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0. Introduction. Asymptotic expansions for the distributions of characteristic

roots of matrices arising in different situations in multivariate analysis

were obtained by the authors [3], [4] when the parameter matrix has a single
multiple root, extreme or intermediate. These asymptotic expansions generalized
the results of earlier authors [1], [2], [5], [6], [7]. However, in extending
the work further to the case of several multiple population roots, the method
used in [5] was not found to be suitable in view &f the fact that the invariance
of a function with respect to the choice of a sub-matrix in the orthogonal (unitary)
matrix used there does not extend to the simultaneous invariance with respect to
the choices of several submatrices as is needed to extend that method. In order
to overcome this difficulty we proceed in a different manner without recourse

to the invariance property and restate lemma 3.1 of [3] in a more detailed
fashion before demonstrating the new approach. Here we use the same notation

and symbols as used in [3] as far as possible.

* This research was supported by National Science Foundation Grant No. GP-11473



1. The maximization procedures. Let us define R = diag (rl,..., rp);

®>r >r >...>rp>0.

1> T
ky k,

(l) A = diatg (ﬂ 90es z b ,E 3eecey f, ;'_,:_ + Seeey ,c _),
~ 1 > 71 e kl k.z, 1!. D

® >4, >, > 41> 0 >4 >0,
17 %2 7 B 4 B+ 1 pZ"
‘and let HeO(p), where O(p) is the group of orthogonal matrices of order p.

Then we state the following lemma.
Lemma 1. If (1) holds, then for all variations of R > O

max C.(H' A HR) = max CK(H RH'A) = Cc(A R)

and if the ordering of the elements of A is reversed then

min  C.(H' A HR) = min C.(HRH' A) = Cc(A R)-
HeO(p) "~ ~~ HeO(p) "~~~ ~

The optimum values are attained iff H has the form

b ok oaq

H o oo K
H=[(0 H o0 Ky

0 0o 1, /aq

where ¢ = p - k; - k, and I (q) = diag (+ 1,..., +1),

Proof. By lemma 3.2 [3], we get H must have the form

5K E
H=1 9 5 Hyp
o o 1,



= 0 and which in turn

But, because of the orthogonality of H, we get, ,I;I,lz_ ~22

gives H, H) = '1:12' H, = I(ke). Thus, H)) = 0jand hence the proof.

The proof just outlined is general and also goes through in the complex analogue

of this problem when H is replaced by U, where UeU(p), and U(p) is the group

of unitary matrices.

Thus let us consider the following formalization.

5=dia,g (rl""’rp)’ m>rl>r2>...>rp>o

. kl km

A=diag (L L) Z,-..,ﬂ ,CDO,E ,z le o0 ,.OO’E)’.
~ 1 1 m m R Rt T TR

°°>l, > 4, >...>L >4 >...>zp30,

00+, +
kl k 1

and let HeO(p). Then

Lemma 1.1. If (2) holds, then for all variations of R > O

max cK(H'AH5)=max C(HRH'A):C(AR)
Heo(p) "~ ~ ~ 7 Heo(p) "™~

and if the ordering of the elements of A is reversed then

~o

min K(H' A HB) = min K(H RH'A A) = cK(ég)
HeO(p) "~ ~ 7~ Heo(p) ~ ™7

and the optimum values are attained iff H has the form

~

H=dia.g (El,.a., H ,Eo(p-kl-..n -km)))

.~ A

where EJ (kj x kj). is an orthogonal matrix of order kj’ J=l,..., m, and

E;(p-kl-... - km) = diag (# 1,..., + 1).



In order to facilitate the subsequent generalization to the complex case we

state an analogue of lemma 1.1, the proof being self-evident from previous
discussion.

Lemma %.2. If (2) holds, then for all variations of R > O

max CK(U*AUR)=ma.x K(URUA CK(AR)

. and if the ordering of the elements of A is 'reversed then

min CK(U*AUR) = min K(URU*A) = C (A R)
Y UeU(p) TV

and the optimum values are attained iff U has the form

U = diag (El,..., U Hm+l)’ where Ej (ij.kj) is an unitary matrix of order
ks Jobyee., mand U = dieg (¢ 0%, /1 8%) 0 8, <2m, j=l,..., g,

and q = p-ky=eeee. <k .

