Asymptotic Expansions for the Distribution of the

. -1
Characteristic Roots of f.l §2

*
When Population Roots Are Not All Distinct

by
Hung C. Ii and K.C.S., Pillsi

Southern Colorado State College and Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 231
July 1970

* . '
This iesearch was supported by the National Science Foundation, Grant No.
GP"ll 730



Asymptotic Expansions for the Distribution of the .

-1
Characteristic Roots of E:I. §2

*
When Population Roots Are Not All Distinct

by
Hung C. ILi and K.C.S., Pillai

Southern Colorado State College and Purdue University

1. Introduction and Summary. The asymptotic expansions of the first two
1

terms for the distribetion of the characteristic (ch.) roots of f.l E‘é
have been obtained by the authors (4] when all population roots are distinct,
both in the real and complex cases, where El and .?2 are independent
sample covariance matrices of degrees n, and n, respectively from normal
populations. However, if the population roots are not all distinct, the
formulae derived break down and the situations become more complicated. In
the case of g smallest roots equal, the first term of the asymptotic ex-
pansion in the real case has also been obtained by the authors [k]. In she
present paper, we extend this result to the second term (Section 2) and de-
rive the corresponding formulae (Section 3) for the complex case, because
not all results in the complex case are counterparts of the real, Finally,
we show in Section b that the results obtained by other authors [1], [2]

and {3] are all special cases of the fornulae obtained here.

*
This lx;e;earch_ was supported by the National Science Foundation, Gramt No.
GP-ll 7 .



2, Two-sample real case, We follow the notations in Section 2 of [4]. let

fd (3 = 1, 2) be independently distributed as Wishart (n,, p, ..;j)’ and let
-1 -

the ch. roots of S, 5," and ( 52 ) be b, and a (1=1,...,p)
' >

respectively such that bl > b2 > ... > 'bp 0 and < 8y < ... <g <

Bty = oo = 8, =&, (1<k< p-1). Further, let us denote

A= diag (a;, oo , 8, 8, .u. , 8)

B = diag (bl, PYRRTRR - )

and n =n, +n,. Then from (3.7) of (4], the joint distribution of
by, bys oo ,'bp depends on the definite integral

1
=2 | eagzelF ey

N(I)

where N(I) and (Q'd Q) are defined in [}],
Under the condition 8y = & (J=k+1, ... , p) then from the def-

initions of Ty Ty and Cyy in [%], we have

TJ = 8 it J =k + l, see 3 P
1+ ab
J
r,=r -1, = .&abt if t=k+1
t3 t 3 ;‘L Js 5 esse 5 P

(1 + abJ) (1 + abt7

. 2 .
(2.1) cjt = rtd bdt - rJ rt bdt = ctd = 0, if J, t =k + 1, ees 3 Po

where b;)t ab.‘l -bt .



Fram (4.4) of [4], we also bave

(2.2) s,. =0

5t if J, tmk+1

9 eee p.

Since we wish to compute up to the second term in the asymptotic ex-

pansion of I, we need to investigate the groups of terms up to the fourih

order of S, Under comditions (2.1) ana (2.2), (3.16) of [4] reduces to
: l k % E »p . %
(2.3) K’"(Ea'cl" T on (2"_> >
i<t jt Jel t= & + 1 n <0
5t
where
0 2 0
3t T Teg Pgp Ty Ty Py = ey J=1, oo , X3 t=k+1, ..., p.
2 1
. -
Now let S' = z c;jt and
i<t
P

S,.=Z ( %t ., 3t +, c,js).

J<s<t °98 3t S3s Cst €3t st

Under conditions (2,1) and (2.2), s' turns out to be

k ‘ k »p 1
— -l — = o-

) ¢ * ), .. °5¢ -
<t Jal t=k + 1



b

In S", if both J and 8, or J and t, or s and t are greater than

or c¢ as a factor

k, the corresponding term containing ¢ 8 or cj £ st
vanishes, p
Now 3 2 °jt  which originally contributed 3 (
T 5 o Fn~ 2)

now under conditions.(2.1) and (2.2), gives

| c,. ¢ PPN Csy C
S e R

A [~

~ vhich originally gave 53_ (g) s DCW bacomes
a1 (G (Dorsre}e o {(5)+(5)a)r 2 {(5)+ (5D

i.e.%{(?).,.(%)q}...é_q(q—l) 5

where ¢ =p - k., After simplification, (3.17) of [4] turns out to be

eh  xlg e [(Frm]enz oo oo
n
R COMEPLILE RICEIY

. Similarly, (3.18) of [4] becomes



(2.5) k{4 " - B2 S'-%[(?)*(?)ﬂ}’

Finally, since

k

trsz"a{}: ;*22 §t}

<t J=1 teictl
it is easy to see that (p-2)tr 5 / k! gives

(2.6) -p-zKS'

Adding (2.3) - (2.6) and factoring K out, we have the following theorem:

