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Abstract

The single .s-er"ver queue with semi-Markovian a.rrivals and services is
studied, The stability of the queue is proved umder the» usual assumption
that the tra.ffi_c iptensity is less than l |

Next, the ’waiting time and the type of the n'D customer are studied
jointly. The -ﬁ;é.ﬁsient behavior is studied using the ma.trix factorization

theorem of Miller [9). Asymptotic results are also obtained using a technique

due to Smith [13].



The Single Server Queue With

. I
Semi-Markovian Arrivals and Services

by
Shun-Zer Chen

| Voorhees College and Purdue Universita-r‘

I. Introduction.

We consider. & queueing model in which the nth cﬁs:toher is of type Jn-l
and arrives a.t’_a. single server counterl in the instant
Tn(O STy <T,<...< T, < ) There are M customer types. The gqueue
discipline is. "first come, first served"., Let ’ S be the service time of
Cn and Wn be the waiting time before being served.  For n > 1, we write

tn = Tn - Tn, the interarrival time between the nt_h‘a.nd n+1St customers;

we set to=§o=0 and put

(1) | wo=s-t  (n>o0).

Let {(sn,tn,J ), n >0} be defined on a canplete proba.bluty space

(Q, G, P) and ha.vmg the following three properties:

Th1s research wa.s supported in part by National Science Foundation Grant
No. GP-6073 at Purdue University.



(p. 1) P{g

k} = P (k=1,2,...,M; M< ®),

(P. 2) Pl <% 6,29 I, = 31(sys b5 Tyy k< m); T =i}

P{s, < x, t, <Y, I =3 |Jn_l=1}

K; 5(x¥) (0213 x>0, y20; 1,j=1,2,...,M),

(p. 3) The iﬁbedde'd Markov Chain {Jn, n > 0} is irreducible and stationary

such that

P. (n 2 O; j = l’2,.l.’M).

P(7, = 3} = 2,

The basic semi-Markov assumption (P. 2) states that the joint distribution
of S, t, depends only on the transition of the Markov Chain {Jn} from
the present state to the next. In other words, Sn,tn depend on the types

Jn-l’ Jn only._

.This gene;-al model is important and we are _antii;ipa.ting its application
to concrete siﬁﬁat:j.ons. A practical example occurs as -foilows. According
“to recent obser\_ra.tions of traffic flow, especially during rush hours, trucks
follow cars much cioser than cars follow the trucks. tet‘ vehicles, cars or
trucks, arrive at a single server counter which offe‘rsv'c.:e:rtain facilities,
If_we count as’ tl;e' service time of a vehicle its tinilev in Vthe system together

with the time :reQﬁired to adjust the server to the different type of vehicle,

then interarrival times and service times depend only on the transitions in

the Markov Chain '{Jn, n > 0}.
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We note that (P 2) implies that the two double sequences {t »J > n > 0}
and {s »Jd > n> 0} are proper semi-Markov ones (cf. [10]) For

- < x<e let Qij(x) j dK, J(x+u u). Then
(1) @ (x) = Ply, < x, T=30 =1} (1,3=1,2,...,M),

that is, {un, Jn’- n > 0} Mforms a (proper) semi-Ma.rkov' sequence which implies
that Q’ij(+ .)='Pi j and z Pi J=l for all i Where
J=1 '

@) Pig = Pl

In the subsequent sections, we shall discuss the stability, the transient

behavior and the asymptotic behavior of the waiting time process Wn'

2. The Stability of the SM/SM/1 queue.

The definii:ion of the stability of a queue is given in the following:

Definition 1. A sequence of a.e. finite random varidbles xn with (honest)

distribution functions F, is said to be:
(1) sta.bl’e', if F_ tends to some (honest) dz.str:.bution function F
at a.ll 1ts points of continuity; |
(ii) substa.ble s 1f each subseguence contains a sta.ble sub- subsequence;
(iii) unstable, if it is not substable.

Definition 2. A queue is called stable, ~substable, or unstable according

to the behavior of the waiting time sequence Wn.

