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1. Introduction and Summary

This paper is concerned with the multiple decision (selection and
ranking) problem for k independent normal populations having unknown
means Bl,...n., Gk’and a common known variance 62. The formulation of
the selection and ranking problems has been based on the following two
approaches: (i) the"indifference zone" approach and (i1) the "subset-
selection” approach. ( A brief! diséussion of the two approachs is
given in [7].) Most of the work on the subset-selection problems deals
with the fixed-sample size procedures. In this paper a class of
sequential and multi-stage procedures using the "subset-selection"
approach is defined and investigated. This class consists of rules
of a non-eleminating type; a rule belanging to this class selects
and rejects populations at various stages but continues taking samples
from all populations until the procedure terminates. The sequential
subset selection rule investigated in this paper assumes that the
successive differences between the ordered Giff are known.

Section 2_of this paper deals with the défiﬁition of a general
class of selection procedures, while Section .3 investigates monotonicity
properties of ﬁhe class. The remaining sections of this paper investigate
a particular linear sub-class of the class defined in Section 2. Sections
4 and 5 use a random walk approach to find exact and approximate ex-
pressions for the probability of selecting a population and the expected
number of stages to reach a deci{sion. An approximate minimax rule for

choosing a specific procedure that minimizes the maximum number of samples
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needed to make a decision on each population, is discussed in Section 6.

Finally, the last section offers some comparisons with a fixed-sample size
Procedure for slippage and equally spaced means configurations.
2. Definition of the General Class of Procedures

In this section the general nature of a non-elimating sequential
multiple decision procedure will be outlined. Let T Torees ’T denote

k given normal populations with means 91 s 92,... ,Gk respectively and

. 2
common known variance o¢°. Iet e[l]_ [2]_ ees < e[k] be the ranked
means, and n(J.) (unknown) be the ropulation with mean 6[ 37 The object
is to select a small subset of nl,...,ztk 50 as to guarantee, with a

prescribe.d probability P¥, that the population with the largest (or A
equivalently the smallest) mean is included in the selected subset.
We denote this event by CS (correct selection). If there are more
than one population with mean e[k] ( 6[1]) then one of them will be

assumed to have been tagged as the best population. The sequential
procedure will be & modification of the following (see [5], (6],
[7]) fixed sample-sme procedure R(n).

R(n): Take a sample of size n from each of the k populations
U i=1,2,...,k and select " if and only if x >
max~ OO where d is chosen such that igf P{CS'R(n)?

P*¥ and Q = {g:9 = (9 seensBy )y ~= < 6; < ® i =1,2,...,kl.

=

X5 i=1,2,...,k denotes the semple mean from n, and
X __ = max X,
max 1<i<k i

It has been shown in [7] that underthis formulation, 1
(2.1) p; (n) = P(selecting m )lR(n)) = P(x( )_ —ma.x - odn 2)
1
T [ n Q(x +d + (9[ ]"' 9[3])112/0')] o(x)dx
- 0 Jﬁl

where &(e ) and o(*) refer to the cdf and the density of the sta.nda.rd
k-1
normel random varisble. Then P{cs|R(n)} = [ x Q(x+d+(9[k]-9[ ])nz/o]m(x)d.x
J=1
-0
and thus the infimum of the probability of a correct selection occurs when
61 = ... = ek = 6 and is independent of the common value 6., Hence 4 is



n= nb,c = ({bm}, {cm}) such that for all m > 1,

(2.2) (i) ‘bm < basz m S S (i1) b <ec, (iii) iﬂ b =,

(iv) P{ n [b <ecd}=0,Vi=1,2...k .

m=1 2 < Sim
The existance of such sequences is well known and one such
pair will be discussed in Section 3. |
The sequenfia.l procedure ¥ can now be defined. Since the
procedure is sequential, at the n’? stage (m > 1) there are three
possible choices for the experimenter:
(1) accept n,» that is, choose n; as one of the inembers of the
selected subset,
(2) reject 7y, do not include it in the selected subset, or

(3) make no decision about concerning x 4 end continue énto the (m+l)8t
stege.

It should be pointed out that the procedure is non-eliminating in that
samples are taken from all populations until all have been eccepted or
rejected. This is done to keep the values Py> ""Pk . constant through-
out the procedure. A population will be called tagged‘whenever it falls
into the acceptance or rejectance region. The proceduie J 1s es
follows.

o Tag population ) i=1,2,...,k at the first stage

m>1 such that S, £ (e ,b ) and mark it "rejected if

Sims a end "accepted" if Sim > bm « Continue sampling

from all k populations until each has been tagged, then

accept those marked "accepted" and reject those marked

"re;jected .
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It should be pointed out that corresponding to any given fixed
sample size procedure R for any k populations with densities f(x,e )
i=1,2,.s.,k belonging to any general family we can define the class
X of sequential procedures provided the probabilities pl’Pa""Pk are

known and form g monotone sequence.

The following notation will be used throughout the sequel. Let
a.i(m) = ai(m,’qb’c) = P{accepting (1) at stage m |4S(T|b,c)}, ri(m) =
ri(m,%,c) = P{rejecting T(y) 8t stage mlz(m,c)}, ay Ea’i(.nb,c)

-]

8y (m) = P{accepting ) IS(TIb,c)}, ry Eri(T\,,c) = mflri(m)

P{rejecting (1) lg(nb,c)}, vhere ’S(T‘b,c) is the procedure using the
Pair of sequences ‘nb c* Where there is no ambiguity we shall use
2 .

(M) for ‘S(Tb,c)

In sddition let m = 1% m >1 such that %(4) is accepted or
rejected, and My=E{m |,3('qb )}e Condition (iv) of (2.2) guarantees

that P{mi < Q, i = l,2,l..,k} = l and thus fOI' &u i = l,..‘,k

(2.3) 8, tr; = 1

It is also noted that P{es|$} = 8y

3. Some Monotonic .Properties of the Procedure 3.
In the previous section it was shown that each population = N
gave rise to a sequence of zeros and ones which were summed to provide

the test statistics. Consider a fixed population o and its associated
sequences of random variables {Yim’ m>1} and {Si = Z ¥, TR >1}l.
J=1

Let 7 = ({bm}, {Cm}) a.nd‘n" = ({b;}, {cr;}) be two pairs of sequences
satisfying (2.2) Two sequences {b m} and’b;} are sald to be pairwise

ordered if and only if b <b:, Vm>1l. We denote this by {bm}-( {bl:l},
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We also denote the ordering N (1" to mean {b } ({pb! } and {c 1 <{C' }

A class C of pairs of sequences satisfying (2.2) is said to be ordered
if for all M, 1" € @ either M{N" or 7' { M.

Theorem 3.1. If 1 {7 then ai('n') > ai('n) and ri('n') < ri(n), i=l,2,...,k.
In particular P{ cd§( n)}.