Using the above results we get corresponding results for theorem 1.2 and 1ts
complex a.na.logue theorem 1.3 of [3].

2. Asymptotic expansion for the distribution of the latent roots of the

estimated covariance matrix -- several multiple population roots. Let

~

= diag (.11,..., :i)), ®> 5> ... >r > 0, wherer, 's are the latent roots

in discending ordergof a sample covariance matrix C with n d.f. calculated from

~

a sample from a normal population with covariance matrix Y. Let the diagonal
matrix of the latent roots of ¥ ~be A and A has the form

kl km
ﬁ = diag (zl,ooe, ,cq’ zq._‘_l,c.o, zq_'l'l’..., zq_m,oao, f,q-_'_m),

(3) B"dia-g (I'l:'“, rp),w>rl>r2>,---, >‘°‘1'P>OI>



(ll.) m’> zq+m>,...,>Zq+l,>1?,q>,---,>£ >0

where p = k1'+- ces + km + q. Then the joint distribution of Tyseees rp,is

(5) ¢y JO(p) exp (- tr H A H R) d(E)
Where
np P o
2 2 o a 2
Cl = {n n =/ [2°. Fp(g') rp(g) 1} i:l f'i?
nk,
S -Y R (n-p-1)
T 4. m r m (r.-r)'rr dr, .
g1 oy 12 i<y i=l

Now by lemma 1.1 and as shown in [3], the integrand in (5) is meximized for all
variations of R > 0, when H has the following form

~ .
-

(6) H=diag (I, (a), Hy,..., H ),

~

where

H, (kixki), i=1,.., m, are orthoganal matrices.

As stated earlier we do not resort to the invariance technlque as used by
earlier authors. Now follow:.ng Anderson [1] we use the transformation

(7) H = exp [5],

~

where S is a p x p skew symmetric matrix. Now under (h), the transformation (7)
reduce: the integrand in (5) to a form which does not yield to direct evaluation.
Hence to avoid this difficulty we note that if () holds, then for all R >0

the integrand in (5) is maximized when H has the form (6). Also when n is large
the whole integral is concentrated a.round its unique maximum value. Thus,

instead of {7) we use the transformation

@®) H=exp(s],



where S, is a p x p skew symmetric matrix but has the following form
5 = ~L

8o (axp); 8 = (8575 8155 8:3)s

S O x (@ vl + oo 4 00Dy 8ip (I x0) = 05 8,5 Oy x (I, + oon 4,

i=1l,..., m~1 and §m.= (s ., §m2)5 81 (kmx (p-km)), S0 (km‘x km) =0.

This is no loss of generality provided the constant factor is adjusted, as for
Jarge n the integrand is concentrated around its unique maximum and at least
one maximizing set is covered by this substitution. Let t = p-km.

Then

Il

tr (H' AHR) =tr (AHRE")

2

£ e, 4,

i3 W3

; P > P P n2
= T4, v, W .+ T r, X

i=1 j=1 * oot g 9 g N

J
Since
1) t ‘
Z h§.=l" 2 fOr,j:l,..., Po
i=t+1 1Y j=1 *

For large n and zi's and rj's well spaced, most of the integrand in (5) will

be given by small values of El'



Now under (8)

b
h,, =1-% = S?. + higher order terms in s.'s
h.,. = s,. + higher order terms in s, °'s.
ij 1] 1d
Thus we get
(9) tr (H* AHR) = 1 B t( 2 . ) r ( r 2)
9) Tr R) = r.+ & (4 - r. (1- Z s,
_ ~ o~~~ g+m j=1 J i=1 i g-+m 1 j=1 1)
t P ( 5
+ T X \£, -4 ) ». 8.5 + higher order terms in s, 's.
i=1 j=1 i q+m? J i3 gh ij
o s ( Yr, - E yr, s>
=4 T r,+Z (4, -4 r, - L (L -4 r., L s,
g+m §=1 J i=1 i q+m 1 1=t 1 qtm 1 j=1 1]
L o) 5
s = . .-+ i i i .'c
+ -§ .§ (zl vzq+m) Ty 853 higher order terms involving 5;4'S
i=1 j=1
: z Yr, B2 -1 G yr, I s>
= I L. r., - b, = 4 r. 8., - L . =~ 4 T, s, .
1=1 171 $=1 i q+m 1 j=1 1) j=g+l 1 qu 1 §=1 iJ
: oz ( ) e s+ I B ) x, 5,2 |
+ T £ (4, -4 r. 8.. + X Z (4, -4 r. 5,,. + higher order
o e S R NP R TS B S
terms involving s, .'s.
iJ
-1
p a P . o M 1™ p
= v 4, r.+ 2 T (£, -4.)(r.-17r)s,+ T s y (2. - 2. )(r, - 1) s
i=1 1 i=1 j=1 1 o d L 1d u=1L 1=q_u j:qu ll J J 1
+
i<y
. . 2
+ higher order terms involving Sij’
: : - i-1
(10) where ¢, =g + 1,9, =a+ Tk +1l, i=2,...,m+1,

