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* ' OPTIMAL PARI-MUTUEL WAGERING

-+ By James N. Arvesen and Bernard Rosner
Purdue University and Harvard University

A procedure is proposed to enable a bettor to optimally
place a bet on a pari-mutuel event. The problem is essen-
tially one of multivariate classification given data on each,

!contestant It is shown that one can always decide opti-
| mally among- the alternatives, : (1) bet on any one horse and
'(2) do not bet at all. “

1. Introduction. Perhaps the first explicit solution to
a non-linear programming problem was presented in Isaacs
[1953]). His algorithm enabled one with the prescience of a
prioni probabilities to wager optimally on a pari-mutuel
event. His optimal solution determines which contestants
should be played, and the amount to be wagered on them. Un-
fortunately, the result had little practicﬂl relevance since
obtaining valid a prioni probabilities remained a problem.
Also involved are possible computational difficulties in ac-

L

tually 1mplementing the algorithm Also his technique was
essentially a no data problem. What follows is an attempt. .
: to treat pari-mutuel wagering as a problem in statistical

ihcinowledgment. The authors are indebted to Professor
' Peter O, Anderson for several'helpful discussions.

»
This research was supportad dn part by the NaH T!mﬁaing* &
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fdecision ‘theory. However, first let us digress to explain

(pnri mutuel wagering.

j
too2, Pa&&-MutueZ Wagering. Approximately half of the f£if-

‘ty states have legalized pari-mutuel wagering on thorough-
bred racing.. In addition, several states permit pari-mutuel
wagering on harness racing, greyhound racing and quarter-
horse racing, while Florida includes jai-alai. In what fblq'
-lows attention will be focused on thoroughbred horse racingd‘
however, the technique is applicable to all pari-mutuel ey-
ents.

The. -essence of pari-mutuel wagering is that a number of
bettors place bets on various horses, the '"house" deducts a
fixed proportion of the betting pool, and distributes the
'balance.nmong the winners. The deducted proportion is typi-
cally between .14 and .16. Assume there is a total of §
dollars wagered in a race, and Yj dollars wagered on a
horse of interest. Let r denote the proportion withheld
by the "house". The odds, °j’ on this horse are given by

€@.1) o, = B[(1-r)s/(B YOl -1

:whnre [x] denotes the greatest integer in «x, and B is |
icalled the "breakage'. Typically, B = $0.10. We will sub+ |
! 1
sequently be interested in J discrete odds levels, {

g s

The above description is for win pari-mutuel wagering.
Por a discussion of place pari-mutuel wagering, and another
betting algorithm, see Willis [1964].

‘The Classification Problem. Data on pari-mutuel wag-
erins for thoroughbred horses is almost as plentiful as data
for the stock market. In facti there is so much data that
lbaumxsr. Toduce it 4o some. ndhhgeabis. statistic o make’"
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. one's decisions. Most serious handicappers do this in a
highly subjective fashion, one they claim was learned by
-years of experience (and presumably years of financial loss«
es too). The following is perhaps a more objective way to
obtain a decision on wagering. K

Excluding the possibility of a tie (called a dead-heat),
i every race of k horses has one winner and (k-1) losers.
é The problem then is to classify each of the k horses as a -
: potentiai winner or a potential loser. In fact let us as-
sume’ that we are using p quantitative handicapping factors
to classify the horse. Let Xi, i=1,..., k be pxl1
vectors denoting the observations on these p factors for
horses 1,..., k. Furthermore, let Z be a pk x 1 vec-
tor, Zf = (Xl, Xz,..., Xk)'. While selection of these p
factors is outside the scope of the present paper, one could
use such factors as speed, class, or other commonly used fac-
tors (see Epstein [1967], da Silva and Dorcus [1961]).

Next let us assume we are interested in horses of odds aﬁ
J levels, say 'ol,..., 0y. Actually one would probably
- pool several odds -levels so that J would not be too large.
~ Order the odds so that 03 <0y < ... <o | o
Then there are k states of nature Sl""’ Sk’ Si in-
dicating that the ith horse wins. Let us restrict ourselves
to strategies which bet at most one horse, and exactly one
| dollar on each selected horse (never mind the fact that no
race track allows less than a two dollar bet!). Then we
"have k + 1 possible actions Biseees LR with a;
denoting betting one dollar on the ith horse, and 8. de-
hoting placing no bet. Then the loss function can be de--

#cribod as follows: I‘(ailsi)t * ‘0’14 11, ) km )
- i Mo T

—————
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LOSS' TABLE FOR' BETTOR*S ACTIONS:.