PROOF: Let Aim(n) [ nl[b <8, < cv] N [s;, > ¢ ,1]-  Since

n'(nl[simzcm]c[s >c']a.nda.lso[ﬂ[b <s§, <el]

v=1
m-1 : m-1
cl N [b' < Siv < cv]]. But this implies that either [ N [b' < S < c'\’]]
v=1 . v=l
n-1
or there exists an n < m -1 such that [ N [b' <8, <e' 1IN (s, > c' 11
v=l

holds. Thus 1t follows thaet A (T\) cA (‘n') for some n =1 2,...,m
so that A, (1) € UA o{1")and so UA ip(M < UA o) B( UAim(ﬂ)) <
m=1 m=1

P( UA (1')). Now it is clear that A, (M Nna, (M) =4 for m £ n and
e im in' 'V v

for all T satisfying (2.2) since Aim( M) is the first time the sequence
{Sim, m > 1} leaves the bounds (bm, cm) and crosses the upper one. Thus
]

from the previous implication ai('ﬂ) =X P(Aim( ) = ¥ [ JA (’n))
m=] m=1

< ¥ GlAim(n')) =2 (M), From (2.3), (M) =1 - a,(N). since
n= .

ai(‘n_) < ai(‘n'.) it follows ri(n) > ri('n'). Applying the first result to
Tx) We get P{CS'L(’n')} > P{CS'&(T})} and complete tﬁe proof.

Consider two populations T(3) 8nd o,y with 1< i<j<k. This
implies p; < p..

Lemma 3.1. There exists a Sequence of independent identically distributed
random variables {U 3 m > 1} such that for all m >1



(i) P(Um <u) = P(Yim < u) for all real u, and

(ii) P(Um < Y.m) = 1.

PROOF: Defihe & sequence of independent random variables Zm =0 or
1l such that Zm is independent of Yi 27 ) 2 /é m and for £ =m, P(Zm = l|
Yo =1) =Dy lpJ., Kz = ohrjm = 0) =1 so that Y2y m21} s @
sequence of independent and identically distributed random verisbles.
Then let Uy =Z Y., m>1. My =1) = P(YJ.m, Z, =1) =Pz = 1|

ij = l)P(YJ.m =1) = p; and P(Um =0) =1~ P;> m > 1. Clearly then

the. .sequence of Um's and the sequence of Yim's have the same distribution

and P(Um < ij) = 1, which completes the proof.

Theorem 3.2. The procedure ,&( T) is monotone and unbiased, i.e.,

akzﬁ{_lz e 2 81 a"nd rksri’ i =l,2,.-o,k"l.

PROOF: It will suffice to show a, < a As in Theorem 3.1

1~ "2°
® © m=]
ay =milP(A(l)m(n)) = }ilp{vrjl[b < s(l)v < cv] N [s(l)m > cm]}. Let
m
Sum = X U where {U } is the sequence defined in Lemma, 3.1, and
v=l
® m-]1
8, = §1P{Vn£a <S8, <eJNIs  >c 1} By Lemma 3.1 Pls < s(e)m} =1,
- m-1
m > 1. Then [S >c JC[S(z)m>c ] and also [ﬂ[b<s <cv]]
v=1
m=1
1mp11es either [ N [b < 8(2)r <e ]] or there exists an n < m-1
v=1
n-1
such that [ N [b < s( 2)v <c ] N [s(g) >c ]] It then follows that
-l
A ('n) c. UA(E) (1) and thus UA ('ﬂ) c UA(2) (m). This

implies & < a,. Since by Lemma 3.1 P{Y(l)m <ul = P{Um < ul for
all real u, it follows that a, =a, and thus ay < a.2'which completes

the proof of monotonicity. Unbiasedness follows from (2.1).



4. Exact Results

In this and the remaining sections of this baper, we will investigate
the procedure .A( 1) using the following class cl of pairs of sequences.
Let b, = ém- Y15 €y = Sm+ y, where § is a rational number in (0,1)

and y]_) Y, are positive integers. It is clear that for Yy and Yo fixed
the class G_L is ordered in §, and the results of Section 3 hold. That

Ne ¢, satisfy (iv) of (2.2) will be shown in this section.
Consider a fixed pbpulation 7; and its associated sequence of test

m .
statistics {S; , m > 1} where 8 = j_leij; with Y4 3 > 1 a sequence

of independent identically distributed random veriables with P{Yi ,j=l} =
l- P{Yi = 03 = P;+ In this section exact expressions are found for
ai(n), ri(n), 83> Ty, and M;. Whenever no ambiquity arises we shall

drop the population subseript 1.

For § rational in (0,1) set Z, = Y, - § for J >1. Then R =

J J
m
2'= - -
?:i S8, - &m Thus for any 1 ¢ ¢, the events [sm Y <8, <sm+ y2],
[Sm > &m+ Y2]’ and [Sm < tm- yl] are equivalent to [-Yl <R < Ye]’
[Rm > Y2]’ and [Rm <- yl] respectively. So the various probabilities

and expectatio’né can be evaluated as solutions to a one-dimensional
random walk on a finite interval. Further, if we take § = t/s where t
and s are relatively prime integers with t < s theh the state space of
the walk is all points of the form (Ns -Mt)/s for all integers M >N > O.

It is a well-known theorem of number theory that xs - yt = J has non-
negative integer solutdons x = N, y=Mwith M > N, for any integer J
Provided t and s are relatively prime. In general, then, the state
space is of the form J/s, J an integer. Thus the correspondence J/s

- J enables one to consider the walk {Rm'} on the space of integers with



transition function P(x,y) defined by,

(%.1) P(x, x-t) = 1-p, P(x, x+s-t) = p, P(x,y) = O elsewhere.

For positive integers Y15 Y, we define the following:
(4.2) B) = [-sy; - t+l, cees=8Y; ], B, = [sy2,5y2+1,...,sy2+s-t-l],
B=[-esy] U [sy,,=],

For any set B, let B be the complement with respect to the integers.
Let Ro = X, forxéﬁa.nd,

(4.3) my= min{m >1, R ¢ B}
B.4) Q (x,y) = P{[Ry =yl N[my>nl}for yeB, n>o0
(4.5) Hén)(X,Y) = P{[R; = y]1 N [my = n]}, for y ¢ B, UB,, n>1.

