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Abstract

The queue with an infinite,n;ﬁber of‘servers with a semi-Markovian
arrival process and with negative exponential service times is studied. The
queuelength process and the type of the last customer to Join the queue before
time t are studied Jointly, both in continuous and in discrete time.

Asymptotic results are also obtained.
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1. Introduction.

The infinite server queue with semi-Markovian arrivals has potential
applicability in modelling a system with many servers in which there are signi-
ficant veriations in the interarrivel times between successive customers. In
many cases of practical interest such variations in the interarrival times can
be expressed in terms of a semi-Markov process with a sufficiently large number
of states.

Furthermore as the natural generalization to ”tﬁe matrix case" of the
GI|M|°° queue, thié model is also of independent theoretical interest.

We considér.a queueing model in which the nth customer Cn is of type Jn—l
and arrives at a service counter in the instant Tn (0 = Tl < T2 < .. < Tn < L.
t = O is taken as an arrival instant. There are M customer types. There are
infinitely servers, which is equivalent to saying that each customer starts being
served as soon as‘he arrives. S, is the service time of Cn' It is assumed
that Sl’ 82""’Sn"" are independent, identically distributed positive random

variables with common distribution:

(1) H(x) =

*
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and that the sequence {S } is independent of the arrival process {t . Jn},

where t =T - T 1is the interarrival time between C and C Our basic

n+l n +1°

assumption for the arrival process is that the pairs { (t s Jn), n>01 form

a semi-Markov sequence:

(2) P{tn < x, Jn =J , (tk, Jk, k < n-2); tn-l’ Jn—l =i}
= P{tn < x, Jn = J , Jn-l =3 }
= Qij(x)

for n =1, 2,... 3 1, §J =1, 250003M 3 M < o,

We further assume that the uhderlying Markov chain {J > L > 0} is irreducible
For the standard definitions and properties of Markov renewal and semi-Markov
processes, we refer to Pyke [1, 2]. Suppose that at time t = 0, there are
i-1 (io > 1) initial customers. Denoting by £(t) the queue length at time t-0,
we let En = g(Tnmo) be the queuelength immediately preceding the arrival of the

customer Cn. In particular, El = io—l. The customer arriving at t = 0 is there-
fore not counted among the io—l.
The transient and asymptotic behavior of the processes g, and E(t) is dis-

cussed in the subsequent sections.

2. The transient behavior of the discrete-time queuelength process &

It is clear from the assumptions that the sequence (E ’ n -1° B2 1) is a
homogeneous blvarlate Markov chain witnh stationary transition probabilities:
(3) P(k,£; j,h) = P { St Sk I =2 | £ =3, J - =h}

/ My (x) dQ ,(x) (h, £=1, 2,...,45 3, k = 0, 1, 2,...)
0

where
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~kux
(I o (1-e ) s for § +1 >k

LRI MOE

=0, elsewhere
The derivation of these expressions is completely analogous to that glven .
in Takacs [3] p. 16kL.

We now introduce the binomial moments:
' (n 1) n _ ...
(5) (r) =B { (") 1 g =y 1 9=t

for i, § =1, 2,...,M; n >2;r >0, I, is the indicator function of the event

A. Evidently, for r 21, n > 1, we have:

£
(6) B () =g (%

ig 7t r =y I 95=11
n

M
= E{( n*l =) | & =k, 3 _=h, 5 =i}

hgl kzo {Jn"J } n n-1 - 0

P olg =k, 3 L =nh| Jo = 1}
M
k+1 ' .

) th kZO Ty (T1) € : VPl =K, Ty =B |35 =1)

M o |
- k k _ __— ~
) hzl kz th(ru) [ (r)'+ (r~l) 1P o fn = ks Jp—l h | Jo = )

E .
Z Qy(rw) (E[ (™)1 amy 1 9g=11+

*
i

{Jn_l

En
*ELD) I{Jn_l = h}

M
(n-1) (
oL ) U3 ™) sy g

where:
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(1) () =] e ag, () (res 2 0) .

Further, from the definition of ng)(r), we find that

(n)

' (n)(ny = - =i} =
(8) Bjy (o) -‘P {a =3 Jo=11= Pij

the n-step transition probability of the Markov chain'{Jn}-with:

Piy=F {a =3 |3 . =1i1}= q;,(0+) .

J

n-1

In matrix notation with P = (Pij)’ B(n)(r) = ( ng)(r)),.etc.; wve hﬁve"

(9 ™) = 3V () + 3D (2 1)] q(rw) 5 for ¢ > 1
and:
(10) p(n) () = Pf .

