-2,

i+o+
£ =0,1,...,h, where equality holds for 2=h when i=0 and p is such that

"k _=n-1, 1 < p < h, then S(u).
p <p < Epe (w)

p-1 [n+k.+1
Proof: The number of points in (a,gp) is < n-1 + 2 __El__
j=1
h |n+k.+1
The number of points in (£ _,b) is < n-1 + ) ——51—— . The number
' p j=p+l :
of points in (a,£)) U (§,b) is

h |n+k.+1 ‘B+k +1 h [n+k.+1
< 2(n-1)+ z 23 - 2P =n-2 + z __z'L'
j=1 .

j= j=1

n+k _+1 '
since [;_52_—] = n. The number of points in (a,b)—[(a,gp)u(gp,b)]=1.

This implies that EpeS(u).

Lemma 2.2.6. Let fl(x) consist of the vector of regression func-

tions

4 n
1,x,...,x

1 n-ki n
f (X) = ( (x-gi)"‘ ’.."(x-gi)*‘ is= 1)2:0--sh

where for each i, ki is such that

\

n+ki is even or ki=n—1.

Let gl(x) consist of the vector of regression functions
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( l,x,...,xzn-1
1 n—ki 2n-1
g (x) = § (x£), ", (x-E), i=1,...,h
L where the Ei and ki are the same for fl(x) above.

If » and v are admissible designs relative to fl(x) with supports
S(y) and S(v), then any design relative to gl(x) with support

S(u) U S(v) is admissible g(x). (In applying this lemma, we are more
concerﬁed with the placement of points in their spectra than with
admissibility with respect to g (x).)

Proof: S(u) and S(v) each have

i+ n+k.+1
<n-1+ ' 5 points in the interval
j=i+1
(Ei’gi+£+1) for i = 0,1,...,h-2; & = 0,1,...,h,where we may assume

t . ]
equality holds for 2=h when i=0 for S (u) and S (v). S'(u)ES(u)UB from

] .
lemma £2.2.4) and S (v) is defined similarly. An admissible design for
1 .
g (x) would have

144 [%n—1+n+k+1

2.2.5. < 2n-2 + ) 5 points in the interval
j=i+1
L ] !
(Ei’gi+2+1) for i = 0,1,...,h-2; 2 =0,1.,,,.h. S (u) US (v) has

i+2 | n+k.+1
2.2.6. < 2(n-1 + y ——?fL—— ) - L ‘distinct points in
j=i+1 ‘ :

(gi, €i+2+1)' r., 1is the number of indexes j such that

i+l < j < i+% for which kj=n—1. To see this we note that by lemma

] 1
(2.2.5), EjeS (#) and EjeS (v) when kj=n—l. The subtraction of L
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: _\eliminates the counting of Ej twice in S(u) u S(v). It is easily seen

i+g
that (2.2.6) = 2n-2 + Z (n+kj) with the restrictions on ki' Since
- j=i+1
i+g n+ki
(2.2.6) <2n-2 + Y (n+ > }=(2.2.5), we have that S(u) U S(v)
j=i+1

is admissible gl(x).

Theorem 2.2.2. Let b(x) consist of the vector of regression func-

tions
( l,x,...,xn
n—ki. n-li
2.2.7. b(x)= ¢ (x-g.l)+ ,...,(x-f-,i)+ zi =0orl fpr each i,
i=1,2,...,h;n-1>k, > 2, >0 xe [a,b].
\ —i="i =

i+g n+ki
A design u is admissible b(x) if S(u) has < n-1 + 2 > points
j=i+l

on (gi,g 1) for i = 0,1,...,h-2, & = 0,1,...,h,

i+g+
Proof: Assume p is inadmissible b(x). Then after consideration of

lemmas (2.2.3) and (2.1.3), there exists a v admissible with respeét

to f(x) (as defined in (2.2.5) with the same ki’gi’ h, a and b as in

b(x) above) such that v > u.

i+g n+kj+1
Now S{v) has < n-1 + j=§+1 5 points on (€558, 4,) for

i=0,...,h-2; 2 =0,1,...,h. And S(v) U S(u) has

5_2(n-1 + ) (n-k.))
je[i+l,i+2] J

2.2.8. _ such that

n+kj is even (continued)
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+ %- y (n+k.-1)
jel[i+l,i+e] J

such that

n+kj is odd

1

2 . .. .
je[i+l,i+2]
such that

+k.+1
(n ; )

n+kj is odd

i+
= 2n-2 + ) (n+k )
j=i+l J

points on (Ei,£i+£+1) for-i = 0,1,...,h-2; 2 = 0,1,...,h.

Now S(u) U S(v) is admissible with respect to

g(x)=

l,x,...,xznql'

n-ki 2n-1
(x-gi)"' ,-"’(.x'gi).'. i= 1,...,h

n,Ei, ki the same as in b(x) above,

by the previous lemma. Without loss of generality, we may assume the

equality holds in (2.2.8) for %=h when i=0 by lemma (2.2.4). Note that

h

the exact number of functions in g(x) is 2n + z (n+kj).

j=1

Since v > u we have by theorem (2.2.1) that [g(x)d(v-u)=0.

This can be written as

her t. )=v
where v( p) v

of the m=2n +

P

M (5,07 = M (€07

, u(tp)=up are the weights assigned to the vector t

h
y (n+kj) ordered points of S(u) U S(v) u {a} u {b}.
j=1



1 c — ——
. ..M (t,g) is the transpose of the matrix M(t,f) given in definition

R
(2.1.1). M (t,f) is nonsingular by lemma (2.1.5) since

t < gi <

t
Y 2n+l+Yi-l

where

e~

Yl = (n+ki) .

j=1
M(t,g) being invertable implies v=p, and we have the desired contra-

diction.

Example 2.2.1. Let bl(x) consist of the vector of regression

functions
1,x,x",x ,x4
. b,(x) =
. _ 1 3
x 7, xe [-1,1].
h The following designs are admissible. (We classify them by their spec-
tra.)

(1) The points {-1} and {1} with three points in (-1,0) and two
in (0,1). |

(2) The points {-1}, {1} and {0} with two points in both (-1,0)
and (0,1).

It is possible to add the function x+4 to those in bl(x) and place an

extra point in (0,1) in (1) and one point to either (-1,0) or (0,1) in

(2) and retain admissibility..
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Example 2.2.2. Let bz(x) consist of the vector of regression

functions

2.3
1,x,x7,x7,x

b,y (x) = 2 3 4
(x—1)+,(x-1)+,(x-2)+ - xe [0,3].

The following designs are admissible:
(1) The points {0} and {3} with three points in both (0,1) and
(1,2) and two points in (2,3).
(2) The points {0} and {3} with three points in both (0,1) and
(2,3) with two points in (1,2).

4 _
If one adds the function (x-1)+ to those in bz(x), the above designs

are admissible, and if any point is added in either case the designs
would be inadmissible.

The following theorem is closely related to theorem (2.2.2) but
does describe some additional admissible designs. |

Theorem 2.2.3. Let bl(x) consist of the vector of regression

functions in (2.2.7) with the restriction that n+k, is even or ki=n-1'

‘ i+p n+ki+1
for each i = 1,2,...,h. If S(u) has < n-1 + oints
= b 3 P
J=1+

in (gi’gi+p+l)1 =0,1,...;h-p; p = 0’1""’hi’ then p is admissible

bl(x).

Proof: Note that n+ki is even if and only if n-ki is even. The 'only
if" part follows from lemma (2.2.3). The "if' part follows that of
theorem (2.2.2) with some modification. We would have the v and u with

similar assumptions and notice that (2.2.6) for this theorem equals
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. i+g
2n-2 + 2 (n+k.) which is the case in theorem (2.2.2) for
j=i+l J
S(u) U S(v). The remainder of the proof follows that of theorem
(2.2.2) word for word.

The following example of an admissible design is covered by

theorem (2.2.3) and not by theorem (2.2.2).

Example 2,2.3. Let bs(x) consist of the vector of regression

functions ,

2 .3 4
1,x,x ,x7,x

_ <
bs(x) = 2 3

X X X, xe [-1,1].

~

The following design is admissible: the points {-1}, {0} and {1} with
three points in both (-1,0) and (0,1).

Let ¢(x) denote the set of functions

( l,x,...,xzn ,
n—k.1 2n-1
2.2.9. ﬁ (x-gi)+ ,...,(x-&i)+ i=1,...,h
£. and k. same as in (2.2.7), xe [a,b],
[ i i
and let
2n : n-k,
(.po(x)=1) (pl.(x).;x)"" (Pzn(x):x H cpzn"'l(X):(x-Ei)"‘ se ey
2n-1 ~h
¢n#x)=(x-£h)+ ; where m = 2n + izl (n+ki).
Let

b
M = {c=(cy,.--re) e, = fa ¢, (X)du(x),ue @,t=1,...,m}

where
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!
I

_ € is the set of probability measures on [a,b]. 7 is a closed convex

~

set in m-space since the functions in ¢ (x) are continuous and defined
on a compact space. Theorem (2.2.1) states that a design u is admissi-

ble b(x) ((2.2.7) with Ri=1 for all i) if and only if, for fixed Cpo

t=1,...,m t#2n, p maximizes

b 2n
= [ x7 d v
a

C2n

for all probability measures v defined on [a,b] with

b b
C, = f ¢t(x)d u(x) = f ¢t(x)d v(x) for all t#2n.
a a

Roughly speaking, u is admissible if and only if it corresponds to an
"upper‘i boundary point of 77. Since? is closed and convex, there must

be a nontrivial supporting hyperplane at any boundary point of 7.
Lemma 2,2.7. Any admissible design p for b(x) ((2.2.7) with £i=1

for all i) has an associated nontrivial polynomial p(x) in the ¢ (x)
(2.2.9) such that: (1) P(x)=0 for xe S(u),
(2) P(x)>0 for xe [a,b],

and

(3) the coefficient of x2n in P(x) is < 0.

Proof: Let c0 be the point (cg,...,cg) in f where

b
0
C, = fa ¢t(x)d u(x) for t =1,...,m.
In constructing a supporting hyperplane at c0 there exists real con-

stants {at} tTO’ not all zero, such that
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m
y ac, +aj >0 for all ce M
t=1
2.2.10. and
; m
0
Y ac +a =0
eyt 0
We have that
) e S 73
ac +a,= a_ | ¢ (x)du(x) = a ¢, (x))du(x).
t=1 ¢t 0 42 tat a \tsg *°
m : _
Let P(x) = ) a ¢, (x). Note that P(x) > 0 for xe [a,b] and thus
t=0
_ . .0 0 0 0 0
P(x)=0 for xe S(u). The point ¢, = (cl,...,c2n_1,c2n+l ,c2n+1,...,cm)

fo_r all A > 0 lies in the half space complementary to that of(2.2.10),

so that

m
0 R .
tZO ace + A Son < 0 for all x > 0. This requires

that zat2n < 0.

A lemma which is a partial converse of the preceding follows.
Lemma 2.2.8. A design up is admissible for b(x) ((2.2.7) with

zi=1 for all i) if there exists a nontrivial polynomial P(x) in the
¢ (x) such that:

(1) P(x) >0 for xe [a,b],

(2) P(x) =0 for xe S(u),

and
(3) the coefficient of x2n in P(x) is negative.

Proof: Let v be a probability measure on [a,b] such that

M(v) > M(uw). By theorem(2.2.1) we have that



[ X dw-w) > 0.

Also by theorem (2.2.1) we have that

[ P(x)d(v-1) = ja2nx2“ d(v-u)

2n

where a,_ is the coefficient of x™ in P(x).

2n
[ P(x) d(v-u) = [ P(x)dv > 0 by conditions (1) and (2) of the lemmas.

Combining the above inequalities, we have

[ ay $Ma(v-u) = [ PA-w) = [ PGIAY > 0,
This implies that
[ x® d(v-w) <0

by condition (3). This is the desired contradiction.
We will use the preceding two lemmas to construct some examples

for the regression functions

( 2 3 4
1,x,x ,x ,X

2.2.11. ¢
3

X, | x [-1,1].

N

The examples will show that the converse of theorem (2.2.2) does not
hold. A more complete discussion will follow.
Assume we have a polynomial in the form

2 8
+ 0.X + 0,X +...t QX .

2.2.12. o, 1 2 8

Let a, , denote the sum of all possible products of k prescribed roots

taken % at a time. If we have a polynomial of degree n with n real

34



‘\\\\ f x2n d(v-u) > 0.

Also by theorem (2.2.1) we have that

m
[ P()d-1) = Ja, X d(v-n)
where a5 is the coefficient of x2n iﬁ P(x).

f P(x) d(v-u) = f P(x)dv > 0 by conditions (1) and (2) of the lemmas.

Combining the above inequalities, we have

[ ay XPav-w) = [ Pd-w) = [ PO 2 0.
This implies that
j»xzn d(v-u) <0

by condition (3). This is the desired contradiction.
We will use the preceding two lemmas to construct some examples

for the regression functions

/

2 .3
1,x,X ,Xx ,X

2.2.11. ,
1 s
X x [-1,1].

+

N

The examples will show that the converse of theorem (2.2.2) does not
hold. A more complete discussion will follow.
Assume we have a polynomial in the form

2 8
X7 +...h agX .

2.2.12. + 0a.X + O 8

%% 2
Let a, . denote the sum of all possible products of k prescribed roots

taken & at a time. If we have a polynomial of degree n with n real

34
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.__roots, then a_ is the f2th symmetric function of the roots. Let P(x)

L
represent a polynomial in the functions

2.2.13. (1,x,.'..,x8,xf,x

+ &

,...,xZ) xe [-1,1]

and denote by Pl(x) the form of P(x) on [-1,0] but extended to the real
linef Lef Pz(x) denote the similar polynomial determined by P(x) on
[0,1]. Pl(x) and P2(x) have the form (2.2.12). Let aiz denote the
appropriate sum and product.of the roots of the polynomial Pl(x) and

2
akl denote them for Pz(x).

Consider P(x),a polynomial in (2.2.13),which has the associated

polynomials
p — 2 2 2
LX) = 1(x+1) (x+3/4) " (x+2/4) * (x*1/4) * (x-1)
and |
P _ 2 2 2
2(x) = -1(x-1) (x-3/4)"(x-2/4)" (x-1/4) " (x-s).
8 . 7
For P(x) to be of the correct form Z a.x) + 2 B.x ,
- j=0 j=3 1 *

we must have the coefficients of 1, x and x2 identical in Pl(x) and
Pz(x). In the following we will be considering the 7 roots of Pl(x)
and Pz(x) that exclude r and s. Using the equality of the coefficients

of 1, x and x2 to solve for r and s, we obtain

al —32 | T [ |
77 %77 0
1 2 2 1
?.2.14. a76 -a76 S a77 - a77
. 2 2 1
| 275 75 76 ~ %76
- = .
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. We will have a solution in T and s of the above system of equations if

and only if
[ 1 2 |
87 %77 0
1 2 2 1
2.2.15. det o = agg = 3,4 = 0.
a1 —a2 a2 - a1
| 275 75 76 76 |

For this particular problem we know that the rank of the coefficient
matrix in (2.2.14) is 2 and (2.2.15) holds. So the system has a unique

solution r=-s=3/47. Thus

1(xrD) xr3/8) 2 (xe2/ ) 2 (x41/8) P (x-3/47) xe [-1,0]
2.2.16. P(x) = |
1(x-1) (x-3/8) 2 (x-2/8) 2 (x-1/8) 2 (x+3/47)  xe [0,11],
8 .7

which can be written in the form z a.x)+ y
‘ §=0 i=3

that P(x)lz_o for xe [-1,1], P(x)=0 for

b.xJ with a,=-1. Note
i+ 8

Xe {—1,-3/4,—1/2,—1/4;1/4,1/2,3/4,1}; and P(x) > 0 otherwise.

