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SUMMARY

A sequential method is investigated for estimating the
mean of a Poisson distribution when the mean is assumed

to be a honnega.tive integer.

1, INTRODUCTION

One observes a sequence of random variables X;5 X5 «o. which are
identically and independently distributed Poisscn variables with mean 1,

i.e. B (X = B x2 =Xy o0y X =x) = ;ﬂl et j/:r.- for x; =0,1,... .

It is assumed that ) is an wnknown nomnegative integer which one would
like to estimate with an arbitrarily small uniform (for all ) bound on
the probabilities of error. |

The problem of estimating restricted perameters was first considered

by Hammersley (1950) fram a fixed sample size point of view. The present



work is based on the work of Robbins (1970) in which he proposbes a genéra.l
sequential a.pproa.ch aad solves the problem of estimating a. norm.l im'.eger
mean. In contrast to the normal case, there is no fixed sa.mple size pro-
cedure which will insure an a.rbitra.rily small uniform bound on the error

probabilities for the Poisson case,

2. Fixed Sample Size Approach
2.1. Fixed Sample Size Rules.

Note that EX;, =)\ and var (xi) = A. Also, for a sgﬁple of size n,
-'fn = (Xl + oee. xn)/n' is unbiased and sufficient for )., a.nd for the un’-'
restricted parameter space {0, »), it is a maximum like]ihood estmtor.
In add:.tlon, for la.rge n, the quantity (xn 1)/./17" ig approximately
normal with mean zero and variance one. ’

A class of rea.scna.ble procedures can be characterized“'a;é fo].'l.ds: “For
1=0,1, ..., choose i_ such that (i-1)<4_<i and sét: i, = (i41)_.
Then, given a sa.mple of size h, estimate that \ =i if. i < x <i,. _A"
typicel rule in this class is that with i, =1 + %, The-_maaum likelihdod
estimates for this problem are discussed by Henmersley (1950). In this ca.se, ‘.b
i, = 1/log ((1#1)/1) for 1>0 and i, =0 for 1=0. Also, i =1 +3

as i —~e,

2.2. Fixed Sample Size Error Probabilities

Let Pi = the probability of error wvhem i is the true value of the
parameter A. NO,W.,_



P =P (X <i)+ P, (X >1,).

Using the results of Blackwell and Hodges (1959) for large devistion probe
abilities and assuming that 1, = 1 +} for all i, it follows that

log .Pi* o~ n((1+3) 1og ((1+3)/1) -%) asn-e
In addition, log ((1 +3)/1) =~ 1/(21 +3) as 1-m, Hence

(1) log P, ~ -n/(81+1) as i,n-w=,

Clearly, for a preassigned value of n, it is not possible t& insure a8 small
uniform bound on the' error probabilities. This is seen to be true for any
fixed sample size rule by considering the standard test “f'bhe hypothesis
A=1 vs A=1+1 for large i.

Hence, with the a.:l.n of devising a decision procedure tha.t w:l.u insure
a small uniform bound m the error probabi]ities , ome is 1ed to ca:s:l.der

sequential procedu.res .

3. Sequemtial Approach
3.1, A Sequential Procedure

For A >0, let.
: N R X
f{ =5 (X, ... 3 X,’,'_)v = ;):1 e 2 J/xd:: (x',J =0, 1, e0.) ~
s
by .. X!,

Where sn=xl+ooo+&o



For A =0 Ilet fn'clim f: » Thus, fg equals 1or'o'ac-é<':ording as Sn
° A=0 ; ' _

Ll S
is zero or positive. Now, for i and J positive, ri“/fdn - en(d 3)(1/;)) R
and 1‘in/1”0n equals fin or e according as S is zero or positive,

_ s :
This is consistent with the above if it is agreed that (:I./J") B = 1 vhen

J=0 ama s =0,

Lemma. Let J and n be fixed positive imtegers. Then for O < k< J,

(2) (f'kl_lllfkn) < (fjfl/fjn) .
Proof. k< J dimplies ((k-1)/k) < ((j=1)/3). Hence, l/f ) =e ((k-l)/k) “5

S
eB((3-1)/3) B = J l/f By gince S, 18 nomnegative. Q.E .D.

Now, let

. oMo R n,, n
n_ { min (fi_/fiﬂ, £y /fi_l) for 1 > 0

fon/' fln for i = O.

Consider the fo].'l.oviivl.g__ rule:

Fix o« > 1. »ét&p'-at N=n and guess A =i as s&énés Ln>d for.
some i=0 1,...-.: First notice that there is no anbiguity in the guess
since Li >a for some i implies that LJ <1l for all J + i.



