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1. IntroductioﬁQ An asymptotic expansion of the distribution of a sample
covariance matfix-(one—sample case) was studied by Anderson [1] and James
[7], and extending their work, an asymptotic representation was obtained

iby Chang [2] in the two-sample case when the population foots are all
distinct. Li, Pillai and-Chang:.[10] generalized Chang's'results [2] to
cover the case of_a single extreme multiple populatioﬂ root. Li and

Pillai [9]; [10],'have further obtained the second term of the expansion

in the two-sample cése and also extended the results té the complex case.

In this paper, asymptotic expansions are derived in the MANOVA and canonical

correlation situations both in the real and complex cases.

2. Asymptotic expansion for canonical correlation -- population roots all
distinct. Let Kpseens xp, xp+1,..., xp+q’ P < q be distributed N(0,%),
where
| P fZ Iy
¢y - I =
!
T\I2 Iy
p q

*
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Let P2 = diag(pf,;;., p;), where pi, i=1,..., p, Dbethe roots of

1 2

(2 oo dEp g, - 0%

Il o= 0.

2. diag(ﬁf,..., ﬁ;), where 6?, is= 1,...;'p, be the maxi-

and let f
mum likelihood estimates of pf, i=1,..., p, from a sample of size

n > p+q from the above population. Then the joint density of

: a2 _ _gs
(3 .B =R = d1ag(r1?..., rp)
is given by [4]
' : 1 1 1 .
4 D, | F. (3n, 5n, 5q, H' A HR) d(H),
1 271 *2 2 2 .- o~ o~ -~
0(p)
where
(5)  §2 A = dlag(z ceey 2p), 1>2,>..>2 > 0,

1 : P

d(H) is the invariant or Haar measure defined on the group O(p) of pxrp

orthogonal matrlces,

2
P n
(6) by = {1° G/t Go 1 Ge-g) T dn} [1-a12
3(ap-1) 3(n-q-p-1)
' , II = l}l \ I (rl = rj) s

i<j

where



rp(t) =1 E t-5G-13) ,

and the hypergeometric.function of the symmetric matrix_'g is given
by [4]

_. oo S B B, G
_ . UK L™
an(al”f" a bi,eeey, b, Q) = ) E (blj; o (bn)K k! :

u’ bl’...’

variate hypergeometric coefficient (a)l< is given by

where 15000, a

bn are real or complex constants and the multi-

(@), =

K

(=1

1

. (a--}(i-l))ki )

where
.(a)k = a(a+l) ... (a+k-1)

The group O(p) has volume

' . g? 1 -1
v(p) = f dH) = 2P 11 ‘{Pp(ip)}
o(p) -~ ‘
Let us order the ri's in R as>
J
(7n 1> Ty > een rp >0

The density (4) involves an integral and following Anderson [1], Chang [2],
Li and Pillai, [9], [10], our main objective is to maximize this integral.

Let us now denote the integral by



(8) | E

2 1 (s,s,t, H'A H R) d(H) s
0Cp) T

where, for notational simplicity we put s = %n and t = %q . '

Now with mild restrictions on s by theorem A ~of [3], we find
that for variation of HeO(p), 2Fl(s s,t,H'A HR) is maximized when

~ o~ o A

H is given by (11) in lemma 3 of [3], namely, (s s,t, A R) But

~

here we proceed to obtain an alternate form which is more useful. First

we use Kummer's formula and get

() F) (5,8, t,HAHR) = |1 - na n r|™ (25 t)zFlc(t-'s)-,(t-s),t,H'A HR)).

~ o o o~ ~ o~ e o

Now following earlier results [3], varying H over N(I), the neighborhood

~ o~ o~

of I(p xp), i.e. varylng H'A HR around AR, we get

(10) 1 (t-5,t-5,C,HA HR) = ,F (t-s,t-s,t,A R) + 0(c)

~ o~ o A

We prove below a more general result.

