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CHAPTER I

INTRODUCTION

1.1 Hiétorical Background and Field bf Application

Meximum and minimum specification limits for-parfs dimensidns
are in extremely wide use today. The following stages of dévelop-
ment of dimensional control have occurred in industriai history, |
Shewhart(l939) giyes a good discussion of them.r

1). Each part was made ihdividualiy, with its dimensions

gradually shaped until it would fit the particular part(s)

with which it was to be assembled.

2.) 1Interchangeable parts needed for large scale

production, giving rise to the aim of making all parts

"exactly aliké.“ |

3.) As technology improved it became apparent that it was

not possible to make parts exactly alike. .Thus,.there

came about, first, single‘limits, and later maximﬁm and

minimum limits.

k.) ALl parts should lie between these limits.

S.) Since in a large lot, or in the output of a machine,

it is not possible to guarantee that all parté are betweeni

igiven‘limits, an acceptable percent outsidé the limits may

be set; that is, an AQL or acceptable quality level.



The last is in wide use at present.

In order to be precise in our terminology, it is desirablc
to distinguish between three sometimes confused termsi specification
limits, tolerances, and tolerance limits. Specification limits are
limits that are set somewhat arbitrarily, say, by the desién engineer
or the consumer, usually without régard to what the process can
actﬁally achieve. If'we denotclthe lower and upper'specification“ |
limits cy L and U, respectively, then T = U - L is often referred tc
as the tolerance of the specification limits. Tolerance limits,
howevcr, are defined as iimits estimated from data, so as to have a
specified pfobability of including at least a givén percentage of-
individuals\ci thé process pcpulation or distribution. Wilks(lghz)
poiﬁts out that the population as used here is the cUtpuf of a con-
tiolled producfion process;isince tolerance limits apply to future
product as well as current product. In this research we will be
considering specification limits, or tolerances, as oppoSed‘to
tolerancc limits. Ideally, of course, we would like to have.the
tolerance.limits lie wholly withih the specification limits L and U.

Having noted briefly the development of maximum and mipimum
specification-limits, as well as Aefined the term tolerance, we now '
list the general conditions which, for the purposes of this thesis,

define the type of industrial manufacturing with which we are

concerned.



1.) Individual piece parts are manufactured.
'2.) The dimensiqns or characteristics of these parts
can be measured.
3.) The partg are manufactured for assembly with other
parts and therefore typically subject to maximum'gﬁd
minimum limits.
h}) The dimensions or characteristics of the component
parts combine in a known fashion, determiniﬁg character-
istics of the assemblies.
It is believed that the methods and techniques developed’here can.
be used for other general processes, but the foregoing is the broad -

field with which we are now concerned.

1.2. Problems of Specification Limits

The current application of specification limits has createdv
several problems, such as not giving the engineer what he really
wants and/or needs, or further increasing production and inspection
costs. Design engineers tend to be rather conservative and commonly
give specification limits for parts so that, as long as all parts
lie within their respective limits, the assembly characteristics
will lie between whatever limits are set for them. Thus, this
philosophy says in effect that "any distribution of}part dimensions
between the SPecification limits is entirely satisfactory, as lQng
as all or a very large percentage of the dimensions lie between'the

limits." Burr (1%7a) gives a good discussion of this problem, and



Qemonstrates that this leads to undesirable kinds of distributions
~such as shown in Figure 1.1. Distribution (a) has its middle section
removed by sorting out parts foy another customer‘who has a tighter
tolerance than we do. Distribution (b) is from a proéess in bad
control but heavily sorted. Distibutions (c¢) and (d) are typical

of the inside and outside diameters, say,‘for a bearing and its
fitting shaft. For the shaft, the process level’is set to the high
side because metal can be taken off but cannot be put back on. Then
the shafts are sorted, reworked and sorted again. Meanwhile, for

the bearing the process has been set to thé low side, then they are
sorted and some reworked.toward larger inside diameters. Distribution
(e) is run with much better process capability than called for by the
tolerahce, and set low, perhaps to Save material.

Other authors have recognized this problem: Colley (1959)
demonstrates a Monte Carlo technique for deriving correct tolerances
for mating parts; Breipohl (1960) differentiateé between out-of-
tolerance parts and parts which are complete failures; Osuga (196k)
déveloped a'ﬁprocess capability index" which indicates whether or
not the specified tolerance is realistic.

It becomes clear thon from Burr's work that when the underlying
lot distribution is unknown (as is usually the case), accepting or
rejécting a lot solely on the basis of specification limits can be

‘quite uneconomic. This is because it forces the design engineer to
be ultra-conservative; that is, to specify tighter tolerances than

would be necessary if distributions are controlled. A much better
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Figure 1.1. Five Undesirable Distributions Meeting Specification Limits.
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criterion for acceptance of a given lot would be one in which the
design engineer could specify what distributions of part dimensions
or characteristics will satisfy the design, so thet the assembly
will be satiéfactory. He thus sets the desired distributions of the
component part dimensions in light of how they will be combined,
making usé of the statistics of combinations, and with knowledge

of relative difficulty of manufacture. This providéé initial
specifications and is a first approximation. As process capabilities
for manufacturing the parts become better known, a more economicél

allocation of distributions can be made.

1.3. Tolerance Combinations

For an assembly composed of k component parts, let

Ta = assembly tolerance, or the total permissible
variation for the assembly,
Ti = tolerance for the ith component part, i = 1,..., k

The relationship between Ta and the Ti, i=1,...,k is often ekpressed

by using either(1.3.1) or (1.3.2) given below.

k _
Ta =T, FT, bt Tk = E T (1.3.1)

k )
T T? | (1.3.2)

T

a k .

i=1 1

J 2 2 2 __J
g R

It is easy to show that if T, is known, using (l.3.2)>will in almost
all cases considerably loosen up on the permissible variabilities
of the k parts, as compared to using (1.3.1). The gain is

significant even with only two component parts in the assembly.



It is clear, thén, that the design.engineer would prefer tb
use (1.3.2) over (1.3.1), if this could be done safely. One can
show fhat by assﬁming

'(a) normal distributions for the part dimensions,

(b) independence between pascts,

(c) a state of statisgical control existing in eéch

_part production process, and

(d) the distributions of the part dimensions all"

prbperly centered aboﬁ£ respective nominal values,
then the design engineer is safe in using (1.3.2); It is not
presently knbwn, however, whether or not (1.3.2) can be safely used
whenever one 6r more of the above féur'assumptions is violated.
Many authors have advocated the use of (1.3.2) over (1.3.1):
Fielden (1960), Ogden (1961), Sandquist and Enrick (1963), Enrick
(1964), and Mouradian (1966) tb mention a few, but little attempt
has been made to justify its use. Tt is to this basic problem that
‘we will attempt to provide an answer: under what conditions will
the underljing lot distribution be "good enough“ to allow the safe
use of (1.3.2)?

{We now have mentiorned two basic problems, both stemming from
the fact that the underlying lot or process distribution ig usually
unknown: |

1.) - Accepting or rejecting_a process or lot solely on

the basié of conforﬁance to specification limits

can lead to difficulties, and
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2.) The criteria under which (1.3.2),
T x
vz
i=1l

can be safely used are unknown. .

We propose to solve both problems by replacing the standard
specification limits with two statistical fests which will judge
the acceptaﬁility of an underlying lot distribution, and enable
safe use of (1.3.2) through acceptance and rejection—rectification;
In order to do this we must provide the design engiheer with two
basic assurances:

a.) Ihe process orvlot mean is sufficiéntly'close to the

middle of ﬁhe specified range, and

b.) The variability of the process is not excessive.

We will be more specific about what we mean by (a) and (b)
later in this thesis when the statistical tools ﬁecessary to provide

such assurange are given.

1.4. Characteristics for an Assembly

Burr (1967) gives an excellent discussion of the characteristics
for a process assembly. We shall be using the following notations:
Let Xl represent a measurable characteristic of a component part,

the process mean for X

>? .

1

- the process standard deviation for Xl
1 .
For a sample of size n from a given lot of component parts, say

>
1]

(xll, X zs =oes xln), define



n .

X, = sample mean = I xli/n (1.4.1)
i=1

Rl = sample range =

max (xn,...,xln) - min (xll,...,xln) . ~(1.4.2)

Let Y be the characteristic of the assembly. If there are kK conmponenc
characteristics Xl, Xz, ceey Xk’ then we will assume for the purpos:as

of this thesis that our assembly characteristic has the fornm:

= £ ... . A
Y =X X, £ X, | (1.4.3)
Other more complex relationships can also be handled. See,

for example, Burr (1961) and Tukey (c1958).

Assuming assembly characteristic (1.4.3), one cen easily show

that the following is true:

T | | (1.4 4)
wy by E M S - |
whether or not the X, are independent. If the Xi are independent,

however, then:

o}

_ (2 2 2 W Y
g g, e
Such independence is achieved in prachice if the processes are in
consrol, or if assembly is done by random choice out of the resPectitc
lots. If the parts characteristics are not independept then we could
have, at least theoretically, the two extremes
o, =0, ' O (1.4.6)

or
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o,=¢g, +0, + ...+ C
LA Xk

The right side of (1.%.7) is in generai much larger than that of (1L.4.5),

(L.4.7)

ahd is 1like what the design engineer is assuming if he uses the additive
tolerance formulaﬂ (1.3.1).

If we consider the Xl, Xz,...,Xk as random variables, the well-
known Central Limit Theorem implies that Y will be approximately normally
distributed regardless of the distribution of the Xi, i=1,...,k,vif k
is sufficiently large and no one or few of the Xi predominate. The
theorem is valid regardless 6f whether or not the random variables
are identically distributed, provided that their variances are not too
 different. Although the‘theorem will not help us much when considering
a single component paft, as k increases it favors the use of tolerance
formula (1.3.2) over (1.3.1).

Formulas (1.4.%) and (1.%.5) work very well for relationship
(1.4.3) for the assembly characteristic Y, when we have large lots
of articles to be assembled at random, or processes in good statistical
control. Unfortunately processes often do not remain in good
statistical control. Thus the process mean Ky will commonly have a
tendency to vary, and the process standard deviation Oy may also
change;v Because of this we shall want to extend (1.4.4%) and (1.&.5).
somewhat to take account of lack-of-controlness and thereby

facilitate use of tolerance allocation formula (1.3.2).
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1.5. Characteristic Variation for a Single Part

‘Consider again the measurable characteristic of a single com-
ponent part X, with the‘corresponding process mean and standard
deviation OX' Suppose, as indiéated above, that the process mean
varies. With fthis variability com2s a mean and‘standard deviation of

the process mean. Let

b, = mean of the process means {px}

= standard deviation of the process means [px}

'OH
We will further assume that Oy is independent of Moo and remains
constant for o given X. Let

;po = desired nominal mean (commonly the middle of a

tolerance range under current practice)

Although we would hope that up = Wyo Ve khow in general this is
not always truve. We are interested in determining the total
variability; that is E(X - pb)z, where E is an expected valné oper-t .
as. usually defined. Tne following lemma and proof are given by Burr
(1967).

Lemma 1: With the above definitions for

X, Mo ? HX’ OX’ mu, and C@ s

2 2 2 2 .
E(X - po) = oyt 0@ + (uu - uo) . (1.5.1)

.Proof: Call By = u for ease of notation. We have distributions for
rardom variables X and W, SO using subscripts on E to denote the
random variables with respect to which the expectation is taken, we

seek:
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12
By ¥ - 'uo)z'
B, 06 )" = B L)+ () + G, - )T
- Fx,u[(x"”)z_ * (- 5 )% +u - %)2 @.5.2)
+ Z(X-p)_(p—pu) + Z(X-p)(uu-uo) + Z(E'QH)(HP‘MO)] |

Taking first the expectation with respect to X gives

gy (K = B L ¢ (- ) (- ) (1.5.3)
+ ZEX[(X-p) (u—uu)] + 0+ Z(u-uu) (uu'uo)]

) 2 2 . v -
since EX(X-p) = 0, EX(X-p)‘ = oy Now, define f(X,p) as the joint

~ density function of (X,u). Then:

EL(X - ) (v - up)] | (1.5.4)

= X X (x - u) (u- “u) £(X,u) ax du
oo ¢ |

- jp (u - [ jx (X - W) £(x,p) aX | au
But  [) (X - b) £(X,p) 6X

o= X X £(X,p) dx - X w F(X,p) X

X X i
= E(X|u) g(u) - »elw) . (1.5.5)
where glu) = X £(X,p) aX
X

But since E(X|w) = u,

T w2 ax =0
X
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Therefore EX[(X-p.) (p - p.u)‘j'= 0

Takiﬁg next the expectation with respect to u gives

2 2 2 2 '
Ex,u(X - u) = oyt o * (up - )+ 0, . (1.5.6)
. 2 2
since E - =0, E - = Qg .
p.(”‘ p-u) , pb(u ”'u») =9,
: 2 2 2 2
Hence Ex,u(x - po) = a + o, + (uu - uo) .

Thus in controlling the total variability, we must consider threce

sources:

2 L
Oy » the instantaneous process variance
2 .
oh , the process mean variance, and
(p - )2 a bias term

_ uu Ho s .

In the past when considering the variability of X around the noﬁinal
: 2

mean p, some authors have made insufficient allowance for oﬁ , and
too little attention has been paid to up VS. b One good discussion

of this problem is given by Freund (1957).

1.6. Variation of the Assembly Characteristic

We now wish to extend the above procedure to Y. Let

nominal mean for the assémbly Y

nominal mean for the ith compgnent part.characteristic'xi.

The design engineer should arrange that

= | 6.1
ubi Mol * Ho2 * * ok (1.6.1)



14

Hence

¥ - Boy ~ (Xl - u'ol) * (XZ - “bz) ... * (xk - ok) (1'6'2)

by combining (1.%.3) and (1.€.1).

Lemma 2:
2
E(Y - ”’oY)z = 0)2(1 +_02 o oxk + oﬁk
-2 .
+ [(“"1 - hgy) E .. E (”“k - o) | (1.6.3)

Indicatidn of Proof: The proof is completely aealogous to that of
Lemma 1, except it involves 2k distributiens instead of two. Burr
(1967) indicates the proof through a special case, i.e. k=2, and glves
the general result (L.6.3). Basically the proof involves evaluating
2k multiple integrals with independence. After addihg and subtracting
the appropfiate variables in (1.6.2) and bthen sqQuaring, one can
integrate out variable by variable, noting that the cross products
all drop out through independence. Following complete integration, the
remaining terms are collected and form (1.6.3).

The lest term in (1.6.3) reflects the biases in‘th process
controls being used. The right hand side of (1.6.3) is very similar
to the sum of the right hand sides of k equations like (1.5.1). ‘The

difference lies in the fact that
' ' .2
[(pul ) R E (”uk ] (1.6.4)

is not precisely
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ORI URTR O ) (1.6.5)

since the former would include not only the latter terms, but aléO'

many cross product terms, too: Burr (1967) discusses this and indicates
that unless nearly all biases are in one direction, the cross product
terms will largely cancel out. Thus the right side of (1.5.1) is a

good indication of the contribution of the ith part of the right side

of (1.6.3). 1In addition, the suggested controls given in this thesis
should_usually force the biases to be negligibly small.

For a single component part characteristic Xi of the assembly,
equation (1.5.1) indicates that in order to control the total
variability of Xi about Moy Ve must consider three different sources
of Qariability: oii s oii , and (uui-_ uoi)z' Burr (1967) chose the
following as being practical working ;alues, which can be used to |

justify the use of (1.3.2). Let Ti = tolerance allocated for part.

characteristic X;. Then, if

Gxi = Ti/s >

c =T./10

121 1/

by, = g 1= T/

(1.5.1) gives

2
E(xi B p'oi)

(3)+ (B - ()

.028125 Ti

1}
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Hence

. 2
«/E(.Xi - “'oi) = -1677 Ti ’

or T, = ‘6\/ B(X; - wugy

2, (.6.6)

™

. .th . . .

Comparing (1.5.1) and (1.6.3), we see that the i~ contribution to the
' T\ 2

assembly variability, E(Y - ”bY)" is approximately E(Xi - uoi)z if the

biases are small. Thus

k
2 -
B(Y - py)” = B B( - boi) (1.6.7)
We now define
| ; |
T, = 6\/E(Y - “oy) R : (1.6.8)

and multiplying both sides of (1.6.7) by 62 = 36, and recalling equation

(1.6.6), yields

k
02
1

™M~

2 ' 2 .
Ta = 36 . E(Xi - ubi) =

i=1 i=1

It is clear of course that ¢ , o , and the bias term can be less
i i
than the stated values, and the proof still holds, with

ko2
T, = ¥ T. , or less.
fa 41 1
Not every practical situation will fit these three ratios with
respect tb Ti’ however; for example, o# may be larger than ¢ in
i i
some cases. But if the total variability is not excessive, one should

still be able to show that tolerance formula (1.3.2) holds. Rather
than choosing specific values for our three sources of variability,

= = . d - = ., for constants
suppose o = a T, opi b T, an \ u“i By |=c¢ T,, for consta
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a, b, and c. Equations (1.5.1) and (1.6.6) then combine to give

2 2 2 2
(a Ti) + (b Ti) + (c Ti) <.02718 T, ,
or

az + b2 + cz_f .0278 , - (1L.6.9)

with the inequality added because the right hand side is actually an
upper bound on the variability.

We now have a basis by which we can judge whether or not the total
variability of each component part characteristic xi is controlled well
enough to allow the usage of tolerance formula (1.3.2). We will meke
frequent use of this later in this thesis. Normally qx, o#, and the
biases are unknown and often can only be roughly estimated. By
developing statistical tests based on a sample from our underlying
lot distribution, however, we will be able to provide assurances
that inequality (1.6.9) is satisfied, thus allowing the safe use of

tolerance formla (1.3.2).

1.7. General Discussibn of New Slatistical Tests

In the foregoing we have briefly described tbe problem we wisﬁ ouv
statisﬁical tests to solve. We will now discuss in general the type of
tests in which we are interested, as well as some geﬁeral requirements
t0'bebmet.

We are given a component part characteristic with an unknown
distribution F(X). In order to estimate the general characteristics of
F(X), we will take a random sample of size N and compute two simple

gtatistics:
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Let (xl, Xpseees xN)
be a random sample from F(X); then find
_ W
a) Xy = xi/n, and either (1.7.1)
i=1 '
b) ‘RN = max (xl,...,xN) - min r(x_l,...,xN), or
m
S = ¥ R ’
nm j=1 nJj

the sum of m ranges, each of size n, so that N =-nm.

The question as to how a sample of size N should best be sub-
divided into m ranges from the point of view of smallest variance has
beén studied by‘Pearson (1932) and Grubbs and Weaver (1947). It has
been foundithat subgroups of eight are best, with very little efficiency
lost in subgroups from five to ten. Accordingly, we will limit the Size

. - om
of a single range to 10, and use the sum-range Snm =

3=1

an as our
statistic whenever N > 10 for N = nm,

We are using the range as an estimate of the vafiability in F(x)
rather than the sample standard deviation for the sake of simplicity.
In order to encourage wide implementation of our tests, it was felt
thaﬁ the form of the tests should be simple to understand, calculate,
and interpret.

In addition to the criteria already mentioned, we want our X and
jR testé to satisfy two additional requirements:

a) The tests should be as robust as possible. Tﬁat is, we

ﬁould hope that the tests would perform substantially well

regardless of the actual form of the unkndwn distribution

F(X).
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b) We want to develop a series of tests to cover a wide

variety of process types where this general #pproach can be

applied. The various classifications of such processes will

be discussed briefly below, and at length in later chapters.

In developing our-i_and R tests, we want to érovide assurance thot
the process mean will be reasonably close to the nominal mean, and thos
the variability will not be excessive. 1In addition, we would like to
express our tests in terms of known values: Bys the nominal mean, and
T, the tolerance range for component part characteristic X. Thus we
use the following test form:

Accept the distribution F(X) if both of the following criteria are

met:

g) po-clT_§X_<_p.o+clT

b) Ry or S m <y T ,
Reject F(X) if either/or both of (a) and (b) is not met. 1In
- gome cases we will then sort the rejected material.
Here X and R are computed as given above, Mo and T are known,
and ey c, arg constants dependent on the general classification of

the process under consideration.

1.8. Process Classification

Situations for which tolerance ranges are important can be
classified into two general areas:

a) - process control, and

b) acceptance sampling, where one is generally not close to

the process.
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Two types of process behavior has been postulated; namely

al) where there is a consistent tendency for e to move in

one direction or the other, as in tool wear, for example, and

a2) where the process, if left alone, makes erratic random

Jumps to various levels at least some of which are undesirable.

Two approaches were used in controliing the tool wear process,
(al), depending on the method of reset fblldwing a test rejection.
Details are given in Chepter V. Control tests to handle these cases
and to provide assurance of thé combined distribution proving
satisfactory have been developed.

The pfogram followed in the research has been to propose general
probabilistic models which closely describe the physical characteristics
of each of the cases mentioned above. We then see how the tests under
study perform on these models. By also considering badly controlled
or highly erratic models, and applying the tests, aséurance against
undesirable process conditions is obtained. : '

No attempt has been made to try to optimize the tests for all
situations since the field of application of the methods of this paper
is so broad. The author feels, however, that most commonly occurring
processes can be satisfactorily controlled using these tests., A summary
of the step-by-step procedures recommended to implement the proposed
teété will be given following a complete discussion of the general

models.



21

CHAPTER II

METHODS AND TECHNIQUES

2.1 Introduction

Before investigating the models in depth, it is appropriate
to briefly discuss several of the more frequent procedures, techniques,

and ideas used throughout the research.

2.2 Burr Distribution

It should be clear by now that a technique is needed to describe
various lot distributions F(X). We would like t§ not only consider
the normal distributioﬁ, but also departures from the normal. It
would appear to be rather cumbersome to consider vérious classes of
well-known distributions, particularly when it is necessary to implement
them on a computer. But consider the following class of distribution

functions:

F(x)

1-(1+x)%,x>0,¢,k>0 (2.2.1)

0 s X <0

where F(X) gives the probability of variable X < x. Often called the
Burr distribution, it and many of its properties were developed by

jts namesake (1942). It was further developed by Hatke (194%9) who also
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computed more extensive tables of values of the pareameters (c,k) of
the function based on values of the coefficients of skewness and kurtosis,
a3 and o), respectively. The Burr distribution function is widely
applicable as an excellent approximation to many observed distributions.
Not only can it give an excellent approximation to the normal
distributions, (Burr, 1967), but simply by varying the parameters c
and k , a very wide range of gkewness and kurtosis combinations are
obtainable. Since the functional form does not contain an integral,
the distribution is gquite easy to implement on a computer.

Using the Burr distribution, probabilities for an interval (a,b)
take on the éimple form (1 + ac)-k - (1+ bc)'k. Moments around the

origin are'by definition

[--]

B = E(xi) = I ck xé-1+i (1 + xc)-k-l dx (2.2.2)
o

Using the transformation v = (1 + xc)-l , one obtains

1
W =k I i-(i/e)-1 (l-v)i/c dv=kpB [k -ife, L + i/c] )
o
(2.2.3)
form which central moments B> p3, By, > and standardized central moments
., , @& - are obtained. For o to exist it is sufficient that
3ix’ hox bex
¢k >4 (Burr and Cislak, 1968).
Because of its ease of computation and versatility in providing
"a3-x’ ah-x combinations, the author used theBurr distribution quite
frequently in his research. Function H(u) given below is a close

approximation to the normal distribution with mean zero, variance one:



H(u) .5 [Q(u) +1 - G(-u)] s ~where

G(u) = 1 - [1 + (64693 + 161984 uf* BT

] -6.158"
| (2.2.4)

Equation (2;2.5) is an example of a typical non-normal distribution:

3.077) -5.00

F(X)=1-(1+x (2.2.5)

Distribution (2.2.5) has a mean = .55457, standard deviation = ,21832,
'a3 = + ,527, and o, = 3.542. Tables of the meen, standard deviation,-
a3, and dh for various levels of ¢ and k are given by both Burr (1942)
and Hatke (19U49).
Burr distributions were used frequently to represent the distributions

of a component part characteristic X, the sample mean f, and occasionally

for the population mean e

2.3. Distribution of the Sum-Range

In randém samples from a normal distribution,‘it is well-kndwn
that the efficiehcy of the range as an estimator of ¢ decreases as
the sample size N inéreases. For this reason it is often preferable
“to randomly divide the sample into a number of equél-sizéd subgroups
and to find the mean or the sum of the several group ranges. We will

work with the sum-range, denoted by
S = R, ' | (2.3.1)

where m refers to the number of subgroups and n to the subgroup size.