=19

2
iJ



Substituting (9) in (5) we note that the integrand tends to zero as each

Sij - ®, Also for large n and for zi's and rj’s well spaced we can approximate

the integral over N (E’,l = 0) by varying each si 3 over the whole real lime i.e.

.o <L 54 < o for each pair (i,j) which involves in our representation 8).

Thus for large n, noting that the maximum of the integrand in (5) is attained
when H has the form (6), we get, following Anderson [1]

m
‘[ _'E ' - q -1
o(p) P -5 trH'AH R] d(E) 2 121 W, W
n q P ort i m qu+l-l D - 1
exp[--étrARJ mn on (-;;—-)2 n m " (= )2
~~T i1 gel POy u=l dmq Jeq 04
i<y :
1 Q P -1 m q'u+l"l P -1
[1 +—2H (Z z cij + I .2 .2 C°ij ) toseees 1)
i=l g=1 =1 35q, . hym
i<j

where
(11) c;5 = (!,i - z,j)(rj - ri), i=l,e0es Q5 J=lseees P
and
c{j = (Jz,i - zj)(rj - ri), i and j varying over the indicated set where it is
non-zero.
K2 22
_ 1 koyvy=1 L - Pyy-1
w, = ™2 {I"ki (21)} y i=l,ee, My @ 0 = T2 {I‘p (2)} .

The factor involving W, accounts for the fact that integrand in (5) is

maximized when H has the form (6).



Thus we get the following theorem

Theorem 1. An asymptotic expansion of the distribution of the roots Tyseass rp)of the

sample covariance matrix C for large degrees of freedom n, when the population

roots satisfy (#) is given by

-1
_ qa b 1 m a1 P 1
wm}_l n w, 2% c, m m (1212 YRR B m (21: )2
im1 7 i=1 j=l ij u=l i=q  J=q, . ij
1<
1,3 2 n G p = n
(452 (2 & ¢y + I % z cd.7) +oed) exp [~ 3 tr A R]
i=1 §=1 0 wel i=q I=y41 o
i<3j

where q =P -k -...-k , and ﬁ, R, q;5 (i=1,..., m+l), cij's, cij's are

defined by (4), (3), (10) and (11) respectively.

1

3. Asymptotic expansion for the distribution of the latent roots of

several multiple population roots. The problem of findirig the asymptotic
expansion of the roots of §l §2-l in case of one extreme multiple population root has
been studied by Li and Pillai [6], [7], we here extend their results to the

case when there are several multiple population roots.

Let S, be independently distributed as Wishart (nj: > P, Ei)’ i=1, 2, and let
: -1 -1y .
I‘i = Ch-i (El 52 )) f;i > Chi (El E ), i=l,..., p, and let

R = diag (rl,..., rp); ®>r > ...> T >0,

o S K

(12) ﬁ= diag (zl,..., zq, ;zqﬂ,...";"zq,rl,..., zqm,..., zqm),

and o > § >4 >

>
>Zq non>,e,l_

where p = k1+,,,,+km+ci, Then the joint distribution of the roots i’tl,..., rp’is

-given by



10

n
j I +H'AHER|"Z2 a(m

‘2
where g? nl+n2 n, . n, 1 n,
cpg* 0 T (=) (r, () T, ()1, BT Al 5
(nl-p-l)
|R| = 7 (4. - 4.)

and n=n .+ n, EP(X) = np(Eﬁi) E ((x~3(3-1)),
=1

d(H) is the invariant measure on the group O(p). Again,as earlier,by lemma

1.1 and as is shown in [3], the integrand in (13) is meximized for all variation
of R > O when H has the form (6).