Lemma 1. If HeN(I), a, > 1(p-1), b >2-1), i=1,.cu j=1,....n,

then

F (a »a,b,...,b,HAHR) = F (ay5...,a , b ""bn’A R) + 0(e),

1°°° u’ 1 1 R, unl1 w1’

provided

ti - €< ch (H'A H R) <t i*es where ti = chi(A R), i=1,...,p

~ o~ oA oA



Proof. Let f(E) = uFn(al,...,au, bl""’bn

of [3], f(g) is an increasing function in each of its. characteristic

» H'A H R). Then by lemma 2

roots. Thus varying EeN(l), we note that first partial derivatives of
f(H) with respect to each characteristic root exist, except bossibly
over a set of ierb measure. Again as ¥{§)|H=I exists, the mean value
theorem applies and henece the lemma. o

Now applicatioﬁ of lemWa 1 in conjunction with Kﬁmmer's formula

(9) gives (10);‘ Fo11owing Anderson [1], Chang [2], Li and Pillai [9],[10],

and using (10) we get for large values of (2s-t)

E > 2P / |I-H'A H RI'(zs't)d(ﬂ)zpl(t-s,t-s,t,A R) + 0(g)
N(I) ~~~ ~~ ~ ~ -

Further we consider

(11) F = 2P [. |1 -nmanr " Yym

NeD T - -
The integrand in (11) is quite similar to that of Chang [2] and hence what
follows is essentially his technique as modified by Li-and Pillai, [9],[10].
For the sake of.continuity we write down the essential steps as applied in
our case omitting the details to the above references with suitable modifi-
cation,

Let us use the transformation
(12) o H = exp[S] ,

where S(p x p) is a skew symmetric matrix. 'Then by.Anderson [1]



+

(13)  J(S,H) = 1 + [(p-2)/4!] trs? [(8-p)/ (4.61)] (exs™)

-+‘[(5p2 - 20p + 14) / (8.6D]1(txsH? v ...

0). However as shown by Anderson

Under this transformation N(I) -+ N(S

~

[1] and Chang [2], for large (2s-t) we can approximate ‘F in (11) by

integrating not eXaCtly on! N(S=0) but simply over intervals

~

- ®< sij < o for each Sij' Under the transformation (12) we have
L Y Ry R R R
i.e.
R e
where .
G= (s} + {5+ (% 4 ... :

Henceforth for notational ease we will write 2s-t = v i.e. (14) is

rewritten as
T -HAHR]Y = |1 -AR]V|T g7

Let T= (I -A R)_l. Since A in our case is a fixed diagonal matrix

and has random entries corresponding to sample canonical correlations,

L~

we neglect the set in which T is undefined as at most it will contribute

a set of measure zero. Thus without loss of generality we can write



t,  0...
0 t...

(15) T=(-AR1A-= 2 ,
0 L]

where

J
Then
{S}=T(RS—SR)_,
(8% = 3T (2SRS - s%R - R s9) ,

and {§3} and ofher terms are obtainable with modification from Li and

Pillai [9],[10]. Further we quote a lemma.

Lemma 2. Let_,bj' be the jth characteristic root.of B(p x p) such that

max |b,| <1
l<jzp

then

|1+ B|V = exp[v tr(B - %Bz « g3

Sl

1.

For proof see Chang [2].



Under transformation (12), N(I)=> N(S = 0) and taking S sufficiently
close to ‘Q we can take the maximum characteristic root of G to be less

than unity. Hence applying lemma 2 we get under (12)

~ o~ o~ oA

[T -HAHRI™ = |1-AR|™V |1+¢]Y
v ' ) 3
= |T - AR|Vexp[-v tr([S] + [$°]+ [87]+ ... )],

~

where

[§] {§} >

1s°1 = 5% - Lisy?

and [SS] and other terms are available from Li and‘Piilai, [9],[10], with

obvious modification. Now putting S = (Sij)’ and S' = -S we have
tr[S] = 0,
2 2
tr[(S°] = 1 c.. s?,
~ i< ij “ijo
where
16 ..o= (t..- sC.r..)r.. = cC..
(16) c13 ( ji tltJrlj)rlj chJ
= t.- t., =T, - T. .