 State
. of ‘Action
~ Nature
SI
: .'S‘z y
. sk '
‘ |

O,

* e

TAPLB I

B At TR o O AN A | el et —— s mmm o

1 - o,_.
1 0
—_ . ,/ - -~
- 0
Ojk
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3.2) o= I, 10, (-0, RO RS ICNENEICES

1%gi =
‘where the integral is over the pk dimensional space of Z.
Noting that the odds are finite, condition II follows after
exchanging the integration and summation. Condition I fol-
lows since the Bayes risk using ak+1 is zero.

Note that Theorem 1 could also include the discrete case '
for Z, except the Bayes procedure may not be unique (this' J
is 1rrelevant, since if there is more than one, a bettor can
achieve the same Bayes risk selecting any one of the proce-v
dures). C
We note that Theorem 1 generalizes a result of Blackwell N
and Girschick [1954], Section 6.4. They considered the case |
k =2, °j =0, =1, qy =q, = 1/2.
 One mifnt hafe difficulty applying (3.1) without the fol~
; lowing two seemingly reasonable assumptions. ."4
| Assumption 1. £(z]8,) = n (X180, L= 1,... K, that |
- 48, the observations on the « thAeA are Lndepcndent givcn
| the state of nature. - f f-i
I . Also, :foj (: | ) indicates the possible dependence on f ;
j'the odds. Itlappears as if most handicapping factors do de- . i
pend on the odds of the horse.’ |

| . Assumption 2. f (x,18,.) = (x, |s )y &= 1,...,k, z*#z
% °j L °j

=] °j

f where s Lndacateb the state o‘znatuac A8 not Sz Do
In other words, the observations on the &th horse only de- '
' pend on whether the 2th horse wins or loses, and not on | '
i which other horse won. With this assumption, we can let ;
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o
Je g 1 )
4 =1,..., k, 8* # 2 where W and L denote the horse is
‘& winner or loser respectively.

fo, (xi )

Theorem-z. Let Ay ————TX_T—_- , and the aAAamptianA of
i

Theorem. 1, Assumption 1, and Assumption 2 hold Then the
Bayes procedure 4is gdven by: Let ¢(a)2) =1, 1 ci sk

- 4§ the {ollowing two candu:wm hotd,
I

Dol - L L . e e |
) ; I. 'ojiqi i K Zi*-l qi*ri* <0, \ |
: - : i*dL |

' (3.3) and l

I AL < ((oj +1)qfl))/((o el

- for atl i* g1, If 1 {ails tn hold for some 1< i <k,
Let 4(a,,12) = 1. ; |
: (roof. From. (3.1) and Assumption 1,

k ‘k '
YT oy T f, O 'si)* Dea8elyy €y (%y15,0)
P - _ jg i*ﬁi o
A . Gl
2; . jiqi 1 L= lfoj (leL)+ zi* 194+ i*ng=1f6 (xg'L)
", v L i 1)

using Assumption 2 nnd the definition of Ai Hence,

£, (X 18,) = foj (X, W), and foj;-(lesz*) z foj x, |1,

Yi‘= ('Ojiqili + Zi*alqi*xi*) nlalfo (XQIL) ’
1*#1 | | jz
and since the last coefficientfis positive (we are tacitly
assuming all densitites have the same support set) Condition

Iin 3.3 £ollows from. conmkeu 40 (3.1)._Conditdon 11

N R
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of (3.3) follows from Condition II of (3.1) using the above
representation for Yi-

Note that Theorem 2 could also include the discrete case
for Z, and yield a (non-unique) Bayes procedure. Unfor-
tunately (3.3) still does not have enough structure to en-
able a bettor to determine how well he is doing, that is to

calculate the Bayes risk in (3.2). Let us make the follow- |

ing assumptions concerning the distribution of Z. Recall

that we ordered the odds so that 0, < oé € ,ub < 05

Assumption 3. Let X astand fon the px1 obavwau.on vee-

“Lon on a honse of odds oy then asdume =
{ . |

o awewe®p .

