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1. Introduction and summary. The estimation of restricted para-

meters by fixed sample size rules has been considered by Hammersley
[1]1. A sequential solution to the problem of estimating the mean of a
normal distribution when it is some unknown integer and argeneral method
for solving problems of this sort are presented by Robbins in [4]. Bésed
on the work of Robbins, a sequential procedure for estimating the parameter
of a Poisson distribution when it is known to be an integer is given in [3].
The résults obtained herein represent‘a generalization of the work deal-
ing with the normal and Poisson cases. A class of sequentiéi procedures is
proposed and bounds on the error probabilities are obtained. The expected
sample sizes afe investigated and a weak form of optimality is demonstrated
under certain conditions.

2. Statement of the problem. Let the distribution F(X) of a random

variable X be a member of some exponential family, i.e. _dF(X)e{fg(X)du(X)=

exp (8T (X)-c(8))du(X):8eQ}, where u is some o- finite measure on the real line.

It is assumed that Q is countable and can be ordered so that Gi < Oi+1 for

all i. Let Xi,X be a sequence of iid random variables distributed as X.

gsete
From a finite number of observations on the sequence, it is desired to esti-
mate the true value of @ with a uniformly small probability of error.

It is well known that S, the set of 8 for which fexp(OT(X))du(X) <w is
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convex. It is assumed that Gi is in the interior of S for all i. For

6e int (S), the moment generating function exists and the following proper-
ties can be easily deduced [5]:

(a) EOT(X)=dc(9)/d9=c'(9) < o,

(b) 0 f_vargT(X)=c"(9) < o, and

(c¢) if for some @e int(S), c"(8) > 0, then c'"(8) > 0 for all Oe int(8).

In view of (c), the degenerate case where c'"(0)=0 for some O¢ int(S) is

excluded. Then, c'(0) is a strictly increasing function of @ for 8e int(S).

For convenience, the symbols Ei and Pi will denote expectation and proba-
bility respectively under the condition that Qi is the true value of the parameter.

For every Qieﬂ, let
g(0;)=c"(0;),8_(0;)=g,(0; _;)=(c(6,)-c(8; 1))/ (6;-6; ;)

3. A sequential solution. Let fg=fg(x1,...,x )=

0 fg(Xj). Let a>1 be

=

j=1
be fixed and define a stopping rule by

. I S | n ,.n
N=inf{n > 1: m1n(f9_/fg- ,fg./f9

) > o for some Qisﬂv}.
i i-1 i i+l

It will be shown that the Oi in the definition of N is unique. Accordingly,
the terminal decision rule will be fo estimate that @ is Gi. The following

lemmas will be needed to restate the form of the procedure and to show that

Pi(N < «)=1 for all i.

. _— . .0 ,.n N ,.n
Lemma 3.1. Let 91,92,9359 with 91 < 92 < 93.‘_Then, m1n(f92/f91,f92/f93)3_a

if and only if

(3.1) g_(92)+(10g a)/n(@z-el) f_Th f_g+(92)-(1og a)/n(93—92), where

Th=(T(X1)+...+T(Xn))/n.



n ,.n =
Proof. Suppose that fgz/f91=exp(n(Gz-Ql)Tn—n(c(92)-c(91))) > a.

Taking logs and rearranging gives Th > (c(92)—c(el))/(92-91)+(10ga)/
n(92-91)=g_(92)+(10g a)/n(Gz-Ql). Since all steps are reversible, it

follows that fg /fg > a if and only if the left-hand inequality of (3.1)
2 1

is true. Similarly, fg /fg > a if and only if the right hand inequality
2 73 :

of (3.1) is true. Combining these two facts gives the desired result.[:]
From Lemma 3.1, it follows that the sequential procedure can be re-

written as follows: stop at N=n as soon as

(3.2) g_(8;,)+(log a)/n(8,-0, ) < T, < 2,(0,)-(log 0)/n(e, ,,-6.)

is true for some i and guess that 0 is this 0..

Lemma 3.,2. Let 0,,0.,0. e with 9l < 0, <8,, Then

1°272°73 2 3

(3.3) g_(0,) < g(0,) < g,(8,).

0 o
Proof. c(0,)-c(8;)= fgi g(8)d0 < (8,-0,)g(0,) since g(0)=c (0) is a

strictly increasing function of . Dividing by (92-91) and noting the defi-
nition of g_(Oz) gives the left-hand inequality. The right-hand part follows -
0
in a similar manner upon noting that c(93)—c(02)=f93 g(e)de > (93—92)g{92).[:]
2
Lemma 3.3. On the set {N=n}, there is a unique i such that (3.2) is true.
Proof. From (3.2) it follows that on the set {N=n},.f£ satisfies
: g;(Qi) < Th < g+(91) for some i. Now, since g_(ei) < g+(9i)=g_(gi+1) it is

not possible for Th to be simultaneously in more than one interval of the



form (g_(0,), £,(0,)). ]

Theorem 3.1. Pi(N < «)=1 for all i.