Example 2.2.4. Let b4(x) consist of the vector of regression

functions (2.2.11). If u is such that

S(u)={-1,-3/4,-1/2,-1/4,1/4,1/2,3/4,1}, then u is admissible b, (x)

by lemma (2.2.8) and (2.2.16).

Example 2.2.5. Let bs(x) consist of the vector of regression

functions (2.2.11). In this example it is shown that a nontrivial

polynomial does not exist for which P(x) > 0 on [-1,1] and

P(x)=0 for xe {—1,—3/4,-2/4,-1/4,2/5,3/5,4/5,1}. Thus if u is such



-

37

|

I

that S(u)={—1,-3/4,-2/4,-1/4,2/5,3/5,4/5,1}, then u is inadmissible

by lemma  (2.2.7). First let us assume that the coefficient of x8 in
- any nontrivial polynomial P(x) in the functions (2.2.13) is non-zero.

Proceeding as in example (2.2.4) we find that

- -
1 2 [ _ 7
az, -, 0 - 9745 - 36/56 0
detlal -2 aZ - al |- det| 141745 696/56  36/56 - 9/45
76 76 77~ 771 -
al a2 g2 4l -226/44 -1097/55 696/56 - 141/45
75 %75 %76 - “76 ] i A

is non-zero. Thus there is no solution for r and s and P(x) does not

exist. If the coefficient of x8 is zero, then lemma (2.1.5) implies

that any P(x) must be trivial (=0).

Theorem (2.2.2) states for the proceeding twoexamples that a de-
sign is admissible if S(u) has at most three points in (-1,0) and two
in (0,1). The examples show that a simple counting argument will not
give a completely general sufficient condition for admissibility. One
must consider the placement of the points in the admissible spectra as

well as their number.

Example 2.2.6. Let b6(x) consist of the vector of regression

functions (2.2.11), 1If p is sucn that
S(u)={-1,—xl,-xz,-xz,xs,xz,xl,l} s O<xi<1, i=1,2,3,
then u is admissible. This states that for b6(x)'symmetric designs

(three points in both (-1,0) and (0,1)) are admissible. We proceed

again as in example (2.2.4) and note that for the symmetric case
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] -—a -a O1
al | =det | b b -
77 = de - 2a = 0.
1
276 -¢ ¢ 0
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Thus, when solving for r and s, the system (2.2.14) reduces to

This implies that there

r=-s and r>0.

(a and b

is a unique solution with r and s real where

are both positive). Thus there exists a pely-

nomial P(x) in the functions (2.2.13) that satisfies the conditions of

lemma (2.2.8) so that u is admissible.

At this point one would like to know if there exists nonsymmetric

admissible designs for the regression functions (2.2.11). Let u be an

experimental design such that S(u)={-1,-3/4;-2/4,-1/4,1/412—5)/4;,1}

where te (0,1) and |e|'is small. Evaluating the determinant (2.2.15)

as was done in

K det

+

4

earlier examples, we find that for this caée
4110774 (2-0)% 7104(2-6) 3+ 1728(2-6)°]

£3[1776 (2-6)*+ 576(2-¢)°]

£2[108(2-¢)*-25110(2-¢) *~15984 (2-¢) -1296]

&t [-3996(2-¢)%-1296]

-81 (2-8)2, where K is a positive constant.

If ¢ is near zero, the coefficients of t4 and t3 are positive

while that of t2,t and 1 are negative. If e is near zero and t=0 the

determinant is negative. If e is near zero and t=1 the determinant is

positive. By Descartes' Rule of Signs, there is only one tle(O,l) for




39

which the above determinant is zero. We are now assured of a solution
»hith T and s real where r>0 and s<0. This givesrise to a polynomial
P(x) satisfying the conditions of lemma (2.2.8) so that u i; admiss-
ible. We have the following: |

Example 2.2.7. If u is a design such that

S(u)={-1,-3/4,-2/4,-1/4,1/4 2-e)/4,t1,1}  for le| small where t! is
mentioned above, then u is admissible. If e€=0 then t1=3/4, and this
would be a symmetric design. However, with |e| small, the example in-

cludes many nonsymmetric admissible designs.

Example 2.2.8. If uy is a design such that

S(w=1{-1,-3/4,-2/4,-1/4,2/5,3/5,4/5,1,4/3,5/3}, then u is inadmissible
with respect to the regression functions (1,x,...,x4,xf,(x-l)f). This
follows from example (2.2.5) since u is not sub-admissible on [-1,1].

(See Studden and Van Arman (1969, page 1561).) However, if we consider

the polynomial

P(x) = 4/81(x-l)f-4/9(x-1)f+13/9(x-nf-2(x-1)f +(x-1)7,
which can be written as

(x—l)s(x—4/3)2(x-5/3)2 for xe [1,2],

we see that it satisfies the conditions of lemma (2.2.7). Thus the

converse of lemma (2.2.7) does not hold.




"

CHAPTER III
POLYNOMIAL MONOSPLINE REGRESSION WITH A

SINGLE MULTIPLE KNOT IN THE CENTER

3.1. Introduction with Background Lemmas

In this chapter we are concerned with monospline regression in

the form
n . n-1 i
3.1.1, Yoe.x o+ Y o X, for xe [-1,1].
i=0 i=n-1-k
We will, however, consider different bases. But in each case the

regression function could be expressed in the basis of (3.1.1).

40

Lemma (2.1.4) describes the type of function we are considering. The

following result due to Elfving (1952) characterizes optimal designs
p for the problem of estimating (€,8). This result is geometric in

nature and will be frequently employed throughout this chapter.

Theorem 3.1.1. Let

R = {?(x)=(f0(x),...,fn(x))| xeX},

R = {-f(x)| xex],

and

8 = convex hull ofR+uR .

A design Ho is c-optimum if and only if there exists a measurable

function ¢ (x), satisfying |¢ (x)|=1, such that
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(i) [ @ (x)£(x)uy(dx) = gc  for some B

and

(i1) 8c is a boundary point of R.

Moreover, BC lies on the boundary of R if and only if

82=v6 where v, = min u V(c,u).

A proof of this theorem in the above form may be found in Karlin and
Studden (1966, pages 789-791). The following lemma and remark that

aid in characterizing the boundary points of R aredue to Studden (1968,

page 1437).

Every vector ceR can be put in the form

3.1.2. c =
\Y]

. €, pvf(xv)

1}
—

Il t~1% 0o R

where ¢ = +1, p > 0 and
v = v N

1p"

The integer k may always be

taken to be at most n+2 OTF at most n+l if ¢ is a boundary point of R.

Lemma 3.1.1. A vector c of the form (3.1;&) lies on the boundary

~of R if and only if there exists a nontrivial ""polynomial"

n .
u(x) = 2 a f (x) such that |u(x)| < 1 for xe [-1,1], €. u(x ) =1,
v=0 vV - v v

Before the following remark, we recall that

(c,b) _
(5, £0x)) 2u(dx)

V(c,H) = sup
b
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. . Remark 3.1.1. For an arbitrary vector c # (0,...,0), BC lies on

the boundary of R for some 8 > 0 and hence

n+l ‘
Bc = vzl ep,f(x) for some {e P} and {x }.

If (a,f) = 'aifi denotes the polynomial of lemma (3.1.1), then the

0

N~

i

a.

c.)? = (@, since (8c,3) = 1.
0 11

Il ~13

minimal value of V(c,u) is 8_2 = (
i

Moreover,

inf V(c,0) = inf swp & EB2F £ @01

| v

sup - inf (€07 (,£00)% (@017

3_(3}5)2.
Since the first and last terms are equal,

inf sup @B [ (B, £(0) %u(d) ] =sup = infu(a'ﬁ)z[j(b,f(x))zu(dx)]'?

Using this last equality, we see that

inf V(E 1) = inf sup 5,01/ 0, £G0) e

sup & inf, (5, 5) [/ (6, £00%u(a0] ™

sup & (T B2 swp @,£00)°1° L
PP lraxa

If we normalize b so that [bpl=1, then (35,532=1 and the last equality
becomes

. - = 2,-1
3.1.3. 1nqu(cp,p)=__sup [ sup (b,f(x))7]

b:bp=1 -1<x<1
(continued)
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~

= min sup [f (x)-(zlfi(x))]2>
a -l<x<1 P

where f;(x)=(fo(x),...,fp_l(x),fp+1(x),...,fn(x)). This last expres-

sion suggests that we find the n-vector a* such that (a*,?&(x))is a

best approximation to fp(x) on [-1,1] in the sense of Tchebycheff,

j.e., in the uniform nOrm, Throughout the remainder of this chapter
we will be frequently concerned with such best approximations to

fp(x).

Definition 3.1.1. Let fo(x), fl(x),...,fn(x) denote continuous

real-valued functions defined on a closed finite interval [a,b]. These
functions will be called a Tchebycheff system over [a,b], abbreviated

T-system, provided the (n+1)st order determinants

fo(xl) ce fO(xn+l)
fI(xl) ces fl(xn+1)
fn(xl) . fn(xn+1)
are of one strict sign for a SXp <Xy el <X <b.
n
Definition 3.1.2. Any linear combination z aifi(x) of the
i=0

functions fO(x),...,fn(x) will be called a polynomial. If any linear

combination is identically zero in [a,b], then this linear combination

will be called the zero polynomial. A T-system, fO(x),...,fn(x), is

also such that every polynomial with some non-zero coefficients has at
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most n distinct zeros on [a,b]. See Karlin and Studden (1966 a).

Another definition that provides terminology that will be used

- later is the following:

Definition 3.1.3. A continuous function s(x) is said to alter-

nate r times on an interval [a,b] provided there exists r+l alternating

points a € X; <...< X4 < b such that

s(x,) = (-l)ie max |s(x)]
a<x<b

for i = 1,...,r+1, where e = +1.

3.2. Optimal Designs for Basis I.

In this section we consider a random variable Y(x) with mean
- T i
3.2.1. T oext+ ] B (x-2x)
i=n-1-k :
where xe [-1,1] and n-1-k > 1. We note that in the vector of regres-

sions functions

3.2.2. b(x) = (1,x,...,5%, DI 0Ik L anl o0

each_bi(x) is either odd or even. In order to classify the cp-optimal

designs, our first few lemmas will be concerned with finding a best

approximation of bp(x) by the remaining functions in (3.2.2) in the

uniform norm. We will show that there are two monospline polynomials
in normalized form that will have the desired properties, one for the
even functions in (3.2.2) and the other for the odd. The next lemma

concerns one of these polynomials.



e Lemma 3.2.1. There exists a unique polynomial Wi k(x),a linear
combination of the functions in (3.2;2),satisfying
1
1) |Wn’k(x)| <1 for xe [-1,1];

(2) The set Ei,k = {x I|Wi,k(x)|= 1} contains exactly

n+2 [§J+3 points and is symmetric about zero;
(3) Wi k(x) attains its supremum at each of the points of the
3

set Ei k>with alternating signs} Wi k(x) is of the form

(with non-zero coefficients)
3 5]
2 n-2j *2 n-2j-1 n-2j-1

1 -
3.2.3. wn’k(x)-jz0 Bogs X ¥ Y8 e -2x, ).

j=0 n-2j-

(Note that Wi k(x)vis even or odd as n is even or odd.)
>

Proof: We consider first the case where n is even. Let V be the
linear space spanned by the functions in (3.2.2) excluding X", If _
g(x)eV then g(-x)eV since each function in (3.2.2) is either odd or

even. There exists a best approximation of bn(x)=xn, say Qn(x), with

respect to V which is even. Meinardus (1967, pages 26 and 27). Thus

pn(x) - Qn(x) has the form

2 51
\ 2 2j 2 n-2j-1 n-2j-1
by(0)-Q(x) = ] Byyx + ] B o ;(x -2x, ).
j=0 j=0
For x > 0 n [£
2 2 42 n-2j-1
ba(x)-Q(x) = ] Byx -] B 55 g X

j=0 i=0

45
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c

e Let V1 be the linear space spanned by the functions
n-2 k S
2j 2 n-2j -1 [2]
3.2.4, {x } U {x } on [0,1].
' j=0 j=0

There exists a unique best approximation of x" on [0,1] by functions

in V1 since the functions in (3.2.4) form a T-system. (For discus-

sion of T-systems and verification of these statements see Karlin
and Studden (1966 a, page 280).) Let P(x) = xn-s(x) where s(x) is
the minimizing polynomial in Vl. xn-s(x) alternates g—+ [;ﬂ +1
times in [0,1] with the endpoints included in the set of %-+,[§J + 2

extremal points.

Let
' x) =) Px) x>0
n,k - =
P(-x) x < 0.

It is clear that Hi k(x) is a linear combination of the functions
b

(STE=]

X
2j © n-2j-1  n-2j-1 17
{x 1} + {x -2x }

+

j=0 j=0 )
Claim: Hi,k(x) = bn(x) - Qn(x).

We need only check the equivalence on [0,1] since both functions
are even. In this case P(x) was the unique minimizing polynomial so

that equality holds.

H; k(x) is characterized by the property that there exists
14 . . .
m

-1 symmetric about zero where

m=(n+2[§i+3) points {ti} i
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ml=ty <t <...< t =1 such that

m-i

1 _ .l P
(-1) () (x)) = max | Hn’k(x)| ;i=1,2,...,m

-1<x<1
Hi k(x) is unique in approximating xn, for if Kn k(x) were better,
we would have that the form of Hi k(x) - Kn k(x) would be

n-1 n-1

3.2.5. Lowx; - ] aux,
i=0 i=n-1-k

and have at least %-+ [%J zeros in both [1,0) and (0,1] and at least
n + 2[%] + 2 zeros in [-1,1]. Lemma (2.1.5) would imply that
1

Hn k-Kn-k = 0 since the only polynomial with the above zeros in the

form (3.2.5) can only be the zero polynomial. Let

1
1 Hn,k(x)
wn k(x - 1
’ [y G0l
where "|| || denotes the sup norm for xe [-1,1]. Assume we have a

K(x) satisfying (1), (2) and (3). 1In order for K(x) to be nontrivial
and have at least (n+k+l) zeros, the coefficient of X" in K(x) must be
non-zero. We may normalize K(x) so that the coefficient of X" is

unity. From earlier arguments we know that ||H;’k(x)||<||K(x)||.

However, Hi k(x)—K(x) would be of the form (3.2.5). A similar argu-

ment to that following (3.2.5) implies that Hi k(x)EK(x). Thus

1 . 1 _ m
Wn,k(x) satisfies (1), (2) and (3) where En,k_{ti}i=1'
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L

In order to see that the coefficients are non-zero, we note that

1

Wn k(x) for x > 0 has %-+ [gﬂ + 1 distinct zeros in (0,1]. By
Descartes' Rule of Signs, there can be at most %-+ [gﬂ + 1 zeros in

(0,1]. This implies that all of the coefficients_Bi used in Wi are

.k
non-zero.
The proof for n odd follows this identical argument after consid-

eration of the following lemma.
Lemma 3.2.2. Let V be the linear space spanned by the functions

k
n-1-2j [5]

u {x } j=0

2j-1 2
x ).

on [0,1]
where n is odd and n-2>k>0. There exists a unique polynomial s*(x) of

functions in V satisfying

max Ixn—s*(x)l < max | xn-v(x)|
0<x<1 0<x<1

for all v(x) in V. s*(x) is further characterized by the property

n+3
.2

+ [%J)vpoints {ti}il:l where (0<t_ <t <...<tm=1)

that there exists m=( 1772

such that

(-1)“'1(t2 - s*(t)) = max |x"-s*(x)]; i=1,2,...,n

Oj}i}

. . . n .
Proof: There exists a best approximation of x by a function

bo(x)sv in the sense that
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- n_ 0 n
-~ max |x -b (x)| < max |x"-v(x)]
0<x<1 0<x<]
- for all v(x)e V. Meinardus (1967, page 1).
Given the compact set [e,1], we denote by b®(x), 0<e<l, the

unique best approximation of X" by functions in V defined on [e,1].

