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A Method for Studying the Integral Functionals
of Stochastic Processes with Applications: III.

by
*
Prem S. Puri

Purdue University

L. INTRODUCTION. This paper is a continuation to the results presented in
two earlier papers ([20], [21]) and may be read in the sequel. A brief ac-
count of their_fesults will however be given here in order to make this paper
self contained. The subject under study is the distribution of the integrals
of the form |
(1) . Y(t) = [7 £(X(1),v)dr
where X(t), t > 0 is a continuous time parameter stochastic process approxi-
mately defined on a probability space (2,G6,8), with X és its state space; f
is a nonnegative (measurable) function defined on %X[Q:“’)f Here it is assumed
that the integfal Y(t) exists and is finite almost surely for every t > 0.

The integrals Y(t) arise in several domains of applications such as in
the theory of inventories and storage (see Moran [13], Naddor [14]), in the
study of the cost of the flow-stopping incident involved in the automobile
traffic jams (seé'Gaver [9], Daley [4], Daley and Jacobs [5]). Such integrals
are also encountered in certain stochastic models suitable for the study of
response‘time distributions arising in various live situations. (see Puri [16],
[18], [19]). 1In fact in [18], it was shown that such a distribution is equiva-
lent to the study of an integral of the type (1).

In [20], the work done_by several authors in the past on the integral func-
tionals of stochaétic processes was briefly surveyed; But more inportantly a

method was introduced for obtaining the distribution of Y(t). This method is

* This research was supported in part by research grants NONR 1100(26) and
N00014-67-A-0226-0008, from the Office of Naval Research.
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based on a 'Quantal Response Process' Z(t) defined for a hypothetical animal
as: Z(t) equals one if the animal is alive at time t and is equal to zero
otherwise. In particular, it is assumed that
(2) P(Z(t+At)=0]|Z(t)=1, X(t)=x)=6f (x,t)At+o(At),
with Z(0)=1 and § a nonnegative constant. ‘Here the stafe 'zero' is an absorp-
tion staté for the process Z(t). It is easy to estabiish by using a standard
argument that ’ |
(3) - P@)=D)=E{exp[-s [T £(X(r),D)ar]},
which in turn gives the Laplace Transform (L.T.) of the.integral Y(t).‘ Thus
the study of the'distribution of the integral Y(t) can equivalently be carried
out by studying‘the process Z(t). Note that the qﬁantal'response process Z(t)
does not influencé the process X(t) in any way, ratherbas it is clear from (2),
is influenced itself by the growth of the process X(t).. Again, as was pointed
out in [20], f ié assumed to be nonnegative without loss of generality. Finally,
in [20] and [21], fhis method was applied to the case of Markov Chains. The Te-

sults obtained there are summarized in the next section for later use,

2. THE CASE OF MARKOV CHAINS. Consider a time-homogeneOus Markov chain (M.C.)
X(t) with 255{1,2;3,....}, constructively defined as foliows: If X(t1)=i at
some epoch tl, théivalue of X(t) will remain constant for an interval

tp 2 t< t1+T,‘wﬁose random duration T is exponentially distributed with density

function ciexp(-cix), s > 0; the probability that X(t1+r)=j is pij’ where the

matrix p=(pij) is a stochastic transition matrix. By assumption the quantities

s and Pij are independent of time. Also we assume that-ci < « for all i so that

all the states of % are stable. The sample paths of the process are assumed to
be right continuous. Since the process is défined constructively, it is separable.
Also, it is evident from the construction that the process (X(t),Z(t)) is a Markov

process with state space X ={(i,r);i=1,2,3,....; r=0,1.}. In [20] and [21] the
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above method was applied to Markov Chains under the assumptlon that f depends only

on X(t) and not exp11c1tly on t, in which case, in order to specify f, we are given

a sequence of numbers f(i)=f., with 0 f_f. < e, i=1,2,..., . Let
P;;(8)= chct) ilx0)=1); P 15 ()=P(X(t)=3,Z(£)=1]X(0)=1,2(0)=1)

| (a)f exp(-at)P, ; (t)dt; T (a)j exp(- at)P j(B)at
4)
T()=(ry5(); T(@)=(n;5(2); C=(8;¢,);
I=(85)5 (L1, 1,000 5 £205,,8,);

where i,j=1,2,... ; a > 0 and G.j is the Kronecker delta.

It is known that the probabilities P. i in terms of the1r L.T. L (a) satisfy the

backward Kolmogorov system of equations(see Feller [7])

(5) (oI+C)m (a)=I+Cpw (a)

LR

If the solution of (5) satisfies om(a)l=1, for o > 0, then T is the unique solution of
(5) and is also the unique solution of the forward system of equations given by

©) ) m(a) («I+C)=T+7 («)Cp .