Proof. Let i be fixed and assume that Qi is the true value of the
parameter. Now, EiT(X)=g(9i) and VariT(X)=c"(9i) which is_finite./ Hence,
Th - g(Qi) alﬁost surely as n + «», Now, note that g_(Gi)+(log a)/n(QieGi_1)+g_(Oi)
and g, (0,)-(log 0)/n(8;,,-0,) > g,(6,) as n ~ =, Recalling that g_ (0,)<g(9;)<g, (9;)
by Lemma 3.2, choose ¢ such that 0<s<min(g¥(91)-g(9i),g(Qi)—g_(Qi)). Let n, be
such that n >, implies that g_(Qi)+(log a)/n(gihgi_l) % g(Qi)-e and
g, (0;)-(log 0)/n(8;,,-6,) > g(0,)+e. Then for m>n P, (§(8,)-e<T <g(8,)+c) <

Pi(N < n) by Lemma 3.1 and the definition of N. Since €>0 is fixed and

Th a3 g(e,), taking limits as n -« gives

1=1im Pi(g(Qi)—e E_Th E_g(Qi)+e) < lim Pi(N f_n)=P(Nv<.m).[:]

n-ro N>

For each possible parameter value Oi, there are two quantities of
interest concerning the sample size. The first, which will be designated m.,
is the minimum sample size for which a guess of Gi is possible, and the second,
which will be designated n., is the minimum sample size such that the stopping
interval (3.2) for Tﬁ includes the point g(Qi).

Thus, from.(3.2),

m;=inf{n > l:g (8,)+(log a)/n(6,-6, ;) < g (8,)-(log _.a_)'/n(GiH-Oi)}

and



ni=inf{nz}:g_(ei)+(log a)/n(Gi-Oi_l)fg(91)§g+(91)—(log q)/n(gi+l~0i)}.

For convenience, ni(mi) will be identified with any real number less than or
equal to ni(mi) and greater than ni-l(mi—l).
Lemma 3.4.

> 4(log a)/(g+(91)“g_(gi)) (8;,1785-1)

and

(3.5) n;=(log a)/min((g(8;)-g_(0;)) (0;-0; ), (g,(8;)-g(8;))(8;,,-0)).
Proof. (3.4): By definition, m, is the minimum n such that

g_(Gi)+(log u)/n(Oi-Qi_l) f_g+(91)—(log a)/n(91+1—91). Solving for n gives

the first part of (3.4). Now, let Gi+1-9.

=a and 0.-8, .=b. Then,
i-1 i i-

1

2
0,,179;=a-b and (Qi+1-91_1)/(91+1-ei)(Oi—Oi_l)=a/(ab—b ) .Note that a,b and a-b are

all positive. Considering a to be a fixed positive number and setting the
derivative of the above expression equal to zero yields the root b=a/2. A
check of the second derivative shows that the expression evaluated at this

point is minimized. Thus, a/(ab-b%) > 4/a=4/ (8., -0, ). Using this inequality
and the first part of (3.4) gives the second part.

(3.5): The condition g_(Qi)+(log u)/n(Qi-Qi_l) E_g(ei) implies that

n > (log a)/(g(8;)-g_(8,))(6,-6, ,), while g(0,) < g,(6,)-(log a)/n(0, ,-6,)
implies that n > (log a)/(g+(ei)-g(gi))(Qi+1—9i). Combining yields (3.5).[:]

Let An;k = {N=n, estimate =6, } and



0.-0 i [ o.-6. 0.)-g_(®
ik, 4 % i Ti-1 ré-( 1) g.( k+l)“‘for ik
Okr1% ko2 |ke17%-1f [ 8-par)-2 (8 |

b(j,k)=
Qk'gf 4k-l 91'91-1 g_(Qk)-g_(Gi) . ] iy
e S el | R Oy o Bl RGeS
k k-1 i=j+1 k+1 k- | ®-"k+1 -k .