- Karlin and Studden (1966, page 280). 1If 0<e <1, then

1582

€2 n %1 n . °1,
max [x-b “(x)]< max |x"-b “(x)]< max |<"-b “(0)].
xe[ez,l] xa[ez,l] xa[el,l]
Thus we have for all ¢ in (0,1)
3.2.6. max |x"-b%(x)|<  max lxn-bo(x)|=Al.
xel[e,1] xe[0,1] .
>0 . . m
Choosg n>0 such that 0<n<l and pick m points {xi}i=l’ n§;1<x2<...<xm§}.
We write the system of equations
n .
xi - be(xi) = ci i=1,...,m 0<ex<n

in the form
3.2.7. Mb_=C¢c

€ €
where Eg is the vector of coefficients of the polynomial xn-be(x) and
E; is the vector of values c; in (3.2.7). M is an mxm non-singular
matrix determined by the {xi}if1 and the functions in V U {x"}. We
may write (3.2.7) in the form

-1

b =M c.
€ €
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-1

-.__Since M is a continuous linear transformation, we have that

||5;|| < K||E;|| where K is some positive constant and "|[| ||"

“denotes the euclidean norm. Since |ci| <A by (3.2.6) for each

i, i =1,...,m, independent of ¢, we have that

15,11 < KA,

where the positive constant K A. is independent of e¢. Thus implies

1

that the individual coefficients in be(x) are uniformly bounded by

K A1 for ec[0,n]. Therefore there exists an 53>0, 0<€3<n, such that
n ES
max |x -b “(x)]| < A,.
N |
xe[O,es]

After consideration of (3.2.6) for e, and the minimizing properties of

3

bo(x), we have that

max
xe[0,1]

n %3
|x -b f(x)I = Al.

€
However, since b 3(x) is the unique best approximation of ™ on [53,1];

€ .
it must agree completely with bO(x). So b 3(x)EbO(x) for

xe[0,1]. We define

€
b 3Es*(x)

and nofg that by Karlin and Studden (1966, page 280) and the fact that
there must be only (m-1) zeros in the derivative of xn-s*(x), the
lemma is proven.

We have seen that Wi’k(x) when properly normalized becomes the mini-

mizing polynomial for x". The next lemma shows that it has this
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- minimizing property for all of the functions in (3.2.2) that appear
in w;’k(X)-

Lemma 3.2.3. Among all polynomials f(x) in the functions (3.2.2),

() W1 (x)/8 . minimizes sup If(x)| where -f(x) is any
n,k n-2j
-1<x<1
n-2j
polynomial in (3.2.2) with the coefficient of x unity

for j = 0,...,[%&, and

(2) wi,k/Bn-Zj-l minimizes _1i;21 ]f(x)l where f(x) is any

polynomial in (3.2.2) with the coefficient of
n-2j-1 n-2j-1 K
(x -2x, ) unity for j = O,...,[iﬂ.

‘Proof: The case for which the coefficient of X" is unity was done in
the two preceding lemmas. Consider next the cases where the

n-2j
coefficient of x is unity for j =0,..., [gﬂ. As before, there is

n-2j :
a best approximation of x by the remaining functions in (3.2.2)

n-2j : : _
which is odd or even as x is odd or even. Meinardus (1967, pages

26 and 27). Upon dividing this best approximation by its norm, we

see that it satisfies the same properties that Wi k(x) satisfied in
L

lemma (3.2.1). (i.e. The construction would follow a similar develop-

ment as that in lemmas (3.2.1) and (3.2.2).) W1

n,k(x) is unique in this

respect so (1) is proven. (2) follows the same line of reasoning as
(1).

We are now in a position to begin classification of the Eﬁ-optimal

design for the parameters of the functions in (3.2.2) that have the



. n . . .
__same parity as x (i.e. The functions that are even or odd as n is

even or odd).

Theorem 3.2.1. The optimal designs for estimating the follow-

ing parameters in (3.2.1)

3.2.8.

(

gn—2j for j

0:--',[g]; n—Zj#O

B

< n-2j-1 for j

k
N5 F

i.e., parameters for functions of the same parity

\ as xn,

have their supports contained in the set Ei k“and satisfy the follow-

ing:

(i) When k is odd the optimal design for any parameter in (3.2.8) is

| unique and is supported by the full set E

|
n,k’

(ii) When k is even the optimal designs for the parameters in (3.2.8)

are not unique and satisfy the following:

(a)

(c)

(d)

The optimal designs are a convex combination of two proba-
1

bility measures ug and ué (or uO and u_. ) where ug{+l}
g 2 By B %
0 1 1
*0(=u8 {+1}) and ug  {-1}=0 (=u, {-1});
h % By

In the convex combination described in (a) all the designs

other than uO and ul (uo and ul ) are supported by the
4] 4] B B
h 2 n h
full set E1 5
n,k

The vectors of weights associated with the optimal designs

of (ii) lie on parallel lines;

(iii) The suppoft for the optimal design for 0y is {0}.

52
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-

Proof: Let E£=(O,...,O,l,0,...,0) where the 1 is in the component

~

of 0 = (QO"'"On’Bn-l-k""’Bn—l) corresponding to some one of the

. parameters in (3.2.8). By (3.1.3) we have that

inf V(<_,u) = min sup [f (x)_(zy?;(x))]z.
M p a -l<x<1 P

If we denote by Bp the coefficient of bp(x) in Wi k(x), we have that
inf V(W = (8)°
u p P
: * — '
by lemma (3.2.3). Suppose that up is cp-optimal. Then
- * - 2 2 * -1
V(c_, = su c_ ,a a,f(x dx
(cprbp) = s (p,0) [f(a,£(x)) ", (dx)]
2 1 2 * -1
2 (B[, ()W (4]
2
> .
__(Bp)
Since Iwi k(x)|=1 only for xe E; i strict inequality holds at the

*
last step unless up has its support contained in the set Ei K
b

Assume first that k is odd. To find the Eﬁ—optimal design,

Elfving's theorem (theorem 3.1.1) tells us there is a solution to the -

system
_ n+k+2 _
3.2.9. ge. = ) e, P, b(x))
P‘ v=1
1 n+k+2
for g=| 1/6p|>0 where the x e E; 2 VZI P =1, P >0 and ¢ =tl. The

system (3.2.9) describes n+k+2 equations in n+k+2 unknowns. The rank

of the system is n+k+2. To see this, we show that if M, is the matrix

1




. of coefficients of the ﬁ)v}, then M
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1 has n+k+2 independent rows. If

not, then a nontrivial linear combination of the rows of M., would be

2
equal to the zero vector. This would give rise to a polynomial in the

functions (3.2.2) which would have zeros at the {xv}and be normalized so

that the coefficient of xn is 1. The coefficient of xn is non-zero

'since then the only linear combination of the remaining rows would be

the trivial one due to the spacing of the {xv} and lemma (2.1.5). Let

this polynomial be denoted by P(x). Now

ooaoomb o g
I ex+ ) o (x-2x)
= i=n-1-k

1 n
wn,k(x)/Bn - P(X) = .
i=0

n+k+2

> ]1-1 distinct zeros in both [-1,0) and (0,1] with

and has at least [
at least n+k+l distinct zeros in [-1,1]}. Lemma (2.1.5) implies that

P(x)Ewi k(x)/Bn. This is the desired contradiction. M1 is invertable

so there is a unique solution. Lemma (3.2.4) shows that the support of

the Eﬁ-optimal design in this case is supported by the full set E; K

Assume now that k is even. To find the E;—optimal designs,

Elfving's theorem (theorem 3.1.1) tells us there is a solution to the

system
_ n+k+3 _ '
3.2.10. Be, = L&, P, b(x)
v=1
1 n+k+3
for B= j 1/8p|>0 where the x pe En,k and vzl Pv=1, Pvip and

ev=i-1' The system (3.2.10) describes n+k+2 equations in n+k+3 un-

knowns. The rank of the system is n+k+2. To see this, we show that



55

- if M, is the matrix of coefficients of the {Pv}’ then M, has indepen-

dent rows. If we consider a (n+k+3) x(n+k+3) matrix M with the n+k+2

n n n -

+,...,xv+,...,xn+k+3+), then the

- n
rows of M2 and the row vector (x1+,x2

rows of M are independent by lemma (2.1.5). (M is obtainable by ele-
mentary row operations from a square matrix whose determinant is non-

“zero.) This implieé-that the rowsof M2 are independent. Since the
coefficient matrix for each parameter in (3.2.8) is (+1) M2, (i1)-(d)

is shown. (ii)-(a), (b) and (c) will follow after consideration of

lemma (3.2.6). (i,i,i) follows after noting that when n is even, the

only solution to (3.2.9) or (3.2.10) is when p n+k+2 =] or
(525140
P 4k+3 =] respectively.
([==—1+1)

Lemma 3.2.4. When k is odd, the system of equations (3.2.9) con-

sidered in theorem (3.2.1) has as its unique solution a set of pv's
such that pv>0 for all v = 1,...,n+k+2.

- Proof: Assume that n is even. Since M1 is nonsingular, we can solve

for the {pv} by Cramer's method. If when estimating the parameters

(3.2.8) we have P, = 0 for some Vo = 1,...,n+k+2, we are led to a
' 0

nontrivial linear combination of the functions in (3.2.2) in the form
‘X‘ i “il i
P(x) = a.x + b. (x -2x7)
i=0 ' i=n-1k * T

where either
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i
-

Tl . .= Or 3 i £ rii"" -2j
. a) 5= 0 for some j = ¢, csinhm 2] #0

or b Seooa

Let Q(x)=P(x)+P(-x). Then

n-2

§ 2j § 2j+1  2j+1
Q(x) = + 2b,. (x -2X )
120 i_n-k-l 2j+1 +
T2
. where 8,5= 0 or b2j+1 = 0 for the appropriate parameter mentioned

above. If X, # 0, then Q(x) has at least ( ) distinct zeros in

0

both [-1,0) and (0,1] and a zero at x=0. This implies that aO=0. By

Descartes' Rule of Signs, Q(x) can have at most (n+§-3) distinct zeros

in both [-1,0) and (0,1]. Thus Q(X)EO on (-1,1]. If x, = 0, then
0

Q(x) would have at least ( ) distinct zeros in both [-1,0) and

(0,1]. By Descartes'Rule of Signs, Q(x) can have at most ( ) dlS-

tinct zeros in [-1,0) or (0,1]. This again implies that Q(x) = 0 on

[-1,1].

Since Q(x)=0, P(x) can only be of the form
n-2
% 23 2j
ayie X + b2- (x -2x ).
i= 23 i=n-k J . *

-1

2

Now P(x) can have at most (n+§—l) distinct zeros in either [-1,0) or

n+k+1
2

(0,1]. However, P(x) must have at least ( ) distinct zeros in

either [-1,0) or (0,1], depending on whether v_ e ntk+3

0 [——5—— ,N+k+2] or




‘\ voe[l,—————ﬂ, and at least (

S/

©

n+k+3 n+k -

5 1) distinct zeros in both [-1,0) and

2

(0,-1]. This implies that P(x)=0 for xe[-1,1] and contradicts the

fact that p, = 0. Thus we have that pv>0 for all v = 1,...,n+k+2.

0
If n were odd, similar arguments hold for'Q(x)EP(x)—P(-x).
Lemma 3.2.5. When k is even there exists a linear combination

. 2
of the functions in (3.2.2), Kn k(x), such that

1
wn,k(xv) for X, = X, or xn+k+4_£

L _
3.2.11. K L (x)=

' n+k+4
0 for x # XQ OT X 14d-g 2=l,...,[——§——ﬂ

R . '
and Kn,k(x) is of the form

n+l k
2 = n-2 131 n-2j-1 n-2j-1
3.2.12. K () = jZO bhgjX  * jZO b2y 1% -2x, )

wherc all the coefficients bj are non-zero and have the same sign as the
corresponding Bj in (3.2.3).

Proof: Let K be the linear space spanned by the functions

n k
n-2i 21 nezia 2 .
{x } U {x } . Let E be the set of points E_ [0,1].
j=0 j=0 n,

" In E there are exactly [%J+[§J+2 points and in K there are exactly

[%J+[%J+2 functions. The functions in K form a T-system on a subin-

terval containing the points in E. Thus there is a unique linear com-

bination of the functions in K, say Ki k,that satisfies (3.2.11) on

[0,1]. If n is even we define Ki k(-x)EKﬁ k(x),and if n is odd we
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-_aﬁ?fine Kﬁ’k(—x)E—Kﬁ,k(x) for xe[0,1}. Thus we have that Kﬁ)k(x) is of

the form (3.2.12) where all the coefficients bj are non-zero and have

the same sign as the corresponding Bj in (3.2.3),since the coefficients

bj must alternate in sign in the same manner as the Bj in order to have
the appropriate number of required zeros.

Lemma 3.2.6. When k is even, the system of equations (3.2.10) has
as its solution experimental designs satisfying (ii)-(a), (b) and (c)
of theorem (3.2.1).

Proof: Writing the system of equations (3.2.10) in matrix form,we

have
3 | . .
ebo (X)) eeenikes Po(Rnikes) 193] 0
0
3.2.13. e.b_(x.) e b (X 1. ) - 13 ]
Rt B b 1 R | " Tn+k+3 “n‘*"n+k+3 Pn Bp ¢
0
Lelbn+k+l(x) “ €nek+3 Pnaksl Fnake3) | Privks3 0

According to lemma (3.1.1) ev(i_wi k(xv)) = 1, where the + is deter-
mined by the sign of the coefficient of bp(x), (sgn bp), in W; k(x).
Applying the linear combination of (sgn bp) Ki k(x) from lemma (3.2.5)

to the rows of (3.2.13), we have that

3.2.14. : P1+P c

n+k+3 - “1°

Now 1 3_c1 > 0 since we know that there is a solution where
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<Py *Phages S 1 and c,#0, for l/Bp would have a positive
multiplier.
Consider next the reduced system
- ' "1 - - -
ebo(x)  cefpaaa Do G| [P1 0]
0
3.2.14. : : : _ Iz |
P
0
| E1%neke1 %10+ Fnaic2 Prael Fnakes)| [Prskez| - L0

Applying in like manner the polynomials (sgn bp) K; k(x) and

(sgn bp) Wi k(x) to the above system, we find that P, = anda

n+k+2
P~ 1. Thus any solution to (3.2.14) is also a solution to
v=1
(3.2.13). The coefficient matrix in (3.2.14) isnonsingular. . To.

see this, take the linear combination of the rows suggested by Ki k(x)

and place this in the (n+1)st row. This implies that the determinant

of the coefficient matrix is

bO(xz) ces bd (xn+k+2{
+ 1 det bn_l(xz) N bn—l (xn+k+2)
bn+1(x2) U bn+1 (xn+k+2)
bn+k+1(x2)"’ bn+k.+1(xn+k+2)_
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nIhis last determinant is non-zero by lemma (2.1.5). The symmetry

n+k+3
in the above arguments would give p ., .z = € and sz pv=1 when
considering the system of equations determined by the points
n+k+3

{xv} v=2 It will be shown in theorems (4.2.1) and (4.2.2) that

the unique solution of (3.2.14) is a probability measure as well as

the unique solution to the symmetric system determined by the points

{ }n+k+3

x, 3,22 . We will denote these probability measures as ug and

P

u; respectively, where 9p=(§}3§). Now any solution up (a probability
P .
measure) must satisfy

0 1
=q U * (1-q) 1y

u
P P P

for some 0 < q < 1. To see this, we note that ug and ué , when viewed
P

n+k+3

v=l are distinct vectors on

as vectors of weights on the points {x}

a one dimensional set. Also, if q were outside the closed interval
[0,1], then either q OT (1-q) would be negative. This would imply that

either up{—l} or up{+1} would be negative which would be contradic-
tory. This proves (ii)-(a).