It turns out that analogous to (5) m satisfies the backward system

7 » (aI+C+6f)n(a) I+Cpﬂ(a)

~ o

In [20] it was shown that there always exists a solution of (7), which is minimal
among all its solutions and which also is the minimal solution of the forward sys-
tem, analogue of (6)

(8) 700 @GS =I+T (a)Cp

Let Ij(t) denote the:indicator function of the set [X(t)=jj. Since

9 Py (E)=ECexp[-6 [ E(X(0))d]1, (1) [X(0)=1)

It is evident that the knowledge of ﬁij's is equivalent to that of the joint dis-

_ tribution of X(t) and Y(t). With this in mind, in [20] the problem of existence
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and uniqueness of the solution of (7) and (8) was studiéd in some detail.
In particular, if the chain is finite with Z={1,2,...,N}, N < =, then it
can be easily seen that for all a > 0, the matrix (a}+g+6f-§p) has an in-
verse, so that from (7) and (8) we have the explicit solution for f(a) as

(10) | 7 ()= (aI+C+8£-Cp) "1,

~ o~

. _
valid for a > 0 and § > 0. Let vy =(¢1,w2,;..,¢N) where

(11) by (@)= [} exp(-at)E(exp[-st‘f(xcr))dr]Ixcojéi)dt :

We then have

(12)  yla)= T@)1=(alsCesE-cp) L 1

The L.T.wi(a) in general is a rational function of a and can therefore be

easily inverted to yield E(exp[-6 f; f(X(T))dT]]X(0)=i) .

Again in [20], under the assumption that i satisfiesv(é), we proved the
identity |
(13) - T =67fT ,
which connects i and-g » allowing us to obtain the desired i(a) in terms ofn(a),
which may be known. The identity (13) is found very useful in applications par-
ticularly because of the manner in which f appears in (13); In particular in [21]
we used this identity to obtain the joint distribution‘ofrtimes spent by the Markov
Chain in variousvstates of a given finite set before the process hits a given
taboo set. H

REMARK. A formﬁlation alternative to the consideration of the M.C.'{X(t),Z(t)}

would be to consider a modified time homogeneous M.C. X(t) with state space

{a,1,2,3,....} with new exponential parameters, say cs given by

(14) §i=(ci+6fi)(l-Gia);1=a,1,2,3,.... s

A

and the new transition matrix pij as



1L,
cipij(ci+6fi) ; 1,j=1,2,....

1

' -1 . .
Sfi(ci+6fi) 5 j=aj;i=1,2,.... ,

s o Y
i}

(15)

Gaj y i=a ,

so that the state 'a' is.an absorption state. Howevér,"since for each formu-
lation, the relevéht information conéerning thé distribution of X(t) and Y(t)

- 1s contained in the equations (7) and (8), we find no éssential gain in con-

sidering this altefﬁative formulation. |

In [20], it Was pointed out that in the past most of fhe researchers in
the area touched by this paper have exploited the backward system such as (7).
(see for instance, Gaver [9], Daley [4], Daley and Jacobs [5] and McNeil [12]).
Forward equations (8) were not used possibly because ofllack of their probabilis-
tice interpretation. The present method via the quaﬂtal response process Z(t)
has the advantage éver the past researchers in that it provides the needed proba-
listic interpfetétion. In the present paper, we shall exploit the forward system
a great deal, by applying it to the case of certain wéll known processes arising
in several live situations. In [20], [21] and also in the applications of the
method exhibited.in the present paper, we have restricted ourselves mostly to
Markov chains with countable state space. However, it is evident that the method
is applicable to aimost all types of continuous time stochastic processes. The
application to certain other processes such as Semi-Markov processes will be dealt
with eisewhere;:

Finally, it may be remarked that the above method has some resemblance with
the work of Kemperman [11] and also with the method of collectiye marks due to
van Dantzig [6]; in the present case however, the approach was motivated by the
author's work on the response time distribution arising in certain biological

situations (see Puri [16], [18] and [19]).
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E; BIRTH PROCESSES. This section will be devoted to the case where the

M.C. X(t) is a birth process. Section 3.1 deals with the time homogeneous
case,.while section 3.2 with linear nonhomogeneous birth processes.

.;l, TIME HOMOGENEOUS BIRTH PROCESSES. We shall use here the notation of

section 2. Let X(t) be a time homogeneous birth process with pjk=6j+1,k

and X(0)=i. Also let 7

(16) ~ Nemin {j ; j > i, ¢ =0

if cj > 0 for all j > i, then N=e, If N < », the M.C. is a finite one (with

cj >0, j=i,i+1,...,N-1 and cN=O), a case thph was already consideréd in section 2
with an explicit answer given by (10); However, if N=« , we assume that

z c -l o, so that with probability one only a finite number of jumps of the
j=i |

chain are allowed in any finite time interval. For the present case, the systems

of equations (7) and (8) are given by

17 (a+ci+6fi)ﬂik(a)-cini+1’k(a)=dik 7
and |
(18) (a+ck+6fk)wik(a)—ck_lﬂi,k_l(a)=Gik ,