At any step the random walk Rm can only move s-t steps to the right or

t steps to the left, so Bl U 132 are the only absorption points of the
walk. It is clear that my is the stopping time of the walk, Qn(x,y)

is the probability of going from x to y in n steps without leaving B
and H(®)(x,y) 1s the probability of starting at x « T an leaving B at

the nth step entering B) UB, at y. Analytically, (¥.4) and (4.5) can
be described as follows (See [8]) Prior ),

(4.6) Qo(x,Y) = 5(x,Y)’ Q(x’Y) = P(x,Y)’
Qn+l(x’y)

) 1D (x,5)

% - Qn(x,Z)Ql(Z,Y), XY € -ﬁ, n 21.
z¢B :

Z_Q 1(x2)P(z,y), x ¢35, y ¢ B,U B, n >1.
zeB

Since B = [-syl+ 1,004, Y, -1] then (k.6) says we can express
Q(x,¥y) as the nth power of an NxN matrix Q= (qﬁ) where N = s(yl + y2) -1
and Q4 = P(i - 8Yys J - syl) for i - syy, § - sY; € B. Equation (4.6)

expresses the fact that Q (i,3) = (qi(ﬁgyl’ 3 +SY2) where qj(_;) is the (ij)th
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entry in Qn + By the nature of the walk absorption can take place at
¥ € By at stage n if and only if at stage n-1, y - (8-t) ¢ B. Similarly,

absorption at y ¢ Bl at stage n can take place if and only if at stage
n-l, y++t ¢ B. From (4.7) then
syo~l

H(Bn) (x,y) = = L Qh_l(x,z)P(z,y) for y ¢ B)U B,. However, as
_z=..s'yl+

stated above if y ¢ B,s the P(z,y) >0 if and only if z = y -(s-t), and
if y e By then P(z,y) >0 if and only if z = ¥y + t. Therefore,

(p ,(n-1)

(n) 8Y; > y-(s%t) +3Y1 for y ¢ 32
n
. x‘+8'Y1: y"‘t-&-syl for y ¢ Bl.
Theorem 4.1. a(n) =p = 1) s @) = q b o@D
j=N-(s-t}1 %323 AL

PROOF: From (4.5) a(n) = & 5 H(g) (0,y), since we select n only at
ve
2

points of B,. Substituting from (4.8) then gives the first result.

Similarly for the second result r(n) = & H(g) (O,y) and again sub-

yeB)
stituting from (4.8) produces the second equality and completes the
proof. -
We then define H.B(x,y) = I H(g) (x,¥) for x ¢ B, the probability

m=1

of starting at x and being absorped st Ve
From (4.8) for x ¢ B

5 o (m-1)
Z q'\®- B
(4.9) (x,¥) pm=1q x+8Y,¥-(s-t)+syy ey e B
*9)  Hzlxy) =
(m-1) |
4 m=1 1 X+sY s yHttey, for y e B,.

The matrix Q = (qi ;j) is the transition matrix of the random walk

restricted to states in B. It has the following elements 9y {+g-t™ P,
s -
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for i = 1,2,e04,N-5 + t, qi,i+s-t= q for i = t + 1,se.,Nand q'.l;j =0

elsevhere. Thus Q is a sub-stochastic matrix. It can be shown (see
Gantmacher [4]) that a sub-stochastic matrix has all its characteristic
roots inside the unit cirele in the complex plane, and so the series

(-]
expansion (I - Q)"l = I Q°, where I is the NxN unit matrix, is valid.

n=0
Then we get the following theorem.
. N S'Yl,:] b sYl,J 1,3
Theorem 4.2. a=p I q sandr=q Z q where q’Y is
j:N-S‘Pt"'l Jﬂl

the (i,3)th entry in [I-Q]"l.

PROOF: Forming the sum in (4.9) we get
x+sy1, y+s+t+syl

‘{P q for y ¢ 32
H'B(X’Y) =
q qx+sv1, yHttayy for y e 31.
However, ' ‘
N sYl,.'j t sYl’J
a= I H.B(O,y)=p z q and similarly r = q Z q
Ye 32 J=Neg+t+l _ J=1
which completes the proof.
m .
R = X 2 3 is the summ of independent identically distributed
m =1
: 2 2p 204 )
random variables with E 2, = (s-t)p - tq and E Z = (s-t)“p + t=(1-p).

Thus if E Z, # O, then B, =52, Ba, andif‘EZla'O,ERi;EszmB.

Thus we prove the following theorem. N 3

., 3‘Y1’

Theorem 4.3, My = E{mB| SN = — [ =& (;)+s-t-syl)q
(s-t)p-tq  J=N-s+t+l

t s

+q I (j-t-syj)q
3=1

(4.20) = Efmy|S(M] =

Yl’J] if p # t/s

N 8YysJ
- Z (3 stesy)B T
(s-t)t J=N-g+t+1

t

+ q Z (J-t-SYl
j=1

8Y;5J
)2q v ] ifp =_=t/s

PROOF: If D # t/s My = (E2,)7'R R, - However, P(RmB= y) = Hy(0,y)



for y ¢ B, U B, thus ER = Z y HB(O,y) and from (4.9)

ye BluB2
8y, ,y=-8+t+sy, - 8Y, ,ytt+ay.
il

ER =p I ygq l+q qul 1

¥y sB2 yeB,
N 8Y, 53 t 8Y,5J

l’ 3

=p I (3 + s-t-sy;)a +q Z(3t-sy)q T
j=N-g+t+1 j=1

and the first equality of (4.10) holds. For p = t/s, E Z, = 0 and

2

E zf = (8 - t)t and again using (4.9) one can write E B> from which

the second equality of (4.10) holds.

It should be noted here that the condition (iv) of (2.2) holds
for all T ¢ G since this condition for a random walk on a finite
interval is well-known, (See P-297, 30

5. Bounds and Approximations.

This section will deal with bounds and approximations on the
various probebilities and expectations derived in Section 4. Thege
bounds are often easier to compute than the corresponding exact
expressions and in addition give a better insight  into the nature
of the procedure. Feller (p. 303, [3]) discusses bounds for the
probability of a more general random walk leaving B at one end, and
the expected number of steps to do so. _

Following F_e:lleﬂ lét Ut /s (x) ve the probability of the walk
starting at x ¢ B and reaching or crossing 8Y, before«syl. Then

a =1 /8(0). Conditioning on the first step, U(x) = A /B(x) setisfies
the following homogeneous difference equation and boundary conditions:
U(x) = pU(x + s - t) + q U(x - t), -syi <x< sy‘2

(5.1) U(x) =0, x = =S¥ = t + 1,000, -8y,

U(x) =1, x = By,,ee0s sy,+8 -t -1

The characteristic equation of the generating random variables
of this walk is £(x)= (1-p)x't+ PX s-t, setting f(x)= 1, we get
’
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(5'2) sz-xt"'l-pao.

Suppose p f t/ s. Equation (5.2) has unity as a single root, and exactly
one more positive root y. For, consider g(x) = pxs - xt + 1 - p, then

g'(x) = x""L(psx®¥-t) so that for x >0, g(x) is decressing on (o, [t/ps]l’(s-ﬁ )

and an increasing function on ([—P%— ] 1/ s-t, »). Further g(0) = 1-p >0

and g(1l) = O hence if p > t/s g(x) crosses the X-axis at 0 <y < 1, and
if p <t/s g(x) crosses at y >1. If p = t/s there is a double root at
y = 1. :
- Applying Feller's method to R 1t can be shown that if p # t/s,

8y 8y, + t -1
oyt 1-y
l-y 1-y%

vwhere y # 1 is a positive root of (5.2). Thus,

8y sy1+t-1
l-y% l-.y
(5.4) - <ax

s(y, +v,) +5 -1t -1 s(y, +v)) +t -1
T T - L

If p = t/s, in a similar manner we get

(5.5) ! <ag HtE-l
s(-yl+-y2)+s-t-1 g(yl+y2)+t-l

If ve meke the assumption that sy >>t, s(-yl + y2) >> g-t we

can write the following approximations using (5.4t) and (5.5)

S‘Yl ~
(5.6) a2 1.y =a if p# t/s
sty + v,)
1-3

(5.7 a= 1 if p = t/s.