The form of the rule can be conaiderubly simplified a.s follows-

Suppose i > O. Then, L:I. >a implies that £ n(:1/(:].-!-1))“2

n
/1+1
@or X <1, -4, (log @)/n, vhere X =S /n and i = 1/1og ((141)/1).
Similarly, for i >1, Li > a implies }% >i 44 (log a)/n, vhere i_ =

(1-1), = 1/10g (1/(1-1)). Also, £ et = fl e™ or = according as

S, 1s zero or positive. Thus, I.on >a implies n > log o and S, =0,
n ‘ n n .
and L,” > a implies f,°/f5 >a or simply S > 0.

Thus, the rule ‘c_a.n be rewritten as follows:
(3) Stopat N=n as soon as one of the following is true:

(a) for some :I. >0,

i_+4 (1oga)/n < X.‘n < i, -1, (loga)/n, a.ndguessthat x-i
(b) n>logo and 5 =0, guess A = O,

Note that as n- e, i1 (log a)/n=~ 0 and i,(log @)/n - O and -in converges

slmost surely to ), an integer. Thus, if i_<1<i, , the procedure will
terminate with prqbabinty one, This is seen to be true from the inequa.l:.ty
(n+:l.,)"l < log ((n+l)/n) < n-l. It is interesting to note t.ha.t a8 i=e,

1,41 +4,

3.2 Minim Sample Size

Recall that a guess of A =0 :an]ies n > log a. A.‘l.so, note that .
for Large o and. small n, i_+i_ (log a)/n>i -1, (1og a)/n. But, _



i_+1i_ (log @)/n decreases to i_ and i - i + (log @)/n _ihcmses to

i, as n-=, Thus, for each i, there is a minimm sample size, call it

m;, which is the smallest sample size vhich will admit a guess of \ = i.

For conciseness, m, Wwill be identified with any mumber 1e‘_sj.§ tha.n .. xad
greater than m, - i. To find m, set i_+ i (log a)/n_"'s'?j'.'_’_ -1, (iog g)/n.

Solving for n gives

{loga ; for:!.-Ol

(&) (108 @) (108 ((142)/(1-2)))/106 (4 2/(12 -1)) for 1> 1.

Note thet n>m, does not iwply that i_+4_(log e)/n<i <1 , = i, (log a)/n.
It will be necessary to use the minimm valme of n, call it n

i
this expression is valid. Clearly, ng=loga. For 1i>1,i +4i_(log a)/n =

» such tha.t

i implies n = (log @)/(i log (i/(i=1))-1), and for iv'=“_l;» the inequality
i_+1_ (loga)/n < i is valid for all n > 1. Similarly, for i21,
i= i -1, (log oz)/n inpl'l.es n = (log a)/(1~i log ((i+1)/i)) lgnce,

= (log a)/min(i 1og(i/(i-1))-1, 1-i log ((i-l-l)/i)) for 1>1 and nl B
(108 @)/(1-log 2). o

vInt‘egra.ting the 'l‘a.yldr expansion for x' about the. point (x+1)/2
gives log x = 2(z + z3/3 + ves), Vhere 2z = (x-l)/(x+1), x > 0.. It follows
that for x> 1, log x> 2(x-1)/(x+1) (T™is inequality. canld have been , |
obtained in a more sta.tist:l.ca.l manner by an application of Jensen s mequa.uty)
Setting x = (1+1)/(1-1) yields 1log ((1+1)/(1-1)) > 2/1, which upon re-
arrangement gives 1-1 log ((1+1)/1) < i log (1/(1-1))-1. Hence, B



(log @)/(1-i log ((i+1)/1)) fori>1 .
(5) B *1 log « for i = O

Note that as 1 = '-'l'.,
(6) B n, ~ (2i41) loga,

3.3 Bounds on Error Probabilities

Let Pi = the probability of error wvhen )\ = i, and lé’c_ A =

{§=n, guess \ = j}. Then,

Forbrevity the differential term d u  Wwill be omitted. Note Pg= O,

Now, let o
S n ' ) ‘-  '?‘ n
a=I T { £ amd by= T T j o
Thus, P, =a, + bi' : ﬁcur,
- n n n, ,.n,,n
8 321 n?z_:m:J | I J (£,7) VoY .0 PER A A
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Recall that by (2), (£, 11 £0) > (2, 1/ £ n) for m<k, or eqniva.lently,

tf / 1)< (f / Also, on An,;], (f / +1)\> @, S0

max ((£,5/0,%),000,(2%78,2)) = (2,,7/2,") <o

Therefore, ((rj’:l/fan)...(fi“/rif_‘l))5 o~ (1-3), Thus,

< Iz | £ B o~(i=3)
- n>m I J

Since

it | follows that

‘a < iwl -(i-,")

: or
i~ ;)-0

@ R :(fl_" )/(a=1) < 1/(ae1) for aw i,



In an entirely ana.;ogous fashion, it can be shown that
(8) N b < 1/(a-1).