respectively with %ij(a)=0 for j < i and for j > N. Each of these systems can

be uniquely solved for wik(a) recursively, yielding

T, ; for k=i

i
(19) ﬂik(a) = PPyt Proq Tk s for k > i
0;for k < i and for k > N ,
N
where rj=(a+cj+6fj)-1 and p.=cjr.. Because of the condition Z cj—1= o it
j=i

is now easily seen that for a > 0,
(20) [5. exp(-at)E(exp[-§ [ £(X(1))dr] [X(0)=i)dt
| N

n
=) m,()=1lim ) w. (@)
= e



. n
1 .
=Gl [Lopsey qeepp=8 L £i0i05 1eeipy 1Ty ]
n>N k=i ‘
) N
= E-[l_dkzi fkpipi+1""pk-1 rk],

where if N < » , the limit of a sum as n>N is taken to be the appropriate

finite sum. Here in (20) we have used the fact that o 2 ;ik(a) <1, for

k=i
all o > 0, which is known from the general theory of Markov Chains. The fact
. N
that 1lim (p.p..,...p_)=0 follows from the condition 2 c.—1= o,
17i+1 n’. P |
n->N j=i

Expressions (19) can easily be inverted to yield expressions for Pik(t).

For instant, if cj+6fj are all distinct for j=i, i+l,...,N, it can be easily

shown that
~ -1 k k -1 .

(21) P (0= T, _2_ Zn__(c£+6f£-cj-6f5) exp[-(cj+6fj)t],

. J=1 “Jj=1 J -

£=i
) k-1 k 1 .
where by convention| H c.} = 1 (c£+6f£—c.—6f.) =1 for k=j=i., Adding (21)
j=i 245 7 |

over k we finally.obtain

(22) E(exp[-8[¢ £(X(1))dr][X(0)=1

g k-1 ) E k 1
= I c. I (cp+bf)-c.-8f.) “Jexp[-(c.+6f.)t].
k=il\j=i J) jeifed; ¢ €3 3 -1

=i

Note that for the case when N=«, an interchange of the two summation signs on

the righf sidé of (22) is not always valid. Also, one could instead invert the

L.T. given in (20) and obtain a different yet equivalent expression for (22).
Again, since Y(t) is a monotone nondecreasing function of t, it almost surely

converges to a random variable, say Y, as t +~ «, By using a Taubarian argument

it follows from (20) that

(23) E(exp(-6Y) |X(0)=i)=1lim o § %ik(a)
o>0 k=i

. N * % * *
=]1-1im § z.fkpipi+1"'pk-1 rk,
n»>N k=i
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* _1 *® *
Where T, =(ci+6fi) and py=CiT. . Now after some manipulation with the right

side of (23), it can‘be shown that
* * N
(24) E(exp[-6Y] |X(0)=i)=1im (p..... pn)= ji [1+G(fj/cj)]_1.

Nt j=i

If N < », this is zero (keeping in mind that cN=0) unless fN=O. Thus if
N < »= and fN > 0, Y== a.s. Again if N=«, (24) is equal to zero if and only

if z (f./c.)=», in which case also Y=~ a.s. Let z (f./c.) < <. This means
j=i J ] j=i ] ] . '

that fN=O whenever N < », Then (24) is positive for all § > 0 and hence Y is
finite a.s. FPurthermore it is clear from (24) that Y has a density. In fact,
\

if we assume that fj/cj,j=i,i+1,...,N are all distinct, then, at least when

N < », by inverting the L.T. (24) one easily obtains the density function of Y as

‘ N N
-1
25 = JE. T (1-(c.£,/f. -(c.y/£)]; > 0.
(25) g J_Zi(cj/ J)[/&+:i( (cs€p/E500)) 7] expl-(c;y/£015 y
: L=i . N
As expected, it follows from (24) that Y can be expressed as the sum E,f.T.,

j=i 7

vhere Ti,ri+1,L;;,‘are independently negative exponentially distributed with

parameters Ci,Ci+1,....

Here Tj,j=i,i+l,..., are essentially the random
lengths of times that the process spends- in various states.
In the following subsections we consider certain 5peciél cases of homo-

geneous birth processes that arise in practice.

3.1.1. CASE OF A SIMPLE EPIDEMIC. Jerwood [10] has recently considered the

PNINIPING NP PPN DAL P D PSPPI PGS

case of a simplé epidemic which starts with X(0)=i infectives and S(0)=N-i suc-
ceptibles at time t=0, where N < w=. If X(t) denofes the number of infectives
at time t, then X(t) is a birth process as considered by Bailey [1]; with the
finite state space (i,i+l,...,N); N being the absorption state and

(26) ¢;=8; (N-3) 5 j=i,i+l,..., N.
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Jerwood [10] considers the distribution of the cost of the epidemic exhibited

by
(27) C.=aW.+bT. , a > 0, b > 0,
1 1 1
where
T;
(28) W= fo X(t)dt ; Ti=inf{t:X(t)=N|X(0)=i};

a is the cost per unit time per infective, and b is the cost per unit time
both over the period Ti' Perhaps a more realistic situation is where the rate
of the first cost varies with the number of infectives at time t, so that one

would like to obtain the distribution of

(29) , C.=aW. + bT, , a>0, b >0,
i i
where
1 Ti ’
(30) W= fo h(X(t))dt ,

with 0 < h(j) < »; j=i,i+1,...,N-1. Since we are concerned with the epidemic

only until thg first passage time Ti to state N, without loss of generality, we
may take h(N)=0. 1In order to fit this into our situation above, all we need to
take

(31) ‘ f.=
' : 0 otherwise.