Wty
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The symbol = in (5.6) and (5.7) and in the sequel will be taken
to mean that the ratio of the left hand side to the right side tends

tol as y; and v, tend to = In (5.6) it can be shown that lim a/a =1
- AR L
1

if p > t/s aor p < t/t+l. If p < t/s for s > t+2, & is actually

en asymptotic upper bound for a, that is, ¢ < 1lim a./g‘s 1
Y]-.’IYE--)m

where ¢ = y-S+t+l. However, as p > O or p —>t/s, then ¢ » 1, and

for values of p other than the extremes, numerical eviden_ce (see [1])

shows a s, good epproximation of a for even small values of Yyo Yo

.Thus (5.6) will be teken as the approximation to a for all P £ t/s.
Using (5.6) and (5.7) we can get approximations for M, For

PF t/ s M= l/EZl ERmB, and if we assume we leave B at the boundary

points -svl or SYE’ we get

ER, =8Yy2 - sYr = s(vl + Yy)a - Yy

mB

(v + Y2 - ¥ - sy (1 - y* 1Y T )

~

1 - yS(vl *+ Y,)

Thus if p £ t/s,

By ™ s(y, + v)(2 - ¥*N1) - sv, (1 - y* (v * %)
>80 = (ps-t)(1 - y5' Y ¥ Y2))

o _
For p = t/s we use My = (Ezi)-lERmB which with (5.7) gives

2
5 Y1Y2
(s=t)t
In the symetric boundaries case, Yl = \(2 = vy formulae (5.6),

(5.9) u, =

(5.7),‘ (5.8), and (5.9) simplify to produce a more complete theory,
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(5.10) 1

S If p £ t/s
~ 1+yy
a =
1/2 If p = t/s
) s _ JSY
(5.11) . .io¥ If p £ t/s
~ ps - t 1+yY
E: 2.2
X If p =t/s
t(s-t)

Theorem 5.1. Let p be the acceptance probability of any population
7 when the rule R(1) is used. Then for the sequential procedume,%(n)
where N = ({ém - v}, {6m + v}) and § =t/s, >0

, 0 if p<t/s
lim a(8, v) = 1/2 if p = t/s
Y2 1 if p>t/s

PROOF: Suppose p < t/s, then from (5.4) with Y, =Y =Yas= a(6,vy)

<(1- ySY * t-l)/(l - y2sY +t;'l), where y > 1 is a root of (5.2),

sy + t'l)/(l - yasy +_t-ll

Then clearly as Yy >« (1 - y - 0 and thus

a(8, y) » 0. Similarly if p > t/s (5.4) gives a(5, v) > (1 - st)/

2s8Y +s-
¥ Y

(1 - t-l) where O <y <1 is a root of (5.2). As y - o,

st - 0 and, therefore, a(8, v) - 1. Finally, if p = t/s (5.5) shows
thet, '

—8Y = < a(s,y) < sy+t-1
28Y + 5 =t-=1 2sy+ t - 1

hence as v - «, a(§, y) » 1/2 which completes the proof.

Theorem 5.2. For any population n under the conditions of the

previous theorem, for large Y and p £ t/s we have,

&

ne

sy Y .
lps - tl lp -t/s!
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. -ySY
PROOF: It is clear that 1lim Iy = 1 end that the sequence
Y>> lﬂfsY

approaches one through positive numbers if 0 < y <1, that is, if
ps - t > 0, and through negative numbers if y > 1, that is, if
Ps - t < 0. Hence for large vy the result follows from (5.11).
Numerically the approximations given by (5.10) and (5.11) to
Theorem 4.2 and Theorem 4.3, respectively » are very good even for
samll values of v. Tables comparing those values for seversal values
of v, §, and p have been tabulated in [1]. An exsmple of which is
given in Tables 1 or 2, for § = .75 and various values of v and D.
In Table 1 the upper value gives the exact probability as defined
in Theorem 4.2 and the lower value gives the approximate probability
as defined in (5.10). It can be seen that the approximetion is good
for all values of Y chosen, and that it improves as Y increases.
The conclusions of Theorem 5.1 are also apparent; for if p < .75 = §
then a - 0 as vy increases, and if P>.75 =8 thena~>1as v
increases. "

Table 1

Comparisons of Examct and Approximate Values of the Probability of
Selecting a Population Using J (1) for m ¢ ¢

8= -T5
N 3 N 5 6 7 8 9 10
40 .00003 .00000 .00000 .00000 .00000 .00000 .00000 00000
.60 .01183 .00271 .00062 .0001k .00003 .00001L .00000 .00000
01180 .00272 .00062 .0001k  .00003 +00001 .00000 .00000
80 .85823 .91345  .9u835 96902  .98254 .98997 .99426 .996T1
84378 .90k55  .94327  .96686  .9808. .98899 .99369 .99640
90 299797  .99982  .99997  .99999 1.00000 1.00000 1.00000 1.00000
99773 99970  .99996 .99999 1.00000 1.00000 1.00000 1.00000

In Table 2 the upper value gives the exact expectations and the
lower value gives the approximste expectations as defined in Theorem
(4.3) and (5.11) respectively. Again the epproximations appear quite

good for all values of vy chosen.



Table 2
Comparisons of Exact and Approximate Values of. the Expected Number
of Stages to Tag a Population Usingé,(’n ) for 1 e'él.

& = .75

p\Ys Ly s 6 7 8 9 10

L0 9,17 12.05 14.89 17.75 20.61 23.47  26.32 29.19
8.57 11l.k43 14.29 17.14 20.00 22.86 25.71 28.57

.60 20.78 27.79 3%.56 Lh1.25 47.93 S4.60 61.27 67.93
19.53 26.52 32.29 39.99 L46.66 53.33 60.60 66.67

.80 L2.53  65.83 89.51 112.66 135.06 156.76 177.91 198.66
k1.25  6k.73  88.65 112.05 135.63 156.48 177.73 198.68

.90 19.93 26.66  33.33 L40.00 L6.67 53.33 60.00 66.67
19.91 26.65 33.33 L40.00 46.67 53.33 60.00 66.67

6. A Minimax Approach
A class of procedures-H(M), M ¢ C;» has been proposed and certain

probabilities and expectations concerning the procedure have been
obtained. The experimenter now faces the problem of choosing two
specific constants & and Y. Theorem 5.1 guarasntees that for any
choice of § € (pk_l,pk) there exists a v = v(8, ¢) such that for any
e > 0.

i 8, 1-
(6.1) (1) ak( Y) > €

(i1) 91{_1(5, Y) <e

regardless of the configuration of Py < Py L eee < P and hence the

configuration of 9[1]5 9[2]5 eee < 6[ 5o that for a small enough

k]
€ the P* condition can always be satisfied by choosing an asppropriste

Me cl If we define S to be the size of the selected subset when the

procedure terminates, then from Theorem 3.2
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ES = a, <1+ (k-l)ak_l

oMo
'Ll_,

Thus we cen replace (6.1) by

(1) a (8, v) >1- ¢

(6.2) % -
(i) 1- e<ES <1+ (k-1)e

regardless of the configuration of the means 91, 62,...,6k.

