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Abstract. With reference to observations of supernovae in galaxies, a
locally optimal test for the hypothesis of homogeneity of the ébserva—
tional units with respect to occurrence of supernovae (treated as a very
rare event) is obtained for the case where the data are available only
for those galaxies where at least one supernova is observed. It is shown
that the loss in the asymptotic efficiency of the test due to lack of re-
porting of galaxies with no supernovae is very heavy and in fact is infi-

nite for the case of very rare events.

1. Introduction. This paper may be regarded as a sequel to an earlier

paper by Buhler at e12, where the authors consider the notion of very rare
events, arising in experimental situations such as the observation of super-
novae in galaxies. The specific problem that was dealt with there was to
construct a locally optimal test of the hypothesis of homogeneity of obser-
vational units with respect to occurrence of very rare events. Let N denote
the number of units of observations for each of which the number of occurrences
of an event E is observed during a fixed period of observation. Let M denote
the total number of events E observed. An event was defined® as 'rare' if for
a large N, the quotient M/N is of the order of unity. A 'very rare' event was

defined to be the one where this
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quotient is smaller in order than unity. More specificaily
M2/N instead was assumed to be of the order of unity. In
particular, the problem was considered there in reference

to occurrence of supernovae in galaxies and mathematically

it can be described as follows:

Let Uij denote the jth observational unit for the
ith observatory with j=1,2,---,Ni and i=1,2;... 5 .,
Each of the units Uij R j=l,2,---,Ni is observed for the
same period ti of time. The number of events observed
in Uij over time t, is treated as a random variable
and is denoted by Mij . It is assumed that all these

random variables are mutually independent, with “ij dis-

tributed as a Poisson variable with expectation Aij i

where xij is the expected number of events E in Uij

per unit time., The hypothesis HO of homogencity of the

observational units with respect to the very rare event
E , 1is then equivalent to the statement that all the xij
have the same unspecified value A . The nature of the

hetrogeneity of A's used as hypothesis alternative to

B

o » Was exhibited by assuming that each observational

unit takes a particular value of a random variable A as
the value corresponding to its xij . Thus the hypothesis

HO of homogeneity would correspond to the case where

A=\ , a constant, with prohability one. With a slight



e 2
modification of what was assumed before we assume here

b]

that

1/2

A= N, exp[X ¢ 1, (1)

where KO >0 , £ >0 are two unspecified parameters; X is
treated as a random variable taking values in an interval
[c,d] where ¢ and d are two arbitrary but fixed finite

constants. Let F(x) be the distribution function of X .

About F(x) all we shall assume that
[%dF(x) = [x°dF(x) = 0 ; [x°dF(x) = [dF(x) =1 . (2

Thus, with F(x) otherwise arbitrary, the random variable
uij observed during controlled time ti in a randomly
selected jth galaxy at the ith observatory would be

distributed as a mixture of Poisson variables and its dis-

tribution may be described by

m, .
(hgey) ™ 1/2
Pr(“ij=mij) = mijl [ exp{-xotiexp[x £ ] +
1/ (3)
+ mijx d }dF(x),
j=1,2,"',Ni ; i=1,2,**°,s . While Ay is a nuisance para-

meter, the hypothesis of homogeneity by virtue of (1) is
described by HO: € = 0 . Thus given (3), the problem
reduces to developing a test of HO: € = 0 against the

alternative le g >0 . Earlier2 a locally optimal test was

constructed for this problem. Also, an asymptotic Poisson



approximation to the distribution of the test statistic
was realized for large N under the assumptions that
Ni/N-a v; as N—o with 0 < v < 1, and that

-1/2

A, = O(N ) 5 the latter assumption being due to the very

rarity of the events in question.

We wish to point out here that it is a common practice
among the astronomers that while looking for occurrences of
superncvae, they tend to report only those cases where they
succeed in observing at least one supernova; the galaxies
showing no supernova are left unreported. This being the
case, our random variables uij are observed as truncated
only to the positive integer values, so that one needs to con-
struct tests appropriate for the situation, given that uij > 1.

