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In the complex anaidéﬁe of both one sample and two sample.éasés) Li and
Pillai, [8], [9],ioﬂtéined a similar form of the unitary ﬁafrix g. The
purposé of this'papéi is to generalize their results bofh~i@;thé-compléx
and feél situatidng'with 81,0005 B, bl,...,’bt, satisfjipé-some Suifable
cdnditions. |

We develop thé'i&ea in a series of lemmas aﬁd’theofems and show-that-
the results of Andgfgon [1], Chang [2], James [S], Li anafﬁillai,[8], (91,
are special cases16f‘6ﬁr results. The generalization Haé hﬁt dnly been iﬁ‘

regard to. - h}pergeometric functions but also when _ﬁi?s are equal

sFt _
within each of sévéral sets. We have further provedvthAt'the integral

under different forms of the matrix A is invariant under choice of dif-
ferent submatrices of ' H and our general results cover some earlier ones of.

the above authorsf-7'

2. MaximizatioanfISOme special functions. First we prévefthe following
lemma.
Lemma 1. Let f(T) be a real valued function of the elémeﬁts of the matrix -

T(p x p) = (t;;). Then

A EM = tr(QdT)

wheré
S /
of o f o
atll {’... atlp : 7 dt11 ""dtlp
Q = B and d T = ' o
\ € af
at cy e e at dtpl -'..- dtpp
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But (H'dH) is a skew-symmetric matrix. Hence for all R > 0

(5) > R H'AH is symmetric

~ o~

% RH'AH=HAHR

~ o~ e~ o~ ~ o~ A

| % H'AH

S o~

diag(yy,---» )

as R in (3) is diagqnal with distinct roots . o o

=>H has the form

(i) H has + 1 in each row and column once and once only aﬂd zerovelsewhere.
Now tak1ng H of the form (i) after some algebra glves Anderson s result [1].
In the above two corollarles, the function we have consldered though not
exactly special forms of the integrand in (1) but are equ1va1ent forms. Hence
the parallel results 1n both the cases suggest a similar approach for this
general integral (1) but unfortunately attempt in this d1rect10n proved futile,.
Hence we give an alternatlve approach to handle this general problem and give

special results as occasions arise.

3. Maximization of 1 when %;'s are all distinct. At first we prove a lemma

which will be used in'the ‘sequel. Let S(p X p) bea symmetr1c matrix, Chi(S)‘

denotes the ith characterlstlc root of S and C (S) stand for the zonai
polynomial of the'matrlx S corresponding to the part1t10n 'k as defined by

James [4]. Then we state the following lemma.

Lemma 2. Let- chi(S) >0,i=1,..., p. Then CK(S) is'ﬁonnegative and in-
creasing in each‘characteristic root of S. .
This may be showﬁ'by using the differential equationﬂgivén by Jamés_[6]J

since a) the coefficients of all terms of a zonal polynomial when expressed



in terms of monomial symmetric functions of the characteristic roots of the
matrix are positive'and b) zonal polynomials are themselves éymmetric
functions of the characteristic roots.

Now let us conﬁidéf the integrand in (4), i.e. let

(§) _ fgg)»= sFt (al,...,‘at; bl""’ b

g AB 13}}')
Also let
(7) a, 3(1/2)(?-1), b @/p-1), L= 1, s, ] - 1 t.
Now, by James [41 :
w C(AHRH'
ew - ] ] gphree SO 2EE
k=0 « 1 t)K

where «= (kl"7

geometric coefficient’ (a)'< is given by

;;~k§) is a partition of k and the multivariate hyper-

; ':(a) =

K

n =g

(a - (/-1
1

i=1

and
. (a)k = a(a+l) ... (a+k-1)

Under (7)



—6-

= (@), ... @), CAHRHY

(8) max f(H)b=('max K —
Heo(p) ~ Heo(p) k=0 k  (P1i trr (el B
e @), ... (8), . CAHRHY
o< .max ——
-’“kz E CRIETCRN e

HeO (p)

Now to proceed any3fufther we have to consider the maximization problem in-
volved in (8). Té;;his end we proceed as follows.