Obviously if for a fixed § ¢ (pk-l’pk)’ Y is choosen such that

(6.2) holds, any choice of v' > v will also satisfy (6.2). So that
the experimenter has for any § e (pk_l,gk) a countably infinite number

of procedures T which guarantee (6.2). It is also clear that (6.2)
are desirable properties in that the larger the bound on P{CSLX(TD}
the smaller the expected number of populations selected. Given two
procedures M, N' ¢ Ci which satisfy (6.2), the procedure which has the

smallest expected number of stages ié in some sense preferable.
Therefore, the experimenter will want to use T if it exists which
minimizes

(6.3 M= max M = mx Em]|d(N)
1<i<k 1<i<k

over the subclass C, < ql of procedures satisfying (6.2) and where
m; is the number of stages until population n(i)(unknown) is tagged.

In this section we will show two bounds § and &* between which the
8 minimizing the approximation to (6.3) given in Theorem 5.2 is found.
Theorem 5.2 shows that Mi is asymptotically proportional to

Y, so that for a given 6§ ¢ (pk-l’Pk) in order to minimize (6.3) over

all v such that (6.2) is satisfied the experimenter would choose the
smallest y. Thus the problem is reduced to finding which § ¢ (Pk-l’pk)

produces af ¢ Cé that minimizes (6.3).
Definition 6.1. For any rational 6 ¢ (pk_l,pk) let yl(a) be the first

positive integer such that & >1- ¢, and Y2(6) be the first positive
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integer such that & 1S € Finally let v(§) = max(y (5),Y2(6)).

The existance of Yl(é) and Y2(5) is guaranteed by Theorem 5.1.
Then we have the following lemma.

Lemma 6.1, Yl( §) is a non-decreasing function, a.nd"Y2(6) is a non-
increasing function of &.
PROOF. For any fixed vy and 6' < 6§, Theorem (3.1) implies that ak(6','v)
> a (5, v). Now for Y = v,(6), & (8, ¥;(8)) > 1 - ¢ thus 8 (8',v(8)) >
1l - e¢. However, yl(a') is the smallest positive integer such that
g (8', ¥) > 1 - ¢, thus v, (8') < Yv;(6). Similarly for fixed v = Yo(8')s
ak_l(é', Y2(6’)) < € 80 by Theorem 3.1 CHE 1(6, Y)< €. But Y2(6) is
the smallest integer such that e l(é,y) < ¢ thus Y2(6 ) < ¥(8') which .
completes the proof.

Approximate values for Yl(&) and 72(5) cen be obta.ined from (5.10)

by setting 1/(1 + Y1) =1 - ¢ and 1/(1 + Vp'2) = e. Thus,

€

(6.4) v, (8) = ;—i;—k-(—s) for § € (p,_;p,)
and
-1n yk(é) in le- €
(6.5) Yp(8) = In-—y:_;_(—a) v;(8) = - lrwk_l(ﬁj for § € (p,_;57,)

The spproximate unique value &% such that Yl( §) = Y2(6) is given
in the following lemma.

Lemma 6.2,
1 TPy
1- ‘
(6.6) &% = s ifp B £l
1 AP
n

P_1(1-p,)
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(6.7) &% =1/2 ' ifp 4 +p =1

PROOF. At &%, v(&%) =vy,(8%) = v,(%). From (6.5) then ViYiq =L

s t
Fronm (5.2) Yy - ¥ *1-p =0for &% =t/s, Thug,
t
1l- yk
b= .
k ]
1l - Yy |
Again from (5.2) noting that Ve = yk'l, we get pk-ly1: s +yk-t+1 - P, ©
or
t
_ost, 1T _ L st
Proy =% s = Y By
1l - yk'

therefore, y, = [pk-l/pk]l/ 8=t Substituting back in (5.2) for ¥y

N (ka-;—l-) §/s-t ) (%;—lj/’s:tl -3 =0, ar

t 1l- -t
N R

If p, + P71 =1 then (6.8) is satisfied only for t = s-t or &% = 1/2.
If pp + B, F 1 then teking logarithms of both sides of (6.8) and

solving for t/s completes the proof.

Lemma, 6. 3. .‘For §* as given in (6.6) and (6.7)

yl(é), when § > 6%

¥(8) =
{Ye(é), when § < &%,

PROOF. Suppose that for some &, Y (5 ) =Y, (8). IfB' >8 then
by Lemma (6.1), 'Yl(E) ) > '\{1(5 ) and \(2(5 ) < \é(& ). By assumption

yl(a ) > ya(a) so that vy, (5 ') 2\(2(6 ') and soY (5 ') ='Yl(5 .
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(6.7) &% =1/2 ' if Pp * P, = 1

FROOF. At &%, v(8%) = v;(8%) = v,(6%). From (6.5) then Vi -
From (5.2) pkyks - ykt +1-p =0 for &% = t/s. Thus,
t
1~ Vi
L e
k 8
l- Yie

Again from (5.2) noting that Vieeq = yk-l, we get pk-lyk- s +yk-t+l - pk_l=0

or
t
1-y
— v St k - s-t
Pr1 =% 1 P = Vg Py
- yk ’

therefore, ¥y = [pk_l/pk]l/ =t Substituting back in (5.2) for Y2

n(E) [ A5 g, -0 o
t 1 - -t
6o G - )T

Ifp + 1y _y =1 then (6.8) is satisfied only for t = s-t or & =1/2,
If p + Py # 1 then teking logarithms of both sid.es of (6.8) and

solving for t/s completes the proof.

Lemms, 6. 3. ‘_For 5% as given in (6.6) and (6.7)

v, (8), vhen § > &%

¥(8) =
Y2(6), when § < &%,

FROOF. Suppose that for some d ,- Y (D) =‘Yl(5 )o If®' >8 +then
oy Lemn (6.1), v (5 ') > Y, (5 ) ana %(8 ') < % (%). By assumption

v, () > Y2(5) S0 that ¥, (8 ') >v (8 ') and so ¥ (5 ') =v,(8 ).
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(6.7) &% =1/2 ' if Peq t R =1

PROOF. At &%, y(s%) = yl( §%) = y2( §%). Fram (6.5) then ViV p e
From (5.2) Pkyks - ykt +1 - p, =0 for &% = t/s. Thus,

1-yt
- k
Py 7 - s °
Y

Again from (5.2) noting that Vieu1 = yk"l, we get Pk-lylzs +yk't+1 - =0

Pyaa
or

1 - t
= v S=%, Yk - s-t
Pro1 =¥ 1 s = Vg B
- yk

therefore, Vi = [pk_l/pk]l/ 8=t Substituting back in (5.2) for ¥

_ay §/s-t 1%/ 8t .
(5 - B2 g0
N R

If p, + =1 then (6.8) is satisfied only for t = s-t or &% =1/2,
P T Pgaa
If pp + By # 1 then teking logarithms of both sides of (6.8) and

solving for t/s completes the proof.