If we introduce:

‘ M
(3) =) [ oxagm;
R =1



o M ()
wge ] [
T L

for i = 1,2,...,M_, then we have the following stability theorem:
Theorem 1.
,Suppose that. g < e (i=1, 2"'M’M)’ then the SM/SM/1 queue is stable
if z P, {; <O and unstable if Z P; {3 > 0. Where {P,} were given
i=1 R i=1 :
by (P. 3).
In order to prove this theorem, we need a lemma:
Temme 1, |

For all jJ = 1,2,...,M, we have:

(5) ﬁ‘-;gﬁi:....:ﬂ =P, .
My By B J

Where iP*i 3 is the expected number of times the Ma.rkqv chain {Jn} is in
the state J before it is in the state i, starting from ij m
mean recurrence time of the state i. (These notations are the same as in
oung [2]).

Proof:

is the

jiince the Markov chain {Jn} is irreducible, positive and such that

=z Py Pk,j’ from a theorem of chung ([2], p. 35),.we‘ha.ve:

k=1
€ Pi=cm, (3=1,2,...,M) ,
where



and c¢ 1is a constant. Moreover,

M

‘ M
(8) z Pj=z nj=1.
=1 j=1

Thus we have c¢ = 1 which implies that:

(9) : Py = 1, (3=1,2,...,M).
J
' *
Next, let us denote by fij the probability that the Markov chain will
be in the state J at least once, given that it starts from the state i.

Then we get from Chung [2]:

*
_ high
(lO) ‘l ni = _lL (i,J=l’2,°'-’M) ’
J m
: Jd
where
. n (k)
‘ s 1 k
(11) I, = lm = z Pyy’ and
' k=1

P(g = P{Jk=,j |Jo=i} .

o _ '
Furthermore, fi P = 1 because of the recurrence of the Markov chain, whence
(12) o, = —— (1,33132,00'914) .

If we introduce taboo probabilities, then & formule in Chung {2] yieldsli

that:



N
. o, Z HPS’.‘)

(13) 1,4Pqs = lim n=l H ij ,

. B i gr})

ii
n=1
where
-
o * (n) ,
(14) | 1,045 = Z 1,04 3
n=1
(), P{J =j3J,4i,J, ¢ H 0<k< n|J =i}
i,H4j n~d 39y tisdy ¢ H, o~ -

Therefore, setting H = §, with the help of (11), (12), we conclude:

<

“mﬂ.i *
(15) . _l__ = iPiJ (i,j=1’2"‘°,M),

M3
which is the stated result (5) by (7) and (9). Thus the lemma is proved.
Proof of theorem 1:

=

Let Un = Z uk We fix ap arbitrary state i and apply the method
- k=1 :

of the dissection principle (Chung (2]). For a sample point w, let
'rl(w) < Tz(w)_< +3(w) < veees < 'rk(m) < «ess. be the increasing infinite
sequence of those n > 0 for which J (w)=i. Then:

£(n)-1

(16) G=y@+) oy +y'@  (a>1),
k=1

where



'rl-l'

(17) y'(n) =2 U (w) independent of n;
s=1
T+l ™t

(18) Vi =z Us(w) ;
s=T)

: n
(19) oy =) U () ;

S='\'!’(n)

and for given ri, ®, £(n) is the unique integer satisfying that:

(20) Tz(n) ((l)) <£n< T,ﬁ(n)s-w]):

Since Ty is finite a.e., we have:

(21) | ' (n) -0 a.e,

as - o,
.n n

Further, a theorem of Chung yields that:

1" n P
(22) ” -0 as n=e,
4(n)-1 | '
To estimate z - Ve by using Chumg's theorems, we obtain that:
£(n)-1 _L) £(n)=1
e _ 2n)-1 z -
(23) n z yk = n . !,(n)-l yk - ni EW'l a,e,
k=1 k=1
= X Ey, a.e. as n-w
m l L ] * i

ii



Now, lemma 4.1 of Pyke and Schaufele ([12], p. 1756) gives:

, M
*
_ 321
whence
- 4(n)-1 Mo ¥
(25) lim —= z Vo = z il . ae. .
e D k m, J
| k=1 j=1 *

Therefore, é.ﬁi)lying lemma. 1, we have from (16), (21), (22) and (25):

(26) : Un ‘ P as - =
B E ), ByGy oeson
, J=1

On the other hand, it can be shown from the assumptions (P. 2) and

(P. 3) that {un,-n >d} is a strictly stationary sequence such that:

(27) Ev =Z Pj gj.