Theorem 2.1, Let A and B be diagonal matrices with O < a8y < o< a.k <a,, =

oo =8 =, (L<k<p-l) and bl>b2>...>bp>0, then for large

degrees of freedom n = ny + n,, the first two terms in the expansion for

J are given by

2 k - k
(2.7) d = 2P "_%_q m (:L+at,:j b;)) 5 g (1+a.1;v'_’)E o ( )%
Fq (3h) 91 J=ktl JE ey
k »p P o-l
M B ( ) {l+'ﬁ [ z ~ Z c;]t + a(p,k) ]+} s
J=1 tak+l §<t J:.]_ t=k+1 |
Where
k 2.2
(2.8) @ (p,k) = 35 {(k-1) (kktl) + 6 (p°-k°)}



Theorem 2.2. The asymptotic distribution of the ch. roots, b, > by Zeee>

-1 . .
bP >0 of .S.l §2 » for large degrees of ficedom n = n, +mn,, when ch. roots

-1y-1 _ _ |
of (5_52) are 0<a1<.,.<ak<ak+l=,,,=ap_a.(].5k5p1) is

given by

' ‘%’ qn in k P —in
(2.9) Co & o a; 1 q (l+&d bd)-%n " (1+a ’oj) §
' J=1 J=1 J=kt+l -
1 | - 2 -p-1)
P o 2 K p 2n 2 p  &n,-p
*n (b, ~b) w T on ) m b ab
LI B P %5t ) J=1 t=k+l <“ ©3t J j=1 9 d

.{l+~2—nl—[ Z‘ c 2 z c;);l -ka(p,_k)]-i- ...} s

J<t J=1 t=k+l
where
2
iq

: -1
o= m  Ip (%n){rq(%q)r‘p(%nlﬂv%%)}

and a (p,k) is defined by (2.8).

3. Two-sample complex case, Let fd (3 = 1,2) be independently distributed

as complex Wishart (nj, P’EJ) and let 0<a, <.e<ay <a . =...=8 =8
-l
<p - >p.>,,>p >
(L<k<p=-1) and b, > b, bp O be the ch. roots of (5&

1
EJ. §2 respectively. We still denote

ﬁz dia-g (al, coe ak, 8, ove o a-)

3

and B = diag (bl, b,, see bp)



then from (5.6) of [4], we have

(.1) el leavsdit ey

vhere n = n, +n,, and N(I) and (U* d U) defined as in (4],

Partition the wnitary matrix U into the submetrices EZL consisting

of its firat k, and 112, the remeining q rows. if the integrand of

(3.1) does not depend on U, then we can integrate over U

U, for fixed

5
by the formula

(3.2) I c, (a E) = ¢, (a E.l) ,
U

where Cy = "p(p-l) { FP (p)}-l,. C, = nk(P-l){ Fk (p) }-1

end Tx(y) and (d U)) defined similarly as in [4].

Apply the transformation U = exp (i H) (See (5.7) of [4]) the para-
metrization of U may be obtained by writing

(3.3) u=(

A e
to

Bk

J=em{1( )}

vhere E,:Ll is a k x kX Hermitian matrix and '1112 is a k x q rectangular

complex matrix,



From (5.8) of [h]? it cen be shown that

k(p-1) :
(3.4) n (a El) = (d Iiu) (a .}.IJ.Z) { 1+ 0 (squares of |th|'s} .
Tx (p)
k
vhere the symbols (d 511) and (d 312) stand for w dh dh and

jg 9t RUgea
kK »p

o n édh dh

J=1 t=k#1 It R JE L.

Note that

. 2
(3.5) {cjtnrtj bjt -rj T, bjt ===ctJ = 0

for j, t=k+1

» eee 5 Py

a a
where rJt-rJ-rt_l_,.aij -1+a.tb
3 73 RS S -

and b, =b, =D

Since we wish to compute up to the second term in the asjrmptortic eXe

pansion of Jl we need to investigate the groups of terms up to the fourth

order of H. Under conditions (3.5), then (5.19), (5.20) and (5.21) of [4]
become



(3.6) j I exp( Z 3¢ Byp Jt-nz_, Z °§th3t§t>

J=1 t=k+l

k k »p
‘m dh dh T omw dh dh
<t JtR TTItI Jm=1 tamk+l JtR T tI1

k k P
= 17 L1 1 n b1 =C ,
j¢t n c;jt J=1 twmk+l n 0

cjt

(3.7) J e"P(‘n§ 3¢ Byg Jt-nZ Z jt Bye Jt>

- - J=l t=k+1
om k k »p
. h ™ dh dh T oow dh dh

W yqp  JER LT o (T CgtR Ttr

Cel.3.5...(2m-1)(2n cw)"“ 1Ifv=1, ..., k

C.1.3.5...(2a-1)(2n cgv)"‘ 1f v 5 K+, ouu, P

(3.8) .[ °xP< Z °5¢ Byg Jt'“z Z ;?th;)trjt-)

-t® P

J=1 t=k+1
( )m k k p
‘(h,_h w dh dh B (I { dh dh
uv uv i<t JtR T JtI J=1 tak+l JtR T jtI

e gmz; ifva=l, .00, k
n cuv

¢ (m!) if v = Kkl

3 eeoy P
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respectively, where huvc denotes either hﬁvR or huvI and
0 2 0
cdt = rtJ bJt - rJ T, bJt = ct.j J=l...,kst =k +1, ...,p.