The total sample size is then N = nm.
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As mentioned in Chapter I, it has been found that sample subgroups
of size eight are optimum when computing the renge, with very little
efficiency lost in suﬁgroups from five to ten. Reénikoff (195#) '
considered sample subgroup sizes of five. Because 6f their usefulness
in this paper, subgroup sizes of eight and ten only'ére considereqd
here, with m= 2,3. |

The exact distribution of the sum-range cannct in genéral be obtained_v
in simple form. Hence is necessary to tabulate the»distribution
numerically, using successive convolutions on the numerical probabhility
density function of a single range.

Let Xys Xgyeees x; be a random sample of n obsefvatioﬁs drawn
from a norﬁal population with arbitrary mean and variance cJ'2 = 1.

If there are m such samples, the sum of the m ranges will be called the
sample sum-range. We will derive the approximate numerical sﬁm—range
distribution for n = 8, 10, m = 2, 3. The techniqueé given below can
be used for any n, m combination, however.

- We first will solve for the numerical density function of the sum-

range:

B

S = L R
nm i=1 ni

Assume increments in the range of A = .05. Let

o . A .. A _ L
| Pnj = P [.053 - 25Rn €.055 + 3 J » 3 =0,1,... (2.3.2)

p!(j) . p[.OS:] - A SR, + R, <.05§ + A], j=0,1,... (2.3.3)
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(3) _ 3 | - | b =
Pai = P[‘°5J "% SRy tRpt R0+ %} ? J-O,l,.v.’.{, -

!
iy

(2.3.k)
Values for (2.3.2) can be computed from tables given by Harter
=)

and Clemm (1959). We wish to solve for (2.3.3) and (2.3.h). It.is '

easy to show that

Pm = kzo Pnk pn,,j-k y J = O,l’z""
and
i 34
). % 9
= b M '
Pnj zfo oo Png Prc Pn,j- gk
J (2)
= ﬁfo an’. pn,j-.ﬁ » 3 = 0,1,...
In general,
(m o (m-1) -
Pay = 220 PhgPnj-s’ - 0,1,... (2.3.5)

‘The numerical density function is then:

ffl';‘) - pfl‘;)/A 5 =0,1,... (2.3.6)

The numerical distribution function can then by computed by setting

Fgm)(o) = 0.0, and solving recursively
F® ) = F W) + 4 [ ™)+ £ M 50)] (2:3.7)

fOI‘ ,j = 1,2,.-0-
The computations for the numerical density and distribution functions

for the sum-range were carried out on a computer using double precision
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throughout. Table 2.1 gives the results for n = 8, 10, m = 2,3,
rounded to four places.

it was decided to check the results of Table 2.1 by using Burr
aistributions to approximate the four distributions given above. In
order to do this the first four moments of each sum-range distribution
must be mﬁtched. Let o and ah:Rn represent the skewness and kurtosis

3:Rn
of range Rn’ respectively. Then

m
E(Snm) = £ E(Rni) =m E(Rn)
i=1l
: m _ 2
Var (Sng:)= ifl Var (Rni) =mag
. a,.R
g8 - 3:'n
: JE
a R - 3.0
_ “h:ip
ah:snm - + 3.0

L.R for n = 8, 10, as given by

2
Table 2.2 gives E(Rn), 9. 5 Oaup s and o
“n n

Fn

Harter and Clemm (1959).

Table 2.2

Moments of R , n = 8, 10.

2
n E(R,) %R, ?3:R_ %:R_
8 2.8472 6721 .4o73 3.1838

10 3.0775 .6353 .3976 3.1998



Table 2.1. Numerical Density and Distribution Functioms for the Sum-Range. -

(2) (2) (3) . (3)  (2) (2) (3) (3)
Sm fa Fg .  fg° Fg Hi50 Fig" fio” Fio
1.700 0 0 0 0 0 0 0 0
1.80 .0001 | ; , :
1.90 .0001 | | ' ; ! !
2.00 .0003 v g i i : 3 .
2.10 .0004 .0001 - . ! . I !
2.20 .0007 .0001 | | : :
2.30 .0012 .0002 i . .0001 ;
2.40 .0018 .0004 : i .0001 ; i
2.50 .0028 .0006 i .0002 (O
2.60 .0041 .0009 i .0004 .0001 |
2.70 .0053 .00l4 ; .0007 .0001 .
2.80 .0082 .0021 3 . .0011 .0002 ‘
2.90 .0113 .0031 i g .0017 .0004
3.00 .0152 .0044 l ; .0025 .0006
3.10 .0202 .0062 | ' .0037 .0009 ;
3.20 .0263 .0085 i .0054 .0013 =
3.30 .0337 .0l15 1 { .0077 .0020
3.40 .0425 .0153 ; .0106 .0029 ! ‘
3.50 .0527 .0201 .0001 ; .0144 .0041
3.60 .0645 .0259 .0001 X .0193 .0058 |
3.70 .0778 .0330 .0001 g .0253 .0080
3.80 .0926 .0415 .0002 7 .0326 .0109
3.90 .1089 .0516 .0003 .0001 .0414 .0146
4.00 .1264 .0633 .0004 .0001 .0518 .0193
4.10 .1449  .0769 .0006 .0001 .0638 .0250
4.20 .1643 .0924 .0008 .0002 .0774 .0321
4.30 .1843 .1098 .0011 .0Q03 .0927 .0406 .0001
4.40 .2044 .1292 .0015 .0004 .1095 .0507 .0001
4.50 .2245 .1507 .0G21 .0006 .1278 ,0625 .0001
4.60 .2640 ,1741 .0028 .0009 .1473 .0763 .0002 -
4.70 .2627 .1994 .0037 .0012 .1677 .0920 .0003 .0001
4.80 .2802 .2266 .0048 .0016 .1887 .1093 .0004 .0001
4.90 .2961 .2554 .0062 .0021 .2100 .1298 .0006 .0002
5.00 .3102 .2857 .0080 .0029 .2312 ,1518 .0009 .0002
'5.10 .3221 .3174 .0101 .0038 .2519 .1760 .0012 .0003
5.20 .3318 .3501 .0127 .0049 .2717 .2022 .0016 .0005
5.30 .3389 .3836 .0157 .0063 .2901 .2303 .0022 .0007
5.40 .3435 .4178 .0194 .0081 .3068 .2602 .0030 .0009
5.50 .3455 .4522 .0236 .0102 .3214 .2916 ..0040 .0013
5.60 .3448 .4868 .0284 .0128 .3338 .3244 .0052 .0017
5.70 .3417 .5211 .0340 .0159 .3435 .3582 .0067 .0023
5.80 .3362 .5550 .0403 .0196 .3505 .3929 .0086 .0031
5,90 .3284 .5882 .0474 .0240 .3546 .4282 .0109 .0041
6.00 .3187 .6206 .0552 .0291 .3559 .4638 .0137 .0053
6.10 .3072 .6519 .0639 .0351 .3544 .4993 .0171 .0068

27



#(3)

.0001

(2) (2) 3) L3 (2) _(2) (3)

m__ fg " Fg' g Fg flo. F1o” fio Fip
6.20 .2942 .6820 .0733 .0419 3501 .5345 0210 .0087
6.30 .2799 .7107 .0834 .0498 .3433 .5692 .0256 0111
6.40 .2647 .7379 .0943 .0587 .3342 .6031 .0309 .0139.
6.50 .2488 .7636 .1058 .0687 .3229 .6360 .0370 .0173
6.60 .2324 .7877 .1178. .0798 .3099 .6676 .0438 .0213
6.70 .2159 .8101 .1303 .0922 .2953 .6979 .0516 .0261
6.80 .1994 .8309 .1431 .1059 .2796 .7266 .0601 .0316
6.90 .1831 .8500 .1562 .1209 .2629 .7533 .0695 .0381
7.00 .1672 .8675 .1693 .1371 .2457 .7792 .0798 .0456
7.10 .1519 .8834 .1824 .1547 .2281 .8029 .0908 .0541
7.20 .1372 .8979 .1952 .1736 .2106 .8248 .1026 .0638
7.30 .1234 .9109 .2076 .1938 .1932 .8450 .1150 .0746
7.460 .1103 .9226 .2195 .2151 .1762 .8635 .1279 .0868
7.50 .0981 .9330 .2307 .2376 .1597 .8803 .1413 .1002
7.60 .0869 .9423  .2411 .,2612 .1440 .8955 1550 .1151
7.70 .0766 .9504 .2505 .2858 .1291 .9091 .1689 .1313
7.80 .0671 .9576 .2589 .3113 .1151 .9213 .1827 .1488
7.90 .0586 .9639 .2660 .3375 .1021 .9322 .1964 .1678
§.00 .0509 .9694 .2719 .3644 0901 .9418 .2097 .1881
8.10 .0440 .9741 .2764 .3919 .0791 .9502 .2225 .2097
8.20 .0379 .9782 .2795 .4197 .0691 .9576 .2346 .2326
8.30 .0325 .9817 .2813 .4477 .0600 .9641 .2458 2566
8.40 .0277 .9847 .2816 .4759 .0519 .9697 .2561 .2817
8.50 .0235 .9873 .2805 .5040 .0447 .9745 .2651 .3078
8.60 .0199 .9894 .2781 .5319 .0383 .9786 .2729 .3347
8.70 .0168 .9913 .2744 .5595 .0326 .9822 .2793 .3623
8.80 .0141 .9928 .2695 .5868 .0277 .9852 .2842 .3905
8.90 .0118 .9941 .2634 .6134 .0234 .9877 .2877 4191
9.00 .0098 .9952 .2563 .6394 .0197 .9899 .2896 .4480
9.10 .0081 .9961 .2483 .6647 .0165 .9917 .2899 .4770
9.20 .0067 .9968 .239%4 .6890 .0137 .9932 .2887 .5059
9.30 .0055 .9974 .2299 .7125 .0114 .9945 .2861 .5346
9.40 ,0045-. .9979 .2198 .7350 .0094 .9955 .2820 .5631
9.50 .0037 .9983 .2093 .7565 .0078 .9964 .2767 .5910
9.60 .0030 .9987 .1984 .7768 .0064 .9971 .2700 .6184
9.70 .0024 .9989 .1873 .7961 .0052 .9976 .2623 .6450
9.80 .0020 .9991 .1761 .8143 .0042 .9981 .2536 .6708
9.90 .0016 .9993 .1650 .8313 .0034 .9985 .2440 .6957
10.00 .0013 .9995 .1539 .8473 .0028 .9988 .2337 .7195
10.10 .0010 .9996 .1430 .8621 .0022 .9990 .2228 .7424
10.20 .0008 .9997 .1324 .8759 .0018 .9992 .2115 .7641
10.30 .0006 .9997 .1221 .8886 .0014 .9994. .1999 .7847
10.40 .0005 .9998 .1122 .9003 .0011 .9995 .1880 .8041
10.50 .0004 .9998 .1027 .9111 .0009 .9996 .1762 .8223
10.60 .0003 .9999 .0936 .9209 .0007 .9997 .1643 .8393
10.70 .0002 .9999 .0851 .9298 .0006 .9998 .1527 .8551
10.80  .0002 .9999 .0771 .9379 .0004 .9998 .1413 .8698
10.90 .9999 .0695 .9452 .0003 .9999 .1302 .30834
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- £(2) (2) (3) (3) (2) (2) 3) .(3)
m  fg  Fg £ FgT £150 Figt £00 B
11.00 .0001 1.0000 .0625 .9518 .0003 .9999 .1195 .8959
11.10 .0001 © .0560 .9578 .0002 .9999 .1092 .9073
11.20 .0001 .0500 .9631 .0002 .9999 ,0995 .9178
11.30 .0001 . .0445 .9678 .0001 1.0000 .0902 .9272
11.40 .0000 ' .0395 .9720 .0001 {  .0815 .9358
11.50 , ' .0349 .9757 .0001 . .0734  .9436
11.60 : i .0308 .9790 .0001 | .0658 .9505
11.70 , ' .0270 .9819 .0000 ' ,0538 .9568
11.80 i . .0237 .9844 .0524  .9623
11.90 ‘ ©.0207 .9866 I .0465 .9673
12.00 ' .0180 .9886 L0411 .9716
12.10 ©.0156 .9902 .0362 .9755
12.20 .0135 .9917 . -~ .0318 .9789
12.30 © .0116 .9930 i | .0278 .9819
12.40 ! .0100 .9940 ; I .0243 .9845
12.50 " .0086 .9950 .0211  .9867
12.60 .0073 .9958 é ! .0183 .9887
12.70 | L0063 .9964 i 0158 .9904
12.80 | .0053 .9970 ; .0136 .9919
12.90 I .0045 .9975 5 [.0117 .9932
' 13.00 ©.0038 .9979 ; . .0100 .9942
13.10 ' .0032 .9983 i | L0085 .9952
13.20 . .0027 .9986 | i .0072 .9959
13.30 P .0023 .9988 , ,  .0061 .9966
13.40 . .0019 .9990 ; | .0052 .9972
13.50 ‘ .0016 .9992 ! 5 .0044  .9977
13.60 .0013  .9993 ' i .0037 .9981
13.70 .0011 .9995 g I .0031 .9984
13.80 . .0009 .9996 ! ' .0026 .9987
13.90 i .0007 .9996 s :.0021 .9989
14.00 .0006 .9997 ! i .0018 .9991
14.10 .0005 .9998 i .0015 .9993
14.20 .0004 .9998 | .0012  .9994
14.30 .0003 .9998 .0010 .9995
14.40 .0003 .9999 .0008 .9996
14.50 .0002 .9999 i .0007 .9997
14.60 .0002 .9999 .0006 .9997
14.70 .0001 .9999 , . .0004 .9998
14.80 . .0001 .9999 ; : .0004 .9998
14.90 ! .,0001 1.0000 ! .0003 .9999
15.00 ~.0001 : .0002  .9999
15.10 .0001 l .0002 .9999
15.20 .0000 : .0002  ,9999
15.30 ! | ©,0001 .9999
15.40 , . 5 ! ' .0001 1.0000
15.50 | | a ! | .0001 |
15.60 - ! : | ; | .0001 l
15.70 \ i . .0001
15.80 v v v v v v .0000 ‘
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, and @, for n =8, 10, m = 2, 3,

S

Table 2.3 gives E(sm) oG >0

nm 3:Snm

Table 2.3.

Moments of the Sum-Range Sm? P = 8, 10, m = 2, 3.

Set n m E(S_ ) o a,. ooy,
_ nm Sem 3:5 u.snm
1 8 2 5. 6944 1.1594 .2880 - 3.0019
2 8 3 8.5416 1.4200 .2351 3.0613
3 10 2 6.1550 1.1272 . 2811 3.0999

L 10 3 9.2325 1.3805 .2295 3.0666

Table 2.4 gives the parameters c and k necessary for a Burr distribution
to match the above four sets of ¢, and Q), - The mean M and standard

3

deviation S of the Burr distributions are also given.

Table 2.4,

Burr Distribution Parameters to Approximate
the Sum-Range Distributions

Set c k M s

1 3.4720 6.6382: 538  .1838
2 3.7001 6.3773 .5625 .1822
3 3.5383 6.3561 .5499 .1857

’4 3.7527 6.197€ .5715 .1831
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7

From the above tables it should be clear that,7éxcept for location,
(2.3.5) and (2.3.6) below approximate the four sum-rénge distribution
and density functions, respectively, simply by substituting in values

from the above tables:

: sx \° 1K
F(x)=l-[1+(——) ] , X >0 - (2.3.5)
o‘ —
S
=0 Sx c-1 XS0
. cksS k — )
%
f(x) = , X 20 (2.3.6)
c-, k+l
S5x i
°s|:l+('5_)_‘
S
£(x) =0 , X <0
To correct for differences in location, let
M g

S

‘u=x+ E(§) - 5

Then

Pls , <ul = F(x).
The Burr approximationé for the sum-range distributions and dcnsitvic.
were quite close to the numerical distributions and densities obtainca
by the convolution technique. For example, the maximum difference
between the two methods for 510’3 was .00k for the distritfition function
and .007'for the density function. Tables for the Bufr approximations

"~ will not be given, however, since Table 2.1 gives a.good approximation
to the numerical sum-range distribution. The Burr distributions did

provide an excellent check, however, on the validity of the convolution

results.
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2.4 PForm of the Range Test

Whenever m ranges are compﬁted from s sample of size N = mn, a
problem arises as'to_the actual forﬁ of the range test. The two logico”
possibilifiéé are:

a)  Let the range test be o the form R <c, T, and

require all m ranges to be acceptable;

m
b) Letsnm=.2
i=1

, . ,
Rni’ and require Snm-f c, T as the range

test.
It is not clear without further investigation as to whether plan (a)
or plan (b) is "best" in some sense. Since the range test is a
measure_of the variability of our process, we will define "best" to
be that plan which has the lowest type I and type II errors, for a
given sample size. That is, we want to accept with high probability
processes with low variability, and to reject with high probability
those proceésés with high variability. Variability will be classified
in terms of the process tolerance T, with "low" and "high" to be
determined shortly.
Because the m groups of n samples are chosen at'random,

';[Rn}fcz T) = ... =PR <ec,T] .

Hence

P[(Rnlfcz TYN...N (anfcz 7))

PR, <c,T] - ... - PR ~<ec,T]

[P[Rnl <ec, 71}"
PR, <c, TI" | o (2.k.1)
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Hence the probability of acceptance under plan (a) is (2.4.1). Tables;.
of the sample range are given by Harter and Clemm (1959). The :--: - .
probability of acceptance under plan (b) can be oﬁtained from teble.:-
2.1, which we computed for this purpose.

Since the variability of our process will be classified in terms‘of
the tolerance T, we will assume T = 1 without loss of generality. It
was shown in Chapter I that an acceptable standard deviation 6 could be
taken as T/S or less, while ¢ > T/€ would be excessive. We wish'to
subject our range test to distributions with variabiiity from quite
low to excéssive. “Hence a.reasonable range for o would be from, say,
T/15 to T/4, since T/15 provides very low variability, while o = T/4
is excessivé.» Therefore, let cﬁ = .055 + .0, § = 1,2,...,20. Each
Qj represents the standard deviation of a hypothetical process. By
considering various levels of ‘5’ we can compare the acceptance
probabilities of plans (a) and (b). At the same time, since we know
whether or not the standard deviatioﬁ cﬁ can be considered excessive,
we can estimate and compare types I an@ II errors for the two plans.

Equation (2.4.2) below gives the probability of acceptance for

the sample range, given qj .

PR, <c, T | o= o ] (2.4.2)

(T=1) =P[R <c, | o= o ]

.=P[Rnfcz/cj | o= 1]

This is necessary since the Harter and Clemm tables assume o = 1. Since

the author has already assumed ¢ = 1, P[Snm~5 cé] can be read directly
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from teble 2.1, interpolating when necessary. Again, we will let n = 8,
10, m = 2, 3.

Numerous values for c, and cé were considered for various combinations

of (n,m). Only those which seemed of interest (i.e., gave maximum
reduction in error types I and II for a given sample size, or
differentiated between plans (a) and (b)), however, will be given here.

In later chapters three ranges»of size ten each is fecommehded in most
cases, SO0 we will emphasize this combination. Table 2.5 gives a direct
comparison of the OC curves of plans (a) and (b) for the four combinations
of (n,m). A single range of size ten is also given to indicate the
improvement gained by considering m subgroups. Five decimal places

were carried throughout the computations, although only two are given

in the table.

In order to check on type I error and type II error, a fuie is
needed to distinguish between "good" and "bad" dB values. After
considering the various possible upper bounds on o, it was clear that
the set A = { gk ‘ GX'S .125 T} includes the CB values which generally
could be classified as acceptable. On the other hand, set
B={ gk | 9k'2 .185T} clearly contains unacceptable cﬁ values. For
set ¢ = { o, 1 125 Tf g, < 185 T} , our primary interest is that the
OC curve reach its maximum slope within this interval, and drop from a
high acceptance probability to a low acceptance probability at the
respective interval end points. By dividing each OC curve into three

areas according to sets A, B, and C, we may conclude after careful study



Table 2.5. Comparison of the OC Curves of Plans (a) and (b) for various
n,m Combinations.

| m=3,n=10 ‘w3, 08 ‘n=2, n=10|uw=2, n=8 L:;}o

| i c, =ic, —!cz =ley =y ={ey =icy —icz =c, —icz =le=c,
Set‘ i '1.35@1.40i1.45 .58 1.30! .55..933! .55..867! .55]|=.50
1.065:1.00 1.00 1.00 1.0011.00 1.00 1.00 1.00.1.00 1.00 1.00
'.o75j1.oo 1.00 1.00 1.00:1.00 1.00.1.00 1.00 1.00 1.00 1.00
:.085.1.00 1.00 1,00 1.00 1.00 1.00 1.00 1.00 1.00 1.00:1.00
A .0951.00 1.00 1.00 1.00{1.00 1.00 1.00 1.00°'1.00 1.00 .99

.-105: .99 1.00 1.00 .99 .99 .98 .99 .98, .98 .99 .97
;-115 .96 .98 .99 .96 .97 .95 .95 .95 .9 .97 .93
-125 .87 .92 .95 .90 .90 .89 .87 .89 .86 .92 .87
.135 .72 .80 .86 .80 .78 .79 .76 .79, .74 .85 .79
145 .54 .63 .72 .67 .63 .66 .61 .67 .63 .76 .70
C |.155. .37 .46 .55 -.52. .47 .53 .47 .54 .48 .65 .60
'.165. .23 .30 .39 .38 .33 .43 ,3& .42; .37 .57 .50
175, .13 .19 .25 .26 .22 .29, .24 31! .27 .4h .42
©.185, .07 .11 .16 .17, .14 .20 .16 .22 .20 .34 .34
1.195§ .04 .06 .09 .11, .09 .14 .11 .16: .14 - .26 .27
{-205° .02 .03 .05 .06; .05 .09: .07 .ll! .10 .20 .22
].215; .01 .02 .03 .04 .03 .06' .04 .07°' .07 .15 .17
B {.,225. .01 .01 .02 .02; .02 .04 .03 ,05' .05 .11 .14
§.235i .00 .00 .01 .01. .01 .02: .02 .03- .03 .08 .11
1245, .00 .00 .00 .01" .01 .01 .01 .02 .02 .06 JO9
,.255 .00 .00 .00 .00¢ .00 .01 .01 .01. .02 .04. .07

™

S
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that regardless of the (n,m) combination, plan (b) is superior to
plan (a).

By emphasizing the OC curves for the four (n,m) combinations under
plén (b), we note the decrease in type I and II errors as the total
sample size increases. From a practical viewpoint, the increased
efficiency gained with iarger sample sizes must be weighed,&gainst
the cost of additional sampling. This problem will not be considered
in this thesis, although general guidelines and recbﬁmendatibné will

be presented in later chapters.