In order to prove (ii)-(b), we consider the system (3.2.14) re-

written in matrix form as

Ap = B

where A is an (n+k+2)x(n+k+2) matrix and B is an (n+k+2)x(1) matrix.

(Note: det A is non-zero by earlier arguments.) Assume n is even.
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T bo(xl) ce bo(xn+2)

det A=(_1)n+§+2 det . . =

bn+k+1(x1) e bn+k+1(Xn+2)

b, (x,) co.b (X )
n+k+2 n+k (n+k+1)(n+k+2)det 9 2 9 ntk+3
2

-1y (-7 (-1

bn+k+1(x2)"'bn+k+1(xn+k+3)

The last equality is obtained by first multiplying the rows corre-
sponding to odd functions by (-1) and then symmetrically interchanging

the columns. (Note: The'xv are symmetric about zero.) The last
equality above becomes

. bo(xz) .o bO(xn+k+3)
det A= -7 det .
b k1 ®2) -+ Bripes Kpages)

When solving (3.2.14) by Cramer's method, we are led to the evaluation

of
[~ -
elbo(xl) B € 4k+2 bo(xn+k+2)
det Iz | :
: P
0
€lbh+k+1(x1)"' 0 “n+k+2 bn+k+1(xn+k+2)_

where (0,...,0, | 1/8p | ,0,...,0) 4is the vth colum.

RO e e el A D i o et ey
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--..This determinant equals

n+k+2
g
(-1) -nv*
- —y
bo(x))  eaby(x ) O by(x)  ee- By(X o)
0
det: 5 | -
p »
0
ek K1 P Ky 120 B Kuegd oo P (Rnage)
v+ n+k
3.2.16. -1V - 17 det
b (xz) v DK kea-(ve1)) O P (Xpuidouo1y? P (g )
L
Ispl

1(%)- n+k+1(xn+k+4—(v-1))0 Broke1 Fnakad- (v-137* * “Prakr1 Kk 3)

L_n+k+
The equalities were obtained as before with
1 if (sgn bp) is positive

0 if (sgn bp) is negative.

In solving (3.2.14) by Cramer's method, we would have

0 1
“gp{xv} = (3.2.16)/(3.2.15) = ”ep{xn+k+4-v}'

The case for n odd is somewhat more involved but follows similar argu-

3.2.17.

ments. This proves (ii)-(b).
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"~-.. In order to show (ii)—(c), we assume that

0 1
uq{xv}=q ugp{x\,} + (1-q) ugp{xv} =0

for some q such that 0<q<l.. This implies that ug {xv}=ué {xv}=0,and

P P
‘ 0 _ c . .
therefore, by (3.2.17) that Mg {xn+k+4-v}-0' This implies: that
‘ P
uq{xn+k+4fv}=0' However, after applying the linear combination sug-

gested by K: k(x) of lemma (3.2.5) to (3.2.13), we have that

uq{xv} + u { }=Cv>0' This is the desired contradiction. When

uq Xnek+4-v
v =(21Eii9, x_ =0 and po {0} = b {0}=c_ >o0.
0 2 v 0 e v

0 P P 0

Example 3.2.1. Consider a random variable Y(x) with mean

E Y(x) = 90+91x+92x2 + Bl(x—2x+) where xe[-1,1]}. For this example

wé 0(x)=1+8x+8x2¥8(x-2x+) and Eé 0° {-1,-1/2,0,1/2,1}. The optimal

designs for estimating Qz,given as vectors of weights on the points
1 ‘

Ez,o,are

q(1/4,1/2,1/4,0,0) + (1-q)(0,0,1/4,1/2,1/4) for 0<q<l.

The optimal designs for estimating Bl are
q(1/8,3/8,3/8,1/8,0) + (1-q)(0,1/8,3/8,3/8,1/8) for 0<q<l.

The optimal design for estimating 90 is

(0,0,1,0,0).

63
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¢

Example 3.2.2. Consider a random variable Y(x) with mean

2 3 2 2 .
0+01x+92x +93x +82(x —2x+) where xe[-1,1]. For this example

f)+(26;15/§)x3 o

wé o (X)=3(2+V3) x+3/2(12+7/3) (x%-2x nd

Eé 0={-1,-(/3-1),-(3/3-5),(3/3-5), (¥3-1),1}. The optimal design ug
’ , 1

for estimating 0., given as vectors of weights on the points Eé 0 to 5

1’ s
decimai places, is

L]

ug = (.05955,.14088,.41467,.35912,.02578,0) .
1
ué is the symmetric image of the above, and all the optimal designs
1 :

 can be represented as a convex combination of these two. The optimal

designs for estimating 0., are any convex combination of

3

ug = (.17863,.35566,.31101,.14434,.01036,0)
3‘

and its symmetric image ué .
3

The optimal designs for estimating 82 are any convex combination of

0

Mo = (.11909,.27233,.33878,.22767,.04213,0)
2

and its symmetric image ué .
2

Example 3.2.3. Consider a random variable Y(x) with mean

2 3 4 3 3 .
E Y(x) = 90+91x+92x +93x +O4x +83(x —2x+) where xe[-1,1]. For this

example Wi,o(x) = -1+8(3+2/2)x%+2(17+12VD) x 4 8(745v2) (x*-2x7) and

rme

R e
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Ei o={-1,-2/Z-1) ,- (/2-1),,0, (¥2-1) ,2(¥Z-1),1}. The optimal designs

for estimating 92, given as vector of weights on the points Ei 0 to 5

decimal places, are any convex combination of
0

u
9,

= (.07322,.16220,.26726,.31786,.15952,.01994,0)

and its symmetric image ué .
2

The optimal designs for estimating 6, are any convex combination of

4

ug = (.14645,.29315,.28452,.19822,.06903,.00863,0)
4

and its symmetric image ué .
4

The optimal designs for estimating 83 are any convex combination of

0

Mg = (.10984,.23548,.27589,.24242,.11428,.02209,0)
3 .

and its symmetric image ué .
3

is

The optimal design for estimating 90

(0,0,0,1,0,0,0).

We now begin a development similar to the above to enable us to

classify the Eb-optimal designs for those functions in (3.2.2) that are

of opposite parity of x". We will show in this case that the designs

are unique for any particular choice of n and k.

Lemma 3.2.7. There exists a unique polynomial Wﬁ k(x) which is a

linear combination of the functions in (3.2.2), satisfying:
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OETNETIERY

2 o 1wl _ . k+1
(2) The set En’k={x. IWn,k(x)l-l}.contalns exactly n+2[—7—ﬂ
points and is symmetric about zero;

(3 Wﬁ k(_x) attains its supremum at each of the points of the
. 3

set Ei With alternating signs. Wﬁ x(¥) is of the form
n-1 ktl,
2 [ % ] 1 n-2j-1 [ % ] 1 n-2j n-2j
3.2.18. W (x) = B ,: 4 X + B L(x -2x ),
n,k j=0 n-2j-1 j=1 n-2j +

and all the coefficients are non-zero. (Note that Wi k(x) is
: ?

even or odd as n is odd or even).
Proof: Let V be the linear space spanned by the functions in (3.2.2),

excluding xn-l. If 8(x)e V, then g(-x)eV since each function in
(3.2.2) is either odd or even. There exists a best approximation of

bn_l(x) = xn_l, say Qn_l(x), with respect to V, which is even (odd) as

n is odd (even). Meinardus (1967, pages 26 and 27). We can construct
this unique even or odd best approximation with an argument similar to
that in lemma (3.2.1). We define

xn-l'Qn-l(x)
Il n-1

X —Qn-l(x) I |

and note that by a similar argument to that of lemma (3.2.1), Wﬁ k(x)
b4

2 -
Wn,k(x) =

is of the form (3.2.18) with all non-zero coefficients.
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Let H(x) be a linear combination of the functions in (3.2.2)

W satisfies (1),

satisfyiﬁg (1), (2) and (3). 'If n is odd,
(2) aﬁd:(S) and is a mnontrivial even function. So-Wn,k'= Eﬁfl%ﬂi:ﬁl“
If we write H(x) as the sum of its odd G}(x)) and even @ (X)) pafts, we
have H(x)=£(x)+@{x)=wi,k(x)+Cﬂx). Now (3(x) must equal zero at the
points in Ei,k and must also have its derivativé zero there. If the
dérivativewere'not zero at the points in Ei,k’ then-sup |H(x)|>1. This

implies that G(x)=0. Thus,H(x)EWi’k(x) and we have uniqueness. A

similar argument holds for n even.

Lemma 3.2.8. Among all polynomials f(x) in the functions (3.2.2),

2 1 e e .
1) Wn,k(x)/sn_zj_1 minimizes sup |f(x)| where f(x) is any
-1<x<1
n-2j-1
polynomial in (3.2.2) with the coefficient of x unity

for j = 0,...,[2514, and

(2) W2 (x)/B1 . minimizes sup |f(x)| where f(x) is any
n,k n-2J
-1<x<1
n-2j n-2j
polynomial in (3.2.2) with the coefficient of (x —2x+ )

unity for j= 1,...,[5514.

Proof: The proof follows an argument similar to that in lemma (3.2.3)

after consideration of lemma (3.2.7).

S
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e Theorem 3.2.2. The optimal designs for estimating the following

parameters in (3.2.1):

,

. n-1 -
- 9n-2j-1 for j = 0,...,[—5—1 n-2j-1#0
. k+1
3.2.19. Bn-zj for j = 1,...,] > ]

i.e.s>parameters for functions of the opposite parity of

n
\ X >

are unique and are supported by thé full set Ei,k' The support for the
optimal design for 6, is {0}.

Proqf: Let Eé=(0,...,0,1;0,..,0) where the 1 is ip the coméonent of
5;(90""’gn’en-l-k""’sn-l) correspoﬁding to some one of the parame-

ters in (3.2.19). By(3.1.3) and anargument similar to that in theorem

(3.2.1), we have that

— % 1.2 2 2 * -1
V(c_, > )] W X dx
(epohy) 2 (B 7L (G () w (dx)]
1,2
> 3
> (Bp)
where u* is c_-optimal and Bl is the coefficieént of b_(x) in w2 (x).
P p p P n,k
*
Since lwi k(x)|=1 only for xaEi K? up has its support contained in the
-2 .
set E , Since
n,k

inf V() = (81)°.
u P P

Elfving's theorem (theorem 3.1.1) tells us there is a solution to the

system | n+2[k;1]

1 - _
3.2.20. j=lc. = }:1 e pb(x)
V=




X, € Ei k,and the coefficient of x" * is non-zero by lemma (2.1.5).
After normalization, we may assume the coefficient of xn"1 in P(x)
.is unity. Since
2
W, (x)
nik - P(x)
B
n-1
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n+2[5

| 2 ) _ —
where the X ¢ Bl ko vzl p,=1, p,>0 and e =+1. Any cp-optlmal

design must be a solution to (3.2.20).
Assume that k is odd. The system (3.2.20) describes (n+k+2)

equations in (n+k+1) unknowns. The rank of the system is (n+k+1). To

see this, we note that the (n+k+1)row vectors omitting the row vector

corresponding to xp, are independent by lemma (2.1.5). This implies
that the solution is unique.
Assume that k is even. The system (3.2.20)'describes(n+k+2)equa-_

tions in(n+k)unknowns. The rank of the system is(n+k). Consider the’

(n+k)row vectors, omitting those corresponding to the functions < and _ :

(xn-l n-l)-

-2X, If these rows were not independent, then we would have

a nontrivial linear combination, say P(x), such that P(xv)=0 for

has (n+k-1) distinct zeros falling between successive xv's in Ei K’ and
2

n-2 s n-2
is of the form ) o X + ]

1 i bl .
I o (x'-2x)), it must be identically
i=0 i=n-1-2 ~

equal to zero. (See lemma (2.1.5).) This implies that P(x)=0. This

implies the solution to (3.2.20) is unique.
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Lemma (3.2.9) will verify that the optimal designs are supported
by the full set. If n is odd, we see by inspection of the system

'(3.2.20) that the opiimal,design for estimating 90 is uwnique and is
supported by {0}.

Lemma 3.2.9. The equations of the system (3.2.20) have as their

respective unique solutions a set of pv's such that pv>0 for all

k+1
2 1.

v=1,,..,n+2]

Proof: Assume that k is even. Since the system (3.2.20) has a solu-
tion, we need only solve a reduced system of (n+k) independént equa-
tions. As in theorem (3.2.2), we eliminate the contfibution of the

_1—2x2-1). The remaining coefficient matrix is

functions x" and (xn
square and nonsingular. We are thus led to the situation of lemma
(3.2.4) with k odd. This verifies that the support mentioned in

theorem (3.2.2) is on the full set Ei K

Assume that k is odd. As in the above, we eliminate the contri- .
bution of the function x". The remaining coefficient matrix is square

and nonsingular. If p, =0, for some v
0

O=1,...,n+k+l, when solving by

Cramer's method we would be led to a nontrivial 1linear combination of

the form
nil i n-}-jl i 3
P(x) = a.x + b, (x7-2x7)
i=1 * i=n-1-k *
. o . n-1 . _
where either an—Zi-l—O for some i = 1,...,] 5 1, n-21i-1#0 or bi—O

kel

for some i = 1,...,{-2 Also P(xi)=0 for all xv#i;v . If n were odd,

0



On (0,1) Q(x) must have (
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. then P(x)+P(-x)=Q(x) would have the form

n-1 n-3
2 2i 2. 2i+1 2i+]1
Q(x) = 'Z 2a,.x  + ¥ 2b,.,,(x -2x, )
i=1
._n-k-2
T2
where a,;= 0 or b2i = 0 for some i. Q(xv)=0 for all xv#:;vo.
n+k

2_2) zeros,but by Descartes' Rule of Signs

n+k
2

Q(x) may only have ( -4) zeros. Appropriate adjustments can be made

for the case where X, = 0. This implies that Q(x)=0, which in turn
0

implies that P(x)=0. This contradicts the fact that‘pv =0.A similar
: 0 '

argument will hold for n even.

Example 3.2.4. Consider a random variable Y(x) with mean value

2 3 4 3 3 .
E Y(x) = 90+91x+92x +93x +G4x +63(x -2x.) where xe[-1,1]. For this

example Wi O(X) = -3x+4x3 and Ei 0= {-1,—1/2,1/2,1}. The optimal

design for estimating 9., given as a vector of weights on the points
g 29, 8 g P

2 .
E4,0, is

(1/18,8/18,8/18,1/18).

The optimal desi for estimating 08_, given as a vector of weights on
P gn g 94 g

, 1is

e 2
the points E4,O

(1/6,2/6,2/6,1/6).
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3.3. Optimal Designs for Basis II.

In this section we consider a random variable Y(x) with mean
n . n-1

3.3.1. Joeooxt+ 7 pxt
i=o * i=n-1-k * °*

where xe[-1,1] and n-1-k>1. As regression functions, we have the

(n+k+2)linearly independent and continuous functions

5.3.2. b(x) = (l,x,..-,x",xz—k-l,...',xlj_l).

In order to classify the Eﬁ-optimal designs, we will follow the pattern
of section 3.2. When finding the best approximation of bp(x) by the

remaining functions in (3.3.2), we will again use the polynomials of
lemmas (3.2.1) and (3.2.7). It is clear that any linear combination
of the functions in (3.3.2) can be formed by a linear combination of
the functions in (3.2.2) and conversely. Howéver, we will find that

for identical bp(x) in both (3.3.2) and (3.2.2), the optimal designs

are not the same in all cases. See examples (3.2.2) and (3.3.2). The
following lemma concerning the zeroé of a polynomial in the functions

(3.3.2) will be needed when finding the best approximation of bp(x) in

(3.3.2)..
n i n-1 i
Lemma 3.3.1. Let B(x) = } a.x + Y B;x, for xe[-1,1] and
i=Q0 ~ i=n-1-k ' v
n-1-k>1.