Thus, adding (7) and (8) gives

(9) P, < (2-a i)/(«:,-1) < 2/(@-1) for all i.

Hence, by using a sequential procedure, one can obtain an:arbitra.ri]y small _

uniform bound on the error probabilities for all i.

3.h. Asymptotic Sample Size

‘As in section 3.2, vhen considering sample sizes, no distinction wiJ.'l.
be made between n, an integer, and any real nwmber less than n but grea.ter
than n - 1, Reca]_'l.tha.t S = 0 for every n when 1-0 so'Nsloga'
and E N = log a.-»_

Now, for i > i, let k, = 1/(1-1 log ((i+1)/1)), a.nd 1et k, =1,

i

']:hen, n, = k log o. Recall that n, is the smallest sample size such that
i +i_ (1oga)/n<i<i -i (loga)/n. . ‘

let 1>1 and .1:>1:i be fixed. Iet n =k log a. Thus, n>n

P,(N>n) < Pi(i_. + i (loga)/n>X)

+ Pi(i+ -1, (log a)/n < 'fn)

=P, (a _.>"zn), +PR(b<z),
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vhere e =i +i /k-d, b=i -i/k-i,and z =X-i. Now, since k> k»

it follows that 8 <0 and b >0, Also, b < -a by the same arguement

used to find ni

letter probability can be bounded by the Markov inequa.hty wi.f.h r=3( see,

in section 3.2. Therefore, P, (N >n) <P (-[z > b) me‘

for example Loeve (1963)) This gives (|z |> 1) < E|i |3/b Now,

E|z, |3 <n" E{x-i]3 where X is a Polsson rendom variable with mean i,

Let K =b™ E x-1|3. Clearly, K is a finite positive censta.nt for i

and k fixed since all moments exist for the Poisson distribution. Hence,
- ' -2 -2

(10) Py (N>n) <Xn™ = K(k log @)™,

By letting @ ~« in the above expression, it is seen f.hat P ('N >n) =0

as @ - ®, Since k was arbitrary subject only to the cmdition k> ki’ it

.fo]_'l.ows that N is a.symptotica.lly less than or equa.l to ni as a = e,
i.e. |
(11) " N<n =k loga as -« forall i.

3.5 Asymptotic Expected Sample Size
This section deals with the study of the behavior oi' Eil! as a - e,

Lemma, Let 1 >~1' -end k' >k > ki - Then there eﬁ.sts & positive mumber
K which may depend m i and k but not on k' or a, such that

(12) © Py(n> X' log a) < K(x' log @)2,
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Proof, let n =%k loga and n' = k' log ¢. In the previous section it

was shown that

P, (N>n') <K' (n')2 vhere k' = (i, - 4 /k' - 1) E|x'~i|3. Since

k' > k, it is clear that K > K'. Hence, Pi(l\l >n') _<_’K(n'-)-2. R.E.D.
Theorem. For i 2> O,

=k, log o as a = e,

(13) EN < m =k

h R

Proof. The case where i = O has already been considered. Let i >1 and

k >ki be ﬁxed_. Set n =k log @. For ceavenience it will be assumed that

k logo is an integer; Now,
EEN = ;jPi(naj)

<n+ % ;jPi(N=;])
j>n

=n + (n+l) Pi (N>n) + T P:..L('Nf> ).
>n .

By the previous lemma,

(p+1) P, (">n) <K (x log o + 1) .(i: log @)~2,
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Clearly, as o - », this term goes to zero. Applying the p're’v:lous lexmma
to each term of the last summation above gives
-2

'z:- P(N>;1)<Kz: .
J>n >k log o

This series is cleérly convergent. Thus, as o - =, this term also approaches
zero. Hence, EiN < n=klogo as a=-e, Since k w&s';arbitrary, v
subject only to the' condition that k >k, it follows that Ei N <n =

ki loga as o~ - Q.E.D.