2.5 A Priori Distributions of y and o

In the acceptance sampling model (Chapter III),Vit was desirable
to see how the X and R tests operated against various a priori
distributions of u and of o, the mean and standard deviation of the
process undef consideration. In order to make‘meaningful comparisons
among the sevéral X and R tests considered, care must be taken in
selecting appropriate a priori distributions. By considering all
possible éombinations of the a priori distributions, we want to inciude
a wide variety of (p,.o) distributions. These should run from highly
satisfactory a priori distributions to undesirable ones. We are inter-
ested in how well X and R tests Aiscriminate betwegn these vérious a
prioii distributions. In constructing the distributions, however,
emphasis haé been placed on considering distributions_which are in
.some Sense out of control. The reason for this is quite simple: once

assurance has been given that desirable distributions are readily



37

accepted by the X and R tests, we are primarily interested in how.well
undesirable distributions are recognized by the tests, and corrective
action taken.

~ In all, nine a priori distributions of p and seven of o were
_developed, or 63 possible»cdmbinations. Four general types of
distributions were used: uniform, triangular, normal, and nonfnormal
Burr. Discrete levels of , and o were chosen, with y levels symmetric
about o = O (bias will be considered in Chapter III), and o levels

corresponding to those discussed earlier in this chapter:

b= 028 - .01, i=1,...,18

024+ .01, i=-1,...,-18

and

o. = .055 + .0lj, §j =1,...,20

J

Table 2.6 gives seven of the discrete distributions considered for p.
Distributions (8) and (9) were computed directly from a Burr distribution,

given in (2.5.1), which has mean = O, variance = 1, ay = 401, and

al'. = 3, 106.

5°(t) =1 - [ 1+ (L0786 + .16293 £)2-8977710:00 (5 5 1)
By setting

s

g, == , i%1,..., £18,

i o :
and letting

=10, .20 '

two discrete non-normal distributions were constructed. The discrete
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Table 2.6. pi=P (level ui occurring) for Seven a Priori u Distribu-
tions, i = 41,...,+18.

W Distributions

1 2 3 4 5 6 7

i M uniform triangle N(0,0=.10) triangle uniform N(0,0=.20) uniforn
+1+.01 .10 .115 .07935 .06250 .05 .04290 .03333
+2+.03 .10 .100 .07615 .05833 .05 .04255 .03333
+3+.05 .10 .085 .07045 .05417 .05 .04160 .03333
+ 4 +.07 .10 .070 .06235  .05000 .05 .04040 .03333
+5+.09 .10 .055 .05320 .04583 .05 .03980 .03333
+ 6 +.11 0 .040 .04360 ..04167 .05 .03695 .03333
+7 +.13 .025 . .03430 .03750 .05 .03470 .03333
4+ 8 +.15 ; .010 .02600 .03333 .05 .03240 .03333
+ 9 +.17 ' 0 .01890 .02917 .05 .02995 .03333
+10 +.19 ? ' .01320 .02500 .05 .02735 .03333
+11 +.21 : .00880 .02083 0 .02480 .03333
+12 +.23 7 .00570 .01667 : .02220 .03333
+13 +.25 ! .00350 .01250 : .01970 .03333
+14 +,27 ! : .00210 .00833 - .01725 .03333
+15 +.29 i .00130 .00417 f .01510 .03333
+16 +.31 . i .00060 0 ; .01290 0
+17 +.33 ' j .00040 ! .01100 ;
+18 +.35 . ¢ .00010 < wr .00935 -
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Table 2.7. qj = P (level cj occurring) for Seven a Priori o Distribu-

tions.
o Distributions
34

1 2 3 4 5 6 7

j 0j uniform triangle normal wuniform triangle normal wuniforn
1 .065 .20 .23 .1587 .10 .100 .0834 .05
2 .075 .20 .20 .1523 .10 .095 .0828 .05
3 .085 .20 17 .1409 .10 .090 .0809 .05
4 .095 .20 14 1247 .10 .085 .0786 .05
5 .105 .20 .11 .1064 .10 .080 .0756 .05
6 .115 0 .08 .0872 .10 .075 .0719 .05
7 .125 i .05 .0686 .10 .070 .0675 - .05
8 .135 ! .02 .0520 .10 .065 .0631 .05
9 .145 ; 0 .0378 .10 .060 .0582 .05
10 .155 , _ .0264 .10 .055 .0532 .05
11 .165 ] .0176 0 050 .0482 .05
12 .175 ! . .0114 .045 .0431 .05
13 .185 ; .0070 .040 .0383 .05
14 .195 : : .0042 : .035 .0335 .05
15 .205 ’ .0026 .030 .0293 .05
16 .215 : .0012 ; .025 .0251 .05
17 .225 : : .0008 ; 0 0214 .05
18 .235 i . .0002 ; .0182 .05
19 .245 f _ 0 : .0151 .05

20 .255 " v 4 v v .0126 .05




Table 2.9. A Priori Values for ¢, for 49 (it,0) Distributions.

E
Dist. Dist. Dist.
for for for .
- °E U o CE T %
1 1 1036 3 4 .1513 5 6 .1826
1 2 .1063 35 .1641 5 7 .2055
1 3 .1191 3 6 1732 6 1 .1876
1 4 .1274 3 7 .1972 6 2 - .1891
1 5 1424 4 1 .1529 6 3 .1966
1 6 .1527 4 2 .1548 6 4 .2017
1 7 .1795 4 3 .1639 6 5 .2115
2 1 .1091 4 &4 .1700 6 .6 .2186
2 2 L1117 4 5 .1815 6 7 .2381
2 3 .1239 4 6 .1897 7 1 .1934
2 4 .1319 4 7 .2119 7 2 .1949
2 5 1464 5 1 . 1440 7 3 .2021
2 6 .1565 5 2 .1460 7 4 .2071
2 7 .1827 5 3 .1550 7 5 .2166
31 .1319 5 4 ~.1619 7 6 .2236
3 2 1341 5 5 .1740 7 7 2427
3 3 .1445

L2
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CHAPTER IIT

ACCEPTANCE SAMPLING

3.1 Introduction

One of the fundamental problems in quality control is: for a given
process, how does one decide systematically whether to accept or
reject the output of that process? Short of sorting the output 100
percent, a sampling procedure is -usually implemented, with the process
output accepted or rejected on the basis of some criteria.applied to
the sample. ‘When the actual process is not close to. those deciding
whether to accept or reject, the procedure is often calledv"acceptance
sampling”. For example, the problem may be to determine whether a
shipment of ﬁarts manufactured by another concern is acceptable to you..
The aim of the sampling procedure should be to provide assurance that
the overall distribution of parts will be sétisfactory.

Ideally we would like to develop a technique which would precisely
determine any underlying process diétribution. Because of the multitude
of different process distributions which can occur;_however, determining
a general distribution covering all possible typés-of process
distributions and yet specific enough to be of some practical use
seemed improbable at besf. Ihstead emphasis has beeﬁ placed on controlling

the moments of the a posteriori process distribution. Evans. (1967)
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discusses the use of numerical integration techniques for obtaining
the moments of a system in order to set statistical tolerances. The
author's reseaich to daté has been limited to controlling the firs:
four moments, which is sufficient in most practical situations. How
one controls the moments will be discussed in detail’following a brief
discussion of a useful method of finding the best compromise among the

various X and R tests considered for a given sample size.

3.2 Probability of Acceptance

In addition to controliing the first four moments, anothexr &ritcrion
used in finding the best compromise among the various X and R test
combinatidns_conéidered, for a given sample size, was to consider the
probability of making an acceptance decision. Such a decision may be
considered at two levels. For a particular lot, wiﬁh’lot mean w and
| standard deviation o, we may find the probability ofvaccepting that
particular lot. By comparing the OC curves for various f and R test
combiﬁatidns and various sample sizes, we can study the risks of types
I and II error involved;_for a particular lot,

A second acceptance decision criterionywould be ‘an average
probability of acceptancé over maay lots; This allows one %o judge
whether the process distribution itself is in some sense desirable.
Such a judgmént should of course émphasize the outgqing quality of the
process after testing and possible sorting of rejeéﬁed macerial hes
occurred. We will investigate the average probability of écceptance

over many lots, assuming various process distributions, each with a kno=:

f
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- mean distribution fl(u) and standard deviation distribution fz(c);
Using this criterion along with an investigation of the first four
outgoing momepts, we can then find the best compromise among the
various X and R test combinations considered, for a given sample size.
We of course want to reduce to a mipnimum both the average probability
of rejectihg aiwell-controlled process distribution and the average
probability of acéepting a badly-coﬂtrolled or erratic distribution.
We will do this by subjecting several X and R test combinations to

the 63 a priori distributions of p énd O given in Chapter II, and then
selecting an X and ﬁ combination on the basis of satisfactory types

I and II error. To formulate this, let:

fi(p) = density function of the process mean
fz(o) = density function of the process standard
deviation o
Pa = average probability of making an acceptahce
i decision, for a process distribution with khown
£, (w) £,(0). |
P(é|’p,o) = probability of accepting a process, given that

it has mean p, standard deviation ¢

Then,in general
P, = I jo P(a | 1y0) £;(n) £,(0) do ay - (3.2.1)
W

Rather than solve (3.2.1) for P, in general, we will consider only the

discrete case:
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P = ¢ z Pla | w, o,)p, q. ' (3.2.2)
®  al1, all S M
i J
’ o s th .
where p; = probability of the i |, level occurring,
qy = probability of the Jth o level occurring.

Tables 2.6 and 2.7 provide the {pi} and {qj}, respectively.
How do we evaluate P(a | by o G'j)?

probability of accepting on the X

Let Pr(a | wys OJ)

test, given B 5 oj.

probability of accepting on the

PR(a l“’i’ OJ)

range test, given Ms 3 Oj'

Now, the range test is invariant under changes in location, sc with

fixed o,
e 53

PR(a | by o oj) = Pp (a | oj)
Our requirement is that a process sample pass both tests, so:

Pla | s o) = Prla |y, o) ~ Ppla | o)) (3.2.3)
where (3.2>.3) is based on the assumption that the sample X and R are
independent. Daly (194%6) proved that X and R aie stﬁtistically
independent if the underlying process distribﬁtion from which the
sample is taken is a normal distribution. The validity of (3.2.3)
is‘unknown_for non-normal distributions; however, it should give - a
reasonable approximation for P(a l B °;j) in most practical situations.
One possible area of future research might be to determine the effects

of non-normality on (3.2.3).
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Consider now the evaluation of Pi(a [ By s qj). From the Central
'Limiﬁ_Theorem it is well known that as the samplé size N increases,
the distribution of X = .g Xi/N tends to normality. This is true of
almost all underlying pr;Ziss distributions. Since we will be
considering sample sizes from ten to thirty, it is reasonable to
aséume the distribution of X to be normal. In a later section of
this chapter, however, the effects of non-normality will bé investigated

with the help of a Burr distribution. For the purposes of illustration

now, hdéver, we assume X has a normal distribution. Thus

P;E(a ‘ My o GJ) | _ (3.2.4)

It

P (acceptance on X test | by o 05)

= P(p.o - ClT SXSp.O + clT \ By Gj)

where b, 8nd T are known constants, and ¢, is to be determined.

1
(3.2.4) may be written as:

Bt e, T ,
Zog/N

o) 1l

I e

) T J2xn c&ﬂ/ﬁv

=

(3.2.5)

X—p.i

C.
J

iet y = ( ) /N

Then (3.2.5) gives

U 8/
I -e—i-/— dy - (3.2.6)



48

where
. 15 - B, + C T
U= ( o] ol 1 )\/N
J
: b= W - c T
L=(° ! ?)m
, . O'J_ v

Denoting the standardized normal distribution function by B(t), we have

(e 1w o) = (3.2.7)

¢, T

(2T ] (BT

o)
J
Without loss of generality we can specify By = Oand T = 1.0, reducing

(3.2.7) to:

ete Lo o) = 0 [( o) ] - o [( 252 ]

which can easily be evaluated f'or-knovin values of by 5 oJ.’, N, and

M-
a,
O

specified levels of cy

In Chapter II the range test was discussed extensively. Depending

on the sample size N, the range test has the form RN < czT or
m

¢
ifl Ry =2 czT. Hence

PR(a | oj) = P(RNSCZT | cJ.)

H%$c§ﬁ3|o=n,

values of which mey be found in Harter and Clemm. (1959); or
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- I/
Pp(a l_oJ.) = P ( E R, <egl | oj)

m 2 , .
Pz Ry st fo=1)
i=1 J .

values of which may be found in Table 2.1.
It is npw possible to compute Pa’ ﬁhe overall probability of
aécepting the output of a process distribution: .
P" T b1, a1, Pim(a ugoo) By Log) 2y gy
1 J
where Pz (a | by 5 qj) and PR(a | CS) are given above, and D> q are

Xy

given in Tables 2.6 and 2.7, respectively. Various levels of c, were
considered in order to find the best compromise 1 level for a particular
sample size N which minimized the types I and IT error. The calculations
given by Table 3.1 assume N = 10, the smallest sample size considered;

X normal; and.consider 49 P> qj combinations, although the.table includes
only 16 combinations. The p and o a priori distributions, denoted by

Py and qj, respectively, are given in Table 3.1 under the headings of
and o. PR(a [»oj) = P(RN <.s50T | ch.), as indicated in the last column
of Table 2.5. The c, values considered were .12 (.01).17, since earlier

related work by Burr (1967a) indicated a c, value for N = 10 should lie

1

within that range. Table values are listed for c. = .13, .1k, and .15

1
only, since ¢ < .1k was judged on the basis of Pa to provide the best

compromise X test for a sample size of 10. Thus our tests are:
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a) - WP <X < b+ 14T (3.2.8)

and
) Ry, < .50T ) (3.2.9)

These criteria are slightly tighter than those derived by Burr (1967a).

Table 3.1.
Pa = average probability of acceptance, using test:
(a) u, - T sxlo Sw, t ol
(b) R, <.50T

where sample size N = 10.

Distributions Distributions
for . - for .

B o ¢g=.13 cl=.lh ¢ =15 i o cl=-.13 cl=.1’+ ;=15
1 1 98 .98 99 5 1 65 .69 T4
1 3 .90 .91 .91 5 3 .60 .6k .69
1 5 .15 .76 .71 5 5 .51 .5k .58
1 7 .53 .54 .55 p 7 .36 -39 b1
3 1 .78 .82 .85 7 1 43 k6 .50
3 3 J2 .75 .18 7 3 4o .43 hé
3 5 6L L6 .66 7 5 3 .37 .39
-3 7 43 45 Y 7 T - .21_& .26 .28

Although ¢, = .14, ¢, = .50 seemed to be the best compromise test

constants for N = 10, the results were still not considered satisfactory
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“in all cases. Errors in accepting poor distributions reached. up to

60 percent to the point that if the loss for type II error is more than
, minimal, the tests could be quite_expensive.,lThe constants-cl and c,
could be changed éo that thé»type II error was'redﬁoed, but unfortunately\
this raised’the type I error to unocceptable lovels. Since this is the
best compromlse for N = ‘10, an effort wes made to provide a more
disorlmlnatory test by increasing the sample size. We have, of course,
aﬁticipgted tois in eorlier chapters by deriving results up to N = 30.
The reader shoulgd keep in mind throughout this discussion thot-ecohomics
may play:an important part in selecting a sample size for a particular
process. Test’recommendations1will be given fordvarious sample sizes
between 10 and‘3Q;\ It should be made clear that we are not complete}y
'disoarding oeStiné?procedures wvhen N = 10. As can easiiy'be noted from
- Table 3.1, for either very‘good or very poor a.priori wand o
di.stributioxils. (i.e. W=1l, c=loru=7, o= 17, respectively), ar

' sample size of ten seems adequate. For a priori distoibutions which |
_ére somewheré betﬁeeg these two extremes, however, a more discriminatory'
test is needed Research discussed'later in this chapter indicated o
that N 30 provided a sufficient level of discrimlnatlon, although

of course the higher the sample size, the more discriminatory the teot

will be.

| 3.3 Fine Grid vs. Regular

In order to provide some assurances that the discrete dlstrlbutlons

of p and cfused in (3.2.2) give a fine enough grid to adequately compute
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P > & subset of nine of the 63 (u, o) distribution combinations were

reconsidered, letting:

Mg = 00E - 002, i=2%1,42, ..., 75

g

J

.058 + .00kj, j =1, ;..; 50

That is, the interval between My values was reduced from .020 to .00k,

and between 9 values from .0L0 to .OOk, P, was then calculated for

nine (p, o) distribution combinations using thé»f and R tests for N = 10

given by (3.2.8) and (3.2.9). Table 3.2 gives the results comparing
"Fine Grid",vs._"Regular". We note that all "reguler" probebilities

are within .003 of the "fine" values, with most within .001. In every

case the "fine" probability is slightly less than the "regular" value.

For our purposes, it was concluded that the "regular" approximation to

(3.2.1) was sufficient.

Table 3.2
P,» the Average Probability of Acceptance
1 o] l Regular Fine Grid
1 1 .985 .982
5 1 .694 .693
7 1 U463 463
1 4 .867 .866
5 L 617 617
7 L 413 413
1l 7 .539 .538
5 7 387 387
7 7 .261 261



3.4 Distribution Moments

zAt thié point it is now appropriate to introduce the use of ‘moments’
as & meaﬁs of describing a posteriori process distributions. Heving
indicated bfiefly above the néed for considering sample sizes greater -
than 10, future judgments in chodSing an X and R.test combination
will be based both on Pa’ the probability of overall acceptance, and
how gcceptéble are the first four a posteriori mohents. Two separate
classificdtions of a posteriori process distributions were used:

(&) in lot-by-lot testing, only those lots accepted

| were retained; Qr |
(b) those lots that were rejected were sorted 100 percent
to fixed limits, and then combined with the lots that-
- were previously accepted.
Class (a) would include those processes where 100 percent sorting of
rejected material is for some reason not feasible. Class (b) wouid
include most other processes.

Consider class (a), where the a posteriori distribution contains
only lots which were accepted by the X and R test‘éombination. We wish.
to derive the first four moments of this special distribution. Assume
that X has a normal distribution F(X) in ordef to facilitate an .
illustrative solution. We will later examine deviations from nornmelity
with the éid of the Burr distribution.

~ Let. uv mean of F(X)

o = standard deviation of F(X)



EL(X - .p.o_)r]p"c = rth moment of X about _, given by u, o.
Then: '
L)
_ « r 24
| (X-p) e
r
ELX - u) ]u G- I —_— ax
, -
Let
< X-u
Yy = ol
Substituting, we have:
2
r - 2
. ’ w(u’fdy-uo)ey/
BL(x - p )1 =] ay
: p‘, = 0 . /2—;[‘ .

where

gly) =
Equation (3.4.2)

e

EL(X

E[(x

EL(X

[ 4

r

= I & (v + &) gly) ay,

standard normal density function

may be evaluated for r = 1, 2, 3, k;

“o)]p,,o =80
uo)zlu’o = 02(1 + 62)
”0)3]p,o = (36 + 8°)

ch(3 - 662 +"‘>b)

o
e’
=
—
¥
Q
n

5k

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.14)

(3.4.5)

(3.4.6)



Now, let
' : r th ,
Ea[(x - ub) ] = r™ moment of the accepted product - comonts
Then: v . ciag
RS - :
E[(X-w)]-= o (3407)

j j [P(alu,O)] £ (u) £,(0) {E[(X - 1)) 5o } do dy

I j [p(a ‘ py0)] £ (u) f (cﬁ dp do

vwhere:
P(a | p,a) = probabilitj of-acceptahce, given y and o
: fl(p) = density function of
fz(d) - = density function of o

Again we consider the discrete case, so (3.4.7) Eeéoﬁes

B L(X - )] = | B | - (3.4.8)
\ r
afli afij p(e | kyo05)] By ap (BIOX - ) ]”'i’o,j}
’afl a'lzl (Pa | g, o)1 p; q

where P(a | Iy 5 qj), p; and éj are defined#as in (3.2.2). Bquation
(3.%.8) caﬁ then be evaluated to give the a posteriori moments of the
accepted product distribution. | .
We now wish to consider class (b) of the a posteriori process
distributions: ah émalgam of accepted product combined with ﬁhe
retained'préduct from rejected lots wﬁich have been 100 percent sorted.

We will cousider two limits for the 100 percent sorting: either discara
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parts which lie outside b, & %§ » or outside Mo i‘% . The purpose of
considering thg tightér limits, as discussed by Bﬁrf (19672), is to
reduce the possibility that léts which are badly off center could give
excessive values of

N - N2

1 .
2
LN S

after sorting. (Here N, = lot size, N2 = the number of parts rejected

1l
in the sorting.)

Let y_+ K T be the 100 percent sorting limits. We can assume
T = 1 without loss of generality. Again, assuming p and o to be the

mean and standard deviation of our normal process distribution F(X),

the truncated proportion of the material retained after sorting would

be:
. - QE;;JQE_
. u +K 2 2
Al k) = | ° e *° ax (3.4.9)
s Oy = —_— - A4,
Ax By - K /2x o
Define
El(x - uo)r] = _ ‘ (3.4.10)

Cx-w?
>

Mo * K _ (x - uo)r e 2o

ax ,

for given i, 63 K.

Then letting Z = Z—i;ﬁ , (3.4.10) reduces to



BLOK - w)], ok = S (3.4.11)
X
2.5 _
% . |
| (z + &) #(z) az ‘ o)
K_5 |
(o
TR
where 8= - °}

#(Z) = standard normal density function
Equationbb(3.h.-11) may be evaluated for r = 1, 2, 3, 4. For ease of

notation, 1let

u=%_5%
T o
L=--%_%
o
P= Ax(u., o, K) , given in (3.4.9)
@g(t) = standard normal density function

B(t) = standard normal distribution function

Noting P = §(U) - &(L), we have:

' E[(X - "'o)]p,o,x = o[g(L) - gu) + &P) ‘ (3.4.12)
EL(X - “o)z]p,o,x = P+ 82) pU A1) + Lo)] (3.4.13)
: 2 .
43 - K° Ko .2 -
E[(X - _u") ),k Sl Z 5" 8° + 2) 3(L)
. 2 . _ '
- ( % + B 5% 2) g(u) + (36 + 8°) P) - (3.4.14)
g

c
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4 b K3 k% Kke® 3 |
EL(X - p) ]u,o,x" o [( '?+_2'T+ 5 (3.4.15)
- o
. 3 2 2
X . K K*5 K& 3
- Easoyn) - (LKL KB
o 03 02 o
+ & i 5) o) + (3+ 687+ 8 p]
Now, let:
Bl(x - ub)r] = rth moment of our combined product:
accepted plus sorted-rejected.
Then:
E[(X - )] = (3.4.16)

M ] £ (W, ) (a s (- )1, o * (-P(alus ) JEL- YT o au

1T 200 2,00 {Palws0) + 1 - P(alu, )] Al K)} 20 a
T

In the discrete case (3.4.16) becomes
EL(X - )] = - (3.4.27)

. - .
afli aflj Piqj{P(ah-i,cJ JEL(X-p) ]ui’cj+[l—P(a.‘pi,.oj)]E[(X-ﬂo) ]ui’{-j’K}

afli aflj piq:j {P(B. ‘“‘i’od) + [1 - P(a |Pi’°j)] Ax(p'l’ oj, K)}

3.5 Evaluation of the Moments

We now would like to evaluate numerically (3.4.8) and (3.4.17).

Let
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b = .02i - .01, i=1, ... ,18
' (3.0.11)
= .021.."' ool, i="'l, ’ -18 ‘
oJ=.055+.01,j,.j_-—-l,...,20

as before, and

assuming By = 0.

In addition, [pi} and {qJ} can be found in Tables 2.6 and 2.7, respectively.