If at least one of the ai=0 for n—lz}zy-l-k or at least one of the

Bh-2j.170 for j = 0,--o;[%ﬂ, then B(x) cannot satisfy both
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(1) B(x) has at least (n+2[§ﬂ+2) distinct zeros in [-1,1] with

n+2[§ﬂ+2

at least [ >

] distinct zeros in both [-1,0) and (0,1],
and
(2) B(x) does not vanish identically in any interval containing
. two of these distinct zeros.
Proof: Assume k=n-2 and n is even. B(x) must have n distinct zeros in
both [-1,0) and (0,1]. By Descartes' Rule of Signs, B(x) must have at

least n variations of sign presented by its coefficients in (0,1]. The

same must be true for B(-x) for xe(0,1]. This is clearly impossible

~ with the missing coefficients. A similar result is true with n odd.

Assume k is less than n-2. Then the derivative of B(x) exists
throughout [-1,1] ,andby Rolle's Theorem, the zeros of B(x) are sepa-

rated by the zeros of B(l)(x). (B(J)(x) denotes the j-derivative of

b(x).) B(l) cannot vanish identically in any interval between two of

its zeros. Clearly, B(n_z_k)(x) must satisfy the above case with

k=nl-2, where n1=k+2, by successive application of Rolle's Theorem.
Again we arrive at a contradiction.

Lemma 3.3.2. If B(x) satisfiés the hypothesis and condition (1)
of lemma (3.3.1), then B(x)=0 for xe(-1,1].
Proof: Lemma (3.3.1) implies that B(x)=0 for some interval. This im-
plies that B(x)=0 oﬁ at least one of {-1,0] or [0,1]. On either of the
above intervals, a nontrivial B(x) could tﬁus have at most k distinct

zeros by Descartes' Rule of Signs if it vanished identically on the
k

n+2[§ﬂ+2
other. Condition (1) implies that we must havc-———7§~—- > k distinct




zeros. Thus B(x for xe[-1,1].

We are now : iz to go directly to the minimizing polynomials.
Lemma 3.3.3. Among all polynomials f(x) in the functions (3.3.2),

(1) W (x)/B__, . minimizes sup |f(x)| where £f(x) is any
n,k n-2J
-1<x<1- .
n-2J
polynomial in (3.3.2) with the coefficient of x unity

for j = O,...,[E%lﬂs

1 c s .
(2) wn,k(x)/sn-zj—l minimizes  sup lf(x)l where f(x) is any
: . -1<x<1 :
n-2j-1
polynomial in (3.3.2) with the coefficient of x unity

for j = 0,...,[%&; and

1 . .
(3) Wn’k(x)/-ZBn_zj_1 minimizes  sup |f(x)| where f(x) is any

-1<x<1
n-2j-1
. polynomial in (3.3.2) with the coefficient of x_ unity
for j = 0,...,[5].
Wi k(x) is the polynomial described in lemma (3.2.1).
n-21
Proof: The cases for which the coefficient of x is unity for

ia[n-g-sj,...,{%i, and i=0, follow the same arguments as in lemma

(3.2.3).. This happens because any best approximation can be expressed

in a unique manner since the remaining functions span the same space.
Assume now that we are minimizing some one of the remaining func-

tions listed in (1), (2) or (3), and let Oirepresent its coefficient in

Wi k(x). Assume Q(x) is a better minimizing polynomial than Wi k(x)/Qz-

P T T Pt om ey i s i e rrm e = @ s mnroed . o 150 et e mne 1 2 e —ein & = e e
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n,k L
satisfies the hypothesis of lemma (3.3.2). This implies that

Q(x) Ewrll k(x) and proves the lemma.

In the following theorem, the parameters listed in (3.3.3) corre-
spond to those of the same parity as x® when Wi k(x) is written in the
2

basis (3.2.2) rather than in that of (3.3.2).

Theorem 2.3.1. The optimal designs for estimating the following

parameters in (3.3.1):

( . =0 N p-2j
gn~23 for j 0,...,[2] n 23J#0
: 3 3 3 ) . for j =0 [EJ
: e 3.9, ¢ n-2j-1 . seeesty
: | . ' K
: Bh-2i-1 for j = 0,...,[51,
\

have their supports contained in the set Ei K (see lemma 3.2.1) and

satisfy the following:
(1) When k is odd the optimal design for each parameter listed
in (3.3.3) is unique and is supported by the full ;et'Ei,k;,
(ii) When k is even the optimal designs for the parameters in
(3.3.3) are not unique and satisfy the following:
(a) The optimal designs are a convex combination of two‘

probability measures “8 and ué (or uo and ul ) where
L

[} Bh Bh

0 n 0 1 -0 (eud 1_717.
“eg{+1}'° (—ush{+1}) and ugz{—l}_o (—ush{ 1h;




(b) In the convex combination described in (a), all the

designs other than uo and ul (uo and ul ) are sup-
8 e B B
L 2 h h :
ported by the full set Ei 0
(¢) The vectors of weights associated with the optimal de-

signs of (a) lie on parallel lines;

(iii) The support for the optimal design for 0, is {0}.

Proof: 'By an argument similar to that in theorem (3.2.1), we have

that for any Eﬁ-optimal design u;,-for one of the parameters in
(3.3.3),
- * 2 1 2 -1 2
V(c_, = W d = .
(epomp) = (BTL/ (W, 1 (D) u,(dx)] (8,)

N .
Any up must have its support contained in the set Ei K Elfving's

’

theorem (theorem 3.1.1) tells us there is a solution to the system

_ n+2[§J+3
: 1 - X _
3.3.4, |= | = Y ep. b(x)
. BP P v=1 AVl v
n+2[§ﬂ+3
1 =
where the x e B ., vzl p =1, p >0 and e =+1.

Assume that k is odd and n is even. As in theorem (3.2.1), we

know that there is a unique solution. Assume P, =0 for VO#(n+§+3)

0

76

(i.e. X, #0) when estimating one of the coefficients in (3.3.3). When

0

solving (3.3.4) by Cramer's method, we are led to a polynomial

5 n-1 3 n n-1
aix + 2 bix+ where _X ai + Z b, > 0.

P(x) = :
i i=n-1-k i=1 i=n-~-1-k

1

no~13
p—t
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e e e e e

77

”-aNow p(xv)éo for all xv#xv . Let Q(x)=P(x)+P(-x). Then

0
n n-2 n-2
| 7 2i 7 2i 3 2i+1 2i-1
Q(x)= .z 2a,,x + Y byyX * y byiap (2%, =X ).
i=1 . n-1-k . n-l-k
= 2 1= 2

If Q(xv }J=0, then Q(x)=0 by Descartes' Rule of Signs on [-1,0) and
0

(0,1]. If Q(xv )#0, then by Descartes' Rule of Signs, Q(x) has the
0

n+k-1

maximum‘number of zeros possible, ( >

), in both [-1,0) and (0,1].
This implies that a and bn-l must be non-zero and of opposite signs.

Multiplication of Q(x) by a unique non-zero constant c will make

Q(xv ) of opposite sign as Wi k(xv ), with either the coefficient of
. 0 4 .

0

X" or xn'l in the two polynomials the same. Wi k(x)_-c Q(x) must satis-
. 3

fy the conditions of lemma (3.3.2). This contradiction implies that
Q(x)=0. Thus P(x) must be of the form

n

i)

n

—— ——

-2 -2

2i-1 § 21 % 2i

X + a,.x + b,.x .
1k 21 . n-T-k 1%

2

I o1

a..
1 2i-1 n
1=

i

7 1=

Descartes' Rule of Signs implies that P(x)=0. This is the desired

contradiction and proves that P, #0. A similar argument holds for
0

v0=(n+§+3). For n odd, we would let Q(x)=P(x)-P(-x) and follow similar

arguments.,
Assume k is even. Following arguments similar to those in theorem

(3.2.1) and lemma (3.2.6), we find that (i1)-(a) and (c) of this



78

. theorem hold . In order to prove (ii)-(b), assume that for some

%
qe(0,1), where uq: qug +(1-q)ué , we have u;{xv }=0. This implies

P 0

’ *
that pg {xv }=ué {xv }=0 so that u {Xv }=0 for all qe[0,1]. If this
p 0 p Yo R

were true, then the reduced system from (3.3.4)

Il | _ n§k+3 _

3.3.5. = | c_ = e p. b(x)

Bp P vel LAY v
v#vo

would have more than one solution and the system would be singular.
N ;
Consider the function Knok of lemma (3.2.5). When applied to the

s
coefficient matrix of the system (3.3.5), we would have an equivalent
system with the row corresponding to <" having all zeros excepta #1 in

the n+k+4—v0 column. An application of lemma (2.1.5) shows that this

system is nonsingular and implies that (3.3.5) has a unique solution.

*
This is the desired contradiction, implying uq{xv }>0. If X, =0, then
_ 0 0
* cation of k O
uq{xvo}— Cv0>0 by application of Kn,k*x) to (3.3.4).

Remark 3.3.1. When estimating the parameters in (3.3.3) other

than gn-2 1 for j = 0,...,[%], the system (3.3.4) can be transformed
J

into the system (3.2.9) or (3.2.10) by elementary row operations on the

coefficient matrix of the 's. This implies that the optimal designs
: P, P P

for estimating the parameters 0 = 0,...,[gﬂ,in (3.3.3) are the

n_zj; J

same as those for Qn-zj; j = O,...,[%J,in (3.2.8). Also the optimal
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-He§igns for estimating the parameters Bn-zj-l; j = 0,...,[§J,in (3.3.3)

are the same as those for Bn-zj—l;‘j = 0,...,[§J,in (3.2.8)._

Example 3.3.1. Consider a random variable Y(x) with mean

E Y(x)=90+91x+92x2+31x+ where xe[—l,l]; For this example,

W; (x)=1+16x+8x2-16x and E1 ={-1,-1/2,0,1/2,1}. The optimal
2,047 + 2,0

designs for estimating @, ,given as vectors of weights on the points

1
Ez’o,are

q(1/8,4/8,3/8,0,0)+(1-q) (0,2/8,3/8,2/8,1/8) for 0<q<l.

See example(3.2.1) for the coefficients 0 and 8, .

0’ &2

Example 3.3.2. Consider a random variable Y(x) with mean

3 .2 ' © el 1
X748, X, where xe[-1,1]. WS,O(x)’ E and the

2
E.Y(x)-90+9 x+92x +0 3,0

1 3

optimal designs for 93, 01 and B, can be found in example (3.2.2). The
optimal designs for estimating 92, given as vectors of weights on the

points EL

to 5 decimal places, are
3,0

q(.11909,.30011,.36656,.19989,.01435,0)+

(1-9) (0,.06991,.25545,.31100,.24455,.11909) for 0<qg<l.

Example 3.3.3. Consider a random variable Y(x) with mean

1

4,0 2d

_ 2. 3. 4 3 . 1
E Y(x)—90+91x+92x +93x +0,x +BoX where xe[-1,1]. W4,0(x), E

9, and B

the optimal designs for GO, 92, 4 can be found in example

3

(3.2.3). The optimal designs for estimating 93, given as vectors of



RHWeights on the points gl

to 5 decimal places, are
4,0 :

q(.10984,.24590,.29672,.24242,.09344,.01168,0) +

(1-q) (0,.03251,.13511,.24242,.25505,.22507,.10984) for 0<q<l.

Example 3.3.4. Motion with a constant acceleration that has an

instantaneous change in velocity.

Consider the motion of a moving particle on the s-axis whose
coordinate is s at time t. We assume that the particle is subjected '
to a constant acceleration —aft/secz.a>0, starting at s=H feet with

velocity v_ft/sec. The equation of motion of this particle is

0
. a 2
3.3.6. s(t)=-5 t +v_ t+H.
_ 2 0
: Assume that at time t1 we have an instantaneous change in velocity and
. let s=0 when t=t1. (3.3.6) becomes
: a 2 a2
3.3.7.. s(t)—-E-t +v0t+ f'tl_votl‘
Thus, when t=t1, the velocity v=v_, and (3.3.5) becomes
3.3.8 s(t)=3-t2-v t,+v t—E-t2+(v +a t.-v.)(t-t.)
e 271 071 02 1771 07 17+

which is a monospline with knot at -

If we let a=32 (the acceleration due to gravity), (3.3.8) would

describe the motion of a ball subjected to the velocity v, at height

0

H with a bounce at time t,. Writing (3.3.8) in a basis suggested by

that of (3.2.2), we would have
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A v1+v0-32t %
3.3.9.  s(t)=(———) (t-t;)-16(t-t)
v, .-32t.-v
(L [(e-t)-2(t-t)), ]

The coefficient of [(t—tl)-Z(t—tl)+] in 2s(t) is the_difference of the
velocities just prior to, and after, impact. The coefficient of (t-tl)

in s(t) is the average velocity just prior to, and after, impact and

would be zero if there were a perfect bounce. The coefficient of
(t-tl)2 in 2s(t) corresponds to the acceleration. If an experiment

were to be designed in which one of the above coefficients was of prime
interest, then one should consult examfle (3.2.1).

Writing (3.3.9) in a basis suggested by that of (3.3.2), we would
have

_ 2 2
s(t) = 16tl—vO 1+vot-16t +(v1-v

0t32ty) (t-t),.

The coefficient of (t-t1)+_is the difference of the velocities just

prior to, and after, impact. The coefficient of tz_in 2s(t) corre-
sponds to the acceleration. The coefficient of t is initial velocity
and the coefficient of unity is the initial height. If one is inter-
ested in an estimate of one of these coefficients, then one should

consult example (3.3.1).

Example 3.3.5. As in example (3.3.4) and section 3.3, let us

consider a random variable with mean value

2_
3.3.10. 90+91t+92t +81(t—t1?+.



~the experiment in (3.3.4) in such a manner that t

82

“Assume we are in the time interval [0,1] and have the ability to adjust

, can be arbitrarily

chosen in (0,1). If our main interest lies in estimating Bf we would

want to know what values of t1 would minimize the variance of our esti-

mate. For any particular value of t., the 4-optima1 designs will give

1
the minimum variance estimate. So we need only minimize these vari-
ances for tla(o,l).

2

The best approximation of (t-tl)+by 1, t and t~ on [0,1] is unique

and alternates at least three times. Karlin and Studden (1966, page

280). Actually, if t1=l/2, we have four alternations, and if tl#l/z, we

have exactly three. If tle[1/2,2/3], we are led to the normalized

polynomial

2
8t 8t 16
—_— — _._.(t_t) .
t1 tl2 tl 17+

The variance of the best estimate of 81 in this case is

3.3.11. W(t) = 1-

3.3.12. 32
t
1.

and is a minimum for t1=2/3. If tle[2/3,l), we are led to the normal-
lized polynomial

gt 8t2 2(t1-2)2
3.3.13. W(t) = 1—{—-+ “2 5" (t-t1)+.

1 ot" 7 (ty-1)
The variance of the best estimate of 81 in this case is
2(t1—2)2 ,

3.3.14. (———) |

t, (¢, -1)
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- .and is a minimum for tg = [1-(¥5-2)]. The two variances are equal

for t1=2/3, so that tg gives the minimum variance for tle[1/2,1). Due

to the symmetry involved in this problem, we will find the same minimum

variance at 1-t2=(¢§l2).