Lemma 3.5 On the set A s £ /fn < exp(-(log a)b(j,k)) for all
== - n,k Qj Qk — .

n>m and j $ k.

k

. n ,n._ K 0 YT
Proof. Suppose that j > k. Now, IOg(ij/fOk)_n(c(Qk) c(Qj)+(9j Qk)Tn)
and on the set An,k’ Tn f_g_(0k+l)-(log a)/n(9k+1—9k) by (3.2). Thus, since

(3.6) 1ogcf3j/f3k) < m(e(8y)-c(0,)+(8,-8,)g_(8, )

Also, from the definition of g_(Gi), it follows that

J ] ‘
c(8,)-c(8,)= ) (c(8,)-c(8; D)= ) (0.-0. -)g (0.).
j k 1=kel i i-1 i=k+1 i "i-1 ~i
]
Also, (Gj-Qk)g_(9k+1) can be rewritten as i=]§+1(9i—9i_1)g_(9k+1). Combining
the above with (3.6) gives
n ,.n
.
-n ] (8,-6; ) (e (8,)-g_(8,)).
j=kep 11 1 i k+1

Now from (3.4), n > m implies that n > 4(log a)/(g+(9k)-g_(9k))(Gk+1—9k_1).

Thus,since all the terms in the summation of (3.7) are positive,



j
log (fy /£y ) < -(log o) [(8,-0,)/(8y ;-0 )-4(log o) ] (8;-6; 1) (g_(8,)
i 'k i=k+2

Noting that g_(9k+1)=g+(9k) gives the desired result. The case where j < k is

treated in a completely similar manner using the fact that on An k,
’ H
Tn i_g_(Qk)+(log a)/n(@k-gk_ll,[:]
Let Pj denote the probability that an incorrect estimate is given when

6=06..

Theorem 3.2. P. < a_b(j’k).

- Proof. Pj= D) IA £7 , where the differential term is omitted.

ij n>m, n,k 9j

_ n
Pi- . Z IA (fQ./fg ) fO
k¥$j n>m, n,k j 'k k

so,

P, < o 'b}(J,k) A fg
k+j n>m n,k 'k

by the previous lemma. Hence,

P. < 1 a'b(j’k)u-P) < i o 'b(j’k);[:l
i — 1 k = xI;
j j

Let

(0.-0,)/(8, .,-0.) for j > k

a(lyef I KT e
(Ok—Qj)/(Ok—Qk_l) for j <k

since a(j,k) < b(j,k), the following is evident:

Corollary. P. < o "20,K)

Now,



Example 1. 9k=ka+c where a$0 and c are arbitrary real numbers.
Without loss of generality, (Xi could be replaced by —Xi) it is assumed
that a > 0 so that Qk is an increasing function of k as hypothesized. Now,

(Qj—Ok)=(k-j)a, so a(j,k)=|j-k|. Thus,
P. < o _lj-kl = 2/(a-1).

Note that this example includes the case of normal variables with mean

uk=k and known variance 02.

Example 2. 9k=a/k+c for k > 1, where a+0 and ¢ are arbitrary real
numbers .A$ in Example 1, it can be assumed that a > 0. Now,

(05-6,)=(k-j)a/kj. - For k > j,

a(j,k)=(k-j)(k-1)/j > k-j. Thus,

(3.8) Y o 205K < ) o &)1/ (@-1y.
k>j k>j

*
Similarly, for k < j, a(j,k)=(j=k) (k+1)/j. Now, letting j = the greatest

integer less than or equal to j/2, it follows that

i i
JorGR) ( § o -Gen/2 TF -Gen/2
k<j k=1 k=j*+1

< T eMAHt e ) @ YhHlka ey
i>1 j>0
Combining with (3.8) gives

Pj < (2+a1/2+ a'l/z)/(a-l) N u‘lfzas o > o,



Although this bound is perhaps a bit crude, it is nonctheless, a uniform
bound on the error probability which goes to zero as o » . One might ex-
pect that a better bound could be obtained which would be asymptotic to

-1 -1

2 a as o + o, On the other hand, it can be shown that Pj < 20 " as

~

o + = for each j. Clearly, from (3.8), the sum of the terms for k > j is

asymptotically less than or equal to a_l. Also,

o Zva'a(j’k)= za-((j-k)(kﬂ)-j)/j
k>j ‘ k<j

v ]l oas o > e,

since there are only a finite number of terms and the exponent ((j-k) (k+1)-j)/j

equals zero for k=j-1 and is positive for k < j-1. Thus Pj < 20 -1 as o > o

for every j.

e.