BLOX- )], o end EL(X - u,)"]
(3.4.6) and (3.4.12) through (3.%4.15), respectively, for r = 1, 2, 3, 4,

- .k 8re given by (3.%.3) through
l-bi, j’

and
Chglus o ) = (G-eg) w5 - a)
: J J

Thus we need only to solve for P(a | By o q&) in order to evaluate
(3.4.8) and (3.4.17). Now P(a | My 2 qj) is fhe pfdbability of over-
all acceptahce, given My and 03. It is equal to the prodﬁct of the
regpective probabilities of acceptance on the X and R tests, as given
in (3.2.3). The form of the range test changes as the sample size N
increases, however, as discussed in Chapter II. Since the recommended
fange test ig on

_S_ -=

nm R

) ni’ for N = nm > 10,

"MB

i
we use the sum-range probabilities given in Table 2.1 in computing
P(a | oy s 05). The X test does not change except for increased sample

size. As has already been suggested in Chapter II, we will consider
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sample sizes where n = 8, 10, m = 2, 3. We can now evaluate (3.4.8) " =}
and (3.4.17) for r = 1, 2, 3, 4. Combining these moments with P, as

the criteria, we can select the test constants c, and c¢, which provide

1- 2
the best compromise amohg those considered, for a given sample size N.
It should be noted that in the ﬁbove case, when normality is assumed,
the first and third moments are zero because of syﬁmetry. This will
not be true in general, however, as we shall see in later sections of
this chaptér. If we denote the a posteriori moments as Mr,
r=1, 2, 3, 4, we have:

n& M, = 0.

Sh = th = a posteriori standard deviation for accepted

' product,

2
M,/ M

‘and ah
Let the tésts be of the form:

M, = T iﬁ + ol ' (3.5.1)

Then Table 3.3 gives the values for (cl, cz) for various sample- sizes

N =nm, using the above discussed criteriea.

Table 3.3

Test Constants (cl, cz).

N Normal Relaxed
20 (.13, .933) (.14, .933,
24 (.13, 1.30) (.7%, 1.30)

30' (.13, 1.45) (.14, 1.45)
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N

Note more than.one set of (cl, cz) is given for a particular N. The
first set of values is recommended for "normal" usage. However, in
_the case of a "long history" of acceptances without a rejection, the
set to the right, or "relaxed" set of constants can be used. For thé
present, "iong history" will remain undefined, with the judgment of

the test user called upon in a particular situation.

3.6 Criteria Evaluation Summary

Table 3.h providés.a representative sample of Pa’ SD, and Qy used
as criteria to select the above test constants. Values for both class
(a) and class (b) a posteriori process distributions are given, where
class (a) contains only accepted material, and class (b) contains both
accepted and rejected-sorted material. Since SD is the a posteriori
‘standard deviation, a reasonable requirement would be that SD < T/6=.1€(;.
We note that for class (a), all SD values fall well below this limit.
However, under class (b) a posteriori distributions, an undesirable
a priori distribution can give: an SD value for K = % as high as .20,
in some cases not listed in these tables. If we let K = 3/8, we can
reduce this to .18, a value only slightly larger thén T/6. Evidently
Burr's conjecture (1967a) as givea in his paper was correct, and
sorting of rejected lots should be to T + %? instegd of By + % .

It should be noted here that the higher sample sizes were necessary
in order to acﬁieve a reduction in SD fbr poor d priori process
distributions; as compared to the SD obtained for a sample size of ten.

We will use this fact later in providing a general testing procedure
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Table 3.4. Summary of Criteria Used to Select Test Constants (cl,ézb
Given in Table 3,3, for Sample Sizes of 30, 24, and 20.

_ (.13, ¢,) (.14, c,)
Dist. ! 2 2 -
for | class(a) classp)K=.375 ! class (a) class(t),K=.375
N uw o ‘ Pa SD GZ SD OZ : Pa SP v OZ SD OZ
30 1 1 .998 .104 3.04 .194 3.04 :.999 .104 3.04 .104 3.04
1 3°.929 .114 3.41 .117 3.36 ;.931 .114 3.41 .117 3.36
1 6 .699 .125 3.59 .139 3.13  .701 .125 3.59 .139 3.14
2 1 .948 .106 3.06 .109 3.01 ‘.970 .107 3.05 .109 3.02
2 3 .88l .116 3.40 .122 3.25 .902 .117 3.38 .122 3.26
2 6 .663 .127 3.58 .142 3.05 .678 .128 3.55 .142 3.06
6 1 .520 .114 2.92 .172 2.25 .554 ,117 2.88 .172 2.25
6 3 .485 .124 3.24 175 2.25 ‘.516 ' .127 3.18 .175 2.26
6 6 .365 .134 3.42 .181 2.23 ..389 .137 3.36 .181 2.24
24 1 1 .996 .104 3.04 .104 3.03 .998 . .104 3.04 .104 3.04
1 3 .910 .113 3.39 .116 3.31 .913 .113 3.40 .118 3.35
1 6 .673 .124 3.60 .137 3.09 .676  .124 3.60 .139 3.11
2 1 .95 .106 3.07 .109 3.01 :.966 .107 3.05 .109 3.02
2 3 .863 .115 3.39 .121 3.20 ,-883 - .116. 3.37 .122 3.25
2.6 :.638 .126 3.58 .140 3.01 .653 .127 3.56 .142 3.03
6 1 .519 .114 2.92 .172 2.25 ;»253 .117 2.88 .172 2.25
6 3 .475 .123 3.23 .175 2.25 .507 .126 . 3.17 .176 2.25
6 6 ?.353. -133 3.43 .180 2.23 ..376 .136 3.37 .181 2.23
20 1 .1 '.993 .103 3.04 .104 3.03 :.996 .103 3.04 .104 3.03
1 3 ..902 .113 3.40 .117 3.34 {.907  .113 3.40 .117 3.35
1 6 .668 .124 3.64 .139 3.15 i.673,.124 3.64 .139 3.16
2 1.:.941 .105 3.06 .109 3.01 {.963 .107 3.05 .109 3.02
2 3 /.85 .115 3.40 .122 3,23 1.876 .116 3.37 .122 3.25
2 6 .634 .126 3.62 .142 3.06 !.649 ~ .127 3.60 .142 3.08
6 1 :.,518 .114 2.93 .172 2.25 i,552. .117 2.88 .172 2.25
6 3 ;.472- .123 3,24 .175 2.25 ;.503 - .126 3.18 .175 2.26
6 6 ..351 .134 3.47 .181 2.24 :.374 .137 3.40 .181 2.25
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“to be foilowed. Note aléo that o, is well-contrélled in every case.:

As 100 percent sorting increases, we note that o, drqps in value as

low as 2.2, thus indicating the a posteriori distiibution has a ''square-
shouldered" shape when compared to the normal distribution. This is to
be expected sihce we are truncatihg rather heavily cp undesirable
distributions. Tables of N = 1€ are not given. A complete summary of
recommendations derived from the above will be given at the end of

this chapter, after taking into account some further generalizations

of the above work.

3.7 Bias Introduction

In Lemma 1 proved in Chapter I it was demonstrated the potential
effect that a so-called bias term could have on the>total variability.
That is,‘we proved that E(X - ub)z é‘qﬁ + oﬁ + (pu - ub)z , where
(uu - ub)z is the bias term. We would like the stétistical’tests on
X and 5 to reject process distributiomsF(X) in which the bias term
is excessive. 1In this section we will speak of two types of bias.
The first is an a priori bias, where the a priori distribution of
process mean p is not centered about the nominal mean By The second,
and perhaps the more important, is an a posteriori bias, egual to the
first moment of the outgoing distribution (i.e., what we have referred
to as class (a) or class (b) distributions) about Pb' In order to reduce
confusion, we will fefer to the a priori bias as "a priori" or "off-

centered"”, and the a posteriori bias as simply '"bias".
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'As discussed in Chapter I, Burr has indicated an "acceptable" a
priori bias term might be one such that | p - My | < .o5T, where T is
M
the tolerance range for component part X. In the general case given by

e + bz_s .025 gives the upper

(1.6.9) in Chapter I, if ¢ =.05, then a
béund forgthe-variability of A and cg, assuming T = 1. That is,
approximately 91 ﬁercent of the total permissible variability remains.
If ¢ = .10, however, only 64 percent of the permissible variability
remains. Since qk and o# should normally be the major sources of
process variability, it is clear that an a priori bias of .10T is
undesirable.

In order to see how the test combination which we have just found
for a givén sample size N will reduce a priori bias, we shall consider
values of | by " M | up ta, say, .10T. It should be noted, of course,
that although we are placing particular emphasisvoﬁ both types of bias
in this section, the overall variability of the process is that with
which we are primarily concerned. We will consider é bias level less
than .0S5T as acceptable, and unacceptablevif larger than .05T. This
of course assumes that the other sources of varidbility are near the
maximum permissible. I Oy and Gh are quite low, then naturélly a
higher level of bias is permissible. We cannot expect an immediate drop
in aéceptance probability‘as the bias increases beyond the .05T 1evé1,

but we would want a rather steep slope in the acceptancs probability OC

curve to occur at that point.
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3.8 Off-Center Distributions of n

Since it is nécessary'to consider only a positive a priofi biés
when dealing with symmetric distributions of u, we will assume.ubﬁiigiam
and consider: 'E(ui) = ,02b, where b =1, 2, . . . , 5. The fifst h
seven [ui} distributions given in Table 2.6 were used, but were centered
symmeﬁricallyvabout .02b instead of My = 0. Thus the scale of the
distributions remains invariant, but the location has been‘shifted tc
.02b. Denote such a shifted density function f{(p); or in the discrete
case, by p{. We will again use the seven a priori {gj} distributions
given in Tab;e 2.7. Since we are allowing Mo to remain zero and simply
shifting tﬁe i”i} distributions in location. The actual formulation
for the X and Snm tests remains identical to our earlier work. As a
result, we mﬁy immediately use (3.2.1), (3.%.7), and (3.4.16) by simply
substituting the new p distribution fi(u) for fl(u) in all three equations.
Similarly, (3.2.2), (3.4.8), and (3.4.17) also follow directly by

p

substituting p{ and Py - Here

i = b + 1,...,118 + b

’

P: =P, . » (3.8.1)
1 Ti-b =-1,...,-18 + b

Py =Pi g0 3 =100 | (3.8.2)

for a fixed b. Note that since p, was defined earlier as a point of

zero probability, so also is p;.
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In order to indicate the increase in total a priori variability
due to the p distribution being off-centered, Table 3.5 gives a
representatiye sample of the total variation of the a priori process
distribution with no a priori bias, given by TO, compared to various
levels of positive a priori bias, given by TR. Table values are given
as:
’ 2 . 2\3

=6(c" + g
(x u-)

- 6[9§ + oﬁ + (Lom)?y%

and can be directly compared to component part tolerance T = 1, If the
table value is less than one, the total variability is acceptable,

if greater than one, the variability is excessive.

Table 3.5
Total variability of selected a priori (p,c) distributions assuming
no a priori bias (given by TO), compared with positive a priori bias up

to .02b (given by TB).\TO and TB may be compared directly to tolerance T=1

Distribution TO TB
for
o c No bias b=1 b=2 b =3 b=14 b=5
.T11 .721 . 750 .797 .857 .930
.793 .803 .829 871 .927 .995
.979 .986 1.008 1.043 . 1,090 1.148
.T67 77 .80k .8u8 .905 .OT4
.845 .853 .878 .918 .972 1.036

1.021 1.028 1.049 1,083 1.128  1.184
1.506 1.510 1.525 1.548 1.580 1.621
1.546 1.551  1.565  1.568 ° 1.619  1.659
1.649 1.658  1.667 1.68_8 1.718  1.755

AN NN
O\ H VW = o\



3.9 Criteria Evaluation SummarzﬁIncluding Bias

Table 3.6 provides a representative sample of the numerical solution
to Pa’ the overall probability of acceptance, aftér including thé a
priori bias term. That is, (3.8.1) and (3.8.2) have been used in place
of {pi] ig computing Pa for b = 1,...,5. Note that the most pronounced
drop in P_ occurs for b > 2; that is, when | by = by | > .04, the |
probability of overall acceptance of such an off-center process
distribution is significantly reduced. This occurs to séme extent évén
for process:distributions which areotherwise in good control. We
conclude that the X and S m tests will not accept a process distributicn
as‘easily whén its mean is on the average off-centér by more than .O05T.
This is aé ﬁe ‘had hoped. »

Tables 3.7, 3.8, and 3;9 give,a‘representative sample of the first
four moments of the outgoing distributions for sample sizes 20, 2k,
and 30. Both class (a) and class (b) outgoing distributions are
considered, with the a priori p distribution off-center as much as
.10T. Not all cases considered in order to find the best compromise
X and'snm'test combination can be given in the tables. As a result,
only those test combinations which seemed to provide the best compromise
among those considered are given here. It was foﬁnd that for a givep
sample siZe N, the X and Snm test com£inations selected were those given
earlier in this chapter, and listed in Table 3.3.

The characteristics of the outgoing distribution (either ciass (a)

or class (b)) were derived from the first four a posteriori moments. Let



Table 3.6.

No a Prior Bias and Then a Priori Bias of .02b.
X and R Test Comstants (c
Sizes of 30, 24, and 20.

1,c2) from Table

Dist.:
for

(.13, cz)

(;14, cg)

no

-bias

b=2

b=3

b=5

no
bias

b=2

b=3

b=5

24

20

C\-O\G\NNNHHHO\_O\O\NNNHHHO\O\O\NNNP‘HH'F :

c\uahac\uah-c\uahﬂc(u:h-asu:e‘c\uzh-a\u>r-c\g:h‘c\qu-q

.998

©.929

.699
.948
.881

. +663

520
485
«365
.996
.910
673
.945

- .863

.638

519
475

.353
.993
.902
.668
.941
.856

. .634

.518
472
.351

——

.939
.872
.656
.893
.830
.625
311
476
.359
.935
.854
.631
.890
.814
.602
.510
467
.346
931
.846
.626
.887
.807
.598
.509
464
<345

.849
.791
.595
.831
774
.582
.500
466
.351
847
.775
574
.829
.758
«561
499
457

4339

.845
.770
»571
.827
752
«558
.498
454
.338

.650
.606

.662
.616
464
467
435
.328
.649
<595
442
.660
.604
Ny
466
427
.317
.648
.591
440
.658
<599
444
465
424
.315

.999

. 931
457

.701
.970

1 .902

.678
.554
.516

. «389

.998
913
.676
.966
.883

©.653

.553

207
.376

- .996

.907

- .673
- +963

.876
649
<552
.503
.37

971
.902
.677
919
.855
.644
.545
.508

.383.

.966
.882
.651
.917
.838
.621
.544
.498
.369
.961
.873
.646
914
.832
.617
.543
495
.368

.897
.834
627
.864
.805
.606
.534
.497
.375
.894
.817
.604
.862
.789
.584
.533
.488
.362
.891

-.810

.600
.860
.783
.581
.532
485
.360

.700
.652
492
.710
.660
497
499
465
»350
.699
.641
475
.708
<647
479
498
456
.338
.698
.637
473
.705
=642

8

P,, the Overall Probability of Acceptance, Assuming First

Given for

3.3, for Sample

476 .

497
453
«337
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Table 3.7. ~Moments'of Class (a) Outgoing Distributions, Where Only
Accepted Product is Retained, Assuming a Priori Bias

is .02b. PR
N =30 Test Constants (.13,1.45)

Dist.! b =2 b =5
for ' : .
w i M SD aé Qh ! M Sp 05 %
1 11.03¢ .102 .005 3.06:.066 .095 .013 3.20
1 3.03 .113 .000 3.45°.066 .106 .019 3.66
1 61.034 .124 -.003 3.63°  .067 .118 .021 3.83
2 1,.027 .104 -.039 3.09: .063 .098 -.043 3.17
2 3 .,027 .114 -.027 3.45,.063 .109 -.026 3.59
2 6 :.027 .125 -.019 3.62 .063 .121 -.015 3.76
6 1 °.006 .114 -.021 2.92  .014 .113 -.052 2.94
6 3 .006 .124 -.015 3.24;.014 .123 -.038 3.26
6 6 .006 .134 -.011 3.43..014 .134 -.027 3.44

: Test Constants (.14,1.45)

. -.037 .103 .001 3.05;.071 .096 .0Ol4
~.037 .113 -.005 3.42 .071 .107 .0l18
.037 .124 -,007 3.61 - .072 .119 .019

.030 .105 -.035 3.08 .068 .099 -.046
.030 .115 -.,026 3.43 . .068 .110 -.029
..030 .126 -.019 3.60 ,068 .122 -.018
~.006 .117 -.025 2.88 ' .0l6 .117 -.064
1,006 .127 -.019 3.18 .016 .126 -.047

OO RN
P WH WO WM
WWRNWWWWWW
W o O~ W - DO
OO PONULNO WD

+,006 _.137 -.014 3.36 .016 .137 -.035




Table 3.7. (cont.)

Moments of class (b) outgoing.distributions, vhere both
accepted product and rejected product sort

assuming a priori bias is .02b.

70

ed to u * 3T/8 is retained,

N = 30 Test Constants (.13,1.45)

Dist. b= 2 b =5

For _

1L .G M SD 05 QL i SDh 03 QZ'
1 1 .040 .103 -.007 3.02, .099 .102 -.072 2.90
1 3 .039 .117 -.044 3.33 .097 .114 -.180 3.22
1 6 .037 .138 -.108 3.14 .089 .135 -.318 3.21
2 1 .040 .109 -.023 2.98 .098 .107 -.094 2.83
2 3 .039 .121 -.064 3.22 .096 .11S -.193 3.15
2.6 .036 .141 -.118 3.05 .088 .137 -.317 3.13
6 1 .030 .171 -.099 2.26 .073 .164 -.239 2.33
6 3 .029 .174 -.105 2.27 .071 .168 -.256 2.6
6 _6_.026 .180 -.109 2.25 .064 .175 -.269 2.35

Test Constants (.14,1.45)

1 1 .040 .103 -.004 3.03 .099 .102 -.067 2.91
1 3 .039 .117 -.038 3.34 .097 .114 -.169 3.24
1 6 .037 .138 -.102 3.15 .090 .135 -.308 3.22
2 1 .040 .109 -.020 2.99 .098 .107 -.090 2.88
2 3 .039 .121 -.058 3.23 .096 .118 -.184 3.16
2 6 .036 .141 -.113 3.06 .089 .138 -.309 3.14
6 1 .030 .171 -.100 2.25 .073 .164 ~-.239 2.33
6 3 .029 .174 -.105 2.28 .071 .168 -.256 2.37
6_6 .026 .180 -.109 2.26 .065 .175 -.269 2.36




Table 3.8. Moments of Selecited Outgoing Distributions, Assuming an
a Priori Bias of .02b, and a Sample Size of N = 24,
Test Constants Used are (.13, 1.30).

Class (a) Outgoing,Distributions_

Dist.!

? b =2 - b=>5

for ' i

W c M sD as a& bM sSD aé ah
1 1 .03 .102 .006 3.06 ;:.066 .095 .016 3.20
1 3 .03 .112 .000 3.43 ;.067 .106 .022 3.64
1 6 .03 .123 -.003 3.64 .067 .117 -.025 3.85
2 1 .027 .104 -.037 3.09 :.063 .098 -.041 3.17
2 3 ,.027 .113 -.026 3.44 '.063 .108 -.024 3.57
2 6 .027 .124 -,018 3.63 '.064 .120 -.013 3.77
6 1 .006 .114 -.021 2.93 i.014 .113 -.051 2.94
6 3 :.006 .123 -.015 3.23 ;.014 .123 -.038 3.24
6 6 ..006 .133 -.011 3.43 !.014 .133 -.027 3.44

Class (b) Qutgoing Distributions (K=.375)
.040 .103 -.007 3.02 ;.099 .102 -.071 2.90
“.039 .117 -.048 3.31 .097 .114 -.182 3.21
- .036 .138 -.111 3.12 .089 .134 -.320 3.20
-.040 .109 -.023 2.98 :.098 .107 -.094 2.38

.039 .121 -.065 3.20 ,.096 .118 -.194 3.14
.036 .141 -.120 3.04 :.088 .137 -.319 3.12
".030 .171 -.099 2.26 '.073 .164 -.239 2.33
..029 .174 -.105 2.27 '.071 .168 -.255 2.36
1.026 .179 -.108 2.25 '.0684 .175 -.268 2.35

AR NNON =
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Table 3.9.

Moments of Selected Outgoing Distributions, Assuming
an a Priori Bias of .02b, and a Sample Size of li=20.

" Test Constants Used are (.13,.933).

Class (a) Outpgoing Distributions

Dist.. b =2 ! b=5

for ! ;

oo ; M SD &3 04 i M SD L3 oa
1 11.03% .102 .006 3.06 !.067 .095 .0l9 3.20
1 3'.03% .112 .000 3.44 i.067 106 .026 3.65
1 6..033 .123 -.003 3.68 1.067 .118 .030 3.90
2 1,.027 .104 -.035 3.09 :.063 .098 -.039 3.17
2 3 .027 .113 -.024 3.44 !,064 .108 -.022 3.58
2 6 .027 .124 -.016 3.67 ,.064 .120 -.009 3.82
6 1:.006 .114 -.021 2.93 1014 (114 -.051 2.94
6 3:.006 .123 -.015 3.24 :.014 .123 -.036 3.25
6 6 . 3.47 .014 .134 -.024 3.48

1 1
1 3
1 6
2 1
2 3
2 6
6 1
6 3
6_6

i

006 .134 -.010

Class (b) Outgoing Distributions K=.375)
.040 .103 -.008 3.02 |.099 .102 -.071 2.90
:039 .117 -.049 3.31 :{,097 .114 -.181 3.22
.036 .138 -.111 3.14 :.089 .135 -.318 3.21
.040 .109 -.023 2.98 | .098 .107 -.094 2.88
.039 .121 -.065 3.20 !.096 .118 -.194 3.14
.036 .141 -.119 3.05 :.088 .137 -.318 3.13
030 .171 -.099 2.26 ;.073 .164 -.239 2.33
.029 .174 -.105 2.27 ' .071 .168 -.255 2.36

.026 .180 -.108 2.25 ; .064 .175 -.269 2.36
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M, = i th a posteriori moment,
i=1,2:3’,"'

Thén we define:

M ='M1, the a posteriori bias : (3.9.1)
sb = [, - (Mi)ZJ%
a_M3 3M2M1+2Ml
"3 (sn)3
M -4M + 6M M- 3 N
. 3 M 2 M - 34
W , (sn)u

In class (b) distributions where 100 pefcent sorting was used,

T
it was again found that sorting to the limits My * %— was better than
v .

o =2 °
 In sunmmary, using both the moments of the outgoing distribution

!

and the overall probability of acceptance as the criteria, we can
conclude that, in general, distribution biases can be controlled by

the X and Snm test combinations given in Table 3.3.