{3 h(j) + b , j=i,i+l,...,N-1

Now, since the passage to the absorption state N occurs with probability one,

it is easy to see that -

(32) E(exp[-aéi])=1im E(exp[—ng £(X(1))dt]|X(0)=1)
tooo
N-1 1
=E(exp[-6Y] [X(0)=1i) = I [1+8(f./c.)] " .
jei i’"3

The last equality follows from (24). If fj/cj are all distinct, then the

density function of Ci is given by

N-1 N-1 N-1 N
69 e0= 1 Cey/E) b LE (g Epes/EpTIem gy E; v 20,
| 243
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N N-1
the expected cost being E(Ci)= Z

(£;/c5). Incidently using (31) in (32),
j=i

we have with o.=ad amd u2=b6 s

1
N-1  ah(j)+a, -1

B[+ ———5 L«
j=i j

> 0,0, > 0,

1

(34) E(exp[—a1W£ + o,T.]) ,

which, by treating oy and o, as the dummy variables, is the joint L.T. of the

2

.
random variables Wi and Ti'

3.1.2. POISSON PROCESS. This process is a special case of the birth process
Lo e s BN,V VWV VW W VPV W
of section 3.1, with cj= A >0, for all j. 1In this case, if fj’ j=i,i+1,... ,

are all distinct, then it follows from (21) that

(35) E(exp[-dfg £(X(1))dr] I, (£)|X(0)=i)=P,, (t)
k-i koK -1
=(1/$) exp(-At) )Y [ ® (£,-£,) "Texp(-6£.t)sk=i,i+l,..." .
j=i £=i © 7 N |
£4]

A special case with fj=j has been considered elsewhere by the author‘(see [181).
It was shown there that for |s| < | and 6> 0 and with X(0)=0,

st

(36) E(s™ () exp[-6[¢ X(1)dt] [X(0)=0)=exp[-At + 2 1-e"h.

With s=1, this can be easily inverted to yield the distribution function of
Y(t) as given by

[+ ; n "
(37) () = exp(-ae) T O O

* _
where Ft(n) stands for the n=fold convolution of F the distribution function

£
of a random variable uniformly distributed over (0,t).

3.2; NONHOMOGENEQUS BIRTH PROCESSES. For the case of nonhomogeneous Markov
processes, in general one finds it more convenient to use the forward Kolmogorov

system of equations than the backward ones. Consider a birth process X(t) with

X(0)=1i, such that for j=i, i+l,.... ,
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P(X(t + At)=j+l|X(t)=j)=cj(t) At + o(At) ,
P(X(t + At)=j lxct)=j)=1-cjct)At + o(At)

Also for the function f of the integral (1), let

(39) £(3,0)=£,(t) 5 j=i, i+1,....
Here the functions cj(t) and fj(t) are assumed to be nonnegative, continuous

and integrable over (0,t) for every finite t. Furthermore, let the functions
cj(t) be such that the process X(t) has, with probability one, a finite num-
ber of jumps in any finite time interval. Then using (2) and (38) one ob-
tains in a standard manner the forward differential equations for the proba-

bilities ﬁij(t) as given by
(40) dPij(t)/dt=-(cj(t)+6fj(t))Pij(t)+cj_1(t) Pi,j-l(t) s jei,i+l.... ,

where Pij(t)EO for all j < i. Recursively these equations can be solved sub-

ject to Pij(0)=6ij to yield

(a1) By (=expl-[f (o; (1488, (1))d]
and

(42) ﬁij(t)=f8 exp[-f:(cj(u)+6fj(u))du]cj_1(r)§i (t)dt; j=i+l,i+2,...

,j-l
Unfortunately, in general, there appears to be no way of obtaining the expres-

sion for ﬁij(t) in a closed form. Instead, in the rest of this section we re-

strict ourselves to the case of linear birth processes with

(43) cj(t)=u(t)+jv(t) » J=i, i+l,. ...,

and with fj(t)=j5(t). Thus here we are interested in the integral of the form
(44) | Y(t)=[TB (X (r)dr .

For this case, the equations (40) take the form

(45) Py (t)/dt=-[a(t)+] (SB(E)+v(t)) 1By ()+[a(0)+ G-IV (E)IP; 5 ) (6D,

for j=i,i+1,... . Let
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[+

(46) G(s,t)= 1 sTp,(t) , |s] < 1.