We now begin the development that will enable us to classify the

Ei-optimal designs for those parameters corresponding to the functions

in (3.3.2) that when written in the basis (3.2.2) would be of opposite

parity to that of x". These parameters are listed in (3.3.15).
Lemma 3.3.4. Among all polynomials f(x) in the functions (3.3.2),

2 1 ... ' .
(1) wn,k(x)/sn-zj—l minimizes 1sup |£(x)| where £(x) is any
-lx<1 )
n-2J-1
polynomial in (3.3.2) with the coefficient of x unity

for j = [521,...,B5H, and

(2) W2 (x)/-ZB'1 . minimizes sup |f(x)| where £(x) is any
n,k n-2J 1
-1<x<1 .
n-2J]
polynomial in (3.3.2) with the coefficient of X, unity

k+1

for j = 1,...,] 5 1.

Proof: The proof for (1) is the same as that for (1) in lemma (3.2.8).
. n-2j-1
The functions in (3.3.2), omitting the x in (1) above, span the

same space as the approximating functions in lemma (3.2.8).

n-2j
Assume we are approximating x, in (2) by the remaining func-
n-2j _
tions in (3.3.2). Any best approximation of X, would also lead to
n-2j n-2j

a best approximation of (-1/2)(x -2x+ ) with the same maximum
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deviation. If n were odd (even), then a best approximation would

exist that would be even (odd). Upon subtracting this best approxima-
n-2j  n-2j

tion from (-1/2)(x -2x, ), we note that the difference normal-

jzed must satisfy (1), (2) and (3) of lemma (3.2.7). Thus, by the
uniqueness of W (x), (2) holds.

Theorem 3.3.2. The optimal designs for estimating the following

parameters in (3.3.1) :

( k+2
[ 2

0 for j

n_2j_1 ], ""[ 2 ]

3.3.15. <

k+1

8 for 3 = 1,..., (551

n-2Jj

N

are unique and are supported by the full set Ei x*

Proof: The designs and proof for the parametexs in (3.3.15) are the
same as those in theorem (3.2.2). As before, elementary row opera-

tions and Elfving's theorem establishes the equivalence.

Example 3.3.4. Consider the set up of example (3.2.4). Accord-

ing to the above theorem, the optimum design for estimating 91 when

E Y(x)=0,+8,x+8 x2+9 x3+9 x4+8 13 given as a vector of weights on the
017 "2 3 4 37+ :

points EZ 0’ is (1/18,8/18,8/18,1/18). The optimum designs for esti-

mating 93 are given in example (3.3.3}.

Example 3.3.5. Consider a random variable Y(x) with mean

2 3 2 .
E Y(x)=6 +91x+92x +0 2% +B X, *B X, where xe[-1,1]. For this example,

W% 1(x) = 1+16x+8x -16x, and E3 1= ={-1,-1/2,0,1/2,1}. The optimal




“design for estimating Bl, given as a vector of weights on the points

2

Bz s ds
(1/16,4/16,6/16,4/16,1/16).
3.4. Optimal Designs forbBasis I1T.
In this section we consider a random variable Y(X), with mean
D oents T g
3.4.1, 0. (x+1)" + B.X,
i=o * i=n-1-k > 7

where xe{-1,1] and n-1-k>1. As regression functions, we are consider-
ing the (n+k+2)linearly independent and continuous functions.

3.4.2. B0 = (1,0x1) ..., (e )P0 ey

When k=0, it will be shown that the Eé-optimal designs for all the

parameters in (3.4.1) will have their supportscontdained in the same set,

E1

n.0° The basic format of this section will follow that of the two
> .

preceding ones. The discussions here will depend on, and be similar
to, earlier proofs as this next lemma illustrates.

Lemma 3.4.1. Wi k(x) of lemma (3.2.1),when expressed in the basis

(3.4.2) ,is of the form

151

!

n-2j-1

n .
1 - j
W,k ()= .Zokj (xed)™e L Ynogj-1%

J_

j=0

where all the Aj¢0, j =0,...,n5and y #0, j = 0,...,[§J.

n-2j-1



also clear that Yn-Zj—l = -28
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~-\Broof: "Without loss of generality we may assume that k is even. It is

0,..7,§3in lemma (3.2.1).

n-2j-1°J

Thus we need only show that Aj#o for j = 0,1,...,n.
Since Wi k(x) alternates (n+k+3) times in [41,1] and reaches
3

its maximum at the endpoints, it has its maximal number of zeros

(n+k+2) in (-1,1). (See lemma(2.1.6).) For the remainder of this proof

let W)W | (x) and W) (x) represent the jth derivative of W(x). Let

us expand W(x) in its Taylor series about the point {-1}. W(-1)#0.

If n-1-k>2, w(l)(x) exists for all xe[-1,1], and by applying Rolle's

theoren, W(I)(x) has (n+k+1) distinct zeros which are separated by

those of W(x). This implies that wcl)(-1)¢o. We can repeat this argu-

ment so that W(J)(—l)#o for j = 0,1,...,n-k-2. Since W(n'k'z)(x) has

{2 k+4) distinct zeros in (-1,1) with (k+2) in (-1,0), it follows that

W(j)(-l)#o,j = 0,...,n. Since

(i '
A, = Lt G231 j=0,...,n,

j jl
this completes the proof.
Lemma 3.4.2. Among all polynomials f(x) in the functions (3.4.2),

@) Wi k(x)/Aj minimizes  sup lf(x)l where £(x) is any poly-
? -1<x<1

nonial in (3.4.2) with the coefficient of (x+1)J unity for
j=0,...,n, and

2) W

4 k(x)/yn_zj_1 minimizes  sup lf(x)i where f£(x) is any

-1<x<1
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e n-2j-1
“polynomial in- (3.4.2) with the coefficient of X, unity for
) _
J=0, -:[7]'

Proof: (2) follows immediately from lemma (3.3.3)-(3).

Assume for some j = 0,...,n that there is a_better approximation
vof (x+l)j, say Pz(x), than that suggested by Wi,k(x)/xj. This implies
that Pl(x)EWi’k(x)/Aj - ((x+1)j-P2(x)) is a pol}nomial in the function
(3.4.2) with(n+2[$]+2 distinct zeros and the coefficient of (x+1)J
zero. Pl(-l)#o since we a;suméd that‘Pz(x) was a better approximation.
p fj)(—l)#o fbr j =0,...,n,by repeated application of Rolle's theorem

as in lemma (3.4.1). When k is odd, any additional zeros must come in

pairs. This is impossible by lemma (2.1.5). Thus, all zeros of Pl(x)

and its derivatives must fall in (-1,1). This contradicts the exis-
tance of a better approximation.

We are now able to classify the Ebéoptimal designs for the param-
eters of the functions in (3.4.2).

Theorem 3.4.1. The optimal designs for estimating the following

parameters in (3.4.1);

/

0. fori=1,...,n
i
3.4.3. ¢
. k
Bn-2j-l for j = 0,...,[§J,
Y
have their supports contained in the set Ei K of lemma (3.2.1) and

satisfy the following:
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(1) When k is odd, the optimal design for each parameter listed

in (3.4.3) is unique and is supported by the full set Ei K’

(ii) When k is even, the optimal designs for the parameters in
(3.4.3) are not unique and satisfy the following:
(a) The optimal designs are a convex combination of two

1

b

probability measures uo and ul (or uo and u, ) where
) 0,
) ) By

0

B

(b) In the convex combination described in (a), all the

designs other than ug and ué (uo L
? LY h

Mg {(+1}=0 (=10 (+11);
2

and p, ) are sup-

ported by the full set E; Kk
(¢) The vectors of weights associated with the optimal

‘designs of (ii) lie on parallel lines.

is {-1}.

(iii) The support for the optimal design for 90

Proof: By arguments similar to those in theorems (3.2.1) and (3.3.1),
the Eﬁ-optimal design(s) must be a solution to the system

n+2{§i+3

Bpl cP N Zl EvPy b(xv)’

3.4.4.

n+2[§]+3

: g 1 . _ o .
vhere the x e En,k’ y p,=1, p >0 and e =+1. If the coeffi-

v=]

cients of Wi k(x) in the basis (3.4.2) are written as
3=(A0,A1,...,An,yn_l_k,...,yn_l),then Bp is the (p+1)st coefficient.

By elementary row operationsthe system (3.4.4) can be made equivalent
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“'to the systems (3.2.9) or (3.2.10) for the parameters Bn—2j¥1’ for
- ky . i
= 0,...,[2] in (3.4.3); and the parameters Bn-2j-1’ for
j = 0,...,[%] in (3.2.8); as well as Qn.

Assume k is odd. The uniqueness argument follows that of theorem
(3.2.1) after some elementary row operations. When solving (3.4.4), in
this case by Cramer's method where p,, =0 for some Vo We would be led

0
to a polynomial P(x) in the functions (3.4.2) where

n i n-1 . n 2 n-1 2
P(x) = 2 di(x+1) + z bixi and 2 di + 2 bi>0, We can
i=0 i=n-1-k i=1 i=n-1-k

express P(x) in the basis (3.3.2) and follow the arguments of theorem
(3.3.1) to show that P(x)=0. This implies that P, >0.
' 0

Assume k is even. By theorem (4.2.5) we know that there is a

0, say ug .
2

solution of (3.4.4) with p Thus, we can put the aug-

n+k+3.
mented matrix bf the system of equations (3.4.4) ((n+k+2) equations in
(n+k+3) unknowns) in reduced row-echelon form with the first (n+k+2)

columns independent. The first (n+k+3) out of (n+k+4) columns of this
reduced row-echelon form augmented matrix would be the same as that of

theorem (3.2.1). The (n+k+4)th column is the vector of weights of

Hg (say p*) on the points of Ei K The (n+k+3)rd column consists of
!l 2

the direction components of the parallel lines mentioned in theorems

(3.2.1) and (3.3.1) as it does in this theorem. By the symmetry in

theorem (3.2.1), we have that the direction components have the form

3:...fas:azzl. If (n+k+4) is even, the directional components
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*..are symmetric abouta.n;k+4 = 0. When k#n-2, we have that

2
p*+k(-1,—a2,...,az,1),for k small and positive, corresponds to a proba-

bility measure and is also a solution to (3.4.4). This is easily seen
% .
after noting that pj>0 for j = 1,...,n+k+2, by lemma (3.4.3). When

n+k+2
2

n+k+4
2 ’

k=n-2 we,have that ai>0 i=1,..., Aand p;>0 for j =1,...,
. o
so that p +k(—1,—a2,...,a2,1),for k small and positive ,corresponds to

a probability measure and is a solution to (3.4.4). Define

1' * &
Mg =P +k (-1,-a

1,,..,al,l) wherg
L

* PO n+k+3 N

, pj'kaj—ox J=1, 's[ 2 ]
* >

k = min ¢{ k>0 .
j *
p.+ka.=0; j = [n+k+3]+1,...,n+k+2 J
§ J ] 2
The optimal designs for 92 are any convex combination of ug' and ué
2 L

since this would give the onlysolutionsto (3.4.4) that would be proba-

bility measures.
=g 10 1 -
If uq{xv}—q uel{xv}+(1—q) ugz{xv}—o for some q»such that 0<q<L

then ug”{x }= ul {x_}=0. This contradicts the fact that pf>0 for
. vV 9, v i

n+k+4
2

*
i=1,...,n+tk+2, when k#n-2 or the fact that Pi>0 fori=1,...,

n+k+2
2

ai>0 for i = 1,..., when k=n-2. (iii) follows by inspection of

the system of equations in (3.4.4).
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Lemma 3.4.3. If k is even, k>n-2 , and ug is as described in

L
_ 0 n+k+3
~theorem (3.4.1),then u; {x }>0 for v = 1,...,n+k+2; where the {x }
: 92 v v ov=1l
are the ordered points of Ei K
If k is even and ken-2,then ug {x }>0 for v = 1,..., 25" ang
. _
0 _ _ n+k+6
Hg {xv} =0 for v = 5 s+ .. sT¥k#3.

L

Proof: Assume k is even and k>n-2. If ug {xv }=0 for some
2’ .

0

Vo=1,...,n+k+2,we are led to a nontrivial polynomial P(x) in the func-

0

tions (3.4.2) that has (n+k+1) distinct zeros in [-1,1]. P(xv)=0 for

n+k+3° Thus P(x), if nontrivial , must be nontrivial in both

[-1,0] and [0,1]. The coefficient of (x+1j2 in P(x) is zero. P(x)
mﬁst have an additional zero in (-« ,1] since the f£th derivative of
P(x) must be zero at x=-1. For P(x) to be nontrivial throughout
(-1,1] and have (n+k+2) zeros there,the coefficient of (x+1)n must be
non-zero, Thus we may normalize P(x) so that its coefficient of (x+1)n
is unity. Due to the spacing of the zeros of P(x),it must be true that

Wi k(x)—P(x) must have at least (n+k+l) distinct zeros. Lemma (2.L5 )

implies that Wi’k(x)-P(x)EO. This contradiction implies that P(x)EO.

Thus it must be that ug {x_}>0.
2 AY]

If k is even and k=n-2,it is easily seen that a nontrivial P(x)

exists, with the appropriate zeros, when solving for ug'{xv} when
2
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\\\an+§+6 se..,N+k+2, One has the k+1 functions,'{xljn—l, to form a P(x)
4
i=n-k-1
. . . -0 n+k+4
with k zeros in (0,1). In this case ug {xv}>0 for v=1,..., > by
2

the preceding argument.

Example 3.4.1. Consider a random variable Y(x) with mean

s

E Y(x)=90+91(x+1)+92(x+1)2+81x+ where xe[-1,1]. For this example

1

1 2
Wz’o(x)—1-8(x+l)+8(x+1) -16x+ and E2,

o={-1;1=/2,0,1/2,1}. The optimal

designs for estimating Ql’given as vectors of weights on the points

1
Ez’osare
q(3/8,4/8,1/8,0,0)+(1-q) (1/8,0,1/8,4/8,2/8), for 0<qz<1.

The optimal designs for estimating 8, are

2
q(1/4,1/2,1/4,0,0)+(1-q) (0,0,1/4,1/2,1/4), for 0<q<1.
The optimal designs for estimating Bl are

q(1/8,3/8,3/8,1/8,0)+(1-q) (0,1/8,3/8,3/8,1/8), for 0<q<l.

is

The optimal design for 90

(1,0,0,0,0).

Example 3.4.2. Consider a random variable Y(x) with mean

E Y(x)=90+91(x+1)+92(x+1)2+93(x+1)3+87x3 where xe[-1,1]. For this
example Wy o (x)=-1+5(2+/5) (y+1)- (21412/3) (y+1) %+ (ZELISTD) ) 3.

3(12+7/3)y? and B o = 1-1,-(/3-1),-(3/3-5), (3V3-5), (¥3-1),1}. The

s

optimal designs for estimating Ql,given as vectors of weights on the




. points EL

93
3.0 to 5 decimal places,are
q(.35584,.45189,.14071,.04811,.00345,0)+
(l—q)(.20504,;16038,0,.18882,.29496,.15080), for 0<q<1.

The optimal designs for estimating 92 are

-q(.23020,.403778,.26289,.09622,.00691,0) +
(1-q) (.02132,0,.06800,.29112,.41068,.20888), for 0<q<l.

The optimal designs for estimating 93 are

q(.17863,.35566,.31100,.14434,.0:036,0) +
(1-q)(0,.01036,.14434,.31100,.35566,.17863), for 0<qg<l.

The optimal designs for estimating B, are

- q(.11909,.27233,.33878,.22767,.04213,0) +
- (1-q) (0,.04213,.22767,.33878,.27233,.11909), for 0<q<l.

The optimal design for 90 is
(1,0,0,0,0,0).