3.10 Non-Normality

Up to tﬁis point wé have always assumed the underlying process
distribution to be normal. 1In Chapter I it was mentioned that one of
the goals of this research was to initiate the investigation of the '
effects of;non-normality op the X and Snm test combinetion for a given
sample size. That is, will the tests continue to discriminate between
desirable énd undesireble process distributions wﬁen these underlying

distributions are not necessarily normal? Although not quite as



Th

significant, another question is: what is the effect of non-normal
distributions of the process'mean? Until now we have considered process
mean distributions to be uniform, triangular, or normal. We now propose
to add moderately skewed Burr distributions to this list.
Rather than considering a general process distribution assumed
to be non-normal, it was decided it would be more advantageous to
consider several specific distiibutions with varying departuédsffrom
normality. Of particular interest is the effect of skewed distribﬁtions;
i.e., a3‘% 0. By using a Burr distribution to approximate any specific
non-normsl distribution we choose, we are able to develop a procedure
by which any non-normal distribution (within the range of a Burr
distribution) may be considered as the underiying process distribution.
The same applies to the process mean distribution. Two such non-normal
process distributions were considered in this research, as well as
two non-normal process mean distributions.
We will first consider the two process diét:ibutions. For a part

dimension X with distribution F(X), let o and & .x represent the

3:X

skewness and kurtosis of X, respectively. A normal distribution will

3ix ;_0.0,~o%:x = 3.0. A positive skewness of 3.y = 1.0 is

quite large, and will not occur too often in s ptactical situation. A

have @

more likely value for a3'x would be, say, around 0.5 or less. We will

assume two values: .3 and .5, approximately. Now, for a sample

O[3:)( -
of size N from F(X), (Xl,...,XN), the skewness and kurtosis of the
_ N ,

- distribution of X= & Xi/N can be expressed in terms of ¢

and ¢ .
i h:X

3:X
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[54 X
(13.? = /“ (3.10.1)
f N
@, ., - 3.0 v
o5 = h.xN + 3.0 , (3.10.2)

for the skewness and kurtosis, respectively. For the general Burr

distribution

F(X) =1- (1+x)", x>0,c,k>1 (3.10.3)

=0 , X<o0

one can show that if ¢ = 2.8€, k = 20.0, then F(X) is a non-normal

distribution with o

. 305, ah.x = 2.90. Let N = 30. Then

3:X
| . 305
a7 = “22 = 056
e 2-9036 32, 3,00 = 2.997

We may then approximate the distribution of X with a3:i, .5 given

above by taking a Burr distribution with ¢ = 4.4k, k = 6.67. We there-
fore have two Burr distributions: one which approximates a non-normal
process distribution, say F, (X), and the other which_approximates the

X

distribution of the sample mean, say Fe (x). _
l .
- As a second non-normal process distribution we take ¢ = 2.50,
k = 13.33, which gives Qg = .508, %, .y = 3.20. For N = 30, we have:
la3zf =093

3.01
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We may appro#imate the distribution of iz by letting c = L.k, k = 5.71
in a Burr distribution. Table 3.10 gives the mean M and standard
deviation S of the four Burr distributions discussed above, in addition
tb a summary'Of'c and k values. In order to standafdize, with

p=0, o=1, for each F(t) take:

F(¢) =1 - [1- (M+8t)°)", irm+st>0 (3.10.4)
=0 ' , otherwise.
Table 3.10.
Burr Distribution Parameters
Distribution M S c k-
Fy (x) .31E .123 2.86 20.00
l,
Fr (x) .08 166 b4k €.67
1l
Fy (xX) .322 .143 2,50 13.33
» .
F (X) €32 A7k ik 5,71
2
Fx (X) and Fx (X) can then be used as process distributions replacing a
1l c :
normality assumption, and e (X) and g (X) can similarly be used as

1 2
. sample mean distributions.

A similar procedure to the above could be followed for N = 2k, 20,
in order to find Fz (x), P (X) in those cases. The resulting
1 2

distributions for Fg (x), P (X) were so close to those already derived
. 1 o .

that it was decided to simply use Fz (X) end o (X) as given above,
. 1 2 ‘



77

for N = 2&, 20. What is imﬁortant here is that the i and Snm tests
are applied td non-normal distributions, and this procedure is not
affected by using Fii(X) and Fiz(X) as given.

Considef now the distribution of the process means [pi} . We have
already used rather extensively seven discrete distributions of [pi]
given in Table 2.6 based on uniform, triangular, or normal distributions.
In Chapter II, two additional non-no;mal process mean distributions

were considered, with q, = .401 , o, = 3.11. Therefore, for the

3
derivation of the X and Snm combination tests considering non-normal

cases, all nine a priori {pi] distributions were considered, along with
the usual seven a priori [03} distributions, giving a total of 63 possible

(p,0) distribution combinations.

3.11 Test Criteria Evaluation Assuming Non-Normality

We now have indicated the procedure for considering non-normal
process distributions, sample mean distributions, and procesé'mean
distributions. We have chosen several cases of each,'but have indicated
that the procedure is not limited to these few cases. We now would like
to proceed as before in determining the best compromise among the various
X and Snm test combinations considered for a given sample size N. We
will evaluaterfa, the overall probability of acceptance, and the first
four a posteriori moments, for each of our 63 (u,c) distribution
.combinations. We again will consider class (a) and-class (b) a posteriori

distributions as previously defined, as well as whether we should sort

=3

rejected material to By £ %} limits or B X3 - The emphasis will be on



Table 3.11

Summary of o

. s O,
3.Snm h.Snm

80

: o, Q.
nm 3.Snm h‘snm
50,2 .23 to .33 3.07 to 3.23
SS 3 .20 to .26 3.04 to 3.13
50,3 19 to .27 3,05 to 3.15
(Normal) | - .28 3.10
| .24 2.06
.23 307

Included for comparison on the bottom half of Tablév3,ll are values

3:Snln 7
normal. Note that in every case the value assuming normelity falls

of a ah@ ah:snm when the underlying distribution is assumed to be
within the‘limits,computed for the non-normai case. In addition, the
limits given for the non-normal case are rather narrow for both a3:snm
and ah:snm. One can therefore conclude that the distribution of Som
assuming normality is a good approximation to the distribution of Snm
in the non-normal case. These results correlate well with earlier work
bbeurr (1955) and Burr (19€8) in which the robustness.of the range for
moderately skewed populations and small sample sizes is noted. We will,
therefore, use the tables for Snm derived in Chapter II when computing

PS (a | QB). The above suggests a rather extencive research area as
nm _

Yet basically untouched. One possible technique that this author may
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employ at some future time would be to first, extend Burr's tables
(1968) to ajzs end o« , and then to approximaté'the resulting sum-
range distribuggons by apgiopriate Burr distributions. From the
resulting approximated distribution functions, one could select
percentage points useful in extending the author's ﬁork to a wide range
of non-normal process distributions. For now,howevgi,we will limit

our interests to Fy (X) and Fy (x), for which Pg (a | 05)‘may be
v ’ 2

2 nm
approximated by the tables of the numerical distribution of Snm

derived in Chapter II.

3.12 Probability of Acceptance Assuming Non-Normality

Based on this approximation, we can now calculate Pa for various
X and Snm_teSt combinations for each of the 63 a priori (ps o)
distribution combinations. Let |

.02i - .00, i=1,...,18

By =
= .02i + .01 -9 i="l’.'.’-18
o; = .055 + .01 , j=1,...,20

Assume Fxl(x) as given in Table 3.10 is the underlying process

distribution, with the corresponding sample mean distribution Ff (x).
1

Then
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Px-(a,v | Mo oj)

PFS(' (acceptance on X test | My 2 oJ)
. |

=PFf (g = T <X <py + ol lp,i, oJ.) |

1
po + e T - . po=- e T -y
=P (L) (kT
ST oj/fﬁ Xl( cj//ﬁ )
Let
|.|.0=0,T=l.
Then:
Prla | w5, o) = | (3.12.1)
c. - p -Cc -
F (2—2) /A - Ly m
xl_( 5, ) /W] Fglt( o ) /]

which can easily be evaluated from the Burr distribution Fr (x)
’ 1

when My 2 d.’i’ ‘and N are known and c, is specified.

1
As discussed briefly earlier in this chapter, to compute the eighth

and ninth sets of p,, say [p§8)} and {p§9)], let M = .h08, § = .163,

c = 2.86, k = 10.0 in (3.10.4) and call the resulting distribution

*
& (t). Then define:

-t (B2 (BT (3122

i=+1,...,+18
.01 by

o <t (A ) -0t (B

i=+41,...,+18

'Ol) | (3.12.3)
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Here we are létting o= .10 = T/10, o= .20 = T/5, respectively, to
give the eighth [ui} distribution an acceptable variability level‘
with respect to T = 1, and the ninth {ui} distribution a clearly
unacceptable variance. . {ﬁ?} and {é?] were then corrected to sum to
one by dividing each P;» V;s bY the sum of the {pi].

We now can compute the 63 (u,c) a priori probebility distributions;

(3.12.1) gives Pi(a \ Wy s qj), while P, (a | qj) can be obtained from

S
_ nm _
the sum-range tables given in Chapter II. Hence we can compute Pa:

[N

P =L I Pga | w0 03) Pq

(a | o) p, q, (3.12.4)
® el el om JOL T

for a given set of a priori (p, o) distributions.

3.13 Evaluation of Outgoing Moments Assuming Non-Normality

We now turn to the problem of computing the a posteriori process
distribution moments, assuming the underlying process distribution is

non-normel. We will, of course, use Fy (X) and Fy (X) as previously
> ‘

defined. Two classifications of a posttriori process distributions will
again be ﬁsed, with class (a) denoting only those lots ﬁccepted, and
class (b) including those rejected lots which have been sorted 100
percent to certain limits, in addition to the accepted lots. A close
investigation of the derivations leading up to (3.4.8) and (3.4.17),
under the asSumption of normality, indicates that all that is necessary

to extend these equations to the non-normel case is a technique for

finding‘E(X . uo)r]u o the rth moment of X about o given ey 5 ‘ﬁ for
i’73
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accepted lots, and E[(X - “b)r]ui,c K defined for léts truncated by
. J ’

100 percent sorting to limits u_ + KT. All other functions in (3.k.8)
and (3.4.17) have been discussed earlier when considering P, except

Ax(pi, o,» K), and it can easily be shown to be:

- S e K
Agligs 030 K) = By ( > oy5) * By, & o) (3.13.1)

where Fy (X) is the non-normal process distribution. The immediate
N :
problem is then to evaluate E[(X - u )*] _ and E[(X - "N

- (o} pi,cs (o} ”i’OB’K
forr =1, 2, 3, L.

Two possible methods of attacking this problem were considered.
First, since we are expressing the distribution of X in terms of a Burr
distribution, one possible choice might be to evaluate the first four
moments of our Burr distributions Fy (x) and Fy (X) as briefly summarized

2

1

in the first part of Chapter II. For E[(X - uo)r] > a method of

“i’cﬁ’K
truncating the moments would be obtained. The moments could then be
expressed as functions of beta functions and evaluated from the
appropriate tables. The second possible solution to the problem involves
further approximations using the Burr distribution, and is based on the
rather intuitive assumption that as the process distribution deviates
from normaiity, so will the process moments tend to deviate from normal
moments. Taking (3.4.2) and (3.%.11), or to be more precise the
particular eqﬁations for r = 1, 2, 3, 4 following (3.4.2) and (3.k4.11),
we replace all normal distribution functions & and dehsity functions @

by F, (X) and f_ (X), the derivative with respect to X of F, (X),
xl Xl Xl
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respectively. That is, take the functional form of the first four
moments as given by (3.4.3) through (3.4.6) and (3.&.12) through (3.4.15)
and replace‘a and ¢ by Fxl(x) and fxl(x), respectively. The resulting
moments should be close approximations to the exact momenté for

moderately skewed distributions. The density function of the Burr

distribution given by (3.10.%) is:

cks (M+ st)t

[+ (M+ St)c]k-:-l

£(t) = , if M+ 8t >0 . (3.13.2)

=0 _ , otherwise

A distinci advantage of fhe second method over the first is the ease

in which method two can be implmented on a computer. This fact is quite
important, since we will be considering €3 a priori (p,o) distributions
with up‘té 360 discrete (”i’ 03) combinations for eagh a priori dis-
tribution,vplus several X and Snm test combinations and two K values.
The computer can easily be programmed to evaluate a Burr distriﬁution
(or density) function for any computed value, so the second method is
preferable tp the first because the first method involves evaluating
beta functions, which involve an integral. Mbreover, the simplicity of
the second method is appealing in cases where the process distribution
is moderately skewed, so that the approximation is likely to be a gooé
one. Finally, since it is not the purpose of this research to
investigate all possible choices of process distributions, but rather
"to give an indication of how the derived X and Snm test combinations

will react when the process distribution deviates somewhat from normality,
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' the second method of finding the a posteriori distributions seemed to
the author preferable to the first method. Again, a broad area of
additional réseﬁrch is available here for future study. The problem

of deriving moments over broad regions of non-normal process -
distributions is an important one, and perhaps could best be attacked by
using both techniques described here.

Adopting method two for now, E[(X - y )] and B[(X - 1 )"]
©" 1094 o7 “u 0 K
can be evaluated explicitly. We then can evaluate (3.4.8) for
e, [(x - ub)r], and (3.%.17) for BL(X - )], r =1, 2, 3, 4, using first
Fy (x) and F- (X), and then Fy (X) and Fg (X). Combining these a
2
posterlorl moments with P as our criteria, we again w111 select the

best comprpmise among the various constants ¢ and C, considered for a

glven sample size N.

3.1k Summary of Criteria Evaluation Assuming Non-Normality

Tables 3.12 through 3.15 provide a summary of the results for the
non-normal cases considered. TFor ease of notation, we refer to the
non-normal process distribution F, (X) and its corresponding sample
mean distribution Fii(x) as "Skew 1", and to the Fxé(X), Fiz(x)
combination as "Skew 2". All other notations should be familiar to the
reader. It should be noted that an expanded set of a priori (ws a) |
distributién_combinations is given. Sets eight and nine of {p,C} were
added, of course, tb study the effects of non-normal process mean

distributions. Sets three and six of {ui] were included in order to

give a direct comparison as to the effects of the non-normal process
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mean distributions. That is, sets three and eight were constructed
identically except for the difference in the distribution assumed, as
were sets six and nine. Set one of the {ui} was included in order to

study the effects of non-normal process distributions when compared to

earlier work in this chapter. 1In order to keep the tables to a reasonable

size, only 10 (p, o) combinations are given for each skewed distribution,

although a total of €3 combinations were considered in the research.

The following general conclusions can be drawn from the summary tables

or from untabulated results, for N = 30:

a) Both the a posteriori mean M and skewness 0., were

3
negligibly small for class (a) distributions, over all 63

(us0) combinations. All M values were within a range of
My X .00002, except for {p.i} sets eight and nine, which

had negétive M values down to -.00€6. Likewise, all a3
‘values were within O + .0002 except for {ui} sets eight

and nine, which had positive o, values up to .025. This

3
held true for both Skew 1 and Skew 2, as well as‘for the
sample sizes N considered, and hence these values are
omitted from the table summaries.

b) Both Skew 1 andSkew 2 were handled well under class

(a) distributions: SD < T/6, and 2.87 <o, < 3.%L in all

3

cases.



c) “Pa is virtually identical. to the values obteined earlier
assuming normality. The difference would increase if the
process. distribution deviated further from normality than
presently assumed, but using.f and Snm as ou:‘tests,since
they are both averages, will always cause a ﬁendency toward
normality.to occur.

d) Very little differences can be detected when comparing
lpi}.sets: three vs. eight, and six vs. nine, although a3's
for sets eight and-nine are_greater than a3's for sets three
and six, respectively. We can conclude that non-normal
process mean distributions are handled about as well as

normal oﬁes.

e) Under class (b) distributions, K = .375 provides

slightly better results for M and SD than does K = .500.
However, K = .500 does a much better job of "centering"

oq about zero than does K = .375. This holds true for
Skew 1'and 2, as well as test combinations (.13, 1.45)
and (.14, 1.145). oy, is well controlled in either case.
f) Under class (b) distributions, there is little
difference between Skew 1 and Skew 2 except in a3,

which has‘wider scattering of values about zeroc for

Skew 2 than for Skew 1. This we would expect.

88
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g) = For well-controlled, or "good", a priori (u,o)
.distriﬂutions (i.ee, p=1, 25 c0=1, 2), all,four‘moments
remain in good control, including a3.

" h) VAé the a priori (p, 0) distributions deviate more from
thesé_so-églled "good" distributions in (g), ag remains
less dnd less in conkrol. In nearly all cases, (., for

3

test combinations (.14, 1.45) is less than o, for (.13,

3

1.45). But the big reduction in a, is brought about by

3
using K = .500 instead of K = .375. The significance of
this fact will 5e discussed later in the summary.
1) Under class (b) distributions, SD < T/6 even for
K = .500.
Tables 3.14% and 3.15 reflect similar conclusioné drawn for sample
sizes N ='2h, 20. They have béen further condensed éo as not to
repeat infqrmation. For example, Pa is approximately the same for
Skew 1_and‘Skew 2, so was only given for Skew 2. Sb and Q) for class
(a) distributibns are approximately the same for Skew 1 and 2, so
are given only for Skew 2. All results for (.13, 1.30) vs. (.14, 1.30)
were approximately the same except for a3, and so are given only for
(.14, 1.30). This is not to say that the various X and S n test

combinations considered had little effect; these were again reduced to

only two choices, for which distinctions were appareht only in a3.
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Table 3.12. Summary of Test Criteria Assuming Non-normality for
» (.13, 1.45), N = 30.
Skew 1
“Class(a) i Class (b)
Dist.’ o . _ =
for : ﬁ; K= .375 _ K =.500
W 05 Pa SD A 11 SD ®y @ ‘ II SD e @
1 1,.998 .104 3.04 -,000 .104 -.001 3.04:-.000 .104 -.001. 3.04
1 3°.929 -.114 3.41 -.003 .117 -.034 3.34 -.004 .119 -.087 3.56
3 1 .800 .109 3.00.-.033 .125 -.064 2.73'-.035 .127 -.137 2.39
3 3:.745 .119 3.33'-.034 .134 .019 2.82-.037 .139 -.110 3.08
6 1 .520 .l14 2.92;-.093 .144 .228 2,34 ~-.104 .155 .055 2.48
6 3 .485 .124 3.241-.090 .149 .299 2.461-.105 .161 .103 2.58
8 1 .801 110 2.99‘—.037 124 -,026 2.76 -.039 .126 -.097 2.91
8 3 .745 120 3.32.-.038 .133 .047 2.85 -.041 .137 -.080 3.11
9 1 .508 .114 2.92'-.098 .143 .258 2.371-.110 .153 .079 2.50
9 3 .473 .124 3.24 -.095 .148 .326 2.49°-.110 .160 .124 2.60
Skew 2
1 1 .998 .104 3.04;f.000 .104 -.001 3.04.,-.000 .104 -.001 3.04
1 3 §.929 .114 3.41;-.003 .118 -.048 3.35/-.004 .119 -.097 3.57
3 1i.800 .109 3.002-.034 .127 -,054 2.70;-.035 .128 -,129 2.87
3 3 °'.745 '.119 3.33{-.035 .135 .029 2.76;-.038 .140 -.111 3.07
6 1 :.520 ..114 2.92.-.098 .146 .320 2.34:-.108 .156 .108 2.438
6 3 1.485 1.124 3.24(-.094 .150 .390 2.43 -.109 .163 .151 2.58
& 1i.801 .110 2.99}-.038 .125 -.014 2.72{-.039 .126 -.038 2.88
8 3 ,.745 .120 3.32:°-,039 .134 .059 2.80i-.042 .138 -.080 3.10
9 1 :.508 .114 2.92.-.102 .145 .347 2.38.-.113 .155 .129 2.52
9 3 473 .124 3.24 --,099  .149 .415 2.48i-.113 ,162 .170 2.61
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Table 3.13. Summary of Test Criteria Assuming Non-normality for
(.14, 1.45), N = 30.
Skew 1
Class (a) . Class (b)
Dist. - ' K = .375 : K= .500
for | . :
o, P, ? SD o, R SD oy &, o M sD oy @,
1 1-.999;.104 3.04 -.000 .104 -.000 3.04:-.000 .104 -.000 3.04
1 3 .931°.114 3.41-.003 .117 -.033 3.34 -.004 .119 -.0856 3.56
3 1 .833 .112 2.98 -.029 .126 -.072 2.74--.030 .128 -.145 2.90
3 3:.775 .121 3.29!-.030 .135 .006 2.82 -.033 .140 -.119 3.08
5 1 .554 i.117 2.88 -.088 .147 .217 2.31 -.100 .158 .051 2.45
6 3 .516.127 3.18'-.086 .152 .286 2.43 -.100 .164 .098 2,55
8 1 .835 !.112 2,97 -.033 .125 -.031 2.761-.035 .127 -.101 2.91
8 34.777;.122 3.28 --.034 .134 .037 2.85°-.037 .138 -.086 3.10
9 1 .5421.117 2.87°-.094 .146 .251 2.35 -.105 .156 .079 2.47
9 3 .505!.127 3.18 .-.091 .150 .316 2.47°-.106 .163 .122 2.57
Skew 2
1 1.:.999:.104 3.04:-.000 .104 -.000 3.04;-.000 .104 -.000 3.04
1 3°.931 .114 3.41:.003 .118 -.047 3.36j-.004 .119 -.095 3.58
3 1°.833..112 2.98:-.030 .128 -.066 2.71°-.031 .129 -.139 2.88
3 3 .775;.121 3.29 -.031 .136 .014 2.,77.-.034 .140 -.122 3.07
6 1 .554 .117 2.88 -.092 .149 .299 2.30 -.103 .159 .099 2.44
6 3°.516:.127 3.18 -1089 .153 .368 2,39 -.104 .166 .142 2.54
8 1.:.835 3,112 2,97 -.034 .126 -.022 2.73 -.035 .127 -.094 2.89
8 3,.777{.122 3.28{-.035 .135 .047 2.80'-.038 .139 -.087 3.09
9 1'.542 .117 2.87 -.098 .148 .330 2.34 -.109 .158 .125 2.48
9 3;.505 .127 3.18 -.094 .151 .397 2.44 -.109 .164 .164 2,57




Table 3.14. Summary of Test Criteria Assuming Non-normality (Skew
" . 2 Only) for Test Constants (cl,cz), N =24, 20.

N T N_= 24, Test Constant ¢2 = 1,30
o« o i (.14, c2), Skew 2
i 9 | 2 T Class (a) iClass (b)
Dist.. _ - - _
for v . ‘ K= .375 . K = .500
LI ’ P SD @ M SD N SD %,
1 1:.996 .998 .104 3.04 -.000 .104 3.04 -.000 .104 3.04
1 3-.910 .913 .113 3,40 -.004 .118 3.33:-.005 .119 3.57
3 1 .798 .831 .112 2.98 -.030 .128 2,71 -.031 .129 2.88
3 3 .730 .760° .121 3.28 -.032 .136 2.76 .-.035 .140 3.06
6 1 .519 ..553 .117 2.88.-.092 .149 2.30 -.103 .159 2.44
6 3 .475 .507 .126 3.17 -.090 .153 2.391-.105 .165 2.54
8 1 .798 .833 .112 2.97'-.034 .126 2.73:-.035 .127 2.89
8 3 .730 .761. .121 3.27 -.036 .135 2.79}-.039 .139 3.09
9 1.:.507 .541 .117 2.88 -.098 .148 2.35:-.109 .158 2.48
9 3 :.464 .496 .126 3.17°-.095 .151 2.44 °-,110 ,164 2.57
N = 20, Test Constant c2 = ,933
1 1 .993 .996 .103 3.04,-.000 .104 3.03;,-.000 .104 3.04
1 3 °.902 ©.907 .113 3.40'-.004 .118 3.33;-.005 .119 3.57
3 1 .79  .828 .112 2.98 -.030 .127 2.71°-.031 .129 2.88
3 3 .724 .754 .121 3.29.-.032 .136 2.76 -.035 .140 3.07
6 1 ..518 °.552 .117 2.88 -.092 .149 2.30:-.103 .159 2.45
6 3 1'.472:.503 .126 3.18 -.090 .153 2.40.-.105 .165 2.54
8 1 .796 ..830 .112 2.97.-.034 .126 2.73i-.035 .127 2.89
8 3 ..724 .755. .121 3.28 -.037 .135 2.79i-.039 .139 3.09
9 1,;.506;.540 .118 2.88--.098 .148 2.35;-,109 .158 2.48
9 3 _.461 ! .492 ,127 3.17 -.095 .151 2.44 .110 .164 2.57
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Table 3.15. Summary of 03 Aséuming Non-normality, for Test Constant
(cl,cz), N =724 20.