Thus we note that the above and other expressions follow from those of
Li and Pillai [9], [10] changing R to - R and with accompanying
change of notation. Hence following Li and Pillai [9], [10] we get

after some lengthy algebra

: 1
FePli-arl™ 1 &% u+L: cloapie ..y |
x ~ ~ .. VG, . v .7, Tij
: i<j ij i<j
where
(17) - a(p) = p(p-1)(2p+5)/12

Thus substituting back this value in E we get the theorem:

Theorem 1. For large n, an asymptotic expansion of the distribution
of Tiseees rp (the squares. of the canonical correlation coefficients)
where 1 > > .. > rp > 0 and the population parameters from (2) are

such that 15> 2. > ... > ¢ >0, is given by

1 P
1 1
S 5 - 5(2n-q) .
: 21 2 2 - 1 -1
18 D, T ———— I -AR
( ) 1 i<j ((zn_q)cij) l AAI {1 + z(zn_q) [ EJ ij

Fa@ e F Gl 3, A B 0(e)

where R, Dl’ cij and o(p) are given by (3), (6), (16)‘and a7n

~

respectively,

3. The asymptotic expansion for canonical correlation-one extreme

population multiple root. James [7] has studied the distribution of

smaller roots given the larger roots of a sample covariance matrix and

has found a gamma type approximation with linkage factors between sample
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roots correspondihg to smaller and larger population roots.. In their
study of the two4Samp1e case, Chang [2], Li and Pillai [9), [10], have
found a beta tYpé approximation in the same context. Wg obtain below
a similar beta fypé approximation in the canonical cOrfelation case.
Let us assume

1°?

...,zp), 1> 21 > 22 > ie. > zk > 2y iqT eve =2 =8> 0

(19) A = diag(e

and

_g = dlag(rl,..., rp),l >T > > rb > 0.

The joint distribution of r rp in this case is given by (4) with

1270
appropriate changes in definition of A and as earlier we consider (8).

Here we partition H as follows

(20) o H= >

i.e. HI(k x p) and Hz((p-k) X p). Under (19) we note that our integrand in
(8) is invariant under choice of H2 up to the restriction that the matrix
in

H is orthogohal.[S]. Because of the above we can integrate out H2

(20) using the formula

(21) . c, [ d#) = c, dH))
" -

where
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2
(22) c, = 1P /2'{rp(§9}‘1 and c,= nkP/z'{Pk(ga}‘l

1 2

where d(@l) denétes the invariant volume element of the Stiefel-manifold
of orthonormall.k—fiames in p-space normalized to make‘its integral unity.
Now by [3] and following Chang [2], Li and Pillai [9], [10], the integrand
in (8) can be c10§e1y approximated for large s when H has the follow-

ing form

(23)

ple+
n

where Io(k) = diag(+ 1,..., + 1) and is of dimension k. Now restricting

ourselves to orthogonal matrices we apply the following transformations

(249 H = exp [S] ,
‘ where
S 512
- (25) : S = ,
S12 O

and Sll(k x k) is a skew symmetric matrik and Slz(k x (p-k)), is a
rectangular matrik. The jacobian of transformation (24) is given by (13).

Also we have by analogy with Anderson [1], (James [7]),

26 ) |
(26) czd(?l) = °3d(§11) d(§12)(1+0(squares of sij's)) ,
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where
2
: 9.
27) cr = T2 {r_Gqr! = p-k
3 19 , q=7p ,
K k p
d(§11) and. d(§12) §tand for I dsij and I oI ds.,

i<j=1 i=1 j=k+¢1 M

respectively. From equations (24) and (25) we get

1 2 .
_l_f Sij, 1_<_k s

j

I ~10

ii 1

and

hij Si5* higher order terms , (i } i), S Sii -

Now using the transformation (24) and following the technique used earlier

and remembering that q = p-k of the roots of A are equal, we get

tr[§2] = .z 2 + E c?, s?.  ;

where

(28) cij = (tji- titjrij)rij = cji’ i,j=1,..., k, ‘1v< j s
o . .