Thus, by Doob's theorem for strictly stationary processes ([4], p. 465), we

deduce that:

U

(28) _ﬁg -*E[ul|cp] a.e. as n-w ,

\
T

where ¢ is the Borel field of invariant w sets, Conséquently:



| M
(29) Huw ¢l =E w = 2 P, Ly 2.e.
=1

which proves theorem 1 according to a stability theorem due to Loynes [7].
It remains to discuss the critical case i PJ. C §° 0. According
i J=1 '
to Doob ([U4], p. 456), the strictly stationary process {un, n>1} can be
extended to form a strictly stationary process [un, - ®<n<w}, Combining
(29) and a stability theorem of Loynes [7], we have the following:
Theox"em 1*.
Suppose that g: <e (i=1,2,.,.,M). Then the MSM/SM/l queue mey be
either stable, properly substable, or unstable, if z P;j c §= O:
=1
(1) If w is dishonest, the queue is wnstable for all initial conditions 3
(i1) If w is honest, the queue can be either stable or properly sub-

stable. Initial conditions will affect the asymptotic distributions.
Where

sup % +
(30) | W"[rzl ) %] -
k=1

*
Remark: Suppose [, < ® (i=1,2,...,M), tﬁen the queue has a unique stationary

waiting time distribution if and only if z Pj gj < 0.
J=1

This rema.ik follows from theorems 1 and 1!.

3. Transient behavior of the joint process {wn,Jn_l}.

In this svection, we shall express the probabilities
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(31) Gj(_g)(x) = P{Wn _<_ x’ Jn_l=cj |wl=a"Jo=i} ‘(n ,?_ l; i’d'-':l,z""’M)

in terms of the given distributions of {sn} » {t } or {un}.

Since Gg) (x) is a mass function, it induces a measure also denoted
by G;g]l)(‘)‘ The same convention applies to other mass functions in the
context,

It is known that
: +
(32) Wns1 = Gy +ug)t .

Next, from (P. 2), we find that {un, n > 1} are conditionally independent
given the Markov chain {Jn}. (See (3.6) of Pyke [11]). Hence W, and
u, are conditiona.lly independent given J
and (32), we gét that:

0’ J'l, J2,...,Jn. By this property

M
(33) Gj(_?"'l) = n( z ng) * Qg ) (n > 15 1,J=1,2,...,M) ;
| o | :

| (1), y _
(3)'") ' ’ Gij (') - eij(a',‘) L4
Where * is convolution of measures and:

. , Gij ifae B
(35) eij(a,B.} ={ o ifafs (B is any Borel set);

Sl if i=3j
51;1:{0 if 145 3

(36) - Pip=a} =1 (a20);

and m is a Wendel projection defined by:



(37) (mu) B) =p {x: x ¢ B} (B is any Borel set).

(See (10) of Kingman [6]).
Now we introduce a matrix algebra. Let

fll' . 'flM

T

LR X fm

m

(38) M =-.{ f: f =< (fij) , fi,j is a finite signed

.

neasure on Borel sets of R for each i,j.}
*
Define addition and multiplications of elements in M by:
f+g= (fij +gi,j) H
M
o= ) it oy )
k=1

e f= (Cfi;j) . (c is real).

0]

e
* L d
Then M* is an algebra with an identity e =< ‘. ) , where
. O oe
1 if 0 e B
(39) e(B) = { 0 if0¢B (B is any Borel set).