XL =N 0,3, D, je1,..,4,
| P |
| where Np» denotes the p-varniate nowmal distribution, and
1 4s a positive definite covariance matrix.

Interestingly enough, Assumption 3 appears a reasonable
approximation in practice. Moreover, we felt that this as-

techniques (see Cochran and Hopkins [1961]) required too"
large a data base to estimate parameters.

Subsequently we will also use Assumption 4.
1 2
(1_ j( ) . u, j=1,..., J.

e

That is the difference between the mean vector for win-

' ners and losers at each odds level is independent of the
odds level. Again this assumption appears reasonable in
practice, especially if J is not too large..

| sumption was necessary, and that qualitative classification | _

Theorem 3. With the assumptiond of Theorem 2 and Assumption

8, the Bayes procedure 43 glven byt Let 4(aiZ)ad,1 £ 45 k



!
!
[

s

" The following is stated without proof.
:  Corollary 4. ‘With the aAAumptLonA 04 Theorem 3 and Assimp- |~

‘forall i* 41, If I gails to hokd gon some 1 <1 <k,
 Let ¢(ay,,12) = 1. r f

j Tssumption 3,

2 exp-%(xi-uj‘”) It -uj

J. N. ARVESEN AND B. ROSNER | |

| i‘;tﬁo following two. conditions hotd,

. 1. -ojiqiexp(x{{'l(u(l)Lugz))
R 2(u§1)+u§2)) It (1) }2))) o
+ Z:..lqi.exp(x .Z (u(l) §2))
e m_, @ "
(1), (2,51, (1) -
| ("ji,f“j ! i1 (uji* yji*)] <0,
(;?435..1;and | \ _ e
LNt ek -(uj“huj”)z Y
' (1) p (25,1, (1), (2) (1) (2
-xpt (g ¥y )»«zcuj o )Z G uy )

< m((,(031*1)%)/((%1,*”‘11*”

Proof The proof follows immediately after noting that with

exp-g(X, - uj(l)) Z“l(xi-u.(”) \

' A o= 2)

)

= exp(x}]” (utl) j(2)) (u(1)+u(2))2 1(u(1) (2),

pon 4. the sayu puudzm & gx.ven by* Let ¢(a;|2) « 1, |

3y iy M) 1
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1 <1 <k 4f the following iwo c.andu;i.onb hoktd,

1, -o qiexp(XX (1)+u(2)) T
+ ] ..ﬁiﬁxvfx'*f. 1“ 1tu§1)*U§2) 'L ") <0,

_ A4 31 '
(3.5) and ' ?

. ("1*"‘13'I'_luf-}(ujm*ujm uj(;) (23)2 1

St

_L_!,n["(-(ojiu)qi)./((6ji*+1)qi*_)

forn all i* ¢ i. 16 I {fails to hotd for some 1 < i <Kk,
Let d(ay,,12) =

Note that Condition II of (3.5) is easy to apply at the
race track. The same linear combination of the observation| |

vector is used for all odds, and a table of the other two
terms for all [g] odds pairs can be readily made. Unfor-| |
tunately, Condition I, appears most difficult to implement |

at the race track. Perhaps a first order expansion of each
of the exp functions would be a good approximation.

The problem of obtaining the @ pAioil probabilities
q= (ql,...,qk) still remainsL There are two séemingly reﬁ- ;
sonable choices. ! ?
Assumption 5. Choose a8 prion odds, q= (1—:0/(pji+1), Pl

i=1l,...,k. These prior odds are sugéested by (2.1), not
taking account of the breakage factor. Note that with this |
assumption, the right hand side of Condition II in (3.4) and |
' (3.5) becomes zero. Da Silva nd Dorcus [1961] show that in
large smples of rucos, these qi's m close to the actunl