Example 3.4.3. Consider a random variable Y(x) with mean

_ 2 3 43
E Y(x)-00+01(x+1)+92(x+1) +93(x+1) +94(x+1) +83x+ where xe[~1,1].
For this example,Wi 5 (X)=1-8(2+/Z) (x+1)+5 (12+8Y2) (x+1)2-8(10+7VD) (x+1)°
+2(17+12/2) (x+1)*-16(7+45v2)x>  and Ei o=1-1,2-2/2,1-V2,0,/2-1,2/2-2,1}.

The optimal designs for estimating 0., given as vectors of weights on

1,

the points E1 to 5 decimal places, are

4,0
q(.34911,.43756,.13363,.06028,.01726,.00216,0) +

(1-q) (.25829,.26112,0,.06028,.15089,.17860,.09082), for 0<q<l.



20

94

... _The optimal designs for estimating 92 are

q(.22322,.37764,.24226,.11805, .03452, .00431,0) +
(1-9) (.05858,.05777,0,.11805,.27678, .32419,.16464), for 0<q<l.

The optimal designs for estimating 93 are
q(-17234,.32655,.27589,.16697,.05178,.00647,0) +

(1-q)(.00425,0,.02857,.16697,.29910,.33303,.16808), for 0<q<l.
The optimal designs for estimating 94 and 83 can be found in example

(3.2.3). The optimal design for 9 is

(1,0,0,0,0,0,0).
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CHAPTER IV
SPECIAL CASES OF MONOSPLINE REGRESSION WITH

NONCENTERED KNOTS

4.1. Introduction with Background Theorems .

In sectibn two of this chapter we Qill be concerned with the
regression functions in (3.2), (3.3) and (3.4) on a closed éubin-
terval of [-1,1] with k even. This subinterval does not include
the point {+1} but depends on n and k in such a manner that it in-

cludes the f+k+2 Jremaining points of Eﬁ X" In other words, the

interval is nearly symmetric, [-1,1-e], where ¢>0 and small. We also

consider the interval [-1l+e,1] for the regression functions in (3.2)

and (3.3).

In section three we consider polynomial monospline regression of

the form

n .k
) Gi(x+1)1+ 2

4.1.1. '
i=0 i

n-1
Bl (x'ni)+
1
where n>2, xe{-1,1} and —1<n1<n2<...<nk<l . We will call (4.1.1) a
monospline of class (n,k) and denote this by Mn k(x). Johnson (1960,

*
page 459) discusses the existance of a unique monospline Mn k(x) of
3

the form (4.1.1). In his work ,the set of parameters and the knots in
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~-_(4.1.1) are allowed to vary. We state his principal theorem.

Theorem 4.1.1. For each (n,k) there exists a unique monospline

* .
Mn k(x)'of class (n,k) which deviates least from zero on [-1,1]. For
b
: %*
nz?,-Mn k(x) achieves its maximum absolute deviation, with alternating

signs, at precisely (n+2k+1) points of [-1,1], including both end-

points, and this condition determines M; k(x) uniquely.
3

We will refer to M; i (x) as the Johnson monospline.

4.2. Nonsymmetrical Special Cases of Chapter III.

Let us consider a random variable, Y(x), with mean value

‘i i nil i
4.2.1. 0.x + B. (x -2x7)
i=0 Y i=p-1-k ? *

where n-1-k>1, k is even and xe[-l,cn k]. The constant ,c_ k,is chosen
] >

such that if x =max{xlx€Ei X Nf{-1,1)}, then x

1 . .
0 <c <1. E x is defined

0 n,k n,

in lemma (3.2.1). We note that there are (n+k+2) points of Ei X less
3

than < We will first establish the best minimizing polynomials,

ok’

as was done in lemma (3.2.3), for the nonsymmetric interval [—l,cn k].

The minimizing polynomials are the same as those in lemma (3.2.3).

Lemma 4.2.1. Among all polynomials in the functions (3.2.2) where

k is even,

(1) wl (x)/8_ .. minimizes sup |£(x)| where £(x) is any
n,k n-2j 1
TAIXECH
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» n-2j
polynomial in (3.2.2) with the coefficient of x unity
for j = o,...,[gq, and

(2) Wt (x)/8_ ,; , minimizes  sup |£(x)| where £(x) is any
n,k n-2J-1
-1l<x<c ,
—~"="n,k )
n-2j-1
polynomial in (3.2.2) with the coefficient of (x
n-2Jj X
-2x ) unity for j = 0,...,[3].
+ 2
Proof: Assume we have a P_(x) such that sup IP.(x)|< sup
) J -l<x<c - J -l<x<c¢
——"n,k ——="n,k

Wi'k(x)/sn_zj where Pj(x) is a polynomial in (3.2.2) with’the coeffi-

n-2j
cient of x unity. Assume j is zero. The difference

.PO(X)-Wi k(x)/sn has at least (n+k+1) distinct zeros with at least

n+k+2

n+k
[ 2

] in [-1,0) and [—i—ﬂ in (0,1]. By lemma (2.1.5), the above is

identically equal to zero. This implies that Po(x)EWi k(x)/Bn.

Assume n is even and let
P.(x)+P.(-x
J( ) J( )

F(x)=——

.. n. ..
The coefficient of x in F(x), say a_, is either zero or Ian|<|-—]l |.

B

n-2;
. ! 1
Since sup |Pj(x)]< sup lwn,k(x)/sn—Zjland
-1<x<c -1<x<c
——n,k ~"="n,k :
P, (x)
sup i Rl BN sup Wt x)/8.| , we have that la_|<|== | .
a -~ n,k n n B .
-1<x<c n -1<x<c_- n-2j
X<,k SXCh k - |
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. . n . L. .
.The coefficient of X" in Ig(x) is also a_ since we assumed that n was

1
Wn’k(x)

even. This implies that the difference F(x)- 3

has at least
n-2j

n+k+2
2

(n+k+2) distinct zeros with at least ( ) in both (-»,0) and (0,+w).

The difference can be written in the form

n k
: = % 2j % n-2j-1 n-2j-1
4.2.2. a,.x b . (x S +2x Y,
520 2] 520 n-23-1 +
with a2j=0 for some j = 1,...,252-. (4.2.2) isnontrivial on any

interval and can have at most (E%EJ distinct zeros in either (-»,0) or
(0,). This implies that (4.2.2) is identically equal to zero and

1 . .
F(x)=wn,k(x)/8n—2j‘ This contradicts the fact tha;

sup |F(x) | < sup [Wi k(x)/Bn—ZjI . Thus (1) is proven
<X<C <X<C ’

“Cn, k"% k “Cn k5
for n even. The case where n is odd follows a similar argument with

F(x)an(X)-Pj(—X)- (2) follows the identical argument.

Lemma 4.2.2. Lemma (4.2.1) holds where we consider the interval

[_cn,k’ll .

Proof: The symmetry in the above arguments establishes the proof.
We can now obtain the optimal designs>for the parameters in

(4.2.1) that correspond to functions of the same parity as Xt
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Theorem 4.2.1. The optimal designs for estimating the following

parameters in (4.2.1) with k even,

4

. . .I.l.. Y
gn42j for j = 0,...,[2] n 23#0
4.2.3. ¢
. k
Bn—zj-l for j = 0,...,53

N

are unique and have their supports contained in the set {E; kF{l}}.

Proof: The proof of this theorem follows that of theorem (3.2.1) and
lemma (3.2.6). We note here that the system of equations (3.2.14) is

just Elfving's theorem (theorem (3.1.1)) applied to this situation.
0

) of theorem (3.2.1).
By

The unique optimal designs are the ug (or u
L
The symmetry in this last theorem allows us to state the follow-.
ing:

Theorem 4.2.2. Theorem (4.2.1) holds when we consider the inter-

val [-cn k,1] and the points'{Ei k-{—l}}. The unique optimal designs

are the ué (or ué ) of theorem (3.2.1).
L h '

A similar procedure can be followed for the functions in (3.3.2)
after we have the following lemma. We now assume the functions in
(3.3.2) and the mean value (3.3.1) are defined for the interval

[—l,cn,k] with k even.
Lemma 4.2.3. Among all polynomials £(x) in the functions (3.3.2)

with k even,

(1) Wi,k(x)/sn_zj minimizes  sup |£(x)| where £(x) is any

-1<x<c

n.k
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n-2Jj
polynomial in (3.3.2) with the coefficient of x unity for
. n+l
J—O"‘°’[2-]’ »
(2) W1 (x)/8 . minimizes sup |f(x)| where f(x) is any
n,k n-2J-1 -
-1<x<c
~"—"n,k
‘ n-2j -1
polynomial in (3.3.2) with the coefficient of x unity
for j = O,...,%—, and
(3) Wi k(x)/-ZBn_zj_l minimizes sup |f(x)| where f(x) is any
’ -1l<x<c
~—"n,k )
n-23 -1
polynomial in (3.3.2) with the coefficient of X, unity
for § = 0,....5.
_ : n-2i
Proof: The cases for which the coefficient of x is unity for

i-= [Eigléi,...,[gj and i=0 follow the same arguments as in lemma

(4.2.1), since the remaining functions span the same space.
Assume now that we are minimizing some one of the remaining func-

tions listed in (1), (2) or (3), and let Pl(x) oe a polynomial in

(3.3.2), with the appropriate coefficient unity, which corresponds to

a better approximation. The coefficient of < in Pl(x), say a_, is
either zero or !an!<liE'L where A is the coefficient of the appropriate

function we are considering in Wn k(x’). Since
3

1
sup [P )< sup | W (/2] and
-1<x<c -1<x<c ’
—="n,k —"—="n,k 1
sup IPl(x)/anli_ sup IWn k(x)/Bnl , we have that
-1<x<c -l<x<c ?

l'l,k —n,k
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“la| < [8./A|. This implies that the difference

W)/ = P (%)

has at least (n+k+2) distinct zeros, with at least [91%5134

distinct zeros in both [-1,0) and (0,1], and is nontrivial in any

interval. Lemmas (3.3.1) and (3.3.2) imply that Pl(x)EW(x)/A, and
this contradicts the assumption that Pl(x) was better. This proves
the lemma.

Lemma 4.2.4., Lemma (4.2.3) holds when we consider the interval
v[-cn’k,l].
Proof: Again the symmetry of the above arguments establishes the
proof.

We now state twotheorems without proof since their proofs would
be repetitious.

Theorem 4.2.3. The optimal designs for estimating the following

parameters in (3.3.1),when k is even and xe[—l,cn k]’
L
( n
gn-2j for j = 0,...,[51, n-2j#0
4.2.4. Jo ., for j=0,..3,
. k
Bn-2j-1 for j = 0,...,23

are unique and have their supports contained in the set'{Ei k-{l}}.
3

0

%

The unique optimal designs are the ug (or u, ) of theorem (3.3.1).
%
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Theorem 4.2.4. Theorem (4.2.3.) holds when we consider the inter-

val [-cn k,1] and the points {Ei k—{-l}}. The unique optimal designs

are the ué (or ué ) of theorem (3.3.1).
[ h

The symmetry inherent in the functions considered in sections
3.2 and 3.3 does not carry over completely to those of 3.4 .
The examples in 3.4 and the following show that we have similarities

for ['l’cn,k] but not for [-cn,k,ll-

Lemma 4.2.5. Among all polynomials f(x) in the functions (3.4.2)

with k even,

(D Wi k(x)/A; minimizes  sup ]f(x)l where f(x) is any
' ’ J -l<x<c 4

polynomial in (3.4.2) with the coefficient of (x+1)J unity

for j = 0,...,n, and

1 C e . ‘
2 wn,k(x)/Yn—Zj—l minimizes = sup If(x)l where f(x) is any
—15}§Fn 1
3 n-2j-1
polynomial in (3.4.2) with the coefficient of-x+ unity
for j =-0,...,%u

Proof: For the case (x+1)n,assume that P, (x) is a polynomial in

(3.4.2) with the coefficient of (x+1)n unity whose norm is less than
1 we s _ \

that of wn,k(x)/kn. Thus, Nn,k\x)/xn Pl(x, has at least (n+k+1)

distinct zeros, does not vanish in any interval and can be put in the

n-1 . n-1 .
form Z aix1+ y bixi. The maximum number of possible zeros is
i=0 i=n-1-k
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-mﬁ(n+k). This implies that Wi k(x)/AnEPl(x)_and gives the desired

contradiction.

n—2j-1 '
For the cases x_ ,assume that Pj(x] is a polynomial in (3.4.2)

. 1
whose norm is less than that of Wn’k(x)/—an_zj_l. Let a, 3 be the

»

coefficient of X in Pj(x). By an argument similar to that in lemma

(4.2.3) we have that a =0 or Iah[<l L |. In either case,

“eBh24-1

1 . s .
wn,k(x)/'zsn-zj-l - Pj(x) has at least(n+k+2)distinct zeros in [-1,=).

The hypothesis of lemma (3.3.1) is satisfied, so lemma (3.3.2) leads to

the desired contradiction.

For the cases (x+1)J, j = 1,;..,n-1, we follow reasoning as with
n-2j-1

X, up to the point where we note that the difference of the two

approximations has (n+k+2) distinct zeros in [-1,~). The difference
does not vanish identically in any interval, and the (n+k+2) distinct
zeros are the maximal number. Expanding the difference in a Taylor
series about x=-1, we must have no zero derivatives of all orders up

to n, so the coefficient of (x+1)j,j = 1,...,n,must be non-zero. This
contradicts the fact that the difference does not contain a term corre-

sponding to (x+1)J and completes the proof.

n-2j-1
Lemma 4.2.6. Lemma (4.2.5) holds for the functions x, s

o= 0,...,§u and (x+1)n when we consider the interval [-cn k,l].
2

We now know that the following is true:
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Theorem 4.2.5. The optimal designs for estimating the

following parameters in‘(3.4.1),when k is even and xe[-l,cn k],

’
’

Q. for i
i

1,...,n

4.2.5. «

R for j O,...,%—a

n-2j-1

~

are unique and have their supports contained in the set {Ei k-{+1}}.

The unique optimal designs are the ug (oxr ug } of theorem (3.4.1).
L h

Due to the partial symmetry the following holds:

Theorem 4.2.6. The optimal designs for estimating the following

parameters in (3.4.1), when k is even and xs[—cn k,1],
3

{Qn and Bn-2j-—l for j = 0,...,7'}
are unique and have their supports contained in the set'{Ei k—{—l}}n

The unique optimal designs are the ué (or ué ) of theorem (3.4.1).
2 h

4.3. Optimal Designs. for the Johnson Monosplines.

*®*
For a given (n,k) let nl,...,nk,be the knots of Mn X in theorem

»
(4.1.1) (the Johnson monospline). As regression functions for a given

n,k), let us consider the linearly indevendent and continuous func-
: y P

tions
4
1,(x+1),..., ()"
4.3.1.  b(x)=< (x-ni)f'l i=1,...,k
xe[-1,1].

N
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~.. In this section we are considering a random variable, Y(x), with mean

v i X n-1
izo 0, (x+1)” + izl B; (x-n,),

where xe[-1,1] and n-1>1. In order to classify the optimal designs

\

for the parameters in (4.3.2), we will first establish the best mini-

mizing polynomials as was done in chapter III.

Lemma 4.3.1. There exists a unique polynomial Wi k(x) (a linear
>

combination of the functions in (4.3.1)) satisfying:

3
(1) Wn’k(x)lf} for xe[-1,1];
(2) The set Ei k={x: IWi k(x)]: 1} contains exactly (n+2k+1)
points including both {-1} and {1};
3) Wﬁ k(x) attains its supremum at each of the points of the
set Ei K with alternating signs;
3 .
4) Wn,k(x) is of the form
A (x+1)” + As(x-n_ )
j=o0 J j=n+l 7 n-]7*
where all the Aj are non zeroj and
oW Y/l !
(53 W00 =M /M ool
. . 3 LN
Proof: Define Wn,k(x)=Mn,k(x//l5M ,k(x)ll. (1), (2) and (3) follow

from theorem (4.1.1). Since Wi k(x) alternates (n+2k) times in [-1,1]

and achieves its maximum at {-1} and {+1}, it has its maximal number of
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-.(n+2k) zeros in (-1,1). Let us expand Wi k(x) in ité Taylor series
>

about {-1}. Wi 1 (-1)#0.  The jth derivative of Wﬁ k(x), say W(J)(x),

exists for j = 1,...,n. If n-3>0, W) (x) exists for all xe[1,1].