Thus, subject to this we have modified (3) as given by

Pr(uij= m, 5 | iy 2 D)

1/2 1/2
£ ]I + mij X g }dF(X> (LL)

Y1dF (%) }

m, ,
. 1 J . _
. (koti) [ exp{ Aoty exp[x
N 172

mijl (L -7 exp[-?\oti exp(x £

for mij = 1,2,¢¢¢ ; j=1,2,"',n:.L ; i=1,2,+++,s . Here we have
used letter n, instead of Ni to differentiate between the
cbservations truncated as in (#) and the nontruncated ones as

in (3). Let n=3x°

i=1" Essentially for each i

, 10, is
i

the random variable representing the number of those galaxies



observed with at least one supernova out of a total of Ni
galaxies. As such, it follows from the law of large numbers
that

P /

ng /Ny == 1 - [ expl- nt; explx ¢ PaR() L (5)

as Ni-¢ o , We shall need this result later.

In section 2, we apply the theory of optimal C(a)-tests

developed by Neyman3

,» and as generalized later by Bartoo and
Puril, for constructing a locally optimal test of the hypothesis
Hy based on the observations subject to (1), treating Ay as

a fixed nuisance parameter. Then, keeping with the spirit of
very rare events, the distribution of the relevant test statistic
is approximated for large n to a Poisson distribution with AO

tending to zero in an appropriate manner as n — « .

A similar optimal C(a)-test of Hy based on the non-
truncated observations subject to (3), is already given elsewherel.
In section 3, performances of the two tests, one based on
truncated data subject to (4) and the other based on complete
data subject to (3), are compared. It is shown that the loss in
asymptotic efficiency of the test, because of being unable to

use the part of data of galaxies with no supernova, is very

heavy and in fact is infinite for the case of very rare events.

2. An Optimal C(a)-test based on truncated Data. 1In this

section, even though for a given Ni . is a random variable,
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nevertheless we shall consider n, as nonrandom and fixed.
This is reasonable in view of (5) since we shall concentrate

for each i .

ourselves to the asymptotic case with N, — « ,
i

The theory for constructing an optimal test of the hypothesis

H: € =0, based on the observations uij which are

independently but not identically distributed, is dealt with
by Bartoo and Puril. Following their notation, the construction
of the test involves first with finding the partial derivatives

and o, , of the log-likelihood for the observation
ij &

P, .
i3(¢e) (Ng)

uij . Here both the derivatives are evaluated at HO: E =0 .

Next, one obtains a regression constant @ such that the

variance of
s ni
=357 .3, ., L.l -G o, , DN , (6

obtained under HO » 1s minimized. Using this constant, let

*

In the present case, using (4) we have

2
1 (Rotq)
(®ij(€) = albgyng5-1) - Texp(-ngty) 0 T (2 7o) %%

-

(8)




The desired constant ¢ 1is given by

G = AO(L+A)/2 , (9)
where
S 3 >
A== , (10)
iilnip‘oti'xoti(l‘L7‘o':i)exl’('7‘oti)]/[1 - exp (-7t

Also, the variance of (6) under H

o is given by

1 > 2 - !
< i % 1] .s z(xoti) -(Aoti) [2+(moti) ]exp(—koti) |
1=175=1V87 85 = ¥ 2 a1y z
} (1—exp(—hoti))
s (At )3exp(—k t.) 2
s 01 01
g 2 :
i=1 (l—exp(—ROti)) { (11)
- S .
; _ {Aoti—AOti(1+%Oti)exp(—%oti) i
i=1 * (l—exp(-koti))2 b

Following the standard lines (see an earlier paper1 for details),

in view of the condition (2) satisfied by F , it can be easily

*
demonstrated that the sequence {fij] , as defined in (7), is

a Cramer sequence, Finally the test criterion for the optimal

C(a)-test for the hypothesis HO , 1s to reject HO if

*
V2 (%O) > v(a) , where v(a) satisfies ®(v(a)) = l-a , @ being

the cumulative standard normal distribution function, and where



and where

n n,
* s i ¥ s i * 1/2
= by .. . 1

*
The test statistic Z is asymptotically n(0,1) under

HO as n-— o

n./n— 6. with 0 <6§. <1 . 2
i i i

and ni-» o for each i such that

o in (12) may be replaced by

some suitable root n consistent estimator. The asymptotic

power of the above test for alternatives closely to HO: £ =0,

is given by

1 - @(v(a)-g[Z? 1/2

1 £ 13
l=1Zj=1Var ij] )y . (13)