Note that k, = (1 = 4 log ((1+1)/1))™' =21 +1 as i==. Terefore,
(1) ﬁEiN < (2i+1)loga as i,a-w=,

3.6 Asymptotic Optimality

The following two lemmas will be useful in proving the min result of

this section. Iet F  be the o- algebra generated by_ (Xl, ceiy xn).

Lemma .1, Lethea.nystoppingrulev:.th P(N<.)=1 a.ndletAbe,_
any set such that A N {Nem} isin F_ fer all n. If_Pi(A)»>-o and
Piy (8) >0, then |

(15) 1( los (£ vl £,1)14) > log (2, (A)/Piﬂ(A))

Zrgot. Ei(lOg.,. (fiN/fiE].”A) B - Ei(log (figl/fi]‘g)‘A)j e

2 = log Ey((£, /%) |a)



by Jensen's inequality. ILet A, = {N=n} N A, Then,

s™

Ei(( +]_/f N)‘A) (P (A))-l jAn-(fizl/fin)j‘fif:(

TSRS

= P, ,,(8)/P;(a)

Substituting this expression into the above inequality gives the desired
result. Q.E.D. o

lemma 2. For any o > 1, let N be any stopping rule s'iit’:h'tha.t - _P (N < 5)-’-1
for all i ' |
and let there be an a.ssocia.ted terminal decision rule such tha.'c such that

P, (error) < 2/(a-l) for all 1. Then, for every i,
(16) E, (log (f N/f ¥ )) > loga as a~ =
1 1/ faal) T 08 y
Proof. Iet C‘ = { guess i}. 'Then P, (error) = P, (C c) Wlthou:b loss of

generality, a.ssume tha.t P (C ) >0 for all i and Je Any dec:.sion rale

can be modified on a set of arbitrarily small proba.b:.]ity to meet this cmdition.'
Now, let 1 be fixed. .Clearly,

| By log (f_l /2341) = 2,(c;) B, (108 (£,%/ i+l)|c )

+ P, (c,°)E, (1og (fiN/fiI_il) ./"cic). ._



Applying the previous lemma, first with A = C:l

yields

(1) ®; log (£,%/£%) > P, (c,) 108 (2, (¢,)/Py,, (cy))

+ By (c,°) 1og (B, (cic)/PiJrl"'(cic’)).
Now, Py (c,°) £2/(@-1), so P, (¢;) > (@-3)/(a-1)

._... c
and Py, (C;) < By, (Cy55) € 2/(e-1). Thus,

1k

and then with A = ¢,%

7y (64) 108 (8, (/R (6)) 2 ((@-3)/(a-1) 10g ((-3)/2)

~log o a8 o= e,

Also,
P, (c,%) 1c>_g'(Pi (€5)/By 4 (6,9)) > B, (c,) 1_oé_-1>i' (c;°)

-0 as a—=o

since Pi(cic) < 2/»-(0-1). Now, combining the above with->_(bi7)_ gives the

desired result. _QI.FE."D.
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Theorem. For any o > 1, let (N*; d*) be the stopping rule and terminal
decision function described in section 3.1, and let (N, d) be any stopping
rule and associated terminal decision fumetion such that Ei N<e and

vPi (error) < 2/(a-1) for all i, Then, for every i, |

(18) EiN* < EN as a=e,

Proof. Since the Poisson variaebles xl, x2 s sce A&re 1dentical]y and in-
dependently distributed and E1N < for all i, the following well-knawn
equality is va.lid‘for all i: E; log (f / i+l) = (E N) (E (f (x)/ i+l(x_))).

Recall that f (X)/f +1(x) =e (1/(1+1))X for 1> 1. So,
B log (£,(0/8;,,(X)) = B(1 + X log (1/(1+)))

=1 - i log ((i+1)/1)

This is also valid for i = 0. Hence,
E N= ki E:I. log (f / i+l) for a.ll :i.., v

Now, by Lemma 2, logot < E; log (f /i+1 so E1N>ki log @, But by

the theorem of section 3.5, E:I. N < k:l. log @ for a.ll ias a= e, There-

fore EiN < EiN forall 1 as o=~ o, Q.E.D.



4, Comparison of Fixed and Sequential Plans -

The sequential procedure is obv:lousﬁly for superior to any fixed sample
size plan since it 1s only with a sequential plan that one ca.n obtain a mmall
uniform bound on the error probabllities for the whole pere;neter Space.