Moreover, £, = i_ implies that:

1~ 1o

(1) N %2 e i,
B3 (r) =E{ (%) I{J1=J} | Jo=11=1(") qu(ru) .
and therefore:

i
(11) : B(l)(r) = (ro) a(ru), for r > 0.

The matrices B(n)(r) can be uniquely determined by formulae (9), (10), (11),

but it is first convenient to introduce the matrix generating functions:

)} B(n)(r) w' for r >0 and |w| < 1.
n=1

.¢r(w)

and we set:

¢ (w)-E 0.

-1

Then (9), (10) and (11) yield:



i _
$.00) [T -walrw) 1= a0+ () Twatw) 20,

which implies by successive substitutions that:

r . r

: i -1
2) 400 = T (2 1 [wala)] [1-waql)], forr>o.
'J=O k=J
where I is M x M identity matrix.
Let now:
pln)oy o = = = i
(13) Piy (k) =P {g =k, Jp=d 1 Jg=11.

then we note that:

(n) - el ey ky _(n)
Biy (7)) =E L (7) I{Jn=d} | Tp=i}= Zr () Piy (k) ,

and hence that:

[~ -]

(n) _ r-k ,r, _(n) L
By (k) = rzk (1) () Big (r) 3

or in matrix notation, that:

-]

(14) Rt @) 3™ ()
r=k
whence
D B (O LI AR e N (v <1) .
n=1l - " r=k k™ Tr .

Consequently, ve have proved the following theorem about the transient

).

behavior of the joint process (En, J "

Théorem 1

Suppose that £, = ialis fixed, then the matrix of probabilities

n . .
P( )(k) = (P§3)(k)) 1S uniquely determined by the matrix generating function:



G LR TR L s
n=1 r=k :

vhere ¢r(w) and { Pig)(k) } were given in formulae (12) ana (13) respectively.

3. The asymptotic behavior of the queuelength in discrete time.

The asymptotic behavigr of the Markov chain (Jn-l’ En) follows readily
from the generalvtheory of irreducible Markov chains.

If the Markov chain (Jn) is aperiodic so is (Jn—l’ En) and if every state
of (Jn) has period d, the same holds for the bivariate chain.

In either case, it is known that the Abel limits:

(17) lim (1-w) Z P(n)(k) wn, k >0
w>]l- n=1

exist and are equal to the Cesaro limits:

N

(18) 1 3y Ry, k>0
N+ & p=]

Moreover in the aperiodic case these limits also equal:

(19) 1im (™) (), k>0
n-»>w

the stationary probability matrices for the bivariate chain. In the periodic

case, the classical modification must be made in the latter limit [3].

Theorem 2.

The limit matrices:

-]

(20) P(k) = 1im (1-w) J p(®)(y, W', k>0
Wl n=1

are given by:
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(21) P(k) =
o

(-1 () B(r), k>0

Il B~1

r=k

where tne matrices B(r) are the binomial moment matrices of P(k), k > G =zxnd
are themselves given by:

r -1

P' I ql) [T-q)] , r21
k=1

(22) B(r)

*
B(O) =P ,

where P* is the matrix whose entries are the stationary pfobabilities correspond-
ing to the stoéhastic matrix P.

The matrix P has constant columns and so do the matrices P(k), k > O.
This expresses the fact that the limit probabilities of the bivariate Markov

chain do not depend on the initial queuelength i_. and on the initial customer

0]
type JO-
Proof: By theorem 1, we have:
(23) P(k) = lim (1-w) J (-1)7% (5)
: wrl- r=k '
r . r
10 -1
) (,;7) T walke) [T~-waq(k)] 3}
J=0 k=J

where:

i -1
(24)  B(r) = 1im (1-w) § (%) M wq(ku) [T -walkw)] , x> 1.
wrl- =0 9" k=3
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The interchange of the limit and the sumation on r is justified by the Lebesgue
dominated convergence theorem.

B(r) may be further simplified. Except for the first term, all other terms
in the sum on J vanish in the 1imit as w -+ 1 -,

It follows that:

-1 T -
(25)  B(r) =P 1im (1-w) [T - v Pl 1 q(ku) [T - q(ky)]
Wl k=1
but:
-1 %
(26) lim (1-w) [I -wp] =7p ,
wrl- »
and:
(27) PP =p" .
SO:
r
% . -1
B(r) = 1 g(kp) [I - a(kp)], r>1.
=]
and clearly:
53(0) = P“.