Therefpre we have the following theorem:
Theorem 3.1, Let A and B be diagonal matrices with 0 < a8, <iee< a < 8,
ceesa =@ (L<kx<p-1) end b, >.b, >...> bp > 0. Then for la.rge n, the
Tirst two terms in the expansion for Jl are given by

a(q-1) k P k
(3.9) = Ju " (1+a3 :j) o (1+19,b:l)"'n " L
'f.' q(q) J=1 J=k+1 <t ncdt
k p
k p s
\}
SR o EEF1 G RN
J 5 i<t J=1 t=k+1
where

(3.0)  B(p,k) = 5 { (k-1)(2k-1) + 3(pk)(p+ke1)}

and q = p - k,
The proof is analogous to that of Theorem 2,1,
Theorem 3.2. The asymptotic distribution of the ch. roots, b, > b, >,,.> bp >0,

17 "2
of §.1 §2 for large degrees of freedom n = ny + n, when the roots of

(=, 5 )"l are O<e <..<a <a, =.. =8,=8(1<k<p-1), is
given by



n. k k P
(3.11) C3 9. m ajnl . (1+°’:] ‘n._j)n (1+o.b‘_])"n
J=1 J=1 Je=k+1
P o k - k p " P n,-p
m (b, -b ) m noom T b ab
j<t 3 P gct PCyt g=l t=k#l nc Jﬁt j=1 9 J
k k p -3,
1 -1 0
. {1+§n—- [ z S3% +z z o +B(p,k)]+...}
I<t J=1 t=k+l

where

’

A) N NN o R R -1
ey =m0 T (@) { Ta (@ T (n)F (ny)}
and B(p,k) 1is defined by (3.10).

4, Remark: Replace bj by n; bj/nz (§ = 1,...,p), and let n, tend
to infinity and rewrite n, as n, then (2.9) and (3.11) become the one-sample

cases, 1i.e.

. 1 1 42 1 1., K 1
) (PP (TGO, Gu) T e E o
p i
P k
. T (b -b)exp («4 n z J-%na. z b;j) n (nay‘ )2
<t 3=1 juk+l I Jr
1 k
k p NG =2
T on ("T‘) n b’z(n"l"l)db {1+-—[2y +‘LZ
=] t= ny a1 V. Jt
J=1 t=k+l Jv = 9=l <t Jol tak+l

S P

3t



and
mopa(e-l) (R F an n -1 )2
(b.2) PR 4 { Ta (o) p(n)} A RANURES
k D k k
T n p n
exp (~n ) a b, -nag b) m T N ——
Jéi J J J§;+l 3" 3<t g Yyg I taksl g3
kK ko
n=p 0 '
.J:lbJ dbj{l+ [Z +ZZ v ]+}
i<t J=1 tek#1 I

respectively, where

Y % == (at - aj)(bd - bt) for J, t = 1,...,k

t) for j = 1,...,k; t = k+1,...,p.

Ytz(a-aj)(bj - b

The first term in the asymptotic expansion of (k.1) gives the result
in (3.11) of [3].

Using the Same convention as in Section L of [4], then the restriction
1<k S pP-1 can be written as ¢ Sk<p.

(1) Ifk=0,ie q= P, then & =8, = ... = a, = a, o(p,k)=0,
B(p,k) = o, (1) (2.9) reduces to (k.9) of (4], and (1i) (3.11) vecomes
-1 pnl p

" (o -bt)z

n““)r(n){r(p)r(n)r (n,) }
J<t

P n, -p
1 -
"o, (1 + abj) %.bj

’
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both of which are the joint distribution of bl’ ba,,..,bp under npull |
hypothesis 5 = a™l 5 (for the real cese see [5]) and are exact forms
vwhere we assume no asymptqtic condition.

Similarly, we can obtain the corresponding formulae from (4,1) and
(k.2).

(II) Ifk=p, i.e. ¢ = 0, then 0< 8 < 8 <...< e, ap,k)=a(p), B(p,k)=
B(p), end (2.7), (2.8), (2.9), (3.9), (3.10) and (3.11) reduce to (3.14),
(3.15), (3.20), (5.22), (5.23) and (5;27) of [4] respectively. Similarly,
(k.1) reduces to (1.8) of [1]. If we take the first term in the asymptotic

expansion of (3.20) in (4], it is Chang's result [2].
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