Let i be fixed and suppose that one could ‘somehow (perhaps by a two-
stage sampling procedure) pick a sample size which would ‘giire a rea.senable
bound on the error probability for the true parameter, i.e. by (1), pick bn
such that log P: = - n/(8i+l). Suppose further that i '1's iarge enough
for this expression to ‘va.lidly approximate the fixed semple Eize error pro-
bability and for (14) to be approximately valid as & = o, biwiously, a
knowledge of i 1is being assumed, but this fact will temperarily-be negleeted.
Now let log (2/(&-';))5 -n/(8i+l). Then, log (a-1) = n‘/(81+1) + log 2.

Recall that by (13) and (14), E, N < k, logo as a - o

i ~ 1 o _ ,
letter expression is asymptotic to (2i+l) log @ as i = =, Hence, a8 a - w,

and that this

E;, N will be asymptotically less than or equal to n/h ‘l‘hu.s s even if it
were possible to slect a sultable n for a fixed sa.mple size procedure,

the sequential procedure requires on the average only a.s ma.ny observations
to atta.:.n the same bound on the error proba.biuty as this error probability

goes to zero for la.rge i,

5. Monte Carlo Results

To investigate the properties of the procedure described in 3.1 for
various values of 'd_ -and A, a Fortran program for an ‘J‘:BM‘-’360-90 was written,

Sequences of Polsson variasbles with a given mean were generated, the stopping
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and terminal decision rules were applied, and the results were tabulated.
For each value of &« and 1\, 1000 sequences were generatéd.

For convenience, an arbitrary upper bound of 1000 was ‘seﬁ on the length
of the sequences, _At__ the point of truncation, the decisiqn'bhmction was
taken to be the mad.mm likelihood estimate of \. For the data presentéd
in Table I, this trlmcb.tion point was reached for only one ’.sequence.

For each value of the pair (a, ).); (¢ = 3, 5, 21, 1;1, 81; A =1, 3,
5, 10, 20) the following quantities are tebulated:

(a) mean = i = the true value of ) |

(b) P (err) = average number of incorrect decisions;

(¢) TP(err) = theoretical bound on the error proba.b:.lity 2/ (a=1)3

(d) AveN = the a.verage sample sizeg | |

(e) Tav = N = k, log o = theoretical asymptotic bound for the expected
sample size; a.nd I_ | ’_

(f) Fix - N = the sample gize which would be required to distinguish the

| hypothesis A =1 from A =441 or i-1 with an error probebility
less than or equal to (2 - & i)/(a-l) (When A= i the sequential

procedure has error proba.bility less than or equal to this qua.ntity by (9).). |

The normal a.pprox.mation was used to calculate Fix - N, °

These results point out that in meny cases, the true error probabihty
may be somewhat 1ess than the theoretical bound. This is due nostly to the
inequalities introduced in the derivation of (9). It i;s »no_t surpri_sing that
the calculated average sample size is greater then Ta.v-r} siﬁce the latter |
 quantity is an a.symptotic bound. The average semple si‘ze's'”obta.inea.. dé, |
however, compare fa.vorably with the correspending fixed sa.mple size values

for the modera.te va.lues of o wused,



Table I.

Results of Monte Carlo Experiment

Mean Plerr - IP(err Av-N Tav=-N. _F_:i_x_-_n_
1 0.2k 1.0 k11 3.58 1
3 0.305 1.0 11.28 8;_'oé 1
5 0.293 1.0 17.87 12.43 1
10 0.318 1.0 34,34 23.ki2 1
20 034833 L0 63.82 45.38 . 1
1 0.192 0.5 5.83 5.2k 3
3 0.192 0.5 16,92 .75 6
5 - 0.173 0.5 26.63 18-.21_' R 10
10 0.219 0.5 51.36 34.31 19
20 0.215 0.5 99.08 66.h7f_ 37
1 0.035 0.1 o 1i.ok 9..§2 11
3 0.042 0.1 31.62 22,23 33
5 0,049 0.l 51.05 bl 55 :
10 0.055 o 100.66 6h.oL 109
20 o051 o 191.76 125.75 oy
1 0.029 0405 13.4k '12'.10- B 16
3 0.023 0,05 37.15 27.12 R
5 0.2k . 0.05 61.64 k2,01 77
10 0.025 0.05 121.83 79,17 15
20 0.018 0.05 235.85. 153.38 308
1 0.007 - 0,025 16.05 1h,.'32 21
3 0.606 0,025 42,68 3209 - 6L
5 0.013 04025 T1.25 ’h9..j"7'1' 101"
10 0.013 . 0.025 140,10 93.69 202
20" 0.010 0.025 270.85 181.50 403

*One sequence 1n.thié group was truncated at 1000.
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