(29) cij = (tji- titjrij)rij’ i=1,...,k, j=k+1,..., p,

and

[

zi/(1~ri£i), =1,..., k

e
n

L/(l-riz), k+l,..., p,



-13-

t. . - t. T, .- T,
1] 1 J 1) 1 J
Thus following Li and Pillai {[9], [10], we get

k.
PR UN ISl N Y ThC A S8 (2s-t)c, s2.]
- > L. . ij 1J
i<j=1
k p :
n I exp[-(2s- t)c1 ij ] {1+ O(s )},
i=1 j=k+1 ]

Now for large (2s-t), and remembering that in the present context the

integrand (11) is invariant of the choice of H

2 in (20) and using (21)

and (26) we get

k-1 (2s-t) k 2
(30)  F=20cgpe |1 -ARITESTHSf I  exp[-(2s-t)c,.s’.] ds..

| S.. S, i<j=1 N

' L1100 212

k P

i I exp[-(ZS—t)c ] ds . {1 + 0¢ )}

i=1 jek+1 5D

Again when (Zs—tj is lérge and li's and ri's are well spaced

(1 =1,...,p), most of the integral in (30) will be obtained from small
values of the elements of Sll’ §12. Hence to obtain an ésymptotic expan-
sion, we can rgplace the range of elements of sij for all real values

of them. With this stipulation, following Li and Pillai, [9],[10], we get

after some lengthy algebra

k l-k PP 1
i<j=1 i= 1 J-k+1 (2s- t)c

B R rent 3 I R NS ARV RS
{1 + [ c.. + c.. + a(p,k)]+ ...
4(2s-t) 1<5=1 ij 5 j=k+1 ij J
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where a(p, ¥ is defined below. Now using this value of F as in (31)
and‘proceeding exactly as in the case of distinct roots in the matrix A

we get the following theorem.

Theorem: 1.1. -For large n, an asymptotic expansion of the distribution of

Tiseees rp, where 1>r. > ... > rp > 0 and the parameters from (2)

1
are such that 1 > 21 >o.. > 2k > 2k+1 = ... = 2p >0, is giyen by
1 1 1
1.k - 5(2nq) k 5 k p : 5
(32) D1c30112k|1 -ARr| ? ((2_112_‘)‘?_)2 I I (_21_1_0.)2
~ icj=1 M50 j=1 j=k+1 (2n-q)cij

k k

-1

» 1 -1 0

{1+——_ C.. + c.. + Q ’k +...}
2(2nq) [i<JZ=1 1] izl j=g+1 1] @01

P, Ga-m, 3@, 1, AR) +0()

0 . . .
where Dl’ s CS? cij and Cij are defined in (6), (22), (27), (28), (29)

respectively and

w(p,k) = X (k-1) (4+1) + 6(p-kP))

4. Asymptotic expansion for MANOVA - population roots all distinct. Let B
be the Between S.P. matrix and ¥ the Within S.P. matrii. Then B(p x p)
has a non-central Wishart distribution with s d.f. and matrix of non-cen-
trality parameter_ 6 ’and y has a central Wishart distribution on t d.f.,
the covariance matrix in each case being I, and

y o-1

(33) A=guu sl
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where u(p xs) = is the matrix of the mean vectors.: Then the probab-

ility distribution function of the roots of the matrix

(34) - R=BB+W
is given by [4]
(35) T, [ B Gs+t), 35, HAHR) @),
0(p)
where
,
12)—' 1 1 1 1 1
T, = I I‘p(f(s+t)5 {I'p(it)f‘p(—z-s)rp(ip)} exp[-tr A]
1 1
P 5(s-p-1) p 5(t-p-1) '
(nm ri) I (l-ri) n (ri-r.) .
i=1 i=1 ig *
Let
(36) 8 = diag(rl,...,rp), 1> r>T, > ... > rp >0,
A= diag(zl,...,zp), ©> 8 >8> ...>8 >0

where 5 and A are otherwise specified in (33) and (35), 0(p) and
d(H) are as specified in the earlier problem.
As stated earlier, as in relation to the canonical correlation problem

we conéider the following:

(37) E = fo(p)l"l (7(s+t), 35, H'A H R) d(H)
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The integrand as it stands is not easy to work with, hence we apply the

confluence relation (James [6]).