— — it e gt e e o < 5

b e e e e - O e o ) P
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proportion of horses that win at odds oy, i
. i :
However, the simplication of Condition II with Assumption
5, results in making Condition I even more complicated. Pex-
haps the following is & better assumption. o
Assumption 6. Choose a4 prion odds, qis k'l, i = 1,...,k.
That is, include all possible information in your px 1
observation vector on each horse so that this is a reason-

able prior. |

Let us now examine the Bayes risk for (3.5) in a special}
case. Let P(a|S,) denote the conditional probability of !
X Furthei

more, let us assume there are k horses in a race, each

taking action ~a; when the state of nature is S

with the same amount of money wagered on them, and that the
breakage factor does not enter (2.1). Then _

| bj =...mo0 = ((1-r)k-1), and (3.5) reduces to lét

71 k _

0(a;|2) =1, 1<4<k if thg following hold,
} N

! [U j * W
-((1-r)k- 1)e *21* © 0 <0, '
' (s.s) wif
| II. Uy, -U <0
§ for all i* # i, where Uin xvz (1) (2))'Z-lu,

i ie 1, .., k, and u( ) ( ) -are the mean vectors of win-‘ ______ :
ners and losers respectively of odds ((1-r)k-1). If I failg
to hold for some 1 < i <k, let ¢(ak+1|Z) =1, !

Note that U' = (Ul’ P k) has a multivariate normal
) distribution in k. dimensions with mean vector given by ..
fcu.) = (-a/2,4004-0/2, +u/23-nr2,...,-u/2) if 5, the sth

|-

! f
[
.

e

B I e T S R U S U IS +—

R AR

bce e = o et
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componenf, where a = u'z'l

between winners and losers.
where I

First, by the assumption of equal odds, we can let i =1

without loss of generality.

V*
Plals)) = P(Zi._z :
where V 1* Ul,.i =
Via (Ve V)

in (k-1) dimensions with mean vector

Qnd covariance matrix,
i

is the k x k identity matrix.
1-4, and Anderson [1958], Ch. 6, one can readily obtain this
' distribution for U. ' -
One can now calculate P(a, 1s,),

Then
< (l-r)k-1, V, < 0,00, V < 0)
2,.v4y ko1 Since ..S1 1s true

has a mult?variate normal distribution

GXI.

|
u is the Mahalanobis distance i
The covariance matrix is %

From Assumptions

and P(a |Si*) i#iv,

----- E(V') = (=ajiviy =a),-

o _ | ' 2a a' ve a’
’ » G 20' LI ) a
. COV(V) L L e - o L[] .—— T—- o B
a o cee 2a
- After normalization, one obtains
’ (2a) 1/2 1 . e _
6.7 p(allsl) = p({i,sz < ((1-r)k-1)e" ,
| W< V2w < @t

. where W

, W

270 Tk

| corr(H; ,W,) = 1/2, 1 # ).

i ture,

i

E(V') - (G 0,..., 0)
trix as above. Hence after

are standard normal with S =

[P, - e

Also, if 82 is the state‘of na
, with the same covariance ma-

no&malization, one obtains
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: o Y
P(a,]s,) = P(a,]8,) = P(e
(20 %

"3 | €Q-TIKL N, < (a/2)1/2

ws < 0.0QAP wk < 0’ ’

LEL W = ("2"“’ N having the same diStribution as |

in (3. 7). _

Thus. in the case of equal odds, k horses, "take" of T
and a Mahalanobis distance of &, the Bayes risk from (3 2),
pow denoted by B(k r;x), is given by

5.9) B(k,r,0) = k" M{-(1: -r)k-1)P(a, |8)) + (k- 1)P(a1|8 ¥

= -((1-1)k- 1)P(a1|s )+(k 1)P(a1|S ,

P(allsl), P(a,[S,) as in (3. 7), (3.8j.
For k = 2, (3.7) - (3.9) are easy to calculate. Also,

fbr k arbitrary, i

" ek 1/2
(3.10) Pcw2<w2.....wk<wa=I a2 2oty .
where ¢ and ¢ are the standard normal c.d.f. and density
function respectively. This répresentation, .and similar

identities may be found in Gupta [1963]. Expression (3.10)

o

' (2(:)1‘,2 ,
G P @ (enikene®,

| may be evaluated on a computer!(see Gupta [1963]) Hence
‘one needs to calculate SRR

My (a/2)- /2,,..,u <(a/2J1/2),

s et £ s s o et e e

R b s s r———— .
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(2&)1/2w2+¢ (2a) 1/ %

(3.12)  P(e k

*Li#a3®
W<~ (a/2) 172

i+ '
>(1-r)k-1,

3<0 o ,Wk<0) .