.
Remark: Since M is not commutative, the arguments of the GI/G/1 queue
in Kingman [6] cannot be applied to the SM/SM/1 queue.
* * % * x
Furthermore, define m# : M =M by mf= (m fij),_then n is a

*
Wendel projection on M , that is, |

(40) Wo=u e M ,



* %
and M+, M_ are subalgebras, where
* * *
(k1) M={nf: reM};
* * *
(k2) M ={feM: n £=0},

S *
In other words, M,

. *
with fl € M+ s f2

Introduce the

(43) WTx)={ ¥:

*
eM .
following:

-_-z £0) @ e 20 ¢ M*} ,
=0

*
and define addition, multiplications in M [x] by:

}: #(n) +z g(n) <& Z (f(n)_+ g(n)) &
n=0 n=0 n=0

L2 § o).

n=0

[ ] -

Tdentify M CMTx] by £=£+0. x40, x4

*
identity in M [x].

c nx.
Z[ £(n);

n=0

*
Upon extending m +o M*[x] by:

FL ] 7t oy,
n=0

L [ Z ) g ]

' *
seey then €

is

an

n M-)_6 = {O} and any £ in M* can be written as :t‘::fl+f2
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| . * * % * *
then we conclude that M [x] = M [x] 6 M_[x] and M [x], M [x] are sub-
algebras,

In order to use the Miller's matrix factorization theorem [9] to obtain

the transient behavior of the waiting time process LAY G make two additional

assumptions:
(Al): {Jn, n > 0} is aperiodic ,
(A): There exists c', - < c' < O such that for each pair

- -
1,3, Q;(8) = |
ru 2 lj o N
' - - (Y
¢' <Re t <0 and for some pair 1953 Qiojo
Re t = c' +. Besides, we assume that P{u > 0} > o.

e~tx dQ“j.j (x) is an analytic function of t for

(Re t) tends to infinity as

First, we note that Q(0) = P is a primitive, irreducible, non~negative
matrix with Perron eigenvalue A(0) = 1 (See Miller [8] [9]). Also, for
real t, Q(t) has the Perron eigenvalue A(t), (See [3]).

Let

(k) ;’ij(t) = r et £; 5(ax)

be the Laplace-Stieltjes transform (L.S.T.) of fi,j if it exists., Set

f = (fij) and:
C = {f: £(t) exists for c¢' < Re t < 0}.-

Therefore (33) becomes:



1k

(34) o) L n* 16®) 7 ana:
(35) ¢ ey =7 16 Q) (Ret =0) .
Where
cx A {\
(36) , LENTREY T

~ N

Note that ;’v\ =u v if all exist,

Applying the L.S.T. on M [x] for those elements in C, we obtain that
w'x] = ﬂf[x] o M'[x] with subalgebras ﬂi[x] and ﬂf[x]. (At least, Fourier
transforms exist).

Forming the generating functions:
(37) v = o) 4 @), a(3%2 teesees € M:[x] ;
(38) ¥=c1 4@y, 5B)2, ceees € ﬁj[x] ,
We have from (35) that :1; = &(1) +x ﬁ*(;’ a) which yields:
(39) ;I* {‘I’(I-x 6,) - &(1)}' = 0; and
10) =T -xq) -6 ¢ Wx.
Under the assumption EUl < 0, theorem 3 of Miller [8] with the help of
assumptions (Al) , (A2) implies that A(t) attains the wnique minimum at

* ¥\ o
T ¢ (c', 0). Thus, for each 0 < x < [A(%")] l, there are two real roots

of
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(h1) xA(t) =1

in [t,0], say -ro(x) < -rl(x), where A(t) = 2\ (0)=1.
~ ~
Next, we note that (40) implies that Y¥(I-x Q)- G(l) can be continued
analytically into Re t < O, Therefore, the matrix factorization theorem

of Miller ([9], p.277) gives:

(k2) I-x Q = B,(x,t)B_(x,t) (0 <x<[A(t)]D),
Where
(43) B, (x,t), B_(x,t) are analytic and bounded in Re t > 7o (x)ve;

B_(x,t), BJ'(x,t) are snalytic and bounded in Re & < 7, (x)-e;
e > 0 is arbitrarily small such that 'ro+e < Ty = €.