Again we make a substitution of the form (8) and after legnthy algebra similar
in line to that of Li and Pillai [6], [7], we get for large n, and Zi's and rj's

‘well spaced (i,j = 1,..., D)

J n q m 1 n
1 -5 = - -5
o(py IZ*HAREITE a(m =2% mowu, IT+AR|T2
! qu -1
qQ P 1 m +1 P 1
e =5 2TT 2
mnon (= )2 n m ul (=)
. nec, . nee.
i=1 j=1 i u=1 i=q, =41 13
1 q 48] .1 n qu-|~l-l i) -1
[L+= (g = c¢iT + Z % ) ce.m + o, (p,a)
2n (=1 d=1 ij =l i= . 1j 1 L
i=1 §= o=l imqy §ey

+ o (p, a, kl,..., km)) +...],

where ¢, ., = (t.. = t, t. r..) r..,
ij ji i 7§ Ti37 Tis



-1
(1)4) tij = ti - tj, ti = zi(l.hziri) ]

=r, -r

I‘ij i j, i=l,oco, q-.’ j=l,o.-’ P‘ i<j,

and c{j is similarly defined as cij but subscripts varying over the indicated

set where it is non-zZero,

a, (2, 0) =% {(a-1)(ha#1) + 6(p°-a%))

and

: m
: =1 ~q-k~ - -q-K.= K. -
o, (p, a, Kysenes km) =5 151 ki(p q-Kioenes kl)(p Q-kineoeak, 1)

. 3
+ z kkk += T k.k, .
j<j<p=3 J74 2 icj=p L9



Thus we have the following theorem.

Theorem 2. For large degrees of freedom n = n, + n_, an asymptotic expansion

1 2°
for the distribution of the roots « > ry Sieeey 2 rp > O when the population
roots satisfy (12) is given by
- _n q P 1
2% g W, wmil c, |[I+AR 2 m = ( iz )2
i=1 ‘ -~ i=1 j=1 3
i< j
n  Yust D ok 1 g D -1
T om m (_537-)2 [1+ 5 (=2 = e, +
u=l i=q SECI ij i=1l j=1 19
i<
n Lurt D 1
T T E ety +a(p,a) + oy (prark e, k1)) Hilld,

u=1 l=qu J qu+1
where the constants are defined by (1k).

In the following we give the asymptotic expansions for the roots of relevant
matrices for MANOVA and Canonical correlation cases and for complex analogue
of all these problems. Detailed grbund work being already done in [3],

(4], [6], [7] and above we just state the problems and the corresponding

solutions omitting the details.

Asymptotic expansion for MANOVA - several multiple populaxion roots. Let E

be the between S. P. matrix and W the within S. P. matrix. Then B (pxp)

has a non-central Wishart distribution with s d.f. and matrix of non-centrality
parameter ﬁ, and E has the centralVWishart distribution on t d.f., the

co-variance matrix in each case being Z.
~

Let A = p p vopd

A £7 aR-= B(W + B)-1 and in terms of the characteristic

roots let
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(15) 5 = diag (rl-";"-) r.p)> 1~ rl > Toreees > rp> 0,
kl km‘
(16) ﬁ: diag (El,nco, Eq, 2q_+l"“’ f,q_,_l,..., zq*m’--o, f;q_'_m),
where

(- -] > zl >,f,‘.", > Lq > Eq_'_l > 9000 > zq_'mz °ov

Then we have the following theorem.