(38) Lt 2 (a c,b,c” S) = Fl(a,b,S) .
cH ® -

Applying the -dominated convergence theorem, since the functions involved

are well defined, we get using (38)

i J o, 1(2(S+t), a, 35, a TH'A HR) d(H)
c>r e 0(p)° LT
: 1 -1
=/ Lt ) 1(7(s+t), a, 35, a~ H'AHR) d(H)
0(p) a> = T
=f ( Lleset), Is, Ham R) d(H) =
1'2 20 L E)
0(p) .
Thus, for evaluatihg El 5 We consider, for large a,
o 1 1 -1
(39) E, = [ 2F1(G(s+t),a,55,2" H'A H R)d(H)
. O(p) ~ o~ o~ A

Thus we note that we can apply the earlier technique but_with slight
modification as would be noted in the process. For notational simplicity

we use

(40) m= %{s+t) and n =

NJ)l—l

Now, using Kummer's relation given by James [6] we get

(41) (m a,n,a H'A HR) = II -a H'A H Rln n- a (n -m,n-a,n,a H'A H R)

L ~ o~ o~ o~ ~ o~ e o~
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‘Again
|1-a U R|n "% = [T + H'A H D||I-(I+H'A D H)~ lwaHD + a lHAHR]
and
-1
(42) o D=R
Thus we get from (41)
-1 . n-m ' -a '
(43) F,(m,a,n,a”  "H'AHR) = |1 + H'A H D| |1 -a” H AH R| |1 (I+H'A H p)~!

~ o~ o~ o~ ~ ~ o~ o

(H'A HD + a TH'A H R)I“'m F,(n-m,n-a,n,a lyaunr
Also by [3], the integrand in (37) is maximized under the present set up

when H has the form (ii) in lemma 3 of [3]. Now if we expand the

last three factors in (43) around HeN(I), applying lemma 1, we get

(m-n)

~ o e ~ o A o ~ o~ o~

(44) ,F,(m,a,n,a lpAHR) = T+ H'A HD| o(m,n,a,A,D,R) + 06)
where

¢(m,n,a,

!>
!U

,R) = |I-a‘1A R| 73| 1-(1+A p)~!

(AD+ ala R)|'(m'n)zFl(n—m,n-a,n,a'lA R)
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Thus using (44) in (39) we get for large m

E, 2P [ |1 +wHaAH p| ™M g (m,n,a,A,D,R)d(H) + 0(c)
N(I) ~ vt R

Further we consider the following

B, =22 [ Jr+wanp| ™Mam
N e T

where

9 = diag(dl,...,dp), © > dp > vee > d1 >1. ,

and A is as defined in (36) . The integrand as it stands corresponds to
that in Li and Pillai [9], [10], and hence following them as m > n and

for large m we get |,

1
P ol
E, =Pl +ap" 0™ o _L_,2 o [ cl e
3 l + l igj=1 ((m-n)cij) 1+ 4(“\-]’1) ]l;g. clJ +-a(p)]+ }
where
' (d.-d.)(2.-%.) |
(45) C.. = 1 J J 1 , i <j ,
o Tij (1+zid;)(1+gjdj)

and d(p) givén in (17) .

Thus putting-all:these results together we get the theorem:

»
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Theorem 2. For large t (and hence for large sample size), an asymptotic
expansion for the distribution of the characteristic roots of R in (34)
with parameter matrix A as in (33), where R and A satisfy (39) is

given by

)4+ %f'[ I c;; wa(p)] + ... }'
ig=1 - ij ’ ig v

expltr ARl [Fi(- 5t, 35, - AR) + 0&)

where T1 is given by (35) and cij by (45), i <j.

5. Asymptotic expansion for MANOVA —one extreme population multiple root.

The problem involved here is quite similar to the previous problem with the
difference that fhe matrix A = diag(ll,..., zp) defined in (33) now

satisfies (46) instead of (36)
(46) © > 4> > L. >0 >4 =...=2_=2>0 .