For A and R in (1) let us take (unlike in (3))
(9) m>¢ }@f>...>2p10 and ©>7r >r é...>rp>0-

(The ordering andiiabeling of £.'s and r.'s will be done in different
ways as may be necessary. A and R are more or less u's‘evd" in a generic

sense in order tovévdid the use of too many symbols.)

Let us. con51der C (H'A HR) =C (H R H'A) where C (Z) is the zonal

T . ~ o~ o o~

polynomial correspondlng to the partition «k as def1ned‘by James [4] and

HeO(p). Let Chi(Z)-'denote the ith characteristic root bf Z.
Then | |
Ch (H R H'A) < Ch (HR H') Ch (A)

I VI VR ~ o~

Ch, (R) Ch, (A)

hy % )

rlzl-

Now if we take
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where

and

(11)
Again let

(12)

?

Q

‘ | ' -
. Chy(H R H'A) = Chy (

Hence we consider

Let

(13)

Then

_diég(rz,...,

the matrix

N

¢ A

=~

N
v

oo
)
—~
=

. and S = diag(s

r. 2 0
171 ~
)
0 B



Let us now take é;‘; ,..., 0,1,0,... 0),1i-=1,..., p (in the standard

notation, i. e. 1 1n the ith place and zero elsewhere).

Then _
e! C7éi'¥ r E he, 2 < L )
0 U S BT S < 171 )
", k=1
Also e/ Ce, =r, f h2. L i=2 p
G DV | i ke ki "k — 1° ? ’
Let
X e v -
(15) § (xl,...’ xp) ; §' §' 1
Then
a9 hrex < 1 iglixlley)

W
[

el « T Ixlixglleg 0

A
[

2 e
il el + 3 el bl Vo TTeT

s (.f AR CBE

i=1

HI/\

4 ( .fl %1 Ve 2

. r, 2
C= T Uxgl o xg )y * I" IV £



Now for further reference we quote a theorem.

Theorem_(Courant—Fi$CH¢r)- Let D(p x p) be a symmetric matrix with charac-

teristic roots Ai i:;;. > Ap . Then they may be definedfas

max (X' DX)/ (X'X) ,
X .-~ ~ ~ o~

>
]}

?

T g max X DX) /(XX
3T wmy)-1 wipeo - oo ==

(i=1,..., j-1)

i=2,..., P
or equivalently
A_ = min X*DX)/ (X'X) ,
P X o~~~ ~ o~
A, = ' max min (X' D X) /X' X)
y Yy v) =1 (X' Y¥.) =0 . ~

i=1,..., j-1

where X, Yi are chumn vectors in Ep’ the Euclidean space of p
dimension.
Now if R> 0 lié such that r./r, is negligibly sﬁéli.'(i =2,..., p)

then applying the‘abdve theorem and from (16), we get for ai1 R>0

max Chl(H R AH'Y) = erl
HeO (p) DA
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iff equality holdsin (14) i.e. iff

h

an DR PR SO

Now since H is‘o;thégonal
QA7) @ h11 =+ 1

Thus for all R >.0».

. max Ch, HRH'A) = g&r

HEO(p) 1 ~ o~ o~ 1 1

iff

H'-has the form (10) .

If H has the form (10)

1   T4 9
SHAH'S =
¢k

where

By = SpHiaAM,yS, and S, = diag (s

-~y e,
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Thus characterlstlc vector corresponding to the root r.%. ‘is proportionol

171 .
to e, and hence’ any vector belonging to EP, Euclidean space of p

€ 2, s ep. Thus when

H has the form (10), the problem of finding the second max1mum charac-

dimensions, and orthogonal to e, 1is generated by e
teristic root of : S H' A H S simply reduces to finding the maximum charac-
teristic root of 1B-_“for H eO(p-l). Thus we proceed step by step as be-

fore, only that we are now dealing with matrices of one less dimension. We

also note the follow1ng

(19) Ch (H R H' A) < Ch (A) Ch (H R H')

~ o~ o~

Ch, (A) Chi(R)

BTy i=1,...,p .

Thus from the above dlscu551oh and from (19), using: the: fhct :that- zonal poly-
| nomials are symmetrlc functions of the characterlstlc roots of the matrix
and the monoton1c1ty property of zonal polynomial as proved in lemma 2, we

get the follow1ng.1emma.