Then multiplying both sides of (45) by sJ and adding over j we obtain, after
some simplification, the equation

(47) éf—[v(t)s-v(t)-GB(t)]sés=-a(t)(l-s)é ,

where here and elséwhere'ﬁt and és denote the respective partial derivatives -
of G. Equation (47) is subject to the initial conditionvé(s,0)=si, and can be
solved by standard methods yielding

(48)  G(s,0)=6(530,01" exp[-fE a(r)(1-0(s;T, 0]

where for 0 f_T f_t, o

(49)  [80s37,0)] "= § explf7 (v ) +88 (W))dul- [Ty (wexp [ (v (v)+68(v))dv]du .
Since in the present case of (43), it is known that in any finite time inter-
val, with probability one, there are only a finite number of jumps of the process
X(t), (48) with §=1 yields

(50) E(exp[-8/38(1)X(x)dt] [X(0)=1)=6(1,t) .

In the next subse¢tion we specialize the above results‘to Polya Process which
arises very often in various live situations such as the theory of accident
proneness (see Béfes and Neyman [2]).

3.2.1 POLYA PROCESS. This is a special case of the linear birth process dis-

L o T  V  ad

cussed above ﬁith

(51) a(t)=x(1+pxt)'1;v(t)=xp(1+pxt)'1;x >0, p>0.

Also we consider.the special case where B(t)=1l, so that we are interested in the
integral Y(t)=f8X(T)dT . For this case, expression (48) simplies to |

' - : T
(52) G(s,t)=s'exp(-ist) [ (1+rpt)- %E.(l_e‘at)s]‘(l+p ) |

This then gives the joint distribution of X(t) and Y(t). In particular from

this one easily obtains for n=0,1,2,... ,

. . -1 Loo=1 : -6t
-iét +n-1+ ool (1t Apt n_ l-e n
el [(1n ) (i+p )](P )¢ o )1,

< ~(i+p™H)
(53) P, _..(t)=(1+)pt) n! T+Xpt

i,n+i

Again, one can easily invert (52) with s=1 to yield the distribution function
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Ht(y) of the integral Y(t), given by

PR N PO | .. =1 — * , '
(54) Ht(y)=(l+Apt) (i+p )nzo(1+n 1+p %E...(1+p )(ygipt)n‘uz Ft(n)(Y)’

for y >i t and for y <i t, Ht(y)=0. Here the operation_*‘denotes the con-
volution between two distribution functions; Ut is the distribution function
corresponding to a degeneraté random variable taking_ﬁalue as (ti) and F:(n)
is as defined in section 3.1.2. Finally if we lef i=0 and p > 0 in (52), we
obtain, as expected, the expression (36) for the Poisson process.
4. BIRTH AND DEATH PROCESSES. We now consider the case of a time homogeneous
birth and death process (B-D Process) X(t) where, in nbtafiohs'of section 2,
=yt ) |
A O )7 A kel
P w ) Tl A k-l
0 ; elsewhere
and Ak and My afe,nonnegative constants with u0=0. Let X(0)=i. The backward _
and forward equations analogues of (7) and (8), but coﬁverted into differential"
equations, are given by 7 . _
(56) dﬁik(t)/dt=-(xi+ui+afi)§ik(t)+xi§i+l’k(t)+pi§i;1jk(t)'
and » o
(57) APy, (£)/dt=- Oyt EOP (0 P, o () By i (8)
respectively.' Unfortunately, we shall not consider these here in this generality.
Instead we shall consider certain special cases which arise in several practical
situations. Fér this, we shall particularly be making use of the forward system
(57). Since X(O)éi will be kept fixed, we shall write for brevity 5ik(t)=§k(t).
4.1, LINEAR B-D PROCESSES WITH IMMIGRATION. Consider a B-D process with
Ak=kk+v,and uk=ku for k=0,1,2,..., where A,v and p are positive constants. Such»
processes arise in the study of population dynamics and also with A=0 in thé'-
queueing theory of M/M/«= queues. Here we wish to obtain»the joint distribution

of X(t), fg X(r)dt and T(t), the last one being the length of time during (0,t)
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the process remainé in nonzero states. In M/M/= queue, Ttt) represents
the time for which at least oné channel remains busy during (O,t);ISX(T)dT
representé the cumulative time the customers spend durihg (0,t) while they
are being served. In the study of response of host to injection of virulent
bacteria, fg X(Tjdt could be regarded as a measure of the.total amount of
toxins produced by the live bacteria during (0,t), assuming a constant toxin-
excretion rate Per bacterium,(see‘Puri”[16], [17] and [18]).'

In order to‘accomplish our purpose, itvis sufficient to take

(58) | afk=31(1-$k o) *kB, 5 k=0,1,2,.... ,
so that |
(59) Py (t)=E(exp[-8f( £(X(1)drlr, (ty)=E(exp[-8,T(t)-8, f5 X(r)ar]L, (6))
Furthermore, for the present case, the system (57) takes the form

k>1,

» —[v+31+k(u+k+62)]Pk+(k+1)pPk+1+[v+(k-1)A]Pk_1;

1 ; for k=0 .

