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Abstract

The queue witth an infinite number of servers with a Poisson arrival
process and with semi-Markovian service times is considered. The queue
length process' and the type of the first customer to Join the queue after
t are studied jqintly and we obtain the transient and asymptotic results
which are of matrix extensions of the corresponding results of the M/G/m

queue. In particular, we prove that the limiting distribution of the queue

length process is Poisson.
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I. Introduction

The infinite server queue with semi-Markovian service times has poten-
tial applicability in modelling & system with a sufficiently large nﬁmber
of servers in‘which service times depend on the types of customers them=-
selves,

Moreover, as the natural generalization to "the matrix case" of the
M/G/® queue, this model is also of independent theoretical interest.

We consider a queuveing model in which the nth customer Cn is of type
Jn-l and arfives at a service counter in the instant

T(0O=T Tp<Ty<eea<T <...)e t =04is taken as an arrival instant.
n 1 2 3 n

There are M customer types. There are infinitely servers, which is egu-
ivalent to saying that each customer starts being sefved as soon as he arrives.,
For n>1, let tn = Tn+l - Tn be the interarrival time between Cn and
Cn+l’ It is assumed that tl, ta,...,tn,... are independent, identically

distributed positive random variables with common distribution:

¥
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1 if x>0
(1) P {x,n <x} = FxZ0

and that the sequence {tn} is independent of the service process {Sn,Jn},
where Sn is the service time of Cn. Our basic assumption for the service

process is that the pairs {(Sn,Jn), n > 0} form a semi-Markov sequence:

(2) P{s, < x, I jl(sk, J., k < n-2); S 1> Tyq = il

= P{s, <x, I, = 3|9 _,= i}

= Q; (x)

for n = 1,2’...0;'1,3 = 1,2,0000, Mjy M < &3 and So = 0,

We furthef asswwe that the underlying Markov chain .{Jn’ n > 0} is
irreducible,. .FOr the standard definitions and properties of Markov renewal
and semi-Markov processes, we refer to Pyke [k, 5]. Suppose that at time
t = 0, there are k (k > 1) initial customers. Denoting by E(t) the
queue length &t time t + O, In particular, E(0) = k. The customer
arriving at t'=_0 is therefore counted among the k.

Let us order the k initial customers according to their arrivals and
let J(0) ©be the'type of the first customer among k; J(t) is the type of
the first custqmef to join the queue after time t (t > 0).

The traﬁsient and asymptotic behavior of the joint process (E(t),J(t))

is discussed in the subsequent sections,



2. The transient behavior of the queuelength process &(t).

For brevity, set:
(3) Py (ks m, t) = P{E(t) = m, J(t) = j|8(0) = k, 3(0) = i} (m 3 0),

for i, j=1,2,..., M. It is more convenient to introduce the generating
function:
: -
(4) Byy (5 2,6) =) By(ks mt) 2 |z g | .
m=0

In matrix notation with '13'(1:; Z,t) = (;ij(k; Z,t)), Q(x) = (Qid(x)),
etc., by using the method of collective marks (Runnenberg [6]). We have
the following theorem about the transient behavior of the joint process
(8(6), 3(8)).
Theorem 1, ‘

The matrix generating function in (L) is given b&
~ k t
(5) Blssz,t)fa(e)a (o))" e {4 | (1-a00)-2(e-anlad) .

where I is the M x M indentity matrix and P is the transition matrix of

the Markov chain {Jn n > 0}, that is,

P, = P{Jn = j]Jn_l =i} 3 P = (Pij), |



Broof.

First of all, assume that 0 < Z < 1. Let each customer be independently
marked with probability 1 - Z. Then the generating function (4) means the
probability that there are no marked customers present at time + and the
type of the first customer to join the queue after time t is J, given -
that £(0) =k and J(0) =

Suppose tha.f 2 > O customers arrive in the time interval (O t], by
the Markov property of Poisson input, the 2 earrival points are independ~
ently uniformly distributed in the interval (0 t].