We are ready to prove the main theorem concerning the generating function
of the 1.S.T. of the distribution function of the Jjoint process {wn,Jn_l}.
Theorem 2.

. ¥y aml

Under the assumption EU; < 0, for each 0<=x < [A(t")]™,

we have that:
(1) = @@ st

Where B, B_ were given by (L2).
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Proof

By using (39), (40) and (42), we find that:

(45) T =;f B, B_ - é(l) € ﬁf[x] 3
(46) v 3, - ¢ 51 ¢ ix).

(For details, see [1] or P.273 of [9]). Moreover,
L) “*

(7) ¥ B, eM[x],

hence (L46) y’léldé. that

which agrees with (Ll), Thus theorem 2 is proved.

k., On the solution of the stationary waiting time distributions.

The purpose of this section is to obtain the IL.S.T.'s of{ lim Ggg) (x)}
. e
(if they exist) by the technique of Wiener-Hopf factorization due to Smith
f13]. m order to carry out our objective, we make four additional assumptions
vhich are somehow weaker than those assumed in [13].
1l .

(Al)’ The same a5 (Al).
(Aé): The same as (AE).
_c . 1
(a3): a(t) = o(]s]]

= +! 1 t t
t t1+it2 a.ndc<‘l::L

) as |t2'| is sufficiently large, where

< o.
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We remark that a sufficient condition to guarsntee (A?')) follows from
lemma 1 of [13].

(A,_"): For each i=1,2,...,M, Q‘ij (x) is absolutely continuous for some Je

More generally, it will suffice to suppose that for each i, either
P{s < x, J,=d |Jn_l_=i} or P{tn < x, Jn=;]|Jn_l=i}
is absolutely continuous for some e

First of all, we consider the problem of existences of

{ lim Gg‘)(x) } Let, for i,j=1,2,...,M,

Ire
(49) lim sup Gg)(}c) = )‘i.j(x) 3
Ites
(50) - m ing 6P =y ()
e

Under the usual assumption:
M
= <
=1

We come to the following:
Theorem 3.
The conditioh (52) below is a hecessary and sufficient condition for the

existence of {lim Ggg)(x)}-
T

Condition (52): There exist two subsequences n, = nk(x), mk=mk(x) such

() (my)

that 11::1 Gij (x) = xij(x) and }]jin Gi;j (x) = ".‘i;](x) for all i,j=1,2,...,M.



Proof:
That the existenées of { lim G(n)(x)} imply (52) is obvious. Now,

we assume that (52) is sa.i::l;s:f‘iezlrr.B The assumption (51) ensures that W

tends to an a.e. finite random variable w in distribution regardless of

the initial condition on w.. Thus:

1
M M
(529)) ) Py hgy() = Lim B(i, < xfw=a} = (v < x}
j=1 i=1
M M
= ij.,’.mP[W <x|w =a} _z z P, ulJ(X)
J=1 i=1

Since );ij(x) > p.ij(x) and P, >0 for all i, we deduce from (52!)
_ . . .. (n) _ .
that hij(x) = p,ij(x) for all i,j. Whence ;L:: Gi,j (x) = Gij(x) exists
for all 1i,j.
From now on, we suppose that 1im G:g?) (x) = Gy 3 (x) exists for all i,j.

n—»
Then, as n - », (33) can be written as:

M
(53) 'Git_j =z MGy * Q,kj)' (i,3=1,2,...,M).

k=1
In matrix notation, we find that:
(54) G=ﬁﬁe*m;
(55)  G(t) =1 (G(t) Qt))  (Re t = 0),

which yields:



19

(56) T'l6(1-)] = 0 5
(57) &(1-Q) e ﬁf with f/ff = f}’_* (1.