Lemma 3. When (9) holds, for all 5) 0

(20) max CK(H' HR) = max C (HRH'A) =C (AR)
HeO(p) =" " ~~ = HeO(p) K-~~~ -~ .-

If A js as in (1) and

(21) ® >'2p{> 2> ... > 8

p-1 > 0, then

(22) min  C (H"AHR) = min C_(HR H A) = C_(AR),
HeO(p) ST HeO(p) K~~~ Ko~ -
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énd

(23) max _"c-v'fC(H'A HR) = max C_(HRHA) =C (AVE)
HO(p) " 7 7% Heo(p) <7 - -

where

E = diag (rp,..., rl)-

The maximum. in (20) and minimum in (22) are attained when and only when H

“has the fbrm
(ii) H(p x p) = diag (+ 1,..., + 1)

In (23) H has the fbrm: H = HID where H1 has the form_(ii) and

~

9 = (ep, ees el)

In proving (22) regarding the minimum value of the zonal polynomial we

used the follow1ng relatlons'
(24) Ch (H'A HR) = Chi(H R H'A)

~ o~ o~ ~ o~

~

> Chy (H R H') Ch(A)

Ch; (R). Ch ()

=1r.2 , i=1,..., p)‘”

and we proceed exacfly as in the maximization problem but in this case using
the maxi-mini characterlzatlon of Courant-Fischer theorem In case of (23).

we note that as HeO(p), HDeO(p) whete D (eﬁ,..., el)‘“and ei's are

defined earlier. _
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Also the mapping H+HD is one-to-one and onto and_hen;e in (23)
instead of considering{ CK(H R H'A) as HeO(p) we consider CK((H D) R (H D)'A)
as HeO(p) or eqﬁiyalently we consider
C (H E H' A) as H e 0(p) where
'E = DRD'
In the above dlscu551ons we note that if A and R “has the same ordering
of the element then A R corresponds to the maximization problem and when their
orderlng is reversed 1t ‘gives the minimum formulation.

Thus we use (20)'in (8) and we get the following théorem}

Theorem 1. If Av and R are as given in (9), the class of orthogonal matrices
. for which f(H) in (6) subject to (7) and for all" R > 0 13 a maximum)is
given by (ii) and :

© (al)'< v (as)K c

(25) max £(H) = ] ] :
l;leO(p), LT k=0 « (bl)K (bt)K

If the ordering of zifs in (9) is replaced by (21)

(26) ' :f(Hj. ) ) e e (B
min - -
| heo() - ido £ B B, TR

W1th H again taklng the same form (ii).
This is one of the basic results in the paper and we will subsequently

generalize it to moreucomplex cases., But first we give some special cases.
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Corollary 1.1. Ifj's=t=0 in (6) then
£(H) = JFo(AHRH') = exp[tr AHRH']
and undér (21) and. Rl-as in (9), we get for all R >0 f:;:

ax.ﬂff(H) = expftr E A] ,
HeO(p) ~ o

where

E diag (rp,..., rl)

This is Anderson'§fresu1t [1] mentioned earlier as case 3.

As a second application of our theorem 1,1let us consider‘the following.

Let

~ o~ o~ o~

g) = |1+ AHRH|™ = F (nA HRHY),

where A and R are as defined in (21) and (9) respect1ve1y and

n 1/(p-1) .

As it stands,fhgdrem 1 is not directly applicable td;this function.

So we write)followingyKhatri,[7],

~ ~ o~ o~ ~

Y HRH'| = |I+R|] I-(I-A) H R(I + R) H'|-

We now assume Ch.(A) {1, i=1,..., p. This is no loss of generality,

p . -
since for k > 0, |I +kAHRH'| =1 (1 + ka,) where
...y s i:l '

= Ch;(AHR H') > 0 i=1,..., p. Thus the problem of finding the maximum or

~ o~ o A

minimum of |I + A H R H'| with respect to HeO(p) is the same as that of

B, T TR
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~ A~ o m A

1+ AHRH| ™= |T+R™1- (1-A4)HRI+R H|T
= |1 +R|™ .F.(n, BHCH")
- - . 1 0 2 N -~ 3
where
§= (I - é) = dlag(b]_,---, bp) )
and L
¢=R( +R)L = diag (< ,..., )
Hence from (21) and (9) we get
1>b,> ;.fS bp> 0 and ®>c >c, > - > % >0

-~

Thus g(H) = |I {,Rl'n {Fo(m» BHCH') and now we can apply the theorem 1

and get.the follqwing”corollary.