Lemma 6.3. For &% as given in (6.6) and (6.7)

'yl(S), when 8§ > &%

¥(8) =
Y2(6), when § < &%,

PROOF. Suppose that for some &, Y (& ) =Yl(5 )e If 8 ' >8 then
by Lemma (6.1), 'Yl(E) "> \{l(f) ) and \(2(6 ") < \é(& ). By assumption

v, () > Y2(5) S0 that v, (8 ') >Y (8 ') and so Y (5 ') =v,(8 ).
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Suppose now'Y(§ ) = % (8). If8"™ < & then again by Lemma 8.1
¥1(8) > v, (5 ")ana \é(5 ) SY,(8 7). since Y(3) =Y, () > Y,(8)
it follows that vy (5") >y (8") and so Y(8") =¥ (5"). Thus

it has been shown tha,t if '\((8) =Y (6) for some & € (pk l’pk) then
vy (8'") = Yl(B") for all y' ¢ (E,pk) and if Y(5) Y2 (8)

for some & ¢ (p, ,,P,) then y(8') = Yo(8') for a1 B = Py 15%).

Since yl(a *) = y2(6 ¥) the lemma follows.

Corollary 5.1 . Y(5%) =min v(8) ford e(pk l,pk).

PROOF. At 5 *, 'yl(a *¥) = yé( d*). Suppose & > & * then from lemma
6 .3) v(s) = yl(s). But by lemma (6.1) 'Yl(B) > 'Yl(B*)'.

Similarly for 5< & *, v (5) —yz(a) > ye(s*) but Y(3%) =
'Yl( ® %) = Ye( 3 *¥) so the corollary f‘ollows.

Lemma, 6.4 . Fora € (pk-l’pk)
), for 8 <&
M=y 8Py |
-—ﬁ)_ 3 for & 2 g
pk-6
= PePx.1
where & = @ —— T
2

sy(d) AR
’ ¥(3)
PROOF. From Theorem 5.2 M. =
. T 'pis - I‘l

5] for & = r/s.

It is clear that since P; < pk-l <% fori=1,2,..., k then: lpi - 6| =
p; 28 - p ;= ’Pk p - Thus M = max(Mk_l,Mk). Now lpk- 5| = P~

o .
>% - pkllfandonlylfa <3. Hence, for & <&

and for & >8% M = Y(B)/(pk-ﬁl which completes

the proof.
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Y, (8) |
Lemma 6.5 . (1) L is an increasing function, and (2)
Pk-5
Y, (3)

is a decreasing function of & e(pk_l,pk).'
5 -pk-l .
PROOF. Lemma 6.1 shows that yi(a) is a non-decreasing function and
yé(o) is a non-increasing function of & ¢ (pk-llpk)' Now p, - &
decreases monotonically to O as & - Py and 8 = Ppq increases monotonically
as & » p » Thus in (1) the numerator increases and the denominator
decreases hence the fraction increases as & increases; and in (2) the
nunerator decreases and the denominator increases as & increases hence
the fraction decreases as & increases. This completes the proof.

Theorem 6.1 For d ¢ (Py.17P, )5

. Y, (3) _
sxass = ,  for B* <5
min M = —— 6-pk_l
8
min - Y,(8) for & < o
TBD* ’ T o o
pk-a

PROOF. Suppose & < §, then for & > 6 Lemma 6.3 and Lemma 6.k imply
Y1(§)

(3,~8)
of §, and thus the minimum for § > § occurs at § = 6. For § < &%
Lemma 6.3 and Lemma 6.4 show Y2(6) vhich by Iemma 6.5 decreases

e

M . However, by Lemma 6.5 this is an increasing function

as § increases so that the minimum for § < &% occurs at 6§ = 6%, Thus
it follows that the min M for § ¢ (Pk-l’pk) occurs for some 8§ ¢ [8%,5].

Since § <8 by Lemma 6.k,
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min M =min _ Y8) » since § > & vy(8) = Yl(&)
*< 8<T $%<6<8 (6-p, ;)

and the first approximation of the theorem follows. A similar argument

for &% 2;3 will provide the second approximation aml the theorem.
We have shown then that the 6§ ¢ (Pk-l’pk) which asympototically

minimizes (6.3) is found between &% and 5, and that ¥(5) approximated
by

1n —=
l-¢

s lny, (5)
l-¢

in =—
€

s lny, ,(8)

for § > &%
(6.9) v(8) =

s for § < &%

then provides a T = (5, v(8)) ¢ G, that is, a procedure, satisfying
(6.2). This still leaves the experimenter with the problem of choosing
a specifié 5 if &% £ (pk 1 *P £ 1). It has been found empirically

(see[1]) that often & =35, so that the experimenter will not be

"far" from the minimum for any choice of § between 5 and &%, Numerical
evidence indicates that if § and 6% are significantly apart, the
minimum takes place near &%. Another advantage to using &% is that the
approximation of v(&%) can be given as a function of P,_1°P and € so
that the experlmenter need not find the roots Ve and Vem1 to (5.2). In

fact, using &% deflned in (6.6) and (6.7) then from (6.4),

P,
(6.10) y* = y(6%) = (1 - &%) 1n lfe (1n K=yl _ g Loe
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Thus the sbove discussion suggests that an approximate minimax rule
which has certain desirable properties would be J (1%) where T* = ({8"*1-‘{*},
{ 5%m + ﬁ). This, of course, is not the only choice of ne C'1 available.

It depends on the need of the experimenter who may wish to replace (i1) of
(6.1) by some other condition such as a'i < ¢ for some 0 < £ < k or he may
want less stringent requirements on ES than (ii) of (6.2). The use of & * ,

v* is only one suggestion toward meeting a practical requirement of a
good sequential test.

7. Some Sample Size Comparisons of %) and R(n).

In this section we offer some numerical comparisons between the
procedure J () and R(n). Comparisons are difficult in general because
analytic expressions involving the two procedures are not readily
obtainable, and because of the small number of tables available on the
performance of R(n). Two special configurations of the means 61’92’”"91:

will be considered. The first is called the "slippage configuration" ,
that is,

(7‘1) 9[1‘]"" 6[2]=" cee = G[k.-lf 9, 9[k] =60+ ¢, T2>0.