Let é(s,t) be as defined in (46). Then from (60) we have

(61) Gt-A(s—rl)(é—rz)Gs = —[v(l-s)+61]G+81P0»,

where T and T, denote with plus and minus signs respectively
1 : 2 1/2

(62) SrlGneg,) + {uaaes ) 2aunit/?]

- ~ ~ i
The problem now is to solve (61) for G subject to the side condition G(s,0)=s .
This can be accomplished by standard methods. We give here only the final answer

in terms of its L.T. Let

(63) b1, 8)=1h; (5,801 hy (5,001 ™ exp[- (ves -vr el
and »
6 40,02y, 017 expl-(vep v el

where
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rz(rl;s)+r1(s—r2) exp[-k(rl—rz)t]

(65)h1(s,t) = .(rl—s)+(s—r2) exp [—A(rl-rz)t] ,
and
(66) hz(s,t)f{(s—rz)exp[-k(rl-rz)t] + (rl-s)}(rl-rzj-l.

* * ~% ~%
Also, let wl(s,a),wz(s,a), G (s,a) and Po(a) be the L.T.'s over time t of

¢i,w2, G aﬁd Po‘respectively, defined for a > 0. From (61) it is easy to
show that
~ t = »
(67) G(s,t)=¥; (s,t) +8, [0 Py (t-T)¥,(s,1)dr,
from which it follows that '
o~k * ~ % *
(68) G (s,0)=y,(s,a) + BlPo(a)tbz(S,a_) .
with s=0, (68) yields
~ %* 0. : * ‘ -1
(69) PO (d.)— lpl ( ,(!) {1‘31’4)2 (0’0')] 3
Finally by using this in (68) we obtain
~% * * - * * _1
(70) G (s,a)=¥; (s,a)+8p¥, (s,a)v; (0,0)[1-B¥, (0,0)]7 .
We now consider briefly a special case with no immigration i,e with v=0,
where we explicitly obtain
(71) Po()=/N) Hexp (-8 ) [I(0)]7+8; [{ exp(-8; 1) [I (1)1 ard,
and
(72)  G(s,t)=exp(-B,t) elfg exp(8,T)P (1)t + [h, (5,)]'},
with
s . - ‘ - |
(73) J(t)—{l-exp[-)\(rl—rz)t]}{rl-r2 exp[fXCrl-rz)t]} .
The case without the random variable T(t) has previously been considered else-
where.by the author [15]. For the present case (v=0), it is known that
P(X{(t) - 0 or m)il and that P(X(t) + 0)=min(1,u/A). Also, T(t) being a non-
decreasing function of t tends almost surely to a random variable T as t - =,
Here T is the first passage time of the process to the state zero. Also

P(T < «)=min(1,p/A). Thus by using (71) we have
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74) lim G(s,t)=1im ﬁo(t)=E(exp[-slT-32fg X(1)dt])
to treo
i .
T, s 1f Bl=0,

/078, [G exp (8,00 at , 3¢ 5, > o,
On the other hahd, in the presence of immigration (v $'0); if we wish to fihd
the joint distfibution_of T and Ig X(t)dt, we first modify our process (see also
[21]) by taking 10%0, Ak=kk+v for k > 1, so that zerouis an absorption state of
the process, Here ﬁe allow immigration only as long as thé process has not touched
the state zero.b The analogue of equation (61) forrthebmbdified process is then
' given by »
(75) »éf-l(s-rl)(s-rz) és= - [Bl+ v(1l-s)] (6—50).
The solution of (75) subject to G(s,o)zsi, i > 1, is given by (67)-(70) with only

¥, replaced by -
v{rl-rz)(rl—s)

: }

(rl-s)+(s-rz)exp[-l(rl.rz)t] 2

(76) ﬁz(S,t)= %I-wz(s,t){(v+81-vrl) +

A :
and w; by wz . We thus have from the new (70), while using a Taubarian argu-

ment |

77) E(exp[-8,T-8, [ X(x)dt] [X(0)=i) = lim G(1,t)

Tt

~k ’ %
" e v, (1,a)¥) (0,0)
=1lim aG (1,a)=1im[a¢1(l,a)+81 : e ]
a+0 a0 1-Blw2(0,a)

On the other hénd, it can be easily shown that

(78) © 0 limay)(,a)=lin v, (1,8)=0
a+0 toe

Lin §,(1,0=[5 4,(1,0)dt

o0

and
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(79) Lim ay; (0,1)[1-B1¥,(0,)]  =1im By (t)=Py (=)
| ! _

o~+0 ~300

Joexpl- v+, -vr )t1 [y (0,631 [hy(0, 0117 et

e —

f;exp‘ [- (\""Bl-vrz)t] [h2 (0,t)] -v/A dt

i

Thus we finally have from (77)
' T . ~ w0” |
(80) E(exp[fslT-e2 fo xcr)dr]IX(0)=1)=31P0(w)f0¢2(1,t)dt .