N = 24, Test Constant c, = 1.30
; Class (b)
e K = .375 : K = .500
2i:t'! (.13,c,) (1b,c))  © (l3,e)) O (Ll4,c))
0 Skew 1 Skew 2 :Skew 1 Skew 2 Skew 1 Skew 2 . Skew 1 Skew 2
1 1 -.000 -.001 -.001 -.001 ~-.001 ~-.001 :-.001 -.001
1 3 -.042 -,058 .-.041 -.057 . -.098 -.108 -.096 -.106
3 1°-.062 -.052 ~-.071 ~-.064 -.135 -.,127 . -.143 -.137
3 3 .017 .027 - .005 013 -.112 -.114 -~ -.121 -.124
6 1 .230 .322 - .218 .300 .056 .109 - .052 .101
6 3 .299 391 | .286 .369 - .101 .150 . .097 .141
8 1 .-.024 -.012 !-.029 -.021 ,-.096 -.086 ' -.100 ~-.092
8 3. .046 .057  .036 .045 « -,083 -.083  -.089 -.090
9 1§ .259 .348  .252 .331 .080 .130 ¢ .080 126
9 31 .325 415, .315 .397 . .123 .169 .121 .164
N = 20, Test Constant c, = .933

-1 1.-.002 -.002 ,-.001 -.001 ! -.002 -.002 -.001 -.001
1 3,-.043 -.060 :-.043 -.059 | -.099 -.109 -.098 -.107
3 1:-.060 -.051 !-.069 -.062 ,-.134 -.125 -.141 ~-.135
3 3, .018 .029  .007 015 ° -,111  -.112 © -,120 ~.122
6 11 .231 2323 ¢ .219 .301 ° .057 .110 . .053 .102
6 3. .30  .393  .287  .371 @ .102  .151 i .098  .143
8 1 -.023 -.011 .-.028 -.019 '@ -.094 -.0846 ' -.098 -.090
8 3! .047 .058 . .037 .047 | -,082 -.081 , -.087 -.088
9 1. .260 .349 . .253 .333 ¢ 081  .131 | .081 127
9 3| .326 417 1317 .399 ' .123 L170 & 122 .165




ol

Hence, separate tables for ¢, are given for N = 20, 24, Again we note

3

the slight Superiority in most cases of ¢

1 .14 over ¢, = .13, and the

significant superiority of K = .500 over K = .375.

[

We may summarize our conclusions for the non-normal cases considered
as follows:

a) If the a priori (u,o) distribution is clearly an

acceptébie ohe, we will héve little problems regardless

of whether the underlying process distribution is normal

or not. An X test constant of c, = .13 seems the best

1l

compromise, as does sorting any rejected material to By £ ég .
b) If, however, the results of the S o test point to
excessive variation, and moreover if a frequency curve or

some other technique indicates a definite positive skewness

away from normality, the above conclusions suggest using

ey = .14 for future tests and possibly sorting rejected
material to R + %. The same should apply fo negative

skewness as well, since ¢

3

be off-center in the negative direction.

would then have a tendency to

Sorting rejécted matﬁriﬁl to Mo :_%, however, still creates possible
excessive values of I (Xi - po)z/(Nl-Nz), as discussed earlier in

i=1
in this chapter. It would therefore probably be more beneficial to try

to reduce the skewness in the lot or process distribution, rather than
increasing the‘sorting limits from p_ * %% to i,% . The recommended
procedures which follow reflect this thought.
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'Having briefly considered a few non-normal process distributions
and determined the best compromise X and Shm test combinations for
various sample sizes N,we now will combine these conclusions with
earlier results from the normal and bias cases ih order to recommend a

general procedure to be followed for acceptance.sampling.

3.15 Acceptance Sampling Tests

The outline for the general procedure given here‘is similar to one
proposed by Burr (1967a). Significant changes have been made, however,
in the sampie size, the form of the }ange test, and the generality of
the proposed production model. We will assume for the moment that no
prior information is available on either the procesé‘distribution
or the past history of the producer. The hext séétion will consider
the case when more information is available. |

Given a tolerance T and nominal mean value T for a part, the
following plan will safely control the distribution of part dimensions
for the accepted lots:

A. R=30

1. Chooée three random éamples, each made up of 10 parts,

from the lot. By random we mean that each one of the
parts in:the lot is given an equal chance of being

chosen in a sample. Let: (xllsxlz""’xl,lo)’

(Xpys0++X5 10)s @1 (Xgp5.-5X3 1) be the three
samples of ten each. Then compute:

— 3 10

Xpp= B T X /30

0 40 a1



b)

Rlo,i = max ~(xil,...,xi,lo) - min (xil,..-,xi’lo),
i=1,2,3 |
3

510,3 - ifl Ro,i

Accept the lot if both of the following criteria are

‘met:
a) p, - .13T 5i30 <wm, + 137 . (3.15.1)
80,3 51‘.1+5T

Reject the lot if either one or both of the'requiremgnts

in step 2 is not met.

Report information on all rejectéd lots to the

producer. Such lots should also be 100 percent

sorted within the limits p_ -38T- , if the rejected
lots are to be used.

Two conditions may occur under which stepslz and 4

could be altered:

é) If the producer has some past histo}y of
providing material which is usually acceptable
under step 2, one may then relax the i36 test
‘& bit in order to reduce the probability of
rejecting a lot that should be accepted.

Part (a) of step 2 then becomes:

(a’) w, - 14T <X <, + -1bT

30



b) If when testing a particular lot, one suspects,

N=24

either from the past history of the producer or

from the data, that the distribution of the past

‘dimensions is not well-controlled and possibly

skewed, then modifications are needed. . The 230

test should then be relaxed to (a’) given above,

and rejected material sorted to limits p  * %g .

‘The information indicating a skewedvdistribution

should be reported to the producer ih an effort
to reduce the skewness, if possible. ' The test

user must be aware, however, that skewed process

 distributions that are not well-controlled will

likely give skewed a posteriori distributions.

1. Take three random samples of eight each, and compute

3

X, and Sy .= T Ry .
2k 8,3 4=1 8,i

‘2. Accept if both of the following are met:

a) b, - 13T szu <up + 13T

b) Sg 5 <1.30T

3. Reject, otherwise.

4, | Steps 4 and 5 remain the same for éorting, the relaxed

‘test, and handling skewness, except test (s’) becomes.

By = 14T 5x2h < o + L 1bT

o7

(3.15.2)



C. N

20

Take two random samples of ten each, and compute

2
%20 80 810,27 E Rio,-

‘Accept if both of the following are met:
a) b, = -13T 5220 <u, + 13T
b) 510,2 < -933T

Reject, otherwise. |

Steps 4 and 5 remain the same, with test (a’) becoming:

My = LM <X, < Wy *+ 1HT

The»reSults of this chapter have indicated that for very good
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(3.15.3)

process distributions, a sample size of ten does about as well as the

higher sample sizes. Therefore, if one is confident that a process

distribution is,likely to be well-controlléd, the test procedure given

below_ﬁay'be used. The danger in doing this must be understood,

however, for such a test will reject with a‘high probability only very

poor process distributions.

A process distribution which has excessive

variability, but not gxtremely 80, is likely to be accepted. With this

in mind,'suchva test procedure would be:

1.

For a random sample of size ten, compute the average X

and the range R10'

10

Accept the lot if both of the following criteria are met:

a) p, - -1hT SXjgSw + LT

b) - R, < .50T

.Reject, otherwise.

Sort rejected lots 100 percent to limits ub'i
: { ' :

3T
5 -

(3.15.4)

*
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A further:note on the contrbl of the process distribution would be
appropriaté here. Some conéefn is expressed in step 5 of the acceptance
sampling procedure concerning the shape of fhe piocess distribution
itself. If a producer has a history of sdpplying maferial which is
rejected by the X or Snm tests, a further check of the process distribution
should be made. To do this, take an additional sample up to a total of
100 to 150 parts and construct a frequency curve in order to check for
deviations from normelity. If excess variability or considerable
skewness is e?ident from the frequency curve, éne might suggest to the
producer that(tighter process controls are needed than he is now
employing. .Chapters IV and V of this thesis will develop such process

control procedures for achieving desired distributions.
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CHAPTER IV

PROCESS CONTROL: - RANDOMLY ACTING ASSIGNABLE CAUSES

4,1 Introduction

In Chapter I the general field of process control was divided into
two categbrieg:',a) tool wear, and b) randomly acting assignable causes,
- where each category is characterized by the changes occﬁrring in its
process mean. In this chapter wé will investigate methods of controlling
process distributions with characteristic (v) present, with Chapter V
covering the tbol wear problem. We will again assume .the field of
applicatiohvto,be measurable component parts whiéh cbmbine into

assembliesiin a known fashion. 1In addition, we are reasonably '"close"
to the actual production process and thué wili have some control over
the procedﬁres following a test rejection. Our goal is to develop
statistial tests, which, if used periodically, will safely control the
distributioh of the part dimensions, in commonly occurring cases.

As diséuSsed by Burr (1967a), the ideal process for providing the
desired distribution of part characteristics is one in which the process
is in control with ”x very close to My and qk sufficiently small. In
general, we are assuming that the process is not yet in control. Thus

it is expected that efforts will be made to determine and correct the
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causes of this lack of control, in addition to employing the techniques
given in this chapter for safe control of the part dimension distribution.
Shewhart control charts for X and R are an effective means of seeking
such an ideal process. Duncan (1955) also provides a criterion for
control of a process, subject to random shifts in the process mean.

In order to develop the statistical tests we seek, it was necessary
to set up and solve a probabilistic model representing a process with
randomly acting assignable causes. Although tpe modgl presented here,
as well as the derivation of the two statistical tests, is the work of
the author, he is much in debt to the work of Burr, both published
(1967a) and unpublished (1966), which provided direction and guidance
throughout.

The two tests will have the following form, given a tolerance T
and nominal mean value B for a part:

1. For a periodic sample of size five, compute X and R.

2.  The process will be considered satisfactory a@ this‘

time if both of the following are met:

(&) w, - e, T <X < Myt e T (4.1.1.)

(v) R<c,T
3. If step 2 is not satisfied, other measures must be
taken, which will be discussed in detail later.

We use a sample size of five in keeping with past work in process

control,
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4.2, Range Test

Because the randomly acting assigpable causes model is primariiy
concerned with‘the process mean, we wiil first consider the range test
necessary to control the process variability. The range of qk valucs
considered, from T/15 fo T/4, can be used in constructirz an OC cuvve
for the probability of acceptance on the range test. Various cs valuzs

e

for the R test given in (4.1.1) were considered, begirning with e, = .615

as suggested by Burr (1967). The criteria for choosing a ¢, were as
follows:
1) Recalling the three sets of 9% defined in section (2.4) of

Chapter II, where

A={g | o <.125 T}

' .18
B {OX‘OXZ 185 T}

c

{ I, |.125 T < q < .185 1}

wé waht,the probability of acceptarce for gx € A to be
high, and for ?k € B to be low. However, for a sample
of size five, the OC curve is not too Steep, so emprasis
has been placed on a high probability of occeptoace for
g €A.
x .
2) In order to reduce somewhat the probability of acceptance

for qk € B, it was decided to reduce c, below .£l5. TFor

2

Cy = .55, the value selected for the R test, the reduction
in the probability of acceptance for ?k € B was .10 or more,
while the reduction in the probability of acceptance for

qk € A was .01l or less.
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3) Even with the reduction in ¢, mqmloned above, the

probability of acceptance forﬂy .185 is .781L. 1In

'order to reduce the probabilijy of accepting a process

with excessive variation, the/amount of time between

testing procedures should be #elatively short when the

testing procedures are first being implemented. A rule-
of-thumb for the amount of tlme between testing procedures
for a randomly acting assignible causes process will be

included in the summary givei| at the end of this chapter.

When past history indicates the variability is in control,

the time between testing may be gradually increased.

Based on the above criteria, e, = 55 was selected, as mentioned

above, Table k4.1 gives the probabilitylﬁf acceptance given qk, say
Pple | @), for oj = .055 + .0Lj, j=l,...,20. The distribution of X ..

L

from which these calculations are made i§ assumed to be N(0,1). Thus

P(RS <.

PR(a l.ek)

P(RS <

Again, let T = 1.0. Tables

find PR(a’\ ek).
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Table 4.1.

Probability of Acceptance on the Range Test

o Pp(a | 05) o, Po(a “03)
065 1.000 .165 873
075 1.000 175 .829
.085 1.000 .185 .781
.095  1.000 .195 732
.105 .998 . 205 .681
115 .99h .215 632
125 .98 .225 .583
135 .968 - .235 .538
.145 943 .2k5 kg5

.155 ' .911 .255 sk

4.3 Randomly Acting Assignable Causes Model

We nﬁw will develop  the randomly acfing assignable causes model
with which we will determine the X test which, along with the above R
test, best controls the distribution of the part dimensions for a
sample of size five. As indicated in the titlevof this model, we are

assuming the process mean p randomly takes on various values, about

& nominal mean W » some of which are unsatisfactory. We will assume
these values to be discrete levels of p. Each level of p will remain
for a random time length, at which point a new discrete level of p

will be chosen, with a new random time length. If at any time a rejection
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occurs in-an X test, the prbcess will in practice be immediately reset
to By and a nev random time length will be chosen‘byinature. We will
make the fﬁrther simplifying assumption that random time lengths can
only end at the time an X and R test is made. This will allow us to
solve the model as a stochastic process, rather tharn resorting to a
Monte Carlo study of the model (Burr, 1966).

It is clear from the above that we need to:

(a) select discrete p levels, some of which'are unsatisfactory;

(b) assume an' appropriate distribuiion for the random time
lehgth:

(c) assume an appropriate method for "nature" to select a new
pj_level once a random time length at a given My level is
over, and we have not rejected.

without loss of generality, let toleraﬁce T=1. To satisfy (a), .

let us first determine what would be an undesirable p level. Clearly

a p level more than two standard deviations away from would be
undesirable; if maintained for very long. If we choose gk = T7/8 = .125
(an upper bound on gx presented in Chapter I), then a p level outside

My 2 qk or W + .25 could be considered undesiraple. On the basis of
the above, it was decided to assume: Wy = .05i, i = 0, £1,...,% €.
Rather than'assuming the process‘standard‘deviation to be/fixed, it was
decided to consider various discrete 1eve}s of qx, from low to excessive
values when compared to T=1. Thus we set cﬁ = ,035 + .033, J = 1,2,...,0.

Values q > 02; and o, are clearly acceptable, while o_ and ﬁS are not

3 5

acceptable;
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To satisfy (b), we will consider as the random time length

distribution a negative binomial distribution. For an arbitrary fixed
real k, and O < p <1, the sequence {f(t; k, p)}, where

t+k -2 - -

. k t-1

£(t3k,) = ( ) P*-p) (4.3.1)
t 1l :

t =1,2,3,... |
is called & negative binomial distribution. For positive integer k,
it is often referred to as the prbbability distribution for the waiting
time to the kth failure. As such it is a natural choice for the random
time length distribution. Note that for k = 1, the distribution reduces.
to the geometric distribution, which was used by Burr (1967a) in a
similar model. We will consider a subclass of distributions (%.3.1)
with k = 1, 2, 3. The parameter t will represent'"ﬁime" in the
stochastic process, with one time unit being the time between periodic
testing of the process distribution. In order td'prbvide some continuity
- among the three negative binomial distributions, we will select p, the
probability of failure, in such a way that the expected time length E(t)
will be the same in all three distributions. In the model E(t)
corresponds to the expected number of periodic testing procedures before
a change occurs in the ¢ level. E(t) will be quite important to us, as

will be noted later. Now
[~~]
Zt(
t=1

k
P G(t: k, P):

t+k-2

£(t) )Pt

t-1



t+k-2

G(t,k,p) = T ¢ ( ) (1- p)t -1

t=1 t -

In order to solve for G(t,k,p), let

Q=1-0p,

T=c+q -

where C is a constant.

Using the binomial expansion series,

) t+k -2

Y t-1
T=C+ Q z Q
[ i=1 ( t -1 ) ]
o t +k -2
con s (N7
t=1 * t -1
Then:
© t+k -2
t-1
- = Tt Q
2O
. t+ k-2
= z t \ ) (1-p)tt
t=1
= a(t, k, p)
Therefore _ |
6(t,k,0) = S = ake-0) ) 4 1)
- (L-p)k p~ (&) 4 K,

by taking the derivative w.r.t. Q of (4.3.2). Hence

- 107

(k.3.2)
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E(t) = p* G(t,k,p)

l-p)k
= + 1
_ P

. : _
5 -kl , (h.3.3)

We now wish to select p, for k = 1,2,3, such that E(t) = % -k +1

is the same. Table 4.2 gives values for p when E(t) = 2,5,10 for

k =1,2,3.
Table L. 2,
N Negative Bir}omial Parameter p Values
E(t) k=1 k = 2 k = 3
2 1/2 —_— —_
5 1/5 1/3 3/7
10 1/10 2/11 1/4

These valu‘es.l‘ for (k,p) were used in equation (4.31) to compute the randc-.
time length‘ distribution, with p omitted for k = 2, 3 under E(t) = 2.

We now need to find (c) s a method of selecting a new u.jlevel once
a random time length at a given My level is completed, and we have not
rejected. We do this by invoking {:ri}, a discrete a priori p
distributior;. We will cohsider four discrete {ni} .di'stributions,
discretized from a normal distribution with mean zero and variance a. )
where . = .05 (r +1), r=1,2,3,4. Thus ;o

1
distribution which has an acceptable op, while Oy T = 2,3,4 give

gives an a priori

{uir] which have Increasing unacceptable cu. This will allow us to



109

judge how well the X test reduces excessive 0@' Table 4.3 gives the
a priori OL for the four {nir}, as well as T the a .priori probability

1, 2, 3, k. Note that

of%omwﬁ%,i=0,tL.”,16,mrr

the [nir} have.been corrected, so that T 1, r = 1,2,3,4,

.3
i ir

Table 4.3

Values of =,
ir

r =1 r =2 r =3 r =&
i by o= .10 o= .15 c= .20 c= .25
0 .00 .19765 13649 .11105 .09878
£, £05 17486 12919 .1076h .09682
+2 i.lb, .12112 .10952 .09806 = .o09121
3 +15 06567  .08318 .08394 - .08256
Hh %, 20 .ozf87 .05657 .06752 R .07180
B k25 .00925 .03448  ,05106 . 06001
6 *,30 | .00240 .01831 .03625 . .0k820

a priofi o = .1003 137 .1568 L1671
. ,
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wé now may summarize the model procedure. Initially, let the p
level be u,- Equation (4.3.1), the negative binomial distribution,
choosés a random time length for oo As we test on X periodically,
we wiil either accept or reject the process at each time interval.
If we.accept,_the process remeins at T until its random time length is
over. At_that point in time, {nir} will be invoked to choose a mew
level, distribution (4.3.1) will choose another random time length, and
we proceed as before, testing periodically. If, hoﬁever, we reject
the process at any fime, we will automaticall& reset the process to
k> choose a new random time length via (4.3.1), and continue periodic
testing. Thus; level By ifO, can only be reached by all acceptances
during a random time interval and the invoking of {nir}. Level s > i=0,
can be reached both by in?oking [nir}.and by a test rejection at any By
level. Equation (4.3.1) is invoked whenever a new pi is reached,
whether by invoking {nir] or a test rejection.

As one can easily see, the model is a stochastic process, in which
we are interested in several things:

(1) oOver a long period of time, what is the proportion of

that time spent at level pi? Knowing this, we can compute

the a posteriori standard deviation, for example.

(2) Over a long'time period, what are the moments of the

'a posteriori distribution considering

(a) only material accepted, or

(b) both accepted material and sorted-rejected material?
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IWe will refer to these two classes of distributions as class (a)
and class (b), respectively. 1In order to find answers to these
questions, we will assume for the moment that the underlying process
distribution-is nprmal. Later sections of the chapter will deal with
the problem of biasedness (i.e., the Py distribution not centered about
the chosen nominal mean pb) and nonnormality.

We are interested in computing the probability of acceptance on
the X test for a given mean By and standard deviation 05. So

P (acceptance on X test | p, cj)

P'x_ (8. ‘ P:i, GJ')

= P(l-l'o = ClT 5)(5 é ¥y +2<'.‘l T ‘ By OJ)
_(X- “‘i)

: '”o+clT e 20?/5

Y Y S L

' p,o-ClT f‘édﬂ- OJ/E

o * clT s
[ s me) s,
Bo ™ clT " Ky
05/73

vhere g(t) = N(0,1) density function. Denoting ®(t) as the N(0,1)
distribution function, then

.P_(a ‘ P'i, OJ) =

a .
. . [ (pb + col-T - H-i) /5] _ [ (l"'o - Z;_T - u‘i) /5] (4.3.4)
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Letting y =0, T =1, (4. 3.4) becomes

P(alu.i,c)‘ﬁ[( )/5}-@[( )/5](#35)
As previously mentioned, we will assume
by = 058, 1=0, £1, ..., £6
OJ =ﬂ-035 + .03, d=121,2, ..., 6
An earlier similar model by Burr (1967&) selected a value for ¢, to

be .168. Based on these preliminary results, we will consider values

¢, = .09(.01).28, and attempt to find the most the most desirable ¢

value under the generality of the above discussed model, including

1

moderately skewed process distributions, for a sample size of five.

4.4. Model Evaluation: Time to Change

In solﬁing any time series model, it is quite important té "get
started right." The author is indebted to the unpublished notes by
Burr (1966) for guidance in the "right" direction. The key is to
ansver the_éuestion: "What is fhe expected time spent at ™ before
a change occurs?” Here "change" is defined as either (a) completing
a time length run with all acceptances and thus invoking [nir] , or
(b),rejecting on the X test before the end of a run, thus resetting

automatically to u_ without invoking {x, 3.
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Let us find (a), the expected time spent at By given that we have

1l is the smallest time length

all acceptances on the X test. Now t
we can have,. since the first periodic X test occurs at t = 1. For the
sake of brevity, denote

Ay 1°

pk(t) = £(t; k, p), for a fixed p,

=P (a | p, 0,), for a fixed c
X 1 J

EA(i) = expected time spent at My in which all acceptances
occur on the periodic X tests.
It should be noted here that, although not explicitly stated
hereafter, all derivations are for fixed values of Cys cﬁ, k, p, and r.

Then:

& t
r tp.(t) A,
£=1 k ij

EA(i)

— - _ Kk © t+k -2 £-1
P A, vt ( ) [(1-p) & .1 (4.%.1)
J t=1 t -1 id

Letting @ = (1-p) A Y and using a similar technique to the one given

by (4.3.2) and follow1ng, one can reduce (4.4.1) to

< g [Q k(@) )+ -)7F]

pk A 1 + (k-1 ]

1+ (k-1) (1-p) A
1.] { - (l-P) A. .]k‘l'l o ('-I-.,-I-.Z)
ij

mAG)

Let PA(i) = probability of a run of all acceptances at level by o
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Then

e t
Tt p.(t) A,
£=1 k ij

‘ PA(i)

K ® ,t+k-2 ( )' £-1
N { )[l-pA.]
Wea '\ e-n 1

k
P A,.
= 1J _ (4.4.3)

) [r- @ Aia’T ,

using the binomial expansion series.

Consider now the expected %ime until a rejection on the f test

occurs. Let

ER(i) = expected time spent at level By until a rejection
occurs on the X test. |
Rij =1 - Aij
) [--]
pk(T_Z t) = ¢ £(i; k, p) (4.4.4)

i=t
Let PR(i) = probability of a rejection on X occurring at levely,.