Tables of P{selecting = 1 [R(n) } have been tabulated in this case for

selected values of P¥, k,n, and ¢, in [2‘]. The second configuration
called the "equally-spaced means" configuration, is

. =9 =9+ 9 =6+2 see 6 =9+k-l‘ >0.
(7 2) 9[1] 2 9[2] Ts [3] ™ ’ [k] ( )"i', T
Tebles of P{selecting . [R(n) } have been tabulated in this case for
selected values of P¥, k,n, and 1 in [7].

For any multiple-decision rule R, consider the following inequalities,
for 0 < ¢<1

(i) PfCSR}>1 - ¢
(7.3)
(i1) 1 - ¢ < Ef8 IR}<1+ (k-1)¢

for R = § (1) we again let M = max Efm, | (1) 3. As shown in Section 6
1<i<1

by choosing T = T* we get the sequential procedure that approximately
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TABLE 3

Sample Size Comparisons for the Sequential and
Fixed Sample Size Rules for the Slippage

Configuration for the Normal Population: P* = .75

T
;>\\ 0.05 0.10 0.20 0.30 0.0  0.50__0.60 1.00 2.00

5h22.7  1315.7 336.6 151.8 87.5 57.3 Lo.6 16.1 15.1

2 11240,0 2810.0 702.5 312.2 175.6 112.k 78.1 28.1 19.7
LB2 LL68 479 486 .Lo8 .510  ,520 .573 .766

7553.9  1922.4 Lol T 219.1 124.3 62.0 57.7 22.1 6.7

3 13600.0 3460.0 850.0 377.7 212.5 136.0 94.5 34.0 8.5
555 .556 .578 .580 .585 603 .611 650 788
98%0.1  2k18.0 586.1  259.L  1LB8.0 95.6  67.5 26.1 7.9

L 15120.0 3780.0 945.0 420.0 236.2 151.2 102.9 37. 8 9.5
.654 640 .620 .618 627 632 656,690 .832
10752.1  2L85.3 637.2° 281 161.6  104.9  7L.8  29.0 8.7

5 156k0.0 3910.0 977.5 L4344 2hk.h 1564 108.7 39.1 9.8

687 .636 .652 .65 661 672 .688 .7he  .888
10752.1  275k.5  679.7 305.9 171.5 11L.9  &L.5  31.2 9.4

6 15880.0 3970.0 992.5 L41.1 248.1 158.8 110. u 39.7 9.9
677 .694 .685 .696 .691 705  .765  .786  ,9hg
12119.5 2835.3 695.0 317.9 180.1 117.0 8:.8  32.8 10.0

7 16400.0  4100.0 1025.0 L455.5 255.2 164.0 114.0 L1.0 10.2
.739 592 .678 .698 .693 .713 .7k .BoO  .980
12695.4  2803.7  703.1 325.3 183.9  120.%k  86.% 3.2 10.56

8 16920.0 4230.0 1057.5 L470.0 264. u 169.2 ’117 6 L2.,3 10.6
.750 .663 670 .692 .796 712,735  .809 1.000

12695.4 2803.7 ~ 7h9.6 331.1 188.6  125.7 88.9 35.2 10.9

9 17h40.0  L4360.0 10900.0 L84.L  272.5 17h.L 121.2 L3.5 10.9
.728 .63 688  .685 692 726 .733  .807 1.000
13037.6  2950.2 73L.L° 3LE 3T 192.9 127.2. OL.7 35.L 1L.%

10 17680.0 LL420.0 1105.0 L491.1 276.3 175.8 122.9 Lh.2 11.1
137 670 662 . 705 .698 719 .76 U824 1.027
13037.6  3192.h%  B17.1  369.7 212.7 1k3.5 103.5 L3.7 1L.8

25 20440.0 5110.0 1277.5 567.7 319.4 20L.L 1h2.1 51.1 12.8
.638 .625 L6540 .651 .666 702 726,855 1.156
13695.1  30956.1  786.9 365.1 220.0 1L8.1 107.2  L6.7 17.2

50 21600.0 5k400.0 1350.0 599.9 337.5 216.0 150.1 51.0 13.5
.634 .573 .583 .609 .665 6686 .71k .86k 1.27
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Configuration for the Normal Population: P* =
:>\T 0.05 0.10 0.20 0.30 0.40 0.10 - 0.60 1.00 2.00
N\

8786.5 2079.3 5Lk 257.6 1L8.0 97.0 69.2 28.3 9.1

2 15360.0 3840.0 960.0 426.6 240.0 153.6 106.5 38.4 9,6
572 541 .565 . 604 .608 .632 .650 .737 .948
12469.0  3066.0 89,1 385.1 217.9 1L5.6 100.9 Lb.L 12.2

3  1744k0.0 Lk360.0 1090.0 L8L.L  272.5 17h.h  121.2 L43.6 10.9
L7168 . 704 779 .795 .800 .835 .833 1.06L4 1.12
14282.3  3781.5 1024.6 L477.0 260.5 170.2 122.F k9.1 1iL.5

L 18600.0  U4650.0 1162.5 516.6 290.6 186.0 129.3 k6.5 11.6
.786 .813 .881 .923 .896 915 .Oh7 1.056 1.25
W4282.3  L177.9 1085.0 Lok.3" 290.9 186.7 135.0 51.0 16.2

5 19600.0 4800.0 1225.0 s544,3 306.3 196.0 136.2 59.0 12.3
729 . .853  .886  .908  .950  .953  .991 1.091 1.32
14282.3  4230.0 1IL8L  531.2  300.5 201.2  148.8 59.0 17.8

6 20160.0 50L40.0 1260.0 559.9 315.0 201.6 1h40.1 50.% 12.6
. 708 .839 011 .9k9 .95k .998 1,062 1,171 1.4k13
18033.7 LL63.5 11484 550.7  333.2  219.8  152.7 63.3 19.1

7 20720.0 5180.0 1295.0 575.5 323.8 207.2 144k.0 51.8 13.0
.899 . 862 .887 .957 1.029  1.061 1.060 1.222 1.L69
18633.7 4653.L 1335.6 566.9 337.9 224.1 161l.2 66.8 20.3

8 21040.0 5260.0 1315.0 5844 328.8 210.k 146.2 52.6 13.2
.886 885 1.0%6 970 1.028 1.065 1,103 1.270 1.538
18633.7 4653.4 1335.6 589.0 3h1.6 232.2 167.5 70.0 2L.G4

9 21320.0 5330.0 1332.5 5%2.2 333.1 213.2 148.2 53.3 13.3
.B874 873 1.002 .995  1.026 1,089 1.130 1.313 1.609
18633.7 L6s3.4 1335.6 589.0 3L1.6  2L6.6  168.4 72.0 72.b

10 21680.0 5k20.0 1355.0 602.2 338.8 216.8 150.7 54.2 13.6
' .859 .859 .986 978 1,008 1.137 1.117 1.328 1.6L7
18633.7 Les53.4 1381.8 632.1 383.F  265.6  195.3 86.7 30.b

25 .24040.0  6010.0 1520.5 667.7 375.6 2hko.k  167.1 60.1 15.0
175 Nk .909 JOMT7  1.021 1.105  1.169 1.h443 2,027
18801.4  5257.6 1338.0 683.3 L03.9 278.1 200.2 10k.1 37.8

50 25600.0 6400.0 1600.0 T71L.0 L400.0 256.0 177.9 &4.0 16.0
734 821 .836 .961  1.010 1.085 1.125 1.627 2.36
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minimizes M over all 1 ¢ ¢ , satisfying (7.3). Similarly let N be the
1

sample size required to satisfy (7.3) when R = R(n). Then clearly J (1%
will be preferable to R(n) whenever M < N, and R(n) preferable to.f (1*)
when N < M,

For the slippage configuration in (7.1) equation (2.1) pecomes

(74) p; = f 3 k'2(x~+v.i) 8(x+d + 7 nl/ec) gx)dx, 1 = 1,2,...k-2.