%QE ‘M£§43v3252§$.-This corresponds to the case with Akék for k > 0 and

and By =H for k 3;i with u0=0. This is the case which have recently been
explored by Gaver [9], Daley [4], Daley and Jacobs [5] and McNeil [12]. Most
of these authors have used the backward sYstem analogues,iwhile we, based on
our method, shali use the forward system. Also, this section will apparently
have some relevahce to the paper presented by Professor Gani at this symposium.

In the case of M/M/I queue, T(t) as defined in the previous section represenfs

the period for which the channel remains busy during (0,t) and [IE‘X(t)dT—T(t)]

represents the total time wasted by the customers during (0,t) while standing
in the queue and waiting for their turn for service. Although, these random
variables are of some: practical importance; yet to the best of author's knowledge,
the distributions of these have ndt-been considered before. The integrals
stﬁdied by Gaver,vbaley and others were restricted only ﬁo a busy period of the
queue, where 'zero' acts as an absorption state. We shall touch this case brief-
ly little later.

As befdre, we are interested in obtaining thg jbint distribution of X(f),

f; X(t)dt and T(t). The analogue of equation (61) for the present case is.

given by
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) 2 - - - s .
(81) sGS+B2 s Gs = l(s-rl)(s-rZ)G+[(u+Bl)s-u] PO’V

which is to be solved subject to G(s,0)=sl. Here ;1 andrgz, with positive

and negative signs respectively, are given by

1.

Il—'

(82) [Guerep)) + {(urreg )2 -aua} /2

[N

A

Unfortunately the solution of (81) appears quite complex and involves Bessel
functions. The author did not succeed in obtaining an explicit solution of

(81). However, one can easily solve it when 62=0, giving only the joint dis-
tribution of X(f);and T(t).v'Taking L.T. of (81) (with 82=0) with respect to

t, we obtain for o > o,

-1

RRIICE NI peg

83) G (s,0) = [{u-(u8,)sBy (@)-st

* *
where rl‘and T, with positive and negative signs respectively, are

(84) 1 ,[(u+l+81+a) i-{(U+A+31+d)2-4ul}1/2] ,

22X

*

2

Bk 3

. ‘
and they satisfy the relation 0 <r, <1 < T, - Since G 1is analytic for

|sl<1, the first of the two expressions on the right side of (83) must vanish

*
at s=r, . ‘This. fact yields

Lk P £ ) | * -1
(85) L PO (o) = (rz) [11- (u+31)1‘2] .
On substitution of this in (83), we obtain

(r;)i+1[u-(u+Bl)S] - Si+1[u-(u+81)r;]

(86) G (s,0)= i S -
) )\(s'rl) (s'rz) [11'(11"*81)1'2]

Finally on putting s=1 in (86) and inverting the resultant L.T. by lengthy

- yet standard methods (see Saaty [22]) we obtain
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(87) 61, )=ECexpl-8,T(0] [X()=)= ] P (6] ,
: n=0 ‘

where
(88) P, (t)=exp[- (htuss,)t]{ (u/a) A/2 NN GRICT RIS W

) M 2w T pes)) 0w Y2
. 2

k=

k
Bn+i+

] K&}

Bn(u) denotes the Bessel function of the first kind and £=2(Au)1<2 t.

We now consider only the busy period of the M/M/1 queue started with X(0)=i.

For this we téke"kk=l for k > 1, and A0=0,‘so that 'zero' is an absorption

state of the process X(t). As before T(t) 4+ T a.s. as t > » , where T is the
length of the buéy period.” If u > A, it is known that X(t) - 0 with probébility
one, so that P(Tb< ©)}=1. On the other hand if u < A, P(T < w)=P (X(t) = 0)=u/}A,

and P(T=w)=P(X(t)r+ ©)=1-(y/A). The analogue of (81) now-takés the form

. ~ 2% L2 N D
(89) s G, + B, s Gs—[ls‘-(k+u+81)5+u](G-Po) .

to be solved subject to G(s,0)=s". Unfortunately the_solﬁtion of this presents
similar difficulties as of equation (81). However, once it is solved we have

the desired result given by

(90) lim é(i,t):ﬁ(exp[-slT-ez f}; X(1)dt] |X(0)=1) .

Too

This result has been studied through other methods by Daley [4] and Daley and

Jacob [5]. Again the equation (89) can be easily solved like (81) when B,=0.

However, since the distribution of the length of the busy period T is already
known (see Saaty [22]), we shall not persue this further here.

5. AILLNESS-DEATH PROCESSES. These processes have been extensively studied by

Fix and Neyman [8] and more recently by Chiang [3]. Briefly, these are finite

M.C. with two sets of states; Si’ i=1,2,...,s, are the illness states and
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R,, 6=1,2,...,r, are the death states. (In this section, symbols i,j, and k

9’
will stand for Si’sj and Sk and 0 for Rg). Here all the déath states are ab-

sorption states. Also, in terms of the notation of section 2, for the tran-

sitions among the various states we have on adopting Chiang's notation,

cipij=vij H 1*]; i,j=1,2,..., s,

' ¢;Pi97 M0 i=1,2,..., s; ©=1,2,..., r,"

921) i

-ci=\>ii ;5 i=1,2,..., s .