Thus every step of the previous problem in canonical correlation Section 3
follows smoothly'and we come to the consideration of (39). But now as' in
Section 3 we get by lemma 33 [3], the integrand in (33) is invariant of fhe
choice of §2' in (20). Thus, again, following the arguments and algebra

as in Section 3{ wé get the following theorem ( detaiis'of algebra are

available from Li and Pillai [9], [10], with slight changes{)

Theorem 2.1. 'For'large t (and hence for large sample size) an asymptotic

expansion for the'distribution of the characteristic roots of R in (34)
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with parameter mafrix satisfying (46), is given by

Ly
a2 o § - zn
ij =1 j=k+1 = Cij

k
-1,k
T.c.,c, 2 m(
17371 i §=1 tc

)2 exp[tr”A'R]

k t -1

1.1 1 -1 : o

F.(- 5t, 35,- AR) {1 +5¢ ) E Ci.
11 272 2 -~ 2t ig=1 ij i=1'j;k+1-13

T

+a(pk)] + ...} +0€) ,

where Cys Cz -énd T1 are given by (22), (27) and (35) respectively,

and c¢.. and c®. are defined as follows:

47 cij = (tji— titjrij)rij’ i,j=1,...,k, i ¢ j(cij = cji) ,
o _ _ Lo _— : o _ o
cij = (tji titjrij)rij’ i=1l,..., k, J—k+1,...,P, (cij = cji)
where

(ST T T & A S T

L/ (1+2 di), i=k+1,..., p.

alp.k) & X {(k-1) (4ks1) + 6(p2-k%)}
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and

. -1
9 = d;ag(dl,...,dp) = 8 .

6. Asymptotic expansion for canonical correlation in the complex case —

population roots all distinct. Let Xyseees X » PL q be

p’ p+l’”

» X
- PYq
distributed complex normal Nc(g,z c), where

P L Zew2
T
Q § cl? §c22
P q
Let P° = diagfb2 . pz ), where p2 i=1 p are the roots of
~c cl’ > Ycp’? ci’ rret
- . 2 _
(48) 2012 222 Ze12 Pe Zennl = 0
2 - . ,.2 A2 "2 s
and let Ec = dlag(pcl,..., pcp)’ where Pege 1 = 1,..7, p, are the‘

maximum likelihood estimators of pii’ i=1..., p, from a sample of size

n > p+q, from the above population. Then the joint denéity of

| 2 .
(49) | ﬁc = g = diag(ry,..., rb),

~

is given by James [6], as

Dy [ F( U'A U R)A(U)
‘ 2 an,ql U 3
Syl ANl e
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where

2, .. _
(50) Ec = Q = dlag(zl,...,zp), 1> 21 > 22 > 0> LP >0 ,
d(U) is the invariant measure or the Haar measure defined on the group

U(p) of unitary matrices of order Py
- mP®P-1x 5 N (a)E INLITIC &
(51) D, = [& F /T ()T (@T, ()]]1-A| ll}l

II - Rln'q'P I (r;- rj)2 s
. . i<

@-1)
]I .

r(t'j+1) »
1

J

=R~

f"p (t)

where the hypergeometric function of the Hermitian matrix Z is defined

in [6] as
- - = fa,], ... [a,1 € .(2
(52) F_(8y35+ee58.3D1seee,b_, Z) = K px k-
pnl ) w1 n’ . kzo Z [bl]K .,.‘Ibn]K k!
where

[a] =

" =l"d

(a - 1+1) >
ki

i=1

and « = (kl,;.a,'kp) is a partition of the integer k.

Let us now consider the elements of R and A as in (7) and (50)

respectively. Then as in the real case we consider the following integrals
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~ *
Fl(n,n,a,U AU

up) 2

R)d (V)

To study the aboVe integra1 let us consider a lemma analogous to lemma 1

in the real case.

Lemma 1.1. If UeU(p), and ai's and bj's
j=1,...,n), then
(1)

» U A

[ =

th(al""’au’bl""’b

are real (i =1,...