Next, we note that (57) implies that G(I-Q) can be continued analytically
into Re t < 0.
With the support of (51), (Ai) and (Aé), the matrix factorization theorem

of Miller gives:
(58) I-qt) = B, (1,t) B_ (1,t) ,

Where B_ (1,t) and B_ (1,t) have the properties described in (43), that is,
B, (1,8) and B} (1,t) are analytic and bownded in Re & > % + e B_ (1,t)
and B:l(l,t)_ are analytic in Re £t <O and bounded in Re t < - e; ¢ > 0
is arbitrarily small so that &t + ¢ < = e.
Theorem k.

The matrix of the L.S.T.'s of the stationary waiting time distributions
of the joint process {Wn,Jn_l} is independent of the initial condition on

(Wl',Jo) and is given by:
(59) o) = P B, (1,0) 521(1,0).

Moreover, B+(l,0,)13_:l (1,£) is independent of the factorization of (58) in
the sense that if I - Q(t) = C, (1,8) C_ (L,%), then B,(1,0)B71(1,t) =
¢,(1,0) ¢;1(1,t). Where P is the matrix of statiomary probabilities

corresponding to the stochastic matrix P, that is,
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P P2’I..PM

1
¥ P B... P
(60) P =<:1 -2 B.‘D.
Pl Pé.... PM

Proof:

Evidently (Aé) implies that I-Q(t) is non-singular for sufficiently
large |t2'| and t <t} <0, where t = HEERIR

By the condition (A&) and Wintner ([14], p.1lt), we have that for each

i=1,2,...,M, there exists some J such that:

(61) ]Q,ij(t)l <Pj; for Ret =0 and t ¢0,
Consequently,
(62) Ha)|[ < 1 (for Ret =0 and t40),
where the matrix norm || || is defined by

: M
(63) [14]] = max 1A, .|

l l lSiSM{jél 1;]}

for any M x M mat;'ix A= (Aij)‘

In view of the inequality (62) just proved, theorems 2 and 4 of Faddeeva
([51, p.61) yield that the inverse of T - Eg(t) exists for Re t = 0 and
t 4 0. Whence B:l (1,£) exists for Ret =0 and t 4 0. So we comclude

that

(64) B~' (1,t) exists for Re t < 0, t 4 0.



Next, we define
(65) K(t) = a(t) B,(1,t) for Re t = 0.

Clearly K(t) has a bounded anelytic cont:muation into the half-plane

Re t > 0 and K(t) is continuous in Re % 2 0. Also define another function:

(66) H(t) | a(t) [I-Z),(t)] B:l(l,t) if Re t = 0,t $ 0

¢(0) B, (1,0) if t = 0,

Since 5(1-5) € I‘;I-)_e » H(t) bas an analytic continuation in the plane
Re t < 0 and bounded in Re t < - ¢ for any e > 0 (ef. [6], p.303).
Furthermore, by means of (Aé) and (64), H(t) is continuous in Re t <0
(In fact, t = 0 is a removable singularity of H(t)).
Taking into consideration that H(t) = K(t) for Re t = 0, by the principle
of analytic continuation, we find that H(t) or K(t) can be continued to be
an analytic funetibn over the whole complex pla.ne
Moreover, (A ) implies that H(t) is bounded for large ]tzl and
%< t{ £ 0. Applying the maximum principle, we conclude that H(t) is
bounded in Re t < 0, '

Finally, Liouville'’s theorem gives:
(67) _ H(t) = H(0) = K(0) = constant.

Whence



~ ~ *
(68) a(t) B,(1,%) = K(0) = 6(0) B, (1,0) = ?" B, (1,0) ,
which is the stated result (59).
Next, if I - Q(t) = ¢, (1,%) ¢_(1,t) and ¢,(1,t), ¢_(1,t) have those
properties enun¢iated in (43), then from [9], we have:
(69) B+(1,t) = C_l_(l,t) D,
where D is a non-singular matrix independent of t. Hence:

(70) B+(1,o)B;1(1,t) = ¢,(1,0) D p~t C:l(l,t) = C,(1,0) C:l(l,t)

which completes the proof of theorem L.

Remark: Theorem 4 provides the unique solution of the matrix equation

f= n*(f é), if é satisfies (Aé), (Aé) and (Aﬁ).
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