- O

(1-5) p = [ &% (v a+ 10%/0) (wax.

- 00

Using %ables found in [2], (7.4) and (7.5) were computed assuming o = 1.
For each p, ; and P withn =1, B = (5% v*) were computed using (6.6)

and 6.10} For P¥ = .75, Table 3 compares M with N when 4 (T*) and R(n)
satisfy (7.3). The upper value is the expected sample size M while the
middle value is the fixed-zample size N. The lower value gives the ratio
of Mto N. The smaller the ratic the more inclined we are to use 4 (™)
over R(n). The savings in the number of samples needed to achieve (7.3)
with ¢ = .001 using 4 (%) over R(n) vary for different values of k from
better than 504 to 254 for r < .50 to less of a saving for .50 < 1< 1.
For larger values of T, such as 7 = 2, the fixed sample procedure R(n)
requires less samples than < (%) to achieve (7.3) with e = .00 and §-
a more preferable procedure.

As an example for k = 6 populations and T = 0.k s the expected number
of samples from each population needed to satisfy (7.3) with ¢ = .00l
using 4 (1) 1is 172.5 or a total of 1035 observations, while using R(n)
a sample of 248.1 must be taken from each population, s total of 1488.6
observations to satisfy the same conditions. This is better than a 304
savings in using & (m%).

Table 4 gives the same data as Table 3 but for P¥ = .90, In this
case the savings sre generally less when using 4 (%) over R(n), and 7
generally must be smaller. In general, in both tables for a fixed k
as T increases the ratic M/N increases. For a fixed T, M/N ig smallest
for k = 2, while the maxdmum increases from k = 7T to k = 50 as 1 increases.
Thus it appears that J (™) is a better Procedure when the mean that has
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Configuration for the Normal Population: P¥ = .75
\E\T 0.05 0.10 0.20 0.30 0.ko 0.50 0.60
sho2.7 1315.7 336.0 151.8 87.5- = 57.3 40.6
2 11240.0 2810.0 702.5 312.2 175.6 1124 78.1 .
LB 468 479 .L86 .4o8 .510 .520
7430.9 18h1.7 L470.9 208.9 118.1 77.2 54.5
3 13440.0 3360.0 840.0 372.3 210.0 1344 93.k
.553 .548 .561 .551 .562 .57k .584
8258.4 - 2194.8 - 551.L4 280.3  1h1.2 90.4 6h.2
4 14880.0 3720.0 930.0 463.3 232.5 148.8 103.4
.555 .590 .593 .605 .607 }.608 .623
8824.8 2393.9 619.2 276.9 155.8 101.0 72.4
5 15880.8 3970.0 992.5 Li1,1  2L48,1 158.8 110.4
.556 .603 .624 .628 628 - .636 .656
TABLE ©
Sample Size Comparisons for the Sequential and
Fixed Sample Size Rules for the Equally-Spaced Means
Configuration for the Normal Population: P* .90
N 0.05 0.10 0.20 0.30  0.40  0.50 0.60
8785.5 2079.3 5h2. 257.6 146.0 97.0 09.2
2 15360.0 3840.0 - 960.0 L26.6 240,0 153.6 106.5
: .572 . 541 .565 .60k .608 .632 .650
1186. 4 3262.7 783.2 372.1 214,31 1LLT6 100.6
3 17hb0.0 4360.0  1090.0 L8h. 4 272.5 17h.h 121.2
.680 LTL8 .719 .768 .786 .829 .830
1L435,0 3792.2 961.9  459.1 259.4  174.5 123.8
L 18640.0 4660.0  1165.0 517.7 291.3 186.4 129.5
CTTN .814 .826 .887 . 890 .936 .956
17436k 4517.0  1207.6 5L0.1 310.1 197.0 1L7.7
5 19520.0 L880.0 1220.0 542, 2 305.0 195.2 135.7
.893 .926 .990 .996 1,02 1.01 1.09
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slipped to the right has not slipped far. Close emminb.tion of both
tables reveals that the ratio M/N does not increase monotonically for

very small values of T, this is due to the fact that Py and Pl do

not vary greatly as k increases. For example, for P¥ = .75 and 1 = 0.05,
to three significant places, Py = . 763, Prq = +T48 for k = 7, 8 and 9.
Thus for smell T rounding errors play a somewhat higher role than for
larger r. Another factor in all tables of this section is that in
Practice the exact value of 5% cannot be used to obtain the various
results, but a close approximation of &5%* is used instead. This tends
to destroy the apparent monotonicity as well. ,
For the configuration in (7.2) equation (2.1) becomes,
®
.k
(7.6) », = J. [m ¢8(x+d-(3-1) 'rnl/a/a)] ox)dx, 1 = 1,2,...,k.

J
Y 51

Using tables snd extensions of tebles in (71, (7.6) was evaluated
assuming 0 = 1. A numerical comperison of ,&(T\*) and R(n) was cerried
~out using the same method as in the slippage con.f‘iguré.tion. That
is, M and N were evaluated so that (7.3) holds for ,&(T}*) and R(n)
with ¢ = .00l. For P*¥ = .75, Table 5 gives the values of M, N and
the ratio M/N for selected values of k and c. The upper value being
M, and middle velue being N, and the lower value being the ratio
M/N. Tsble 6 contains the same information for P* = .90.

It can be seen from Table 5 that the behavior of the ratio
M/N is similar to that in Table 4 for the slippage configuration.
That is, the smaller T is the smaller the ratio. In fact, for k = 2,
there is & 50% or better saving in the expected number of samples
using ‘% () instead of R(n) for T < .50. For a fixed T as k increases
from 2 to 5, M/N increases. Of course, Table 5 only goes to k = 5
and since Table 3 showed erratic behavior as k increased to 50, one
cannot mske a general statement about this monotonic behavior. Table
6 shows the seme basic behavior but the savings using ,& (m*) over R(n)
are in general, less.

Thus based on the numerical computation for the slippage configuration
and the equally spaced means configuration one empirical conclusion is
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that (T*) is a more preferable procedure when the means are close
and R(n) is a more preferable procedure as any one mean gets signi-
ficently larger (or smaller) than the others.
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