R) is real and if

(53) UeN(D), a; > (p-1), by > (p-1), (& = 1,...,u,351,...5m)
then
*
(11) an(alﬁ" ’au’bl’ ’bn’l-:l ‘é 9 fj) an(al’-,. »a ’bl’
+ 0(6) s
provided
*

ty— e sch (UAUR) <t; +e,
where

t, = Chi(é E), i=1,..., p

,u,

For proving (1); in view of (52), and ai's and bj's being real, it will

. . *
suffice if we can show that CK(U A UR) is real. This has been shown in

~ o~ o~
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[3]. Now as Chi(g*é 9 B) is real (i =1,..., p), »and nonnegative
in this case, undef i53), we get (52) is an increasing funétion in each
characteristic foot. Result (ii) now follows by arguments similar to
those in lemma 1.

Now as is dqne in the real case'using Kummer's formula we get

*

. * -(20-9) % (oo R
LFy(n,n,q,UAUR) = |I - UAUR]| ,F;((a-n), (q-n) ,q,U A UR)

and using lemma 1.1 and following Li and Pillai, [9], [10], we get the

following theorem.

Theorem 1.2. For large n, the asymptotic expansion for the distribution

of Tiseres rp, in (49) where 1>1r > ... > rp > 0 and the parameters

1
from (48) satisfy (50), is given by

1 SH 1 -1
D, T {14 mm— [ Ecil .
2 1g=1 (,(2‘“"‘)°ij) * 3nq) | i i * 6]

~

1- A" E (qm),@n),qAR) +06)

where B(p) = p(p-1)(2p-1)/12, R, A and D2 are giveﬁ by ( 49),(50 )
and (51 ) respectively and cij are defined as in (16) with T, and 2j

being replaced,by corresponding elements of (49) and (50).

7. Asymptotic expansion for canonical correlation in the complex case —

one extreme multiple population root. In this case we have the same model

as in the distinct root case with the change that :A .defined in (51) has

the form
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(54) P_ =A= d1ag(2 .,zp), 1>2,>8,> ...>8 >2& = ...

H
0N
H

—

N

=

~

+
[

where Pi is as defined in (48). Now, with necessary modifications in our
procedure in the real case, and using lemma .1l.1, andafollowing Li and

Pillai [11] we get the theorem:

Theorem 1.3. For large n, the asymptotic expansion for the distribution
of Tyseees rp, where 1 > > .. rp > 0 and the parameters from (48)
satisfy (54), is given by

ig=1

: il Jif -1
273 i_ﬁ((Zn—q)cij) i= ( ) 3(2n q) [ z clJ

o
1 j=k+1 (2n—q)cij

k -1
+ ) E cg. +B(,K)] + ...} ]I -A RI-(Zn-q)
i=1 j=k+1 *J I-AR

oF1 ((@-m),(a-n),q,AR) +0(e)
where

Dy = 131 (F(qy37?

and q=p-k, DZ- is as in (51), cij and c9j are as ih,the real case with

1
3(p-k) (p+k-1)} .

r.'s and zj's substituted from (49) and (54) and B(p,k) —{(k—l)(Zk-l) +
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8. Asymptotic.expansion for MANOVA in the complex case —population roots

all distinct. Let B1 be the Between S.P. matrix and W1 the Within

S.P. matrix in a complex multivariate normal case. Then B, (p x p) has
a complex non-central Wishart distribution with s d.f.  and matrix of
noncentrality parameter A jand W, has a complex central Wishart distri-

bution on t d.f., the covariance matrix in each case being Zl, and
C = ' .
(55) ‘ A=y 4y

where ul(p x s ) is the matrix of the mean vectors. Then the density

of the roots 6f the matrix

(56) K R=B.(W +B) !
: - N e | -1

is given by [6]

T, | F((s+),s, UAUREW)
U(p)

~

where
T, = POVF (see)/F T (T ()] [1-R]"P

'RI(S'P) I

(ri-r.)2 exp[-tr A] , -
i< J ~

where
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(58) R diag(rl,..., rp), I>r, > ... > rp >0

1

™
i

e

= diag (zl,...,zp), *> 4> >8> 0
and d(U)1isas defined earlier. Now as in real case we consider