Let us denote the successive types of k initial customers by
i, il, 12””’ik-l and the successive types of the 4 new arrivals by

ik’ ik+l"""ik+,e-l‘ Then we get:

M

' . M M M M
(5') Pij(k;Z,t) =z z 2 .z_ }: z Q4 (t) + Z(Pyy 1 Qnit)):l .
i=

il=l :12=l ik l_ 1 k _ql 2=0

e P vz, -q Y1l e ) o (8,
[Qlllz i Z(Plllz Ql112 )] [Qlk-l 1k ' Z(Plk 1k Qlk-l lk]
‘ [} t a
At _(At)* [, o (t=uy) (t-uy)
© 'z ‘{L Xo K [Qiklk+l (R ity Qik Tl -
t d (t-u,) (t=u,)
I u2[Ql u2+Z(P L = Q .uz)].........
w k1 k2 e h ) +1 e+
t  du (t-u,) (t=u,)
. -—& . ) z o .L M
J‘u L : gl i Z(P Tkt gmrd Q11:+;z,...1:J )]}

-1



In matrix notation, we can write that

t

u

B(is 2,8) = [a(t) + 2(Pa(t))]F J ey jt jt veer |
: 0 u, o1

£=0

[Q(t-u 42(P-a(6=1,))] .+ [Q(t-wy) + Z(P-q(6=u,))] . ...
.[Q(t-ul) + Z(P-Q(t-uz))] dul du, ; ... du, .

We now ‘prorve by induction that

t .t %
(6) Xo jul ces ju EQ(t-u1)+z(P-Q(t-u1))] .....[Q(t-uz)+Z(P-Q(t-uz))]
B §

| duz duz_lbl....dul
1 t : .
-1, { jo [a(x) + 2(P-a(x))] &x | (4 > 0)

First, it is clear that the equality holds for ¢ = 0,1 (the left hand side
is defined as I for g = 0). Next, assume that the equality is true for
4 = n-l., Let us fix the order of 0 < uy < U, < .. < LNRY next, we vary

the position of vun from the last to the first, then we have:

t ot t )
J I csve ‘[ F(t“.u.l) F(t-%)oaoF(t-un)dun d%-la-oodul =
0 b S Yn-1

. juh'l (teu,) F(b-w,) )
= o P(t= Pt~ cos o (t= d d eooad
O’Xul e e vy Uy F(t-u, “p L] Y



% t  Pne
J j I F(t-ul) F(t-uz) F(t-un) du du ....dwy

R T

B
It j‘ F(t-ul) F(t-uz) cee F(t-un) du dy, _, ... du,
° ] Y2 N ' :
1

" .
.. X | ‘YO F(t-ul) F(t-uz)... F(t-un) du du ... du,

where
(6") © P(t=x) = Qt=x) +2(P-q(t-x)).
Therefore,
t ot b
j j X F(t~u;) F(t-wy) oooo F(t=u ) au du . ... du,
° Ty Y1
t .t t t |
=% Xo Ll Xun-e jo F(t=w;) ... F(tew, ,) F(t-u ) du du ,...dw
= 'r]-;[ jz Xu-l X:n-z Ft=w).... F(t'un-;l) dun_l....dul:\ . X:‘) F(x) dx

= % . Tﬁm{ Xz 'F(x)dx}n-l jz F(x)dx

-1-1%'-{ J‘Z F(x)dx}n .

H

Thus (6) follows. Therefor (5') becomes:



~ ﬁ 2 t I
P (k5 2,%) = [at) + 2(e-(s))] ) e L { | [a(x)+2(P-Q(x)) Jax}
=0 Co

. |

= [Q(6)+2(P-a(£))1" ™ exp{a jo [Q(x)+2(P-a(x))ax}
t

= [Q(t) + 2(P-a(£))1* exp-A ]| [3-a00)-2(p-a()ex]

which implies (5) for the case 0 < Z < 1. By the principle of analytic
continuation, (5) is valid for |Z| < 1l. Thus we have derived the desired

result.

3. The asymptotic behavior of the queuelength process g(t).

In this section, we study the limiting behavior of the Joint process

(g(t), J(t)), that is, we want to find the 1limit 1im P(k; Z,t), particularly,
t-tee
we find that the limiting distribution of &(t) is Poisson.

For simplicity, we set:
(1) ¥(z38) = emp {2 [Z [1-Q(x)-2(P-(x))] ax |
So (5) can be ﬁiiften as:
(8) Bk 2,8) = [als) + 2(p-a(6))]E F(z; +).