Corollary 1.2. Under the conditions stated immediately above

max g(H) = |I + R|™ max F.(n,B H C H")

HeO(p) =~ = Heop) 10
=1+ R|™ Fy(,BC)

|1 + AR|™

This corresponds to Chang's result [2]. We now restate the above two results

in a different fdrm.
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. E . P

Corollary 1.3. Let (3) hold. Then E L.r, and T (1+2.r. ) are
4 . ivi, . erhit ek 1
S i=1 j i=1. - ]

both minimized whéh 'fi =71;, i=1,..., p. They are bothxmaximized when
L g

:I'.‘:i.j = rp_i+1, 1 =::."l>,..'.“r.'., P | :

The latter two.results are implicitly assumed in Anderson [1] and
Chang [2].

In fact, we can go a step further and get the follow1ng Let £ be a

non-negative, non-decrea51ng function defined on [0,«]." Then

p P
f( E L. 5Ty ) < f( E 2 T, ) and f( I (1+2 r, < f(I (1+2 r, ))
j i=1 i=1 13 i=1
under (3). These'feSults follow directly from the above'discussidn but
are mentioned separately since they cover a broader ground in the sense that
with mod1f1cat10n the results apply to positive convex comblnatlons of two

symmetric matrix functlons.

4. Maximization of I when the 21'5 are equal in set,“_Td this end let us

consider the folloﬁing form for A.

~

Sk K k

E 1 2 i - _
(27) ﬁ /}- diag(% 2 ..,2,2,..., FERERY i"zk’l_.f +ki+1,...,

1.,...,2,1, 20"
and o« > g > R, > .;. > li > 2

1 2 k +ki+1> 420 and R is as given in
).

1+...

For the sake of 51mp11c1ty in presentation we con51der the case when i =1,

and k let

(28) A= diaggll;il,ls,....lp), and « > g >3 >»;...> L. >0
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This is no loss of:genérality, as will be seen from our discussion = the
more general case corresponding to (27) is a straight forward generalization
of the same technique.

Proceeding exéétiyfas in the earlier case of all unequ#l roots we get,

2

e,

\j -
(29) i¢e=n Lo Pa % <ty
_ =1
iff
g Ry O
where

O
"

SH'AHS and S, H as

~ A ma oA

-

defined earlier and A as in (28)

‘e

. 2 .
i.e. ) 8§ = 8 = dlag(rl,..., rp)

-~

Hence proceeding exactly as in the earlier case we get for all R>0

1
Chy(SH'AHS) <10, .
Now equality holds in (29)
. .. R y ' —
e ChEHIARS) =1
30) iff (hgees, hg) 0
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Now when (30) is satisfied we get by actual matrix multiplication

ks T
(1) SH'ARS = )
0 G,

- v AT 3 3 -
where 92 = §2 52'52‘§2 §2, §2, 52’ 62 are defined earllgf‘and 5250(p.1)

As is clear from (31), the characteristic vector corresponding to the
root rlzl is propbrtioned to e, and hence any vectorubelonging to EP -

the Euclidean p-spagé and orthogonal to e is generatediby €oseres ep .

Now the problém‘of:finding the ChZ(S H' AHS) whenﬁ(30) holds is

~ o~ o~

reduced to finding Chl(Gz)
Again .
(32) Chy(Gp) = Chy(H) A Hy RY)

= 1
Chy (0, R, A

2 Chy(Ay) Chy (HRHI)

= Chy(A)) Ch (R))

= 4Ty

Proceeding exactly;as'earlier we get that equality in (32) is achieved for

all variations of R 0

2’

(33) i€ (hygseees By
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Again when (30) and (33) are satisfied we get by actual matrix multiplication

o LU
(34) SH''AHS = 0 T, 8, 0

T .0 0 G
where ".;