C o~ *
[ (F ((s+t), s, UA UR)A(U)
11 ~ . maT Nl
U(p)
But as stated in the real case, the integrand as it st?nds is difficult

to work with and as such we consider, instead, for large a

[ ,F (s+t), a, s, a WA UR)AV)
u(p) e
Thus proceeding as before and by Li and Pillai - [9],[10], we get the

theorem:

Theorem 2.2. For large: t (and hence for large sample size), the asymptotic
expansion for the distribution of the characteristic roots of R in (56)
where R and the parameter matrix A in (55) sétisfy (58), is given by

Ir 1 -

T2 i} (E_??Ta 1 +5—[ c;

3t

% + 8(p)] + ...} exp'[tr A R)
ig ij i<j -

J

lﬁl (-t, s, -AR) + 0(g) ,

where cij is given by (45) using A and R from (55)'and (56) respec-

tively, T, is given by (58) and B(p) = p(p-1)(2p-1)/12

9. Asymptotic.expansion for MANOVA in the complex case — one extreme

multiple population root. As in the canonical correlation case with one
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extreme multiple population root, here again the model is the same as in
the distinct root case with the change that A defined in (55) has the

following form

u uigi = é = diag(ll,...,lp); °© > 21 > vee > R > L = ,..=28 >0
where ul, 1 are defined as in the distinct root case. Now proceeding
as in the ear11er case with necessary changes and follow1ng Li and Pillai

[11] we get the theorem:

Theorem 2.3. For large t (and hence for large sample size), the
asymptotic expanSion for the distribution of the chafacteristic roots of
R in (56) where 1> > rp > 0 and parameter matrix A in (55)

satisfy (59), is given by

kK k

k
i p no 1 -1
TPy T (g I I (Gedltrg+l I o
i<j=1 ~.7ij i=1 j=k+1 ij ij=1
: k P 0-1

+ I I ocy. ¥ B(p,k)] + ... } exp[tr A R]
i=1 j=k+1 I o

lﬁl ('ts S, - é B) + O(C) ’

where

py = 180§ @17, 80,0 - S{k-1) (2k-1) + 3(p-k) (p*k-1)}
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and q = p-k, cij and cgj are as defined in (47) but the T, and

lj's being taken from (56) and (57) respectively.

10. Remarks. AS-will be noted from the following there 'are some general
remarks which apply fo all cases discussed above and some others which
pertain only to special cases.

1. The method as outlined above is a generalization of Anderson's result
[1] and all his comments are applicable here also. Note éspecially the
following one.

2. No proof has been given to show that we have an asympfotic expansion
of the integrals involved on each case, but application of an extension
of Laplace's method as given by Hsu [5] can be utilized to show that in
each case the first term gives an asymptotic representation and has

been explicitly shown by Chang [2] and hence we just refer to his result.
3. In approximating an or uﬁn by Kummer's formula we note that if we
téke N(I) involved in each case to be sufficiently close to E, which
is possible fér large enough sample size, we can neglect O0fg) in each
case for goodreﬁough approximation.

4. The direction of ordering of roots in each problém is immaterial as can
be shown by results in [3], and as such the only restriction is that the
roots of the sampie and population matrices should be ordered in the same
direction. |

5. From remark 4 it may be seen that the expansion for.one extreme multiple
population root covers the largest.root although the results given in the
paper are for‘the smallest.

6. Each formula, as given, gives a considerable simplification in the

an function since each population root goes along with its sample counterpart
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7. In the real case‘when a in (a)k is a negative integer_the hyper-
geometric fﬁhction iﬁvo1Ved reduces to a polynomial. In the complex
situation a constant being negative an always reduces_fo a polynomial
expansion. |

8. When all the population roots are equal we see that -O(é) term in our
expansion is identicaily zero. Here we have to take any‘emptj.product to -
be unity.

9. Though in [3]4the limits of the elements of the matricgs A and R are
taken to be the whole real line, it does not matter even if we take it

to be any interval - [a,b], where a and b are two distinct real numbers.
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