Let the matrix of the stationary probabilities (or the Cesaro limit)

corresponding to the stochastic matrix P be



P P2 ®sase P

1 M
*
(9) p=( P P ?M:> ;
Pl P2 * G o0 PM
that is,
*
(10) P P=P =P, (See[2], p. 3h)

Assume that the mean service time of each type is finite, that is,

Cu Mo
1) wy=) wy =) | oxa 4y 5(x) < =,
j=1 j=1 ©

We now state the main theorem and prove it after the following three
lemmas,
Theorem 2,

The 1imit 1im '1;(1:; Z,t) = '1;(2) exists and is independent of the initial
conditions on ?E?O), J(0)) and we have:

M
~ -(1-Z) A . P. u.
(12) P(Z) = e 1=1 271X

Where B and {p,i} are given by (10) and (11) respectively.
- Lemma 1, | |

Let the eigen values of the stochastic matrix P be 1, 12, )‘3’.“"">‘M’
then the eigen valﬁe 1 is simple and I}\il <1 for i=2,3,...M. There-

fore, all eigen values of P-I are o, Pos p3,....,pM such that 0 is a

simple eigen value and Re - <0 for i=2,3,...,M. Where p; = hi-l.



Proof,
See Debreu, G. and Herstein, I. N. [3].

Let 11, 12, cessl P be the sequence of non-negative integers such

that:
(13) 1=)\.; l =l- =X. =00-=x Py ; h. ° : Seee
i,> "2 i,+1 1l+2 i+, i, +i,+
= XJ. +1 +l3 ; o0 009 ’ l +1 + +i +l=.Q..=Xi +i + +i =XM *
l 2 °°° g1 1L T2
Lemms 2,

Let P be similar to its Jordan canonical form:

(14) P=UJU

where 10 '
22 0

and

(h)
A €
R 0

h i (h=2,3,...,2)
lh. -e(b) »

() Mo “iety
is a (ih x ih) matrix with the property thats
(B)

(15) i 1+l = 0 or l (i = 1,2,.'0,%-15 h = 2,3,...,£)¢

Then we have, for any complex number x,



(16) | o P = I)x_ % -1
where

(17) J ={ " Y,

and ps X ' O
X 63(2) e “n o
* pih pihx
(18) I, = e xeg)e‘
T - ) xe‘gh) .
. g 3,
o p: X

(h = 2,3,...,4).

vhere {p. } are eigen values of P - I. Moreover,
plh -

(19) 1im e(FI)X_ Pyl

10

IU~,

Xbes:
where

210

. * o :

(20) I = < O-gg) is the matrix whose components are zeros except
the lSt row, lst‘i"collmm component whose value is 1.
Proof':

First note that:



(21) P -I=UW0-1)Ut and
(22) e(P"I)x;z = (-1
- n=0
=) Lu@-ntutal,
n=0 n!

One can ea.sily prove by induction that:
"0 0
(23) (3 -1)" = ( 0 Jén) O

O .°..Jin)

(n>1)

o |

(1) o™ - -' Py nef3) P;:l . (2=2,3,...
‘ ‘. * . (h) n-1
he. . .
O e TRy
' . oR
Py
and
(25) o (7 -1°=1.

Therefore, (22), (23), (2k) and (25) imply (16), (17) and (18). Further-
more, noting that Re p; <O for i =2,3,...,M, we obtain (19) from (16),
(17) and (18). Thus lemma 2 is proved. |

5 2)



Lemma 3.
We have:
* ¥ -
(26) | P =UuTl UT,

Where U and I are given by (14) and (20) respectively.
Proof:

(14) implies that the first column of U is a right eigen vector of
the eigen value 1 of the stochastic matrix P', whence all components
ull’ uzl,...,uM 1 vof the first column of U mast be eqta.l,- so, without
loss of generality, we may assume that Uy =Upy =e oo o=y l:i‘. On the other
hand, the first row of U T is a left eigem: vector correé,po_:nding to the

eigen value 1 of P, from (10) and U™t 1

U=1I then the first row of U”
must be (Pl,Pz,.;.,PM). Combining the above two properties just proved,

we obtain (26) which completes the proof of lemms 3.

Proof of theorem 2:

Upon differehtiating F(Z3t) in (7) with respect to Z, we find that:
(27) F'(Z3t) = Lim "A—%-[ F(z + AZ; t) - F(2Z; t)]
AZ~0
1 & |
-2m g { e {0 [ 01 - a00 - ale-a(m)ex +

*A Az IZ [P-q(x)Jax} - exp {-r jz [T - Q(x)-2(P-a(x))]ax}}

= 1im _L { eA.+AZB- eA}
AZ~0 AZ

’

where



R
(8) A== [o [T - a(x) - 2(P-q(x))ax ;

%
(29) B =1 IO [P-q(x))dx.