R )
Gy = Sy Hy A; Hy Sy, Hye0(p-2)
X 2 o . S
and A3 = dlag(zs,...,zp), §3 = 53 = dlag(rS,..f, rp)

Now in order to findfthe form of H3 so that Chs(S HA-H'S) is maximized

subject to (30) aﬁd [33), we find from (34) that we are.back to the problem
of all distinct rébts.in A3 with the dimension of H redﬁced by 2. Hence

following our earlier‘technique step by step we get

Lemma 3.1. When (28) holds énd R is as in (9), then fbrfall variations of

R >0, we get

max CK(H?'A HR) = max C (HRH'A) =C (AR)
HeO (p) ~ v~~~ HeO(p) -~~~ - Kiv o
If R is as-in (3), then
(35) min ~ C (H' AHR) = min C (HRH'A) =C (AR

HeO (p). Kie o~ - Heo(p) “ ~ ~
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and this maximum or minimum value of the function in respective cases is

achieved when H has_the form
(36) N H = )

where H1(2 x p) is arbitrary but otherwise satisfying the“otthogonality
relation of H and.

H .

~2 = (0 Hyy)
where 0 = 0((p—2) X,2) and sz((p-Z) x (p-2)) satisfies the condition
(ii) of lemma 3. . ’

In practice it is more frequently useful that A instead of taking form

(28) often satisfies the following

(37) A 3

> 2420

t

d;ag(zl,ll,zs,..., zp) and o« > lp > ..f >_&

and

R
I

= dlag(rl,..., rp), ®>r >T, >..> 0

The problem in this case more or less remains the same with the following

changes?

Now instead of considering CK(H R H' A) we considér ,CK((H D) R (HD)' A)
as HeO(p), where D= (ep,..., el) i.e. we consider

CK(H E H' A) as HeO(p)J

~ o~ o~



-21-

where E = diag(rp,,;., r]). Also as He0(p), H DeO(p), by.earlier
argument we get our results. Thus considering C (H R H! A)- as HeO(p)

‘we note that the form of H in this case is H D where H { "in this case

satisfies the form (}6},_or more explicitly -

(38) max CK(H RH'A) = max C_((HD) R (HD)'A)
HeO(p) - - - - HeO (p) - e e TS
= max CK(H E H' A)
HeO(p) T
= C(EA

and it is attained when H has the form

~2

where the left hand»matrix'is defined in (36). Here of course weinote thate‘
zonal polynom1als are symmetrlc functions of the characterlstlc roots of the
defining matrices and so long as the characteristic roots of a matrix un-
changed zonal polynom1als defined on them are also unchanged

Now as a further remark we note that the above proof though stated for
only one set of two equal roots, the proof is quite general for at each
step we JUSt cons1der one root at a time and as can be noted that had there
been three equal roots ‘in a set, then after (34), we should have gotten a

corresponding reduction and that it will work generally. Thus our earlier
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_ ST R, ¢
(43) E = = R R = o : )
LS T 2 R

where the‘partitions are appropriately done sc that the foliowing matrix

products are defined. 

‘Dt
P13\ /0 0)fPp P\ /R 0
H'AHR = 2R +
? [} :
P2 PAJ\0 By\Py P Jl0O R,
1]
P3 By Py R, N
[ ) .
Pa By Py Ry
X
B - R
H,

where X(k x p) is arbitrary but otherwise is a completion of H2 .

Thus under (41);' f(H) is invariant of the choice of H, in H. This
result with suitable modifications gives the results of James'[s], Li and
Pillai [8], [9].

5. Complex analogue of previous results. The complex anélogue of the previous

problems arises from the following consideration. Here ihsiead of the problem
of evaluating I 'in (1) in an asymptotic sense we have the parallel problem of

finding an asymptofic expansion of

- (44) 1, égIUTP) sFe(aps--00a, byseeauby, Uau 8)‘d(9) )
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where U(p) is the.gfoup of p x p wunitary matrices andJ d(U) is the
“invariant measure Sn_?htp), normalized to make the total méasure of the
whole group unity,‘fé{‘é as defined earlier, a,'s and 'bifs are still
functions of d.f.faﬁdfhence are positive real numbers. ﬁﬁt;here con-
sidefing the defiﬂifiqn of hypergeometric functions as giﬁén_ﬁy James [4]

we will put the following restrictions on a,'s and bj's@_ 5
(45) a; > (p-1), b, > (p-1) i= 1,5, § =1, t,

Uel(p), i.e. an element of the group of p x p unitary matrix such that
* * ’ - ‘
UU=0U-=I(p)

In this context”ﬁé have the following lemma.