In the above, the asymptotic normality approximation for
the test criterion (6) or equivalently (12) holds only if KO
1s fixed and is not too small. Unfortunately, in the case of
very rare events this is not the case. As such, the normal
distributioq approximation is very pwor even for large n, and
needs a further approximation when AO is assumed to be

extremely small. At this point, we need to add few words

concerning the order of values for A, that may be considered

0
. . . . . 2 .
appropriate for this approximation. Earlier® an optimal test
was constructed based on complete data including even those
galaxies which show no supernova. There, the approximation for
the distribution of the test statistic, owing to the very rarety

of the event, was achieved by assumign that AO = 6N1/2 . ‘In



the present case, it is easily seen that as N — o and

, for

N, — » such that N./N— v, with 0 < v. < 1
i i i i

i=1,2,+-+,s8 , the law of large number yields approximately

nitT:NVi(l - f exp[—kotieXP(X € 1/2)]dF(x)} (1%)
and hence

n/fo;Zi=1vi[1 - f exp[-7\oti exp(x £ 1/2)]dF(x)] . (15)

Here o implies that the ratio of the two sides tends to one- in

probability as N— o , The fact that AO = O(N—l/2
A, = o(n’l) . Un-

) and (15),

immediately yield that in terms of n

? 0
fortunately, by taking xo = O(n_l) = A/n for some A >0 , the
n, .
distribution of Z? .5 f.. tends to be degenerate as n, — «
i=1 j=171j i
and n - «» such that ni/n-» 6; . This is not unexpected how-

.ever, for the simple reason that if we are going to base our
decision only on the data truncated at zero, then in order to
make any headway in our problem of testing the homogeneity of
occurrence of supernovae, the events, although are very rare,

- -1
better not be considered as rare as to make A_ = O(n 1) = O(N "/QL

0

remembering that this order of AO was considered very rare
. 2 .

earlier only for the nontruncated data. Thus, in order that

we obtain a reasonable approximation for the asymptotic dis-

tribution of our test statistic (6), in the sense that it be

nondegenerate and that the variance (11) tend to a nonzero but a
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finite quantity as n — « » an appropriate order of A turne

0
out to be AO = O(n—l/g) . Following this analysis in terms
of N, it can be easily seen that this amounts to taking
Ay = O(N_1/3) instead of Ay = O(N_l/z) as was the case
before2 » Our next step then is to approximate the distributicn
* -
of (6) or equivalently of 33€;, with A, = in 12 ina
A >0 . Rewriting (6) we have
v =T (W -4 (W + 3B (16)
where
1.s ™
Tl = 5 201%5m (g 57D (03572, (172)
- s 1A0t1
So(w) = zi=1(A/2+Aoti—l){ui, " Toewp( Aoti)}’ (17b)
2
t.
8 oS nlkot L (KO ) } 179
n i=1{l-exp (- Koti) i 2[l-exp( A Y O]
p’j_. = ? ”‘ij s (17d)

and A is as defined in (10). We need now the following lemms,

the proof of which, being elementaryv, is omitted.

Lemma. Subject to (4), and with AO = An~1/2 = A(Sil/gni_ll2 s
for every i=1,2,°** s, as n, = o,
pp/mg S 1, (18)
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and

1/2 .
-1/2 ke ! P45 % [Elexp(exel’?)]
By (ug, - l-exp(-A.t )) g 2 175, " i
07i Elexp (X¢ )]
(19)
the last limit being zero under the hypothesis HO: £ =0 .
We may recall here that by assumption X takes values in a
finite interval [c,d] with probability one, so that it does
have a moment generating function.
Now it can be shown that as n, =,
2
26, t.
_ L1/ -1/2 i1 -1/2 _
Al2 + Aoty - 1 =08""mn, [t; - BZéiti] + o (n; ) , (29
and that
2
. . A s 2 ,
1im Bn = - Zi=1éiti . (271

T=>co

By virtue of (19) and (20), it then follows that as n— =

3

Zéitig
8;8: (- 3555 (29
1 ii

) 1/2
?g P . A2/2 . (E[eXP(Qxé )] - 1)-
nl) E[ exp (X&' %) i

i Mwn

which is zero when ¢ = 0 ., Thus rejection of HO for large
values of ZZf:j is equivalent asymptotically to its rejection
for large values of the statistic Tn(%) . As such the optimal
C(a)-test for very rare events in the present case reduces to

the rule of rejecting HO whenever

*

T >v (23)

*
where v is a constant determined from the asymptotic
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distribution of Tn(%) for large n , such that under HO R
the probability of Tn(%) > v* is acceptable as the level of
significance. Note that this test remains an optimal C(a)-
test no matter what the mixing distribution F of (4) is,
except that it satisfied condition (2). What remains to be
done now is to find the limiting distribution of Tn(%) as
n-— o , This is achieved in the following theorem.