Applying Rolle's theoren, W(l)(x) has (n+2k-1) distinct zeros which are
separated by those of W(O)(X). This implies that w(l)(-l)#o. We can

repeat this argument for W(l)(~l)¢0, £ =1,...,n-2; n-2>0. Since

n-2 . . C . . .
W(n )(x) has (2k+2) distinct zeros in (-1,1) and is nontrivial in
every subinterval of (-1,1), it must have at most two distinct zeros

in (-l,nl]. Therefore, W(n_l)(—l)#o and W(n)(-l)#o. If any one of
the Aj for j = n+l,...,n+k+l,is zero, then Wg k(x) could not have its

stated property of (n+2K)distinct zeros since it is nontrivial on every

subinterval.

Lemma 4.3.2. Among all polynomials f(x) in the functions (4.3.1)

defined on [-1,1] with nz?, Wﬁ k(x)/x. minimizes  sup |f(x)| where
o  -1<x<1

f(x) is any polynomial in (4.3.1) with the coefficient of (x+1)J unity

-1

for j = 1,...,n,or the coefficient of (x-n .)n

n-jl+ unity for

j = n+l, ... ,n+k.
Proof: Assume for some j = 0,...,n,that there is a better approxima-

tion of (x+1)J than the one suggested by Wi k(x)/kjg Let P}(x)
3 .
represent this better minimizing polynomial. Since

sup |[R(x)! < sup |W3 (x)/x;]
£y ' n,k J
-l<x<1 -l<x<] ,
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W k(0/A; - B (x) is a polynomial in (4.3.1) with (n+ke2)

distinct zeros, not vanishing identically on any interval and having

the coefficient of (x+1)J zero. By repeated application of Rolle's
theorem as in lemma (4.3.1), we find that the coefficient of (x+1)7

in the difference must be non-zero. This gives the desired contradic-
tion.

n-1

If we consider a similar argument for (x+nn j)+ for some

j = n+l,...,n+k, we would find that
W2 (x)/A; - P (x)
n,k j J

could have at most f+2(k-1)) zeros and not vanish identically on any
interval of [-1,1]. However, the requirement that it have at least
(n+2k) distinct zeros leads to the desired contradiction.

We are now able to classify the Eﬁ-optimal designs for the

parameters of the functions in (4.3.2). We note that the optimal
designs for all the parameters have their supports contained in the

same set E3 .
n,k

Theorem 4.3.1. The optimal designs for estimating the fcllowing

parameters in (4.3.2),

Qi, i=20, sN
4.3.3.
L Bl’ 1= l, }k’
have their supports contained in the set g3 of (n+2k+1) points,

“n,k

(Ei X is defined in lemma (4.3.1).) The optimal designs for each

2
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,K?

lie on k-dimensional planes. These planes are parallel.

Proof: By lemma (4.3.2) and the use of (3.1.3) as in theorem (3.2.1),

we have that any optimal design for the parameters in (4.3.3) has its

support contained in the set Ei x- To find the E?-optimal designs ,
. N 3

Elfving's theorem (theorem 3.1.1) tellsus there is a solution to the

system
1, — n+2+k _
.4.3.4. I;\;—I ¢, = vzl P, b(x),
3 _ _ ) n+2k
where the Ap and X, € En x are defined in lemma (4.3.2), Z pv=1,
ERE v=1

pvzp and ev=t1. The system (4.3.4) describes (n+k+1l) equations in

(n+2k+1) unknowns. The rank of the system is (n+k+1). If this were
not true, then a nontrivial linear combination of the rows of the
coefficient matrix would yield a polyhomial with (n+2k+1) distinct -

zeros. These zeros are the points of Ei Lemma (2.1.5) implies

ok*
that only a trivial linear combination can have these zeros, so the

rank is (n+k+1). Thus we have a k-dimensional set of solutions. The
coefficient matrix of the system (4.3.4), aside from a multiplicative
constant (1), is the‘same for each p. This implies that the k-dimen-

sional sets are parallel.

Example 4.3.1. Consider a random variable,Y(x),with mean
P }
E Y(x)=90+91(x+1)+@2(x+1) +Bl(x+l/3)++82(x-1/3)+ where xe[-1,1]}. For

this example, wg’ 5 (x)=1-12 (x+1) +18(x * 1)-24(x+1/3) -24(x-1/3), and
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3

By ,={-1,-2/3,-1/3,0,1/3,2/3,1}. The optimal designs for estimating

. 91, given as vectors of weights on the points E; s @re convex com-
3

binations of (3/8,4/8,1/8,0,0,0,0), (1/8,0,1/8,4/8,2/8,0,0) and
(1/8,0,0,2/8,2/8,2/8,1/8). The optimal designs for estimating 92 are
convex combinations of (1/4,2/4,1/4,0,0,0,0), (0,0,1/4,2/4,1/4,0,0) and

(0,0,0,0,1/4,2/4,1/4). The optimal designs for estimating 81 are con-

vex combinations of (1/8,3/8,3/8,1/8,0,0,0), (0,1/8,3/8,3/8,1/8,0,0)
and (0,2/16,3/16,0,2/16,6/16,3/16). The optimal designs for estimating
82 are convex combinations of (3/16,6/16,2/16,0,3/16,2/16,0),
(0,0,1/8,3/8,3/8,1/8,0) and (0,0,0,1/8,3/8,3/8,1/8). The optimal
design for estimating 90 is

(1,0,0,0,0,0,0).
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CHAPTER V

SOME EXTRAPOLATION AND MINIMAX EXTRAPOLATION DESIGNS

5.1. Introduction

When we consider the problem of estimating the regression of the
form(3.3.1)

n . n-1 5

y 0, x + Y 8. X

=0 i=n-1-k * 7V

at a point x, outside of [-1,1] by observations restricted to points

0
of [-1,1], we have an extrapolation problem. For a given design or
probability measure pon [-1,1], the variance of the best linear un-

biased estimate of

n i nil i
0.x. + B.X
iz0 + 0 gepipx T OY
is proportional to (see (1.1.5))
(5,5(x,))°

V(x,,u) = sup ———
R JEh ) P

j— ' *
b(x) is defined in (3.3.2). A design u is said to be optimal for

extrapolating to x, if it minimizes V(xo,u). In section 5.2, we con-

0
sider some extrapolation problems that include regression functions
somewhat more general than those of b(x) but include b(x) as a special

case.
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In section 5.3 ,we consider minimax extrapolationdesigns for

*
regression of the form (3.3.1). A design p is a minimax extrapola-

" tion design for te[l,e] if

*
min  max V(t,p) = max V(t,u ).
p tell,e] tell,e]

A minimax extrapolation design for [-e,-1] is defined in a similar

manner.

5.2. Extrapolation Designs

In this section, we consider the linearly independent and con-
tinuous regression functions

1,x,...,X

5.2.1. n-l-ki n-1

(x—gi)+ ,..,.,(x-gi)+ , Ei fixed 1 = 1,...,h
where n-l-kiz}, a<g <...< gh<b,and xe[a,b]. Let m(x) be any poly-
nomial (linear combination) in the functions in (5.2.1) and define

[Im(x)|] = sup |m(x)|. Let W(x) be a polynomial in (5.2.1) such
a<x<b

that ||w(x)]|=1 and W(x)/B minimizes sup |£(x)] where £(x) is any
a<x<b

polynomial in (5.2.1) with the coefficient of x" unity. The coeffi-

cient of x in W(x)/sn is unity. Such a W(x) exists. Meinardus (1967,
page 1).
Lemma 5.2.1. Among all polynomials m(x) in (5.2.1) such that

||m(x)|]=1, W(x) has the largest coefficient of x" in absolute value.
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.. Proof: Assume for some m(x) satisfying | Im(x)||=1, whose coefficient

of X' is 6, that we have |9n|>|8n|. This implies that

R < 1y

n Bn

which contradicts the minimizing properties of W(x)/Bn.

Lemma 5.2.2. If

. -1
(i) W(x) alternates at least ) (k;+2) times in [a,Ei];
j=1
i-1 . :
(ii) W(x) alternates at most n + ) (k;+2) times in [a,g,];
j=1 ,
h
(iii)W(x) alternates n + ) (k;+2) times in [a,b]; and
i=1

(iv) the alternating points of W(x) include {a} and {b};
then
W(x) has the property that |W(x)|>|m(x)| for all x<a or
x>b.

Proof: Assume that there exists a point x.>b and an m(x) such that

0

|m(x0)|>]W(xo)| where |[m()|[=1. Let |m(x,)|-|W(x,)|=k>0. There
exists an e>0, 1»e>0, such that (l—e)]m(xo)l-lw(xo)]>0. That is, €
is so small that k—e[m(xo)!>0. Without loss of generality, we may

assume that m(xo)>W(xO)>0.

By lemma (5.2.1), 1im 22| <1 o that 1lim iﬁgﬁ“ﬂ' <1.

! T
X400 (x| X>+00 )

This implies that there is an s>x, such that (l-e)m(s)<W(s). So

0
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- there must be a zero if W(x)-(1-e)m(x) in (xo,s). Since

ll(l-e)m(x)||<l, there is a zero of the difference in (b,xO), as well

n h
as (n + 2 (ki+2))distinct zeros in (a,b). These (n+2+ z (ki+2))dis-
j=1 , i=1

tinct zeros are situated so that lemma (2.1.5) implies
W(x)-(1-e)m(x)=0, the desired contradiction. A similar argument holds
if X,<a.
Let us consider a random variable,Y(x),with mean
h n-1

n . .
5.2.2. Y oe.x'+ § Yoo, (x-£.)]
i=0 ' i=1 j=n—ki-113 1

where n—l-kiz}, a<£1<...<£h<b,and xe[a,b].

. Theorem 5.2.1. If the W(x) of lemma (5.2.1) satisfies the condi-

tions (1) thru (4) of lemma (5.2.2), then the optimal designs for

extrapolating to X where xozp(or xofg), and the optimal designs for

estimating Gn in (5.2.2),have their supports contained in the same.
h
set E of the(n+l+ Z (ki+2))a1ternating points of W(x).
i=1
Proof: An argument similar to that in theorem (3.3.1) shows that the

optimal designs for ©_ have their supports contained in the set E.
n

= n n-1-Ky n-1
Let £f(x)=(1,x,...,X ,(x-El)+ ,...,(x—gl)+ yeans
n-l-k, n-1
(x—gh)+ ,...,(x—Eh)+ ). By the discussion in sections 3.1 and

5.1 , we have that

inf  V(x,,W) = sx_lp(?(xo),s‘)z[ sup  (6,Fe0)%17
U b ‘ a<x<b

s ot L v AT Ty TR
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. This implies

inf V(xy,u) = sup{ (F(x,),5) 7| sup @, F(x)) =1}
u b , a<x<b

W(xg))’

by lemma (5.2.2).
Suppose u; is f(xo) optimal. Then
Vix i) = sup Ex ), 21 B, Fx)) 2 (@017
0’"0 b 0’ ? o'
> W(x) 1 00e0) Pug @017

2
> (W(xy)) ™.
Since |W(x)| =1 only for xeE, strict inequality holds at the last step
*
unless Ho has its support contained in the set E.

The above theorem applies to the regression problems considered
in sections 3.2 , 3.3, 3.4 and 4.3 with only slight modifica-

tions. - In the first three cases wi k(x), and in the last Wi k(x),
. 3 5 2

correspond to the function W(x) considered above.

Corollary 5.2.1. In theorem (5.2.1) ,Jlet h=1, gl=o, a=-1 and b=+1.

1f k1 is odd, the optimal extrapolation design is unique and supported

by the full set E; K’ If k is even, the optimal extrapolation designs

b
are any convex combination of two distinct probability measures. Any
design not an endpoint of the convex combination is supported by the

full set E1 .
n,k

s
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. Proof: According to Elfving's theorem (3.1.1), the optimal extrapo-

lation designs are solutions of
ne2[3]+3

5.2.3. e'B(xO) = vzl e, P, b(x)

where the B is an appropriate constant (the vector b(x) is defined

. 1
in (3.3.2)), X, € En,k’ €,

=+1 and lxolz}. When k is odd and some p
in (5.2.3) is zero, Cramer's method pf solution implies there is a

polynomial in the functions (3.3.2) with (n+k+2) distinct zeros. X

is a zero, as are (n+k+1l) points of Ei K This is clearly impossible

2

and implies Pv>0 for all v=1,...,n+k+2, The proof for k even follows

a parallel argument to that of theorem (3.3.1)-(ii) and theorem
(4.3.1).

Example 5.2.1. Consider a random variable,Y(x) ,with mean

E Y(X)=90491X*92x2+81x+ where x [-1,1]. For this example,

W(x)=1+16x+8x2—16x+ and E={-1,-1/2,0,1/2,1}. The optimal designs

for extrapolating to x.,=2, given as vectors of weights on the points

0

E, are

/

q(4/17,8/17,3/17,0,2/17)+(1-q) (0,0,3/17,8/17,6/17) for 0<q<l.

Theorem (5.2.1) holds in the above example, while in this next

example the theorem does not apply.
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Example 5.2.2. Consider a random variable,Y(x) ,with mean

E Y(x)=90+9 x+92x2+81(x-1/4)+ where xe[l,l].. For this example,there

1
is a Wz(x) corresponding to a best approximation of 92 such that
wz(x) = —7/25+96/25x+l28/25x2—64/5 (x—1/4)+, and the set of alter-
nating points E2={-1,—3/8,1/4,7/8}. The optimal design for estima-
ting 92, given as a vector of weights on Ez, is (1/4,1/2,1/4,0).

When extrapolating to x.=2, the optimal extrapolation design is

0
(168/747,336/747,68/747,175/744) ©On the points {-1,-3/8,1/4,1}.

5.3. Minimax Extrapolation Designs

In this section we are concerned with the regression situation
as defined in section 3.3 . However, there is a parallel minimax

discussion for sections 3.2 and 3.4 .

1

Lemma 5.3.1. lwn k(x)|, as defined in lemma (3.2.1), is

strictly increasing in x for x>1 and strictly decreasing in x for x<-1.
L
dwn,k(x)

is non-zero for all
dx

Proof: Assume that n is even. Now
x>1. If zero, then Rolle's theorem would imply that there are at

least (n—l+2[§ﬂ+l) distinct zeros in (-1,1), and since Wi k(x) is even,
3

we would have at least (n+2+2[§§) distinct zeros of the derivative in

(-»,»). This is clearly impossible. Since the coefficient of X" is

positive in Wi k(x), its derivative is strictly positive in [1l,~) and
>
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~-.strictly negative in (-=,;-I] by the symmetry. A similar argument would

hold for n odd, except the defivative of Wi k(x) is strictly positive
" in both (-=,-1] and [1,=).

Theorem 5.3.1. The minimax extrapolation designs for [1,e],

(or [-e,-1]) are the extrapolation designs of theorem (5.2.1) for the
poihts e (or -e) in the setting of section 3.3 .
Proof:

1 2
= Teen 2 o, 4 ()
max  sup (0 s max oMK

Ist<e b [(5,500)du(x) T lst<e [ | () du(x)

1 2
O )

T o 69 )

> Oy (e,

Equality is reached in all cases above after consideration of lemmas

(5.3.1) and (5.2.2) by the extrapolation designs to evof theorem

(5.2.1). A similar proof would follow for [-e,-1].

O et e m e e
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