hnfortumately,-expressions (3.11) and~(3.12§;oou1d be feadi- {

ly evaluated on a computer only when k = 3, In that case,
rs.lll becomes '

b | -
R I ¢(x){¢(((u/2)1’2 /2)/(3/4)1’2) S —
¢ a _ . -

2a) ~ /

F3.13) - - o{[(en((2-3r)e%-e ( ). :.m&;~m_;_.;-f_w-,

7 @2a) Y 2x/21/ 374y 12

1
\

d (3 12) becomes

e

| [ s(x) (0((~x/2)/ (3/4)1/%
. o
1/2 ' \

(3.14) - °([(3n(2-3r-e(2°) ! X*Q))

) 2x217 3 Hrax
where a = (/2312 enncl-sr))/(za)l’z b = (o/2) /2
¢ = -(a/2)% (n- 3r))/(2a)1/2 (o /2)1/2 and

. where 3r < 1 for problems of interest.

. tions were done on the Purdue University CDC 6500 computer, !

A table of B(k,r,a) for k = 2,3, r = ,15, .16, and

several values of a 1is given in Table II. Also included |

are P(a1|S ), (k-1) P(aIISZ), and P(a, ). The calcula-

From Table II it is interesting to conjecture that
B(k,r,0) 1s monotone in all three arguments. Also, one

14.

)}dn -

f

g
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BAYES; RISK: ,
' i
T "i 15 - '
'; k=2 | k=3
a Ba{es Risk p(allsl) e(allszy P(a;) Bayes Risk P(allsl) 2p(a1|sz) P(a,)
05 -2 .166 .099 ,735  -,05 .213 .284  .504
.10 [-.08 ,283 154  ,563 -.10  .314 383 ,304
15 |-.07 .353 178 .470 -¢15 ©368 417,215
.20 |-.09 _  .402  .189 _.408,  -,20 405 430 ,165
25 (=117 440 196 7,365 - -.24 433 434,133
.30 ’-.13 471 198 .33) -.27 .456 .431 111
| | t= .16 {
. k = 2 o o k=3 |
o Bayes Ris;lp(allsl) P(a,|S,) P(a ) Bayes Risk'p(allsl) 2P(a, [S,) P(a,)
.05 [-.01 ©  .144 .084 772 -.04 193 .254  ,553
10 |-.04 . .262 139,600 - -.09 .299 359,342
15 1-.06 ' .334°_  .164 . .503  _-,14 _ 356 .399 _ ,245
.20 |-.08 | .385 172,443 -.19 .396 415  .189
.25  |-.10 424 w184, ,392 =23 425 422,153
30 -.12 456 188  .356 -.26  ,449 42 .128
| , | m:.F i1
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should note that'thé conditional Bayes risk given that a.bet
was made, call it BC(k,r,a), ,is given by

(3.15)  BC(k,7,a) = B(k,x,0)/(1-P(a, ).

Finally, note that a purist might object to our tacit as-
sumption that "winners" and "losers" comprise two popula- f
I

tions. They certainly are not two populations in the stan- |

b

|

|
|
i
)
l
(
l

dard statistical sense. Nevertheless, we feel that this diéi¥

tinction is only of philosophical importance, for if there

is a positive Mahalanobis distancq o= u'y lu, we are wil-

!

“ling to act as if we in fact had two populations. !

4. 0Discusdfon. In discussing our procedure as given in .
(3.5) with that of Isaacs [1953], two interesting points are
‘noted. _First, both procedures can select a null subset to '

play. Also our procedure selects at most one horse per race

to play, while his may possibly select more. We realize

that a bettor may eliminate mathematically admissible strat-< -

egies by playing at most one horse per race. Nevertheless
_the authors feel that in practice it makes little sense to

"bet against oneself' by playing more than one horse per ‘g”

race. Also, the mathematics of (3.5) would become more com-
plicated:
Second, Isaac s prccedure has an advantage in that it

tells the bettor how much he should wager. We feel this is|

a small point since one can bet very substantial amounts at
the large race tracks without seriously affecting the pari-
mutuel odds.

Finally, the authors are currently working on estimation"m

problems involving (3.8). Intbmting problems in




TSttmating ordered multivariate partimeters arise. .
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