Applying Perturbation theory (Beu;ma.n (1], p. 171) We can write that:
(30) F'(Z3t) = lim Z\'Z" et + AZI H£l-s) 5 AS5o 0((AZ) )
AZ~0

) eA} |

1
= I eA(l's) B lS ds.
0

, .
Setting Z = 1 and noting that A = A(P-I)t and B =j (P-Q(x))dx,
Y0

then we obtain from (8) and (30) the asymptotic expected queuelength:

(31) lim Pf(k;l,t) = B'(k3l)
v

lim (E(E(t), J(t) = j]€(0)=k,5(0)=i))
e

Pk lim Il el(P-I)t(l-S)l I. [P—Q(x)]dx eh(P-I)tS ds
t 0 0 .
Now lemmas 2 and 3 imply that:

(32) 1im M (P-DIE(1-8)_ % =1 | ¥ _ 4p MEP-Its

e . ]

Therefore, we have from (31) and (10) that:
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(33) Pl =P anpP =P Aupt

Pl P2 o0 PM ull “12 ...um Pl P2 es e P

-.-’;\<P1 2.0 By) (P21 b2z """’2M)<.1 P2 "»'_?M)

oooP - wme e o oa -

Uy B 0 Py B a o Py

Pl P2 s00e

]
>
VR

P,
R R Ry
1% Py Py ”M?2 wee tiyPy

]
>
VAR
>~
: 0
£
[N
—/
g

Next, we want to determine the second moment by the same technique.

Upon differentiating (30) with respect to 2z, we find that:

(34) F"(z;fcljﬁ@l = { Fr(zmazse) - F'(25t)}

= lim‘ 2o { jl{ o(1-8)A#z(1-5)B p oSA*AZSB _
Az+0 ’ .

e(,l_-s)A B SA } ds }
) i—-lg Z% { Iz{ I e(1-2)A 4 I(l, e(l-S)A(:lw)(l-s)B e1-8)Av o
+ O(Az)z)]. B. [esz+Az “.z eSA(l-v)sBeSAv dv +-0((~Az)2) ]

e(l-s)A ]; esA} ds } | |
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i I1{ fl e.(l-s)A(l-v)(l-s) B e(l-s)Av dv . B . &SA

G b g

Setting z =1 and letting t -+w and applying lemmas 2 and 3, we

obtain that:

(35) P"(k31) = lim P"(k3l,t)
t=tes

= lim F"(1;3t)
T

n

1 .1* ¥ *
ij {j P(l-s)ApP dv . A\p . P +
0-%0
‘* l*' *
+ P xu.j. P sAp?P dv}ds
0

kK _*® * *
PPP ApP ApbP

* ¥*
P(\p P )2

From (33), we note that:

(36) P'hp.P ( ZP i)P*.
i=1

So (35) implies that

3m  Fag) —( z P, p.) P,

i=1



16

In the same manner, by differentiating (34) with respect to z and

then setting z = 1, it is not difficult to establish the following:

(38 e rF® (1) =0 P (0>1) 5 ena
T _
) . % n
(39) lim P (k;1,t) =P P (A p P)
t“ .
M
= (xz Pip.i)n B (n>1).
i=1

Moreover, from (5) and lemmas 2,3, we have:

~(0 ~
(40) lim P( ) (k;1,t) = 1im P (k31,t)
e tree

=P 1lim

e

k- e),\(l"-I )t

]
-]
)

From (39) and (40), we obtain the limiting behav:.or of the joint process

(g(t), J(t)) in terms of the generating function:

(k1) 11m ? (k,z t) = 11m Z -l . ;(n)(k;l,t)
n-O
:'Z [ i P, u- (Z-l)]
"= M
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which is the stated result (12). Thus theorem 2 is proi'red.

From theorem 2, we immediately have the following corollaries:

Corolla.rx 1.

We have:

(%)  lim P{E(t)=m,J(t)=3|E(0)=k,T(0)=1}

hvae ]

e ?‘:1 Py (1 g;iph " )m

m! Pj

for m= 0,1 2,‘...; 3=1, 2,...,M. So the limiting distribution of the

gueuelength process g(t) is Poisson:

o Y P,
(43) %m P{':(t)-m} Z= th ( 121 i> (m>0)

Corollary 2.
The asymptotic expected queuelength is given by:

(M)  um E(E(t)) = Z P, by
e -1
and the asymptotic variance of queuelength is given by:

(k5) h %}: Var, E(t) = xz P by
: i=1
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