Consider a typiéal person moving from one state to another according to the
above M.C., until he is absorbed into one of the death states. Chiang ([3],
pages 81 and 160) has considered the lengths of this pérson's stay in various
states withinia feriod of length t, and has given expressions only for their
expected values; while our method leads easily to their joint distribution.

For this, take

§., if £ is the state S,
i i

(92) 8f p=

ggs if £ is the state Rg-

Analogous to Chiang's notation (see [3], page 152), let

(93) Pij(t)fP(zct)=1, X(t)=stX(0)=si, 7(0)=1)
and o
(94) Q;(£)=P(Z(t)=1, X(t)=Ry|X(0)=S,, Z(0)=1) ,

where Z(t) represents the 'quantal response process' as defined in section 1.

Then the forward system of equations for 5 are given by

(95) dEith)/dt=’(k§j Vit L ¥ya*e;)Pyy (00 kijpik(t) Ykj
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for i,j=1,2,..., s. Similarly one could write -down the backward system.

Either of these systems can be uniquely solved for Eij(t)’ which then can

be used to obtain &ig(t) by noticing that
~ N t = '
(96) Qig(t) = jzl ujg IO Pij(T)exp[—og(t-T)]dt; 9=1,2,..., r.

Here the factor exp[—dg(t-r)] under the integral sign denotes the probability
that our hypothéti¢a1 animal of the 'quantal response‘prdcess' Z(t) does not
die during (T,t),.oﬁce the process has touched the state R9 at moment t. Let
X(0)=Si, and

T;5(®)

‘Length of stay in Sj during (0,t); j=1,2,...,s
(97)

fig(t)_ Length'of stay in R, during (0,t); 6=1,2,...,r.

e

Having obtained Pij and Qie in th€ above manner, the L.T. of the joint distri-

bution of Tij(t) and fig(t) is then given by

S T

' . s _. T _
(98) ; EFexp[- j=16jTij(t)- 92109 T, (1) 1)= jZIPij(t)+9§1Qie(t) ,

where 6j and % act as the dummy variables for the L.T. The L.T. (98), in

general, is a rational function of é's and o¢'s and can be inverted by standard
methods to yield the desired distribution. We shall illustrate the above

approach through. an example, where we take s=2,r=1 and X(0)=Sl. Since
(99) : _ B Tll(t)+T12(t)+T11(t)=t > 8.5, ,

it is sufficient to study the joint distribution of only Tll(t) and le(t),

in which casé we may take 01=0. The equations (95) are now given by

~

P

dP,,/dt=- (V) +u; 1 +6,)P 40, Py

(100)

P

dP,,\/dt=-(v,,1+u,,1+6,,)P17+v12 11 °



22
Let

(101) S ARGty g) 5 B854, 40,)) 2

and a; and a,s with positive and negative signs respectively, be given by

C 1 : 2 1/2 '
(102) 5—[-(A+B) + {(A-B) +4v12v21} ] .
The solution of (100) is given by : ) S

P11 (=1 (a;*B)exp(a, t)- (Bra,)exp(a,t)] (2;-2,)
(103) '

~

Plz(tj%viz[exp(alt)sexp(azt)](al-az)-l.

Now using (96)'Q§£h 09=Q, we can obtain Qll(t). Finally, omitting details,
we have by ubing (98) | o

(10%) E(e%p[-&lTll(t)-Géle(t)])=§11(t)+§12(t)+611(t)

| -1
=[Gy By p4uy )+ (kg Brug vy p)a, T lexp(ag t)

- - -1y . ; -1
; f‘[(B+a2+v12+u11)+(u11B+u21v12)a2 lexp(ayt) (8,a,)

- 1
3;+{(u11B+v12u21)}(AB-vlszI)
Since Tll(t) and le(t) are monotone nondecreasing functions of t, Tll(t)+T11

and le(t)+Tlé>almost surely. Here the random variables T11 and T12 represent

the lengths of time the person spends in S, and S2 respectively before he
finally dies. Létting t » = and using the fact that a, and a, are negative,
we obtain from (104)

M1 (a1 41y #85) 49150

(61#v12%H11) (8#vy1+151) -V, 5,0

(105) E(exp[-8T;-8,T ,1)=
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One can easily invert this transfrom to give exp11c1t1y the joint distri-
bution of T11 and T 12° However, we shall not venture into this here. In-
stead we refer the reader to [21] for further details concerning the sojourn

times of the type Tll’T12’ etc., and close with the remark that T11 and T12,

in the present_case, are positively correlated. Furthermore marginally each
one of them is (negatlve) exponentially distributed with a p051t1ve probablllty

mass at zero only in the case of le
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