Clearly B(r) and hence P(k), r > 0, k 2 0 have constant columns. Thus the

theorem is proved.

4, The transient behavior in continuoys time,

We also define the process J(t), where for every t > 0, J(t) is the type of the
last customer to arrive in (0, t] ang J(0) = 1. We sha1l determine the

probabilities PiJ(k; t) defined by:



L | 9

(28) PLE(t) =k, g(t) =3 | Jo=1i} =P  (k;t),

for k > 0, i, 3 = 1,...,M,
The process { g(t), J(t); t > 0 } will be studied in relation to the
imbedded Markov renewal sequence { Jn’ £n+l’ Tn+l -_Tn } on the state space

{1,....M}x¢{ 0, 1,... } x¢{ [0, =) } .

Let us define for £ iaffixed, the transforms:

T T _ .
(29) Ay (rs8) =E (e ) IfJn =gp lag=11,
Re s > 0, as well as:
(30) b (r3 5,) = 1 Agg) (r5 8) W, |u < 1.

and the matrices:

(31) A(n)(i-; g) = (Aig)(r; 8)), ¢(r; s,w) = (¢iJ(i; 8,w))

Lemma 1

For Re s > 0, ,wl SlorRes >0, ,w, < 1 we have

r i r -1
(32) #lrs sw) = T (%) 1 wale s k) [1 -y o(e s kI, r>o

3=0 97 ke
Proof:
Under the condition'gn =3, tn = x, En+l has a binomial distribution with

parameters § + 1 ang e-ux. Applying the layw of total probability and after an

easy calculation we obtain:



(n) : =8 n+l n+l
P{ &
" : y - tI'l En .
= h§1 U (s+ru) { E‘[e (.) I{Jn-1=h} l Jo = i]
Yeple o (tn | 1)
+E [e I ar | I =1
e {Jn_l—h} 0

or in matrix notation:

Z Y5 (s + ru) [A(n -1) (r; s) + Agg'l) (r-1;8) 1,

10

(384%™ (5 0) = ™) (25 ) 4 A (0] ale o r),

for n > 2. Also:

i
(35) A(l) (r; s) =‘(r0) a(s + ru).

Substituting in the definition of ¢(r; s,w), we obtain:

i

(36) ¢(r; s,w) - w (ro) alstru) = w [ ¢(r; s,w) + $(r-1; s,w)] q(s+rp),

for r > 0.
Successive substitution leads to:

r . r
1

(37) ¢(r; s,w) = J (JO) I w q(s+kn) [I - w q(s+ky)
. J=0 k=) .

which is the stated formula (32).

=1



11

Let now Mgg)(t) be the expected number of visits to the state (J,h) in the
imbedded semi-Markov process in (O,t], given that the initial state was (i,i=) -

then:

<ty b =hJ =3 =11,

),y _ v
(38) My, (t) =) P{ T

If we take Laplace—Stieltjes transforms ug?)(s), defined by:

v ® st
(39) uig) (s) = [O e 4 Mgs) (t), Be s > 0.
then:
(’40) ; (h) (h) ( ) _ ; E { -S Tn+l (En-’-l) I . l J _ i} = ¢ (r_ < 1\
b r DIJ s) = L e r {Jn=J} o 1j s Syd/.

(h) (t) is known in view

i3

So that the transform (40) of the renewal functions M
of formula (32).

We now return to the probabilities PiJ(k; t) and prove the following thecrem.

Theorem 3.

Let £(0) = iaifixed, thén the Laplace transform of Pij(k; t) is given by:

-1

® -gt r-k r
(41) IO e Py, (k;t)at = rzk (1) () By,(rs 8)
for Re s > 0, where tye eij(s) are given by:
M
(82) B,,(rs 8) = 2= ( (0) [1 - 1 ag (o] ¢

M

(1- Zl U (s+ry)] [¢iJ(r; s,1) + ¢ ,(r-15 s,1)] }

J

and the functions ¢iJ(r; s,1) are given by (32).
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Proof:

It is known that if BiJ(k; t) is the binomial moment:

| .y = £(t) sy .
er () Py (r5 2),
then conversely:
] _ r-k ,r .
(bb) Pyl t) = rzk (1077 () By, (x5 ¢,
or, upon taking transforms:
(45) [w = P,,(k; t) at = ; (-1)"7k (%) | (r; s)
o W rek K Byt el
where:
© -5t
(46) BiJ (r; s) = fo e BiJ(r; t) dt, Re s > 0