Theorem 3. For large t (and hence for large sample size) an asymptotic

expansion for the distribution of the characteristic roots of R in (15),

when the parameter matrix A satisfies (16) is given by

-1
q¢ B -1 Doy 3 m Wl P or i
c. 2% m W, w. T ( Y2 nmoom # ( )
3 . i Tmtl . te, .’ 1 s . tee,
i=1 i=1 j=1 ij U=1 1-qu J”qu+l 1J

m Ayt P
{1+ (z £ ¢, + T T z

u=1 i=q, 3=Q41

o
civj + dl (P’q)

t s
+ dE (P:q.’kls--~> km)) tyeeey } €Xp [trﬁE]'lFl(- 5 5 'ﬁz) + 0(3),

where
2
g 1 t s -1 £(s-p-1)
cg =m0 T(3 (s%8)) (T (3) T,(3) T,(D) exp [tr A] |B[Z°7P

II - Bl%(t-P"l) T (I‘

~

i-r.)
1>j J

and
I A N - . e
15 (1+,9,)Q1%8,d,) 1Ehseees Do JSLseees Py 2RI




1k

cij's are similarly defined as cij but the subscripts varying over the

e as . ‘ - p1s _ .= .
indicated set such that Cij is non~zero and E' B.,l,e.,di =r, i=l,..., p.

5. Asymptotic expansion for canonical correlation-several multiple population
p < t be distributéd N(0, ), where

roots. Let X seees xp, xp+l""’ xp+t’

t

512 P
T =

I £

Let P = diag (ﬁi,..., pi), where pi, i=l,..., p, be the roots of

-1 ' 2 -
2, Zp Ep- fp Zul =0

22 . ~ 2 a2 A2, .
and let P~ = diag (pl seees pP ), where Py i=1l,..., p,be the maximm

likelihood estimates.

Also let
(17) 32 = R = diag (¥)5..., 7))
kl km
22 = A = diag (Ll,..., zq, Bgap2ee 'e‘q+1"‘," zq+m,..., 'cq_+m)
vwhere . |

1>rl> sesey > rp>o, 1>zl>22> yeeey >zq>zq+l> yeves

> > 0.
fqim 2 ©

Then we have the following theorem.
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Theorem 4. For large n, an asymptotic expansion of the distribution of Tiseeey T

. p’
(squares of the canonical correlation coeffeients) when population parameters
satisfy (17) is given by
m g : a P
q -1 -3(2n-t) 1 -1
e, 20 M ow, W I -AR| 0+ sty (z = e;7 +
,-I- i=1 1 m+1l ~ ~ ~ 2 2n-t i=l j'—'-'l 1J
n et o) -1 , , . :
oz z coly * a(P:a) + ap(Rslkysens K)o, } F,(3(t-n), 3(t-n,
u=1 = j=qu+l
%t’ ﬁ’lj) + 0(e),
vhere
c.. = (t.. -t,t, r..) Ti, =2C..)
ij Ji i7j "i37 "iJ Ji
.. = t,-t.,, .., =1, -T,,
iJ i J 1J 1 J
-1 . . .
ti = ‘0’:‘. (1- ril’i) s i=lyee., 4, J=lyeesy P, 1<,

and cij is similarly defined as cij but the subscripts vary  over the indicated

set such that c{ is non-zero.

J
And
2
g n t n-t P ‘% 2(t-p=l) ‘
g = {m Ty (5)/1"p () Fp ) Fp (2)”5 - £-,| |5|2 iT>rj (ri-rj).

Complex analogues of previous results. In the following generalization of

the above results to the complex case we refer to lemma 1.2 and the corresponding
results of theorem 1.3 of [ 3] and proceed as above, the details of algebra
obtainable from Ii and Pillai [6], [7] with suitable changes. Complex analogues

of theorem 1< are as follows.

Theorem 1.1l. For large degrees of freedom n, an asymptotic expansion of the

distribution of the roots of the covariance matrix S when the parameter matrix

~
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Y :
Z has roots £,'s and satisfy (k), is given by

n  Tus~l P

m 4 a4 P
D, m 8, em}-l""(i:)ﬁ" T'l’ (i‘;)
i=1 * i=1 j= ij u=l i=q 3=9,47 13
i<y :
1
a p _ n  Gut P -
’{1+%n(z T et vy oz T cio.l)+,...,}exp[--gtrAR]
i=1 j=1 u=l 1=qu j=qu+1 J ~ ~7)
i<3
where
- ~s ”~ - - P
b, =P o) Fm) (2P (RTP n (s
~ i<j=2
and
k.(k.-1) ~
-1 .
o, =m L {re, (&)}, i=1,..., m,
- -p(p-1) -1 _ pfel) s
0 4 =T {I‘P(P)} ’ I‘p(n.) = 2 izl (ln i+l),

ci.j and cij are similarly defined as in the corresponding real case.