n-1/2 _ A5:%/2!1 -1/2

Theorem. Subject to (4) and A = A 5 ,

0

ever be the mixing distribution F satisfying (2) and that it

what-

be concentrated on an arbitrary finite interval [c,d] , the

limiting distribution of Tn(“) as n— o is Poigson with
K)o as

expectation

) = E[exp(3xg1/2)1 . %ﬁ

E[exp(Xel/e)]

e

s
(€ 26.t.71 . (24)

i

The proof of this theorem is based on taking the limit of the

characteristic function of Tn(u) in a straightforward manner.
~s

*

Thmas under HO , the constant v 1is obtained by finding the
maximum k satisfying Pr(Tn(u) > k) < a

, where the dis-

tribution of Tn(%) is taken to be Poisson with expectation

2
(0) = (A /6)(2i=1éitig) , and a is the prefixed level of

significance. Here since &, ni/n ,

>

7(0) = = 2J_.nt.®
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Also, Ay should be replaced by a suitable root n consistent

estimator such as

NS st (. ,-1)1/[22 21t ] (26)
T =151 M5 i=175=1"15"11 °

Using a table of Poisson distribution one can easily find out
the constant v* . For asymptotic power calculations again one
can proceed as in B&hler et al2 . For this one needs to
calculate the power for different values of the constant
E[exp(3X€l/2)]/E[exp(Xgl/Q)] in (24) for ¢ > O, while using

the Poisson approximation for the distribution of Tn(u) as
8%}

suggested by the above theorem,

3. Performance Comparison of the Two tests. Let us now consider

the situation2 where all the obsérvations including the ones with
no supernova are reported. Let Tij denote for this case the
number of supernovae reported in the jth galaxy observed for a
period of time ti at the ith observatory with j=1,2,"‘,Ni ;
i=1,2,°++,8 . Let Ni/N = v; where N =2N, . Here Tij
follows the distribution as given in (3) and they are assumed to
be mutually independent. For this case, the optimal C(a)-test
for the hypothesis of homogeneity HO: € = 0 has been given

1 . s . .
elsewhere™. This involves calculation of an expression analogous

to (6) given by

N
~ 1l _s i s 1 s 2

/ = = ™ _ 1
V(D =2 212175115 (T - NP iaa Ty + 3 A% - (27)
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where T, =3, .T., . Variance of (27) under H. 1is given
i j=1"1ij 0
by
" Rog s >
Var ¥ = — Z N, t, . (28)
2 j=1 1 1

The optimal C(a)-test is the rule of rejecting HO whenever

/2 |

2(ng) = V(@ /var N2 @) (29)

where wv(a) 1is same as defined before. Here the asymptotic
distribution of Z(AO) is n(0,1) for large N . For fixed A\,
the asymptotic local efficiency of an optimal C(a)-test based
on complete data as against the one based on truncated data, is
given by the ratio of the variance (28) to the variance (11),
with n, in (11) replaced by Ni[l-exp(—%oti)] , Wwhich is
approximately valid for large N . This efficiency is consider-
ably large in general. In fact in the present case of very rare

1/3

events with A, = O(N *'7) , this efficiency tends to « . This
can be easily verified by noticing that the variance (11), in
view of the theorem of section 2, tends under H, to w(0) ,
while the variance (28) tends to « , Thus the practice of

not reporting of galaxies with no supcrnova results in a eon<
siderable loss in efficiency of the appropriate test used for

detecting any hetrogeneity in the occurrence of supernovae over

various galaxies.

Finally, we close with the remark that for the nontruncated

. 2 . . . e
case treated earlier , the approximation of the test statistic
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resulted into a Poisson distribution, where we had taken

~-1/2

essentially A, = O(N ) . By contrast, under the present

o)

conditions on AO , the corresponding test statistic such as

z of (29) is asymptotically n(0,1) . This is because of the

fact that we have taken Ay = O(N_I/B) here, which implies that
the events in question, although are very rare, but are not as

rare as were treated earlierg. If, on the other hand, in reality
the rarety is really to the extent that KO = O(N_1/2) s then,

as mentioned earlier, the corresponding optimal C(a)-test
statistic based on the truncated data and given by (6), degenerates

in the limit, making thereby the complete reporting even more

essential,
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