Sl K '
Lemma 3.3. Let A and R be as defined in (9). Then ﬁk(U A UR) 1is real

~ L A

and for all variations of R > 0, we have

-~ * ~ ~ . B ‘-
max C (UAUR) = max C (URUA) =C@AR.
UeU(p) €77 veugp) S -t v - -
If A is defined by (21) instead of (9),
. -~ * »‘ . ~ * s . b.
mn T @UAUR) = min T (UVAUR) =T (AR)

UeU(p) UeU(p)

Proof. To prove that ”E;(U*A UR) 1is real,we note

~ o~ o~ .

Chp(u'fA U)'“Chp(,R) < Ch, UAUR) < Chl(U*A U) Ch (R)
i.e. Chp(é) Chp(g? :_Chi(U A UR) §_Ch1(§) Chl(g), } =;¥*'°" P

~ o~ oA
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For the rest we put as earlier 82 = R where

2 . . L . 2
§‘ = dlag(sl,..;fsp), B = dlag(rl,...,rp) i.e. s; = ri?_l_f 1,...,p

Then let C =S U A'U S‘= (cij) and U = (uij). Hence

~ A e e

cij =S, sj-ikglllkillkj zk , i,j=1,..., p)-

Now we proceed exactly as in the real case replacing H by U and get

Theorem 1.3. Let R  be as given in (9) and A as in (2?],_fhen the class
| . ~ V ¥*
of unitary matrices for which f(g) = SFt (al,...,as, bl"'f’bt’ g é 9 B)

subject to (45) and for all R > 0 is a maximum, is given by -

R
[

(46) BRI ,

4
|

9i+1
where

Uy (kyx P)J\ Yy = (05, U;p)

0. = 0(k,x(k,+...+k, = Kok, ), G = 2,
Ueyxliey e eetks 105 Upy= Usy (sx(pok ... 5003 =2

b -
and

Y1 T Qiag,0,%00,0 >

51

)
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where

0;41,1 = 0C(p-Cky+envky)) x (Ky*otky)),

Ui, T g, 1 (@ (kpee vk ) x (oo llegrenotky))

is a diagonal matrix. of the order
‘s . /e,
indicated in the parentheses and with diagonal elements e o < 6j< 2K,

9 stands for nu11 matr1x and gi+1,1

Upqs k= 2,---,1; and U, are arbitrary matrices subject_tbi#he condition that
U in (46) is unitary.

Also the maximum in this case is given by

4n max . f(U) = max F_ (a;,...,a_; by,...,, b, UAUR)
UeU (p) - - UeU (p) st S 1 - t? O~ <
= sFt (al,..., a; bl""’ bt,;é §1- ,
where SFt (al,. »ags biseees bt’ %) is defined in James [4],
©  [a] [2.] €T (@
~ 1'k stk K
F, (a;,:..5a_, br,eeu,b ,2) = ) ) =
st 1 | s’ 1 t’. K0 ® [bl]K [bt]K k

and the complex multivariate hypergeometric coefficients'are as follows

o P .
‘_ .[a]K = .H (a - 1+1)]‘( ’

i=1 i

where « = (kl""’ kp) is a partition of the integer 'k;_when the ordering

of the elements of A is reversed a result parallel toffhat.of (26) holds.



30

: : /=16 /<18,
u, = (0,D), O((p-k): x k) and D=diag(e seees€ q) - where q = p-k
and 0 f_ej < ZH;_j:= 1,..., q, ai's and bj's are asSﬁmed‘to satisfy
(45). This form of ;U in (48) immediately asserts invariance results of

Li and Pillai [8];7{9]. In fact obtaining the form of U as in (46) is

in short the most general result obtained in this paper. -