Theorem 2.1, - For large degrees of freedom n = nl+n2,9.n asymptotic expansion of the

distribution of the roots of §. 51 in the complex case when the population roots
satisfy the form (4) is given by '

3

m R m Gl p

D, m 6, 1 ™ (____2rr ) ®wm o om m (2" )
. i m+l ., . ne, . . . nce
i=1 i=1 J=l ij n=1 1=qu. J=qu+l 1J

i<



T+ aRI™ (143, (

3n

q P
T .z
i=1 j=1
i<

C.

-1
ij

e P 1
+ I z z c ]?_' 3
u=l i=q, 3=

+ 61 (P:Q.) + 52 (P’Q.:kls"': km)) (b,?..», },'

where

i<j

plp-1) -

2

2

N e o T
T (nymp)/ T, (@) Tylm) Ty (np)) 4172 ||

where cij and c;j are defined as in the corresponding real case,

and

B,(p,0) = & {(a-1)(2g-1) + 3 (p-a)(p+a-1)},

Bz(p,q’kl’ see) k'm) =

m
+3 L
i<j<t=3

k. k.k.

nojw

m

ii:l ki (P"q"’k-p es o -ki) (P"q_-. DR A 4 "ki"l)

m

+3 £ k.k..

i<j=2 * J

17
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Theorem 3.1. For large t (and hence for large sample size) an asymptotic
expansion of the distribution of the sample roots in the complex MANOVA case
population roots satisfy the form (16) is given by '

_ -1
Dy T oe. e :& LA (tc") " :u+l " (--~‘b:°)
4=l D i=1 j=1 ij w=l  i=q, J=q 4 i3
1< " |
-4
[l +-3-t ( z z Ci. + X Z z ‘C{. + Bl(P’Q) + 000yt
i=1 j=1 J u=l i=q = J=q ., J
i< 3

BZ(P,Q_,kl"'-’ km)) * 5000, } exp [tr ﬁB] lFl(-t’s’ 'ﬁ B) + O(G),
where

b, = (@) T (srt)/F(2) T(s) Tp(0)1 I - RI¥P

IRIQS-P) Tr (r.-r.)2 exp [-tr A]
~ i i~3 ~
i>3
and cs 3’ c]?. j's are as defined in corresponding real case.

Theorem 4.1. For large n, an asymptotic expansion for the distribution
of the canonical correlation coeffiéienir:sﬂwhen_popula.tion coéfﬁcients in the complex

case satisfy the form (17) is given by

0 ‘ a P
-1 -(2n-t) 1 ~ -1
LA - + z T+
Dg 1 % fmn Iz - ARl Wsmmey (5 5 Cu
i<
m Q1L P 1
z z z c{j + Bl(P’q) + 82(p’q’kl’°”’ km)) +:-~~,}

u=l i=q j=
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2Fl ((t-n), (t-n), t, ég) + O(G))
where

by = (PP T )/F (net) T (6) T @] |7 - A1 |5 *P | - 5P

T (ri-r.)2
>3 J

and c; c{j's are as defined in the corresponding real case.

Remarks. Ll. As will be seen from the above formilae, they give the already
known results of Anderson [1], Chang [2], James [5], Li and Pillai [6], (7]

as special cases,

2. Though we have taken the sets with multiple roots in.the population
parametric matrix at one extreme, actually it does not matter even if they
were otherwise. By pre and post multiplication by suitable permutation matrix,
all multiple roots can be brought to one extreme place without affecting our
distribution problem but,of course,care should be taken in defining dij and

c{j coefficients.

3. Since,for all variations of R, the appropriate integral in each case takes
definite special forms,we can take particualr transformations like (8) or its
complex analogue to approximate the integrand around one such optimum and hence

adjust for all such optima.

i, As will be evident, our technique being a generalization of techniques of
earlier authors, the restrictions made by  earlier authors also apply

in our case.

5. As said earlier we tacitly avoided the "invariance" technique used by James
and subsequently followed by others. Moreover, our technique gives their
result as a special case and hence gives a different interpretation of their

results.
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