Then:
PR(i) = 1 - PA(i) (k.4.5)
as given in (4.4.3). Now
Q .
ER(i) = T t P(rejecting on X test at time t)
t=1 .
- At g | (4.4.6)

[=+]
T tp(T>t)A .
t=1 k ij "iJ
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To evaluate (4.4.6), we must first evaluate (b4 k):

p(T2t) =1-p (T <t-1)
t-1 i +k -2
1- = (
i=1

_ ) pi(1-p)
i-1

1 - [probability of (+ + k - 2) trials

"ty

k or more
(4.4%.7)

The bracket term cannot in general be expressed in any form simplier

with k or more failures]
t =

l - [cumulative binomial of (

than a summation. It was therefore necessary to use cumulative binomial
tables (Harvard, 1955) to evaluate pk(T >t) for k = 2,3. These values
are given in Table 4.b for the p given in Table 4.2. For k = 1,

hdwever, one can show that
pl(‘I' >t) = (1-p) , t =1,2,... _ (4.4.8)

Hence (4.%4.6) can be evaluated directly for k = 1.

k=1
P -]
t(l-p)-t-l At.-'-.l R

ER(1) s
t=1 o

e t-l.
Ry 5y b 0P Ayl

_ R . o
- ij 5 ' (4.%.9)
- (2-p) Aij] ’




Table 4.4, pk('l‘ 2t) = T f(i; k,p), vhere £(i; k,p) is the Negative
o ' i=t
Binomial Distribution.

_ k=2 ! k =3
t p = .18 p =1/3 p = .25 p = .43
1 1.00000 1.00000 1.00000 1.00000
2 .96760 .88889 .98437 .92049
3 .91446 74074 .94922 78454
4 .84911 .59259 .89648 .62955
5 - ,77765 46091 .83057 48230 .
6 .70441 .35117 .75641 .35641
7 .63233 .26337 67854  ,25595
8 .56339 .19509 .60068 .17960
9 . .49877 .14307 .52559 ©,12365
10 .43916 .10405 .45520 .08378
11 .38485 .07515 .39068 .05600
12 .33587 .05395 .33260 .03711
13 - .29205 .03854 .28113 - ,02421
14 .25312 .02740 .23609 .01570
15 .21874 .01941 .19711 ©.01010
16 - .18854 .01370 .16370 .00646
17 .16213 .00964 .13531 .00410
18 13911 .00677 .11134 . .00259
19  ,11913 .00474 - ,09126 .00163
20 .10183 .00331 .07452 .00102
21 .08690 .00231 .06065 .00063
22 .07405 .00160 .04920 .00039
23 .06301 .00111 .03980 .00024
24 .05354 .00077 .03211 .00015
25 .04544 .00053 .02584 .00009
26 .03852 .00037 .02074 .00006
27 .03262 .00026 .01661 ~.00003
28 .02760 .00018 .01328 .00002
29 - .02333 .00012 .01060 .00001
30 .01970 .00008 .00844 ©.00001
31 .01662 .00006 .00671 .00000
32 .. .01401 .00004 .00532 o
33 .01180 .00003 -.00422 R
34 .00994 .00002 .00334 -
35 .00836 .00001 .00264
36 .00703 .00001 .00208 ,
37 .00590 .00001 .00164 .
38 .00496 .00000 .00129 '
39 .00416 : .00102

40 .00349 L .00080 -



117

Table 4.4. (cont.)

P (T 2 t)
. k =2 k=3
t p=_.18 p=1/3 p=.25 p = .43
41 .00293 0 .00063 0
42 .00245 . .00049 ' .
43 - .00205 .00038 o
XA .00172 .00030 '
45 00144 : .00024
46 ~ .00120 .00018
47 .00101 ' 1,00014
48 .00084 , '.00011
49 - .00070 : .00009
50 .00059 - ‘ .00007
51 .00050 .00005
52 .00041 .00004
53 °  .00035 .00003
54 .00029 i .00002
55 - .00024 ! .00002 %
56 - .00020 .00001
57 .00017 .00001 -
58 .00014 .00001 !
59 .00012 ' ,00001 .
60  ,00010 .00001
61 .00009 .00000
62 .00007 )
63 .00006 _ i
64 .00005 i
65  .00004 » !
.66  .00003 . ;
67 . .00002 ;
68 .00002 - ,
69 .00002 :
70 .00002 : ; i
71 .00001 -
72 .00001
73 ~.00001
74 .00001 - :
75 .00001 - <

76~ .00000 v
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4.5 Model Evaluation: Time to Cycle Completion

The time series model can be conéidered to have completed a "cycle"
whenever {ﬂir} is invoked. That is, we are choosing a u level to begin
the process over again. We are therefore intereéted in determining the

total expected time spent at level b, until {nir} is invoked. Let

n

B(i) = BA(1) + BR() - (4.5.1)

total time at level p; until a ”chahge", as

earlier defined.

If'a rejection occurs, however, {ﬂir} is not invoked, but the process
level is simply reset to T Thus all levels of ui-contribute time
spent at p_ = 0.0 before {nir} is invoked. If TO is fhe total expected
time spent at level p, = 0.0 until {nir} is invoked, then

- 70 = E(0) + [PR(0)] (TO), which simplifies to:
To = E(0) / PA(0O) _ (4.5.2)

In addition, each T level, i % 0, contributes an expected time
of [PR(i)] (TO) to level by = 0.0.

We now can compute the total expected time spent at each My level
until [nir} is invoked. Let

. EP(i) = total expected time spent at each w; level until
-[ﬁir} is. invoked.
Then, for_i'fvo and fixed r,
BT(1) = (x,,) E(i) - (4.5.3)

For i = O,



119

+€
(n,) (T0) + (T0) = (=) PR(i)

B1(0)

]

1£0
. + 6
TO [nor + i=§% (“ir) PR(i)] | (4.5.4)

i#0

If the underlying process distribution is assumed symmetric (as,
for example, in the normal case), then (4.5.4) may be written as:

Er(0) =10 [x +2 T (x,) PR(1)] (h.5.5)
- i=1

Now, (4.5.3) and (k.5.4) give the expected time spent at each s
level, Vi,;for any "cycle" of the time series process. As mentioned
earlier, a new cycle begins whenever {nir} is invoked to randomly
choose a new level. Therefore, if we take the ratio of ET(i) to
the total eﬁpected time over all Py levels, we will have the expected
proportion of time during a cycle spent at each My level. Since these

expected proportions hold true for any cycle of time, we will have the
expegted proportion of time spent at each By level éver any long period

of time. Thus, let

P, = 52(1) , 120, +1,,..,+6 ’ (4.5.6)
T ET(i)
i=-6
Then Pi gives the a posteriori, or long-term, probability of level By
occurring. The a posteriori standard deviation of the process mean,

say SDM, can then be found:



+6 1/2 |
T Ry .

In addition, the overall a posteriori probability of acceptance is

given by

+6

P, = z (p;) (445) (4.5.8)
j=-

Recall that the Pi and corresponding SDM and Pa are computed for

fixed cl, 05, k, p, and r.

4.6 Reset Error

' One of the practical problems in this type of mddel is reset
error; that,ié, érrors in resettirg the process mégn‘exactly to By
following a test rejection. Burr added this feature in his unpublished
model (1966). Suppose we now assume that the probability is .6 of
resetting eiaétly to T and a probability of .2 each of resetting
to by OF B q- This will give us some indication as to the effects
of reset error. Note that this will change ET(i), for i = -1, 0, 1,
thus affecting the P,. Define:

.Tij = eipected future time spent at level Wy before

an all acceptance run invckes {nir] » given

level p, has just been reached.

Then:

6T . + 2T (4.6.1)

E(1) + PR(1) [.2T_1,1 + 6Ty 111

3
1}

11

€T . + .27 (4.€.2)

17 %o

-
i}

PR(0) [.2r_,

ol ll]
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=PR (-1) [ .2r_ , + .67 + .zT'l] (4.6.3)

"131 ’1 0ol 1

In general,

T4 B(1) + PR(1)L.20)  + .67 + .2Tli] (4.6.4)

6T . + .2T

T PIRRL L 15] R (4.6.5)

ij-

PR(i)[.ZT_l,

for i, j = -1, 0, 1; i £ j

Solving (4.6.1), (4.6.2), and (4.6.3) for Ty Tol; and T_l,l, we find:

‘Tli-= E(1) [ 1- .6 PR(O% - .2 PR(-;)] ' (4.6.6)
1, = E() [ 22RO " (4.6.7)
v, = s LB T, (4.6.8)

where D = 1 - .2PR(1) - .6PR(0) - .2PR{1)
If we define 9 to be the probability of resetting to My 5 i=-1,0,1 then

in general:

D + q, PR(i) :
7, = B(i) [ iD - ] ' (4.6.9)
Lo . PR(1) L
75 = E(3) [ Sl-ﬁ————- ] (4.6.10)

i, j = -1, _O’_"'13 i fJ

Using (4.6.9) and (1.6.10), we solve for ET (i), i = -1, 0, + 1:
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+1
ET(i) = .
) | k=?1 () Ty
! .-2 6
+ (kf.l Qe Tki) [kf-6 (., JPR(K) + kfz('ﬂk?) PR(k)] , (4.6.11)

i=-1,0,+
ET(i) for i=-6,...,-2,42,...,+6 remains as given in (%.5.3). The

ET(i) given in (4.6.11) can then be used to find the P, given in (k.5.6).

4,7 Moments Evaluation

We now wéuld like to consider the a posteriofi moments for class
(a) and (E)'dutgoing distributions as defined earlier. Let X have a
normal distribution F(X). We will later consider F(X) to be non-normal.
Let | |

mean of F(X)

n

o = standard deviation of F(X)
E[(X-p ™ = P moment of X about p_, given u, ©
o W O o :
m th
,Ea[(x-uo) 7 =m moment of X about n, Of the accepted
product (class (a)) |

E[(x'”b)m]p,o;x = mP moment of X about y _, given yu, o, and K.

Here Ho bl KT'represents the 100 percent sorting limits.

VE[(X-pb)m] = m*® moment of the combined class (v) product:

accepted plus sorted-rejected material.
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With the above definitions, and equating the n*? and P moments, (3.4.1),
(3.4.2), (3.4.9), (3.4.10), and (3.4.11) of chapter III follow directly
as presented there, and will not be repeated here. On the basis of

(3fh.l) and (3.4.2), we have

+6 n
2 (e;) (ay) BELO=w)T, o1

B, [(x-p )" = E2—p i, ()
i§—6 (2,) (Aij)
m=1, 2, 3, b

for a fixed value of c1» G k, p, and r. Equations (3.4.9), (3.4.10),

and (3.4.11) give us:

BL(X - )] =
PRGN ONE (G NIRRT TR R

i=-

s(b.7.2)

+6

B ) {a + (Ryy) Ay, o 0]

. fon

m=1, 2, 3, 4
(4.7.1) and (4.7.2) can be computed both with and without set-up error.

Denote ﬁhe a posteriori moments as Mm’ m=1,2,3,4. Then

M= M _
sD = (M, - Mi)%' ; (4.7.3)
. My - 3Mp M+ 21

3 (SD)3

2 L
M, - 4 Mg M, + 6M, M - 3M
oy = — 4
(sD)
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When the underlying process distribution is assumed symmetric (as in

the normel case),

4.8 Test Evaluation Criteria

‘It sﬁould'be recalled that the randomly acting assignable causes
model as set ﬁp is used to determine the best X tgst for a sample size
of five. The fange test was considered earlier in this chapter. Two
criteria will be used to choose the constant ¢y in the X test. First,
since X is an estimate of the process mean, we would like the X test
procedure to reduce SDM, the a posteriori standard deviation of the
process mean given by (4.5.7), to an acceptable level. Equation
(1.6.9) gives the upper limits on the three sources of variability.

We will assume various.levels of Gy and biasedness, and compute the
upper bound on oh. We then should select the largest ¢y value which
will still reduce SDM below the upper bound on Oh' Note that we are
incorporating the bias term into the model, so biasedness will not be
}considered as a separate section.
Let us compute the upper bounds on the a posteriori cﬁ:
A. 1) Let o, = .065, | b = by | = .05
'Then: oi + (.065)2 + (.05)2 < .0278, frem (1.6.9).
Thus cﬁ <.0211
or o < U5
Therefore when o, = .065, the upper bound on SDM (as defined by (4.5.7))

X
is .145, assuming small bias.



2) let gy = .065, | TR | = .10 Y
Then o#'f .116, or ‘the upper bound on SDM is .116, Vi
- assuming "excessive" bias.
B. 1) Let g = .095,'\;;“- b | = .05
Then, proceeding similarly, the upper bound on SDM
is .128.71¢ | by b = .10, then SDM < .09k

X
Then SDM < .100.

C. Let o, = .125, ‘p.“- b, 1= .05

For Oy >VT/8; SDM should be reduced as much as possible. In such a
case the range test is likely to be rejected, leading to an investigation
as to the cause of the excessive variation in the process.

The second criterion we will use in selecting the test is based on
the a posteriori moments, both class (a) and class (B). We would hope
that the a posteriori standard.deviation, SD, is less than T/6, and that
the a posteriori kurtosis, Q) > is close to three. It should be noted
that SD will always be greater than the Ty assumed for the process,
thus forcing SD > T/6 whenever ox is assumed excessive. At this point,
however, the R test should detect the excessive variability, and steps
will be takén to alleviation to this problem. |

Finally, we will note the comparison of the average probability
‘of acceptance for the first X test (computed by assuming the distriﬁution

of the u, to be one of the {nir} given in Table 4.3) with the a

posteriori average probability of acceptance given by (4.5.8).
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4.9 Summary of Results

Only a summary of the dverall results are included in the following
table. It was found that E(t), as given in (4.3.3), the expected number
of periodic testing procedures before a change occuré in the u level,
is'important in the selection of the proper X test. However, because
there seems to be no practical way to estimate E(t) in a given situation,
it would do little good to base the X test on the value of B(t). It
should be noted, however, that E(T) < 2 can be dangerous, in that you
are more likely to accept poor process distributipné. If the test user
discovers frbm feedback that he is accepting distributions that should
be rejected, a decrease in 'the time between tests éhould be considered.

With this in mind, the best compromise among the wvarious X test considered

was
| % - 19T <X < + 19T . (4.9.1)
Table 4.5 provides a summary of the values of the above mentioned
criteria for ¢, = .19. Six values of ox are considered. Parameters k

and p are used to denote the value of E(t), as given in table 4.2,

r denotes the a priori {uir] distribution of p, SDM denotes the a
posteriori gh, Pa is the average probability of acceptance (given for

both the first X test and a posteriori), and SD and oy, denote respecﬁiveiy
the étandard deviation and kurtosis of both class (a) and class (b)
outgoing distributions. Values are given for both."with" and "without"
set-up error. The following general conclusions may be drawn from

Table 4.5:
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(1) As indicated where oy = .065, little difference in the

criteria due to assuming three random run length distributions

(k = 1, 2, 3) was observed whenever E(t) was constant. As a

result, values for the table are given only for k = 2.

(2) The standard deviation SD for both class (a) and class

(b) outgoing distributions is approximately less than or

equal to T/6 for oy < .155. For oy > .155, the range test

should detect the excessive variation, and correction action

should bé taken. |

(3) The kurtosis o), is well-controlled at all times.

() A1l results for class (b) distributions are given

with the limits for sorting rejected material éet at p % %g .

These limiﬁs seemed to give the best results. .

(5) The X test given by (4.9.1) allows for some reset error.

A small bias term, Say .O5T or less, has been allowed for in the
above X tésts, If a larger bias term is present, say .10T or more,

_én effort must be made to reduce g s Or else the X test will

T
% <10
usually reject. Corrective action should then be taken to elininate

the excessive bias.

4,10 Randomly Acting Assignable Causes: Non-normal Case

Suppose now that the underlying process distribution is non-normel,
rather thén normal as assumed above. What effect will this have on our
X test? Again we will limit the discussion to moderately skewed

distributions, such as the two discussed in Chapter III and denoted by
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Table 4.5. Summary of the Criteria Used to Select the X Test for
Randomly Acting Assignable Causes,

~No_Set-Up Error

Class (a) . Class (b) -

] P P

o, k p 1r:@ SDM a a - SD o  SD a

X I g 4 4
; a priori a posteriori, ;

.065 2 .333 1 .080 .930 977 1.099. 2.89 : .103 2.97
2, .090 .809 .950 j-101 2.97:.110 3.17
3!.094 727 .934 :.1000 3.07 | .113 3.31
4% .096 .681 .926 .099 3.13  .114 3.40
.095 2 .333 1 .076 .918 .968 . .118 2.99 . .121 2.98
2. .086 .799 .941 1.119 3.06 " .126 3.02
3!.091 721 .926 '.119 3.11 .128 3.06
4° .093 .677 .919 ..118 3.13:.129 3.08
.125 2 .333 1; .072 .901 .958 “.141 3.02 ° .143 2.96
-2 .083 .787 .932 .142  3.06: .147 2.95
31 .089 .713 918 . .142 3.08 .148 2.94
4 .091 .671 911 (142 3.10 .149 2.94
155 2 .333 1. .069 .880 944 .167 3,02 .167 2.96
2 .081 71 .920 .168 3.04  .170 2.94
3 .086 .702 .908 ,.168 3.06 .171 2.92
4 .089 .663 -902 j.168 3.07 .171 2.92
.185 2 .333 1. .065 .855 .926 ;.194 3.01  .193 2.97
2 .078 .753 .904 :.195 3.03 .195 2.96
31 .084 .689 .893  :.195 3.04..195 2.95
: 4 .088 .653 .888 195 3.04 ; .195 2.94
215 2 .333 1, .063 .828 . .902 ;.222 3.01: .219 3.00
-2 .076 .733 .883 1.223 3.02 ° .220 2.99
3. .082 .675 .873 1,223 3.03 ..220 2.99
4 .085 642 .868 .224 _3.03  .220 2.98




129

Table 4.5. {(cont.)

With Set-Up Error

é Class (a) Class (b}
o k p r SDM P P i SD o, SD @,
- a priori a posteriori

.065 2 .333 1 .086 .930 .971 .106 2.79 .108 2.85
2:.098 .809 .939 .106- 2.82 .116 2.97

3:.103 .727 .921 .105 2.89 .120 3.07

4 % .105 .681 .912 104 2.94 .121 3.13

.095 2 .333 1 -.082 .918 .961 121 2.95 ,125 2.92
2 .094 799 .929 .123 2,99 .131 2.93

3..100 721 .911 .123 3.03 .134 2.9

4 .102 .677 .902 .122 3.06 .135 2.95

.125 2 .333 1 :.079 .901 .948 144 3,01 .146 2.94
2 .091 .787 .917 .146  3.03 .151 2.90

3:.097 .713 .901 .146 3.06 .152 2.88

4 . .100 .671 .893 .145 3.07 .153 2.87

.155 2 .333 1..075  .880 .934 .169  3.01 .170 2.95
2 . .089 71 .905 .171 3.03 .173 2.91

3 .095 .702 .890 .171 3.05 .174 2.89

4! .098 .663 .883 .171 3.06 .174 2.88

.185 2 .333 1..072 .855 .915 .196 3.01 .195 2.97
2..086 .753 .889 .197 3.03 .197 2.94

3..093 .689 .876 .198 3.064 .197 2.93

4 | .096 .653 .869 .198 3.04 .198 2.93

.215 2 .333 1. .069 .828 .892 .223 3.01 .220 2.99
2!.083 .733 .868 .225 3.02 .221 2.99

3 - .090 .675 .856 .226 3.03 .222 2.98

4 3.03  .222 2.98

: 094 642 .850 .226
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Fx (X) and Fy (X). The distributions of 'fl and Xzbwill change however,
1 2 ,
since we are now considering a sample size of five.

Let Fxl(x), F, (X) be given by (3.10.4), Chepter III, with perameters
- 2

as given in Table 3.10. Then

03.x
a,.7 s 2l = .136
3% s

ah:xl - 3.0

ah:ii = -—-—;—-————'+ 3.0 = 3.019

and, similafly,

a, = = .227
3%,
ah:ié'= 3.0k0

Table 4.6 gives the parameters M, S, ¢, and k necessary to approximate‘

F= (X) and R (X) by two Burr distributions.
R

X

Table 4.6

Burr Distribution Parameters

. Distribution M ) c k

F=.(X) .603 .176 4.158 6.124
X

,Ff (x) .553 .179 3.679 6.692
2 _
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In computing the criterion used to select the‘f fest under the
non-normal assumption, the technique described in detail in Chapter III
was employed. That is, Fy (X), its derivative (den31ty function)
'fkl(x), and F= (x) were used in place of the normality assumptions for
X, and ii in eéuatlons (4.3.%4) through (4.7.2) of this chapter. This
procedurevwas repeated for sz(x), sz(x), and Fié(x). The resulting
equations were then evaluated giving approximate results for the two
moderately skewed distributions considered. It shoﬁld be noted that
the results obtained were used only as an indication of the effects of
non-normality on the X test. Extensive investigation'would be necessary”
to complete a thorough study of the total effects of non-normality.

The author hopes to complete this study at a later date.

The results indicated that the X test handled moderately skewed
lot or process distributions very well. Without exception the criteria
of SDM and the moments of the outgoing distributioh were quite acceptab’.z
for the two non-normal cases considered. It proved unnecessary to
reproduce_extensive tables for these cases, since results were Quite
comparablg to those given in Table 4.5. However, under the normalivy
assumption, the outgoing distribution mean M and skewness a3 were
both zero. Table 4.7 gives a range of values fbr-Ml and a3 for FXZ(X),
the more skewed of the two cases considered. It is evident from the

table that Ml and a3 are at quite acceptable levels. Again, sorting

limits of p_ * %? were used.
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Table 4.7.

Range Values for M; and g5 Assuming Fy (xX), ¢, = .19.
2

With or Without Set-Up Error

Class (a) -.001 to +.00L .,000 to .003

Class (b) -.002 to +.001 -.14k to +.035

.11 Test Procedure for Randomly Actipg Assignable Causes

We now will summarize the above results for the randomly acting
assignable causes model by recommending a general procedure to be
followed. The outline given here contains some similarities with one
proposed by Burr (1967). It is assumed that the testing procedure
will occur»at fegular (equel spaced) time intervals. The user is
encouraged to ﬁest at least five times at a given p level,.on the
average. | |

Given a tolerance T and a nominal mean value p  for a part, the
. following test ?1ans will safely control the distribution of the part
dimensions: |

.I) For‘each regular periodic sample of five‘paits

~ from the process, compute the mean X and the raﬁge R.

2) 'The process can be consideréd_satisf#ctory‘at this

time if both of the following are met:

a) p - .19T <X < by *+ 19T : (4.11.1)

b) R <.55T
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3) The process is considered unsatisfactory at this time
if either one, or both, of the requirements in step 2 is

not met.

4) Appropriate corrective action in the event of step 3
should be taken, and the production sorted back to the
previous sampling time, to the limits My i'%g . A rejection
on the R test is a clear‘indication that qk is excessive,
and steps should be taken to find out why. A fejection on the
X test'uéually indicates a change in level y away from Bo
The process level p should then be reset as closely as
possible td By Some allowance has been made for both reset

error and biasedness, although care should be exercised in

avoiding both cases.
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CHAPTER V

TOOL WEAR

5.1 Introduction

In Chapters I and IV we mentioned two areas of process control
undef consideration: (a) tool wear, and (b) randomly acting assignable
causes. We will investigate thé tool wear problem in this chapter. By
tool wear, we mean a manufacturing process where typically the part
dimension mean y is gradually changing in one direction. We thus have
more information than in a random manufacturing process as discussed in
Chapter IV. Since such a process often occurs through the gradual
deterioration or "wear" of a manufacturing tool or die, a process with
this characteristic is sometimes referred to as a tool wear process.