Now, using the theorem of total expectation [3] we can write:

M
O —rut
(47) Bjy (rst) =(")e - 1 Qg (t) 1+
h—
f R t  -ru(t-u) M ‘ .
I ™. 1- ] aq (t-u)]dmfh Y,
h'=r-1 0 h=1 “ 1}
and upon taking transforms, we obtain:
M
_ 1
(48) By (r5 8) = s+ru ) - hzl q;), (s*ry)]

oo

+ 1 - Z 4y, (s+r)] 12" () 3
=r-1
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By appealing to formula (40) and after some obvious manipulations we obtain the

étated result.

S. The asymptotic behavior of the continuous time. process.
We shall assume throughout this section that the Markov renewal process
with transition matrix Q(x) = (Qij (x)) is positive recurrent or equivalently

that the mean row sums
‘ M

) fdeJ(x)
=1 0

are finite.

We now assume that the semi-Mgrkov sequence of interarrival times and
customer types is non-lattice i.e. we exclude the caéé'where all the distributions
Q1 (+) are defined on a common lattice.

- We may then apply the key renewal theorem for Markov renewal processes to

the expressions in formula (47) and we obtain:

(49) 1lim B (r,t) = B, (r) =
i)
t+o
® M
®© -rut '
h'+l
( )7——y. f e [1- ] q,(t)] at ,
h'=r-1 h h=l B
L}
-where u§h ) is the mean recurrence time of the state (3, B') in the imbedded

semi-Markov process.

Formula (49) further leads to:

[ -3

. '+l 1
(50) BiJ(%)v : »h'Zr_l . ) Wh—y hzl th(ru)]

for r > 1 and:



e

(s1) B, (0) = G Y S dq < )1,
i) . h'Zr-l r “J(h ) hzl jO x 3 X

However, by formula (40) and the ordinary renewal theorem, we have:

O M s g 0
(52) hzr () [uy ™1 —s-lr(l)?:shzr() i3 (s)

- lim s ¢ (r; s,1). ([3], p. 234).
- 50+

The latter _limits are identified in the following theorem.

Theorem 4.

The limit of the matrix s ¢(r; s,1) with entries s ¢iJ

(r; s,1) is given by:

(53) lim s ¢ (r; s,1) =
50+
d : -1
lim s I gq(s+kp) [I - q (s+kp)]
s+0+ =0
r 1 _
=M I q(ku) [I - q(ku)], r>1
k=1
and lim s ¢(0; s,1) = M, where:
50+
(5h4) M= lims [I - q(s)],
s>+
is the matrix whose entries MiJ = El; where 9J is the mean recurrence time of the
. ; _

state J in the Markov renewal process with transition matrix Q(x).
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Proof: .

Using formula (32) to express ¢(r; s l) we note that the 11m1ts of all
terms but the one corresponding to J=0 vanlsh _ih;s leads to the equality
of the first and the second limits.

The identification of the limit and~the,talidity of (54) follow from .
well-known results for finite state Markov renewal processes [2].

We now obtain from (50) and (51) or alternately by taking the limits:

(55) : lim s B 13 (r; s)
: : s+0+

in formula (42), that:
(56) BiJ (r) =
r-1

M q(ku)[ I - q(ku)].
k=1

a1
Z % (ru)l { M

-1

[T-a@w] 3, r21

It is easy to check that, since M has constant columns, Bij(r) does not depend’

on i.

Alio:
(57) Bij(o) = lim s 8, (0; s) =
: s+0+
Z %y
lim - h‘i lim s ¢;, (05 5,1)

s+0+ . s+0+

= [ Z f xaQ, (x)].
Jh

J.

We can now identify the limits of the probabilities PiJ (k; t) as t tends

to infinity.
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Theorem 4
If the Markov renewal process with matrix Q(-)‘is nonlattice and pgsitive .
recurrent, then the limits

lim P, (k; t) k >0

to0 J
exist and Are.given by:
(58) Um P, (ks t) = § (-1)"® (F) B, (r), k>o0
toe 1 r=k ko1 o — 

where the Bij(r) are given by (56) and (57). These limits do not depend on the

initial conditions.

Proof:
_ ' ® =gt
Evaluation of lims [ e P., (k3 t) dt, using formula (h41).
s+0+ 0 1 |
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