Theorem 3.3. If f (X)/fO x) f_fg
i-1 i

(X)/fg (X) for all i < k and all
-1

k k

X, then
(3.9) P, < 2/(a-1) for all j.
Proof. It follows immediately from the hypothesis that

/fg for all k < i and all (X;...,X ). Now,
i-1 i~ k-1 °k n

P.= P. 0=0, ).
j kij j (guess k)

Suppose k > j. Then,

n
Pj(guess 9=Qk)= z fA fg-
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and fg /fg < f /fg , it follows that

Since f& /fg < o on A
i-1 i k-1 k

e — n,k

n>m, An,k 9k —

Pj(guess 9=9k) f_a-(k-j) y o £ - a_(kfj)(l-Pk) . u—(k—j)_

In an entirely analogous fashion, it can be shown that

Pj(guess 0=6,) < 0" G5 f£or « < j. Therefore,

P, < i a'lj'kl = 2/(a-1).D
k¥j

ExamEI? 3. The Xi are Poisson with mean Xj=j for j > 1. In this case,
9j=log(j) and the hypothesis of Theorem 3.3 is satisfied. Hence,

Pj < 2/(a-1) for all j > 1.

4. Asymptotic sample size. Recall that the quantity n, given by (3.5)

is the minimum sample size such that the stopping interval (3.2) for Tﬁ includes

the point g(@i). For every i, let ki be such that ni=ki log a.

Theorem 4.1. When Oi is the true value of the parameter 0,

(4.1) N < n,as o>,

Proof. Let i and k > ki be fixed. Let n=k log a.

P, (N >n) < P.(g_(0;) + (log oc)/n(Oi—Gl_:)l >T ) +

1

P, (g,(6;,) - (log a)/n(8;,,-0,) < T)).



11
Letting a(k)=g_(Oi)—g(Oi) + l/k(Qi—Qi_l),

b(k)=g+(gi)'g(gi)‘l/k(gi_l_l'gi), and
zn=Th—g(Oi), it follows that a(k) < 0, b(k) > 0 since k > k., and
Pi(N > n) f-Pi(zn< a(k)) + Pi(zn> b(k)).
Now, let d(k)=min(b(k),-a(k)) Then,
P,(N>mn) <P (|z | >d).
Applying the Markov inequality [2] for r=3 gives Pi(N > n) E_Eilznls/(d(k))z. Now,

iEilznl3 j;n-in|X-91|3 where the random variable X has the same distribation
as each of the iid random variables when 9=Qi. Since all moments exist,

E |X-0,|% < ©. Letting K(k)=(d(k))‘35.1|x-ei13 gives P, (N>n) < K(k)n %=K(k) (k log a)°
It follows that Pi(N >k loga) >0 as a >« for k fixed.i

Since k was arbitrary, subject only to k > ki’ it follows that N < ki log a
as o > o . []
The following lemma will be used to determine the behavior of EiN as a > o,
1
Lemma 4.1. For any i and k > k > ki’ there exists a positive constant B,
1
which may depend on k and i but not on k or o, such that
1 t _2
(4.2) Pi(N >k loga) < B(k loga) “.

Proof. This lemma follows immediately from the proof of the previous

1 . t
theorem by letting B=K(k) and noting that K(k ) < K(k) whenever k > k. [7
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Theorem 4.2. For every i,

(4.3) EiN s ni=ki log o as a » «,

Proof. Given the previous lemma, the proof of this theorem is identical

with that given for the theorem of .section 3.5 in [3] and hence will be omitted.

The following lemma follows by a slight modification of Lemma 2 of

section 3.6 in [3]:

Lemma 4.2. For each a > 1, let N by any stopping rule such that

Pi(N < w)=1 for all i, and let there by a family of associated terminal

decision rules with the property P, < 2/o as a + « for all i.

Then,

4.9 log o < min(Eilog(fg /fg
, i i

), E.log(fN /fN )) as a > = for every i.
i 6.”70. \
+1 i i-1 .

Theorem 4.3. ‘For each a > 1 let (N,d) be any stopping'rule and terminal
decision rule satisfying the hypothesis of Lemma 4.2 and letb(N*,d*) be the
corresponding rules proposed in section 3. Then, | |
(4.5) EiN* < EiN as o » o for all i.

Proof. From the previous lemma and the equality'

N , N
E;N=(E, log (£, /£, ))/ (E;log (£, /£4 1), valid for any jii, it follows that
i 75 i 75 :

EiN < (log a)/mln(Eilog(fg_/fg. ),Eilog(fg'/fe- )).
/ i Ti+l i Ti-1

Now, E;log(fy /g  )=(8;,1%0;) (g,(0;)-2(6;)) and E log(f, /f, )=
1 i+l i i-1

(gi_gi—l)(g(gi)'g-(gi))“ Using the above and the fact that ni—1 log o =
min((Oi+1-Qi)(g+(91)-g(91)),(91—91_1)(g(9i)-g_(01)), it follows that

*
EiN N n, as a > for all i. Therefore, since EiN < by Theorem 4.2,

*
E;N < E:Nas o>« for all i. [J
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