Significant contributions have been made in this area. Bhattacharjee,
Pandit, and Mohan (1963) derive distributions which arise in cases where
tool wear or 6ther systematic causes must be accommodated. They indicate
the application to setting exact tolerances for component parts and
their assemblies. Mohan, Bhattacharji, and Mishra (196l4) present a
probabilistic method for analyzing machine errors wﬁen automatic resetting
of the machine.is done. The total error is found as a function of the

inherent variability of the process, the reset megnitude, &nd the rate
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of tool wear. Hall and Eilon (1963) provide procedures for determining
optimum resettingvof a process average, subject to linear tool wear.
Smith and Vemuganti (1968) present a model which provides a rule for tool
wear process révision, considering the costs of the available actions

and sample information.

In the author's work, we again assumed the field of application to
 be measurable.component parts which combine into assemblies in a known
fashion. Our goal is to develop two simple statistical tests which, if
used periodically, will safely control the distribution of the part
dimensions. 1In order to develop these tests, it was necessary to set up
and solve a probabilistic model representing a tool’wéarlprocess. The
author is much in debt to the work of Burr, both published (1967a) and
unpublished (1966), which provided direction and guidance throughout the
modeling procedure. The form of the statistical tests will be patterned
after thosé in Chapter IV, with a periodic sample of five used to construct
X and R tests. .The tests will be outlined in length at the end of this

chapter.

5.2 Tool Wear Range Test

'Because we are primarily concerned in the tool wear model with
the process mean, we will again consider separately the range test
necessary-to éontrol the process variability. The discussion of the
range test given in Chapter IV is appropriate in'thg.tool wear model as

well. Hence we will adopt the same test: Ry < .55T, as derived there.
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Table 4.1 gives the probability of acceptance given q&, Ph(atqk), for

oy = .055 + .0Lj, § = 1,2,:..,20.

5.3 Tool Wear Model: Introduction

We now wili develop the tool wéar model, with which we will determine
the X test which, along with the above R test, appears to best control the
distribution of the part dimensions for a samﬁle of size five. As
indicated earlier, we will assume the process mean p has a.steady drift
in one direétion. We can assume without loss of generality that the
drift is in the positive direction. A similar model can be developed
for negative drift. Past experience in the tool wear field " indicates
that in a great many cases the drift is approximately linear, so we
can reasonabl& assume the tool wear drift is linéar in'nature. That
is, let

tool wear / unit time period = rT,
for tolerance T and O <r <1. Here a unit time period corresponds
to the ﬁime period between testing, assuming regular (equal-spaced)
test intervals. In order to keep the manmufacturing process mean from
drifting too far from the nominal mean Bo? We want ﬁo test often enough
to keep the‘tool wear rate relatively low. For this reason, we
considered r values of .0l, .Ok, and .07. That is,bif Oy = T/8, r = .0L
indicatesia tool wear rate of approximately cx/12; r = .0k gives a rate
of approximately ox/3; and r = .07 gives a rate.slivghtly over ox/ 2.
The first is a slow tool wear rate, whereas one wou;d usually not want

the rate too much above the latter.
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Periodic tests will be made, each with a sample of five, and the
process medn reset following a rejection on the X test. Two methods of
resetting %ere briefly mentioned in Chapter I:

1) reset down from the point of rejection by a fixed

amount, say a fraction of the tolerance T; or

2) reset to a fixed point, say Mo ~ aT, for & constant a.

We will incorporate each method of reset into the model, beginning
first with method (1). Earlier work by Burr (1967a) indicated that
a reasondble amount to reset was 2(c1 T), when the X test is defined

as:

By = ’clT <X < p.o_ + clT . » (5.3.1)

Following & rejection, method (1) will reset the process mean near the

~acceptable lower limit for X, as given by (5.3.1).

5.4 Reset by a Fixed Amount

Since with the assumed positive tool wear drift the process mean will
increase by an amount rT for each unit time interval, it is convenient
to measure the process mean y in upits of rT, or for T=1, in units of r.
Thus at time t = i with p = p,, p =y +7T at t = i * 1, unless a
rejection on the X test occurred at time t=i. With this unit of
measurement in mind, define
Ri = probability of having to reset at the ith u level
(i.é., the probability that the X test gives a rejection
af;the %P test time )

Ox = standard deviation of part dimension X.
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Then, if the distribution of X is assumed normal,

(% - ir)8
. 5 2 5
Ri = I __e___.i‘g(_../__. ax , (5.4.1)
e /2x oxﬂ/S

for T = 1 and fixed ¢ Note that with a positive tool wear drift, we

1’

are not allowing the X test to reject if f.s by = T. The reason for

1 v
this is two-fold: (1) the positive drift should quickly bring the process

mean above Wy = C

have to reset to a much worse (lower) p level, or else change the method

T, and (2) if we rejected and tried to reset, we would

of reset. Neither solution would be satisfactory. Since we are
assuming positive drift, the danger area for the process mean is on the
high side, not the low side.

Now (5.4.1) may be written as

Ri=l-ﬁ[(fls:££)/5:‘ | | (5.4.2)

where & is the standard normal distribution function. Let

A; = probebility of accepting on the X test at the i’l

p level.
Then, of course,
=1 - . b
A; =1 - R (5.4.3)

o[ (=) ]

Define:

Pij = probability of going from the ith p level to the

jth p level in one time unif.
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Now at level'i, we have two possibilities:
1) If we accept on the X test, after one time unit
we reach yu level (i + 1).

2) If we reject on the X test, we reset immediately to

2c
wlevel i - —= (remember,  units are expressed in
terms of r). Thus after one time unit we have reached
2¢
wlevel i - —= +1.
In summary, then:
c 4 o5 = AL ' Kk
J=1,3 j-1 : & )
jt+t——-1,J j+—<5--1
o 201 '
Pij =0, fori# -1, j+ -1 ‘ (5.4.6)

Define:
T, = the steady state, or long term, probability
' ofbbeing at the ith u level, giﬁen C1s T and Oy
. From markov chain theory, we note that (5.4.4%), (5.4.5), and (5.4.€)

define a positive recurrent, a periodic markov chain: Thus a unique

solutjion to the Lp Vi is given by:
t. = Y n, P.. (5.,’4.7)
doann, P '
i
where
s ni = 1,
alli
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Substituting (5.4.4), (5.4.5), and (5.4.6) into (5.k4.7) gives, for the

jth w level,

) Baagd e I ) (kB
Irs -1 I oL

Equation (5.4.8) may be evaluated recursively by setting an "appropriate"

® = 1, and then normalizing so that ¥ «, = 1. The normalized ni, Vis

i
alli

can then be used to compute the a posteriori o# and probability of

acceptance, for example.

5.5 Evaluation of Markov Chain

It is clear from the definition of (5.4.1) that the u index i can
take on both positive and negative values. An important question in the
solution of (5.4.8) is the determination of the lower and upper limits on

index i for a given set of Cys Ty and o For the purposes of this

x .
thesis, it was decided to consider a range on index i such that

.0001 < Ai < .9999, for a given set of Cys T and cx. For a N(O,1)

distribution F(X), this occurs for -3.86 <X <+ 3.86. Thus by setting

(cl_(J;)/;=-3,85

and
¢, - ir
(35 5 = w508
X
and solving for i, we find:

ey - o, (1.726) :
i = 1 of - (5.5.1)
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c, + ox(1.726)

-1 :
iy = - (5.5.2)
and
. 3.452 Oy ‘ '
iU - lL-=——r . : (505=3)
We will assume
Ai =0, fori> iU : { ‘ (5.5.h4)
=1, for i< iL
For example, let o, = .065, r = .0l. Then:.
iL = lOOcl - 1lf22
iU = lOOcl +11.22
Since we want the index i to be integer-valued, we take iL = 100cl - 11,

iU = 100c, + 1l. Now, for iU + 1 = 100c, + 12, we are sure to reset,

1 1
because of (5.5.4). On the other hand, the lowest p level for which

we have a.possibility of rejection is iL = 100c1 - 11, since the

probability of rejection at i, - 1 is zero, again from (5.5.%). 1If
' L 2¢c

we reject at iL’ we reset down by an amount —;L = 200c1, so0 in one time
unit we arrive at py level

(lOOc1 -11) - 200cl +1 =‘-100e1 - 10,

Thus the highest y level we can obtain is 100c, + 12, the lowest

1

-100c, - 10, giving a total number of p levels in this particular case

1

as

(100c, + 12) - (-100c, - 10) + 1 = 200c, + 23 .

1 1
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Thus in this case one can evaluate (5.4.8) by setting

“(-lOOCl + 13) = 1.0 9

and evaluﬁting recursively

S . - . ,
(-100c, + 13 + § + 1) ~ A(-100c, + 12 + J + 1) (-100c, + 12 + j + 1)

1 1 1

for j = 0,.].,0'.., zoocl - 2

 Using these values, find:

“(-100c1 +13-3) ° R(100c1 +12-3) “(1oo¢l +12-3)

+12-3) T A ‘
(-100c1 + 12~3)

n(-lOOcl

fOI‘ J = O,l,aoq,ZZu

A check in evaluation of the above is provided by:

“(-100c1 -10) - R(10001 - 11) “(100c1 - 11)

The s for i = -lOOc1 - 10 to 100cl + 12, are then normalized by

dividing by T o
i .

The above evaluation procedure can be generalized as follows:

X
.035 + .03j , § = 1,2,...,6

Consider six o, values:

.o-j_

For a fixéd set of r and ¢

' select from Table S.l the appropriate constant

L.
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Table 5.1

L Constants Used in Evaluating Equetion (5.4.8).

-~ O,

rJ 065 .095 125 155 .185 .215
oL 11 16 21 26 3 37
SOk 2 b 5 6 T 9

r=.07 was not considered in this model. Values in Table 5.1 may be
: 1.726 o,

found by eva.iuat ing [ -

] , where [x] denotes the largest integer

less than or equal to x. Then, for test constant ci, set

c

x = 1.0 - (5.5.5)
'(-r—l-+L+2) '

Evaluate recursively:

"c --Ac ”c

'(--?1+L+3+j) (--r—l+L+2+j) (..;1'-+L+z+3)

2c
j=0,1,..., -;l -2 (5.5.6)

Using these values, find:

"o "R o T 1 :
. _ ‘ ) (- 5+ L+2-j) (% +L+1-3) (=+ L+1-j) ,
(-c—11,+L+1-a') Aoe |
(- < L+l- 3)
§=0,1,...,2L , S (5.5.7)

with a check of the above given by:

T : = R L (5.5.8)

(-L-p+1) (E2-1) (2 1)
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Then normalize, setting

T,
p = — (5.5.9)
T =,
{ 1
! )
for i = - i L+1¢to ry + L + 1. Here s is the long term, or steady

state, probﬁbility of the ith p level occurring.

Thus far we have assumed that p is discrete-valued, fjumping" from
level i to i + 1 during one time unit. A more reasonable assumption is
that p has a uniform distribution during any time unit (i.e., this
assumes the tool wear is linear, which we earlier indicated was a |
reasonable assumption). In order to adjust the model for this, we

note:

Jb Xxdx _Db+a
' b-a 2
a

)
[ %% dx _ a° .+ ab + b°
o b~-a 3

Leta=1i-1,b=1i,

M =2ip

M

2
2 f 1p

Then the long term, or steady state, mean and variance of the process mean

are given by:

i
"E(u) r [ f P, Ji_l x dx] B (5.5.10)

r (4 - .5)
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Q
it

i
SN N % (5.5.11)

2 2
(i, - M+ 1/3) - [B(wI7
where we multiply by r and r2 respectively to change the unit of

measurement back in terms of T = 1 instead of in terms of r.

5.6 Derivation of Moments

As in the previous models, we want to evaluate the first four

moments of the outgoing distribution. We again will consider two classes

of outgoing distributions:
a) | all material, whether accepted or rejected by the
periodic testing, is retained; or
b) the material rejected is sorted 100 percent to
fixed limits, and then combined with the accepted
material.
Class (a) then makes no allowance for sorting of'rejected material
whatsoever. A comparison of the moments between class (a) and class
(b} outgoing distributions will indicate whether 100 percent sorting
of rejectéd material makes a significant contribution to the outgoing
distribution. This, of course, is of interest, since sorting can be both
time consuming and expensive. Recall that sorting in this case means
sortingbonly the material since the previous testing procedure.
Consider first a class (a) distribution, whére no sorting occurs.
Let Ea[(x ;'ub)m] = " moment of a class (a) distribution, where the

a denotes class (a). Then:

e
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E L(x - u )" = | , (5.6.1)
X -
= +L+1 ir n X
r = @ (X-u) e '
4 B
E Py I T I > ax
Cl ' (i-l)r - /z_n (o]
ize == L+l X
r
let t = X - u
x

Then (5.6.1) simplifies to:

B (X - b )™ =

[
TR
i ‘ ir d ® n ‘ m
T 1) .[ =2 _" oy (6 + 8)" g(t) at , (5.6.2)
N (i-1)r -
i=- < - L+l
I T
where 5= 5 2
‘ X
#(t) = standardized normal density function
Define
’ (=} m :
I, = I (t + 8) g(t) at . : (5.6.3)
. -Cy
Then, I1 =9
I,=1+8
3
= 38
4

» 2
I, =3+ 656" + &
. .‘ - c . c
Define y; = ir, for i = - =2 - Lto L+ L+ 1. Then, letting by = 05

 substituting (5.6.3) into (5.6.2), and evaluating the integral over u,

we find:
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: -% +L+1 ‘
Ea[(x - ub)m] = E P; Wipg (5.6.14)
iz~ —i:- -L +1
where J2 yz
_ i-1 -
wil = —E—EFJL—— (5.6.5)
3 3
2 ¥ T,
_Wi2 = Oy + 3 ‘ (5.6.6)
302 I)’,4 y
_ 70X 2 2 i~ JYi-1
Wiz = Oy - ¥i4) r = (5.6.7)
. .2 .
20 y: - y?
- 2t X (3.3 v, i Yi
Wiy = 30y 50 (g - Via) T (5.6.8)

If we define M= Ea[(X - ub)m], m = 1,2,3,4, then the outgoing
distribution mean, standard deviation, skewness, and kurtosis are given
respectively by:
M (5.6.9)
Sb = (M, - 2)%
, 2~ M
3
My-3Mp My + 28
(sp)3

2
_l&h-hM3Ml+ 6.MzM1- 3
q, = n
- (sp)

ag =

He

Consider now class (b) outgoing distributions, where rejected
material is sorted 100 percent to u  + KT, and then combined with the
accepted material. We will again consider K = 3/8 and 1/2, and assume

T =1.0. Define
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(5.6.10)

E g R[(X - ub)m] = n*® moment of the class (b) outgoing
sy
distribution, considering only the
rejected material. |
Then:
_ m
Eb,K,R[(x - N'o) ] =
_ 2
!L_?gl_
c
1 2
—IT+L+1 ir H.OK (X u)m e GX
T p.R.j iﬂj — ax
c PGy T Y-k /Zx Oy
i=- == -L+l
{ 2
C -’x-z)
1
=+ L+1 v pb+K . 2 Oy
E o on R x
c i p,o-K /2 Oy

where
Y
5=G°
X
U= %} -5
X
L=~ %} -3
X

Then (5.6.10) may be written as:



ir

z p. R. I dp j o (t + &)™ g(t) at
i . r X :
. 1 (i-1l)r L
i=-—1-‘-—L+l .

o
1

TrL+l u

5 b, R, IL g(t) at

[
1
i=- 0 - L+1

Define U
o, = [ Syt 4 0" p(e) at
P = g(u) - o(L), for

@i = standard normal distribution function

Then: |

Il,'K(u) = a,lg(L) - g(u) + &p]

T, (W) = oy [BQL + %) + 19(0) - v g(1)]
i ¥ ko .2
Iy ) = % (:’i S 8 e 2) e

2
- (%*%—é’f 8% + 2)¢(U) + P(35 + 53)]
X |

%%
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(5.6.11)

(5.6.12)
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+ P(3 + 68° + 5’*)‘_\

Equation (5.6.11) may now be written as:

m

Eb,x-,R-[(‘X - ”o).:I - . \ (5.6.13)
C
l .
~+L+1 ,
r ’ Iir [Im,x(ﬂ)]

z P. R,  dp
e, BRI € 25 1% T

iz=- = - L+ 1

r -

[ .

R

. r ‘

.. z P; Ry By
" R

Since Im K(p.) is a function of p, through 8, U, and L, we will approximetc
s _

the integral over p by using Simpson's Rule with n = 2. Let

ir (r (u)]
Zi mk " —mK T 4, ' (5.6.14)
i,m, (i-l)r I ‘ .
pp= s gi - 1)r _ %
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Then: ' ' ' : RN
_ 1
el JECAR RS AN Txy)) s (5:6.5)
recailing the definition of ;e Here note that the 5, P, U, and L defined

bfollbwing (5.6.10) and (5.6.12) should now be written as functions of i

51, bi’ T and Li’ since we are using the ¥y as discrete values of e

Thus |
By, rL0 - ) T = i - (5.6.16)
irl; + L +1
c, z P; B 25 m,k
= L.1+1
i% +L+1
‘c oz Py By By
i=- = -L+1
Define

Eb[(X - ub)m] = n® moment of the class (b) outgoing

distribution (i.e., combining accepted
plus sorted-rejected material)

Then for m = 1, 2, 3, U:
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B [(X - u,)"] = | | (5.6.17)

c
1
—;+L.+l

L E B (A, Wyp + Ry 2y 1 i
j=e—d - L + 1
T

o]
NS AP
r

f=al_ L+ 1
r

If ve define MM = Eb[(X - ub)m] » M =1,2,3,4 then the class (b) out-
going distribution mean, standard deviation, skewness, and kurtosis are

given respectively by:

My . .

SD = D1, - (1\4Ml)2]§ (5.6.18)
LM 3y ¢ 200)]

3 .

~(sp)3

Mg, - by MM+ 6 l\mz(ml)z - 3(MMl)h X

(sp)*

ah=

5.7 Evaluation of Test Criteria

In order to find the most desirable c, value for the X test with a

1
sample size of five, (5.5.10), (5.5.11), (5.6.9), and (5.6.18) were

evaluated, for:
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e = .1k(.02) .20

r = .0l, .0k (for r = .07, see second half
of this chapter)

oy = 05 = .035 + .933, ji=1,2,...,6

K =.375, .500

One can easily show that E(p) given by (5.5.10) is th? same as M, given by
(5.6.9). Theée values will be listed under Ml' Let SDM represent the

a posteriori standard deviation of the process mean, given by (5.5.11).
The remaihder of the notation uséd is defined by (5.6.9) and (5.€.18).
Table 5.2 gives the values for the above defined ciiteria under the
normality assumption. The table includes both class'(a) and class {b)

outgoing distributions, as previously defined. For a tool wear drift

of r = ,04, it was found that cl = .14 gives the most desirable results.
If r = .01, e = .16 is recommended. If .0l <r < .0k, a reasonasble
constant value for the X test would be c, = .15.

1
The following conclusions may be drawn from Table 5.23
1) SDM remains in good control, even for very excessive
| a priori Oy *
2) The outgoing distribution skewness and kurtosis are
quite satisfactory in all cases.
3) »Theioutgoing distribution mean and standard deviation
are feasonably in control for cx_f .155, beyond which

the mean is a bit too negative and the standard deviation

is too large (note that SD > Ty always.) However, the



Table 5.2. Summary of Test Criteria for Tool Wear Model Assuming
Reset by a Fixed Amount (Normal Case).
Class ( a)
. NO SORTING
C-l r Cri : SDM Ml SD 0'3' : d4
14 .04 .065 ' .086 .014 .095 .035  2.84
.095 © ,089 .008 .120 .007 2.95
.125 ; .093 .000 147 -.007 - 2.99
© . .155 ° .097  -.009 175  -.012 3.00
- .185 . .102 -.019 204 -,015  3.00
.215 1,106 -.030 .23 -.015 = 3.00
.16 .01 .065 ; .095 -.014 115 -,002 2,50
- .095 i' .097 -.030 .135 -.004 2.74
<125 ' ,099 -,048 .159  -,005 2.87
.155 | .102 -.068  .185 -.005  2.93
.185 1 .105 -.088 212 -,006 2,96
L,215 ¢ ,108  ~.110 4240  -,006 2,97
Class (b) WITH SORTING .
K = .375 i K = ,500
© T di ; MM1 SD a, o § iw& sD a, OZ
.14 .04 .065° .014 .095 .034 2.8% .0l14 .095 .035 2.84
.095. .008 .119 -.012 2.91 .008 .120 .006 2.95
<125 -.001 .145 -.054 2.90 .000 .147 -.014 2.97
.155 -.011 .172 -.076 2.92 -.009 .174 -.034 2.95
.185i-.023 .199 -.082 2.94 -.020 .202 -.049 2.94
.215:-.035 .227 -.081 2.98 -.032 .230 -.057 2.94
.16 .01 .065 -.014 .115 -.002 2.50 -.014 .115 -.002 2.50
- .095;-.030 .135 -.008 2.73 -.030 .135 -.004 2.74
.125,-.049 .159 -.015 2.85 -.048 .159 -.006 2.86
.155i-.068 .185 -.020 2,90 -.068 .185 -.010 2.92
.185(-.089 .211 -.023 2.94 -.089 .212 -.013 2.94
.215 -.111 .239 -.024 2.96 -.110 .240 -.016 2.96

15k
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range test will tend to reject such excessive variation,
leading to an investigation as to the causes of such
exdessive variation. Thus the combination of the X

and R tests will provide good control.

b) Littie difference is gained in 100 percent sorting of
rejected material, nor is there much difference in
sorting to by %; or W i_%-when one does sort.

It.is concluded that in most cases, sorting is not
necessary. A‘summary of test results and conclusions
wili be given following a brief discussion of the effects

of non-normal process distributions on the‘f test.

5.8 Reset by a Fixed Amount: Non-normal Case

In order to consider the effects of moderately skewed process
distributions on the X test, it is necessary only to recall the
derivation and procedures used in Chapters}III and IV. Since the sample
size considéred is five, the procedure used is 1dehtica1 to that given
in Chapter IV; in place of the normality aseumption used in equations
(5.4.1) through (5.6.17) of this chapter, use the two sets (i.e.,

Fxl(x), fxl(x), Fii(X) or Fy (x), fxz(x), Fié(x)) of moderately skewed

Burr distributions given by 2(3.10.&), Chapter III, with parameters as
given in Tables 3.10 and 4.8. By using first one set and then the other,
we get some indication of how well the X test handles moderately skewed
dist;ibutidns. Table 5.3 gives the values of the various criteria

used to find the most desirable c, for ‘he X test, with a sample size

1



156

Table 5.3. Suminary of Test Criteria for Tool Wear Model, Assuming
Reset by a Fixed Amount (Non-normal Case).

Skew 1
. ' Class (a) '(NO SORTING)

c y T o i SDM M1 SD Of3 o,
.14 .04 ,065 | .086 .014 .095 .033 2.84
. .095 © .089 .008 .120 004 2.95
125,094 .000 147 -.010 2.99

~.155 ' .098 . -.009 .176 ~ -.015 3.00
185 . .103  -.019 .205 ~ -.017 3.00

.215 ; .108  -.030 234 -.017 3.00

.16 .01~ .065 . .95 -.015 115 -.003 2.50
.095 ;.97 -.031 136 -.006 2.74

125 ¢ 100 -.050 .160  -.007 2.87

155 . .103  -.070 .186  -.009 2.93

.185 106 -.092 213 -.009 2.96

_:215 110 -.114 .242 . -.010 2.98

Skew 2

.14 .04 ,065 ; .086 -014 .095  .032 2.84
- .095 1 .090 .008 .120 .002 2.96

125 . ,094  -.000 147 -.011 2.99

-155 § .099  -.009 176  -.017 3.00

.185 104 -.020 .205  -.018 3.00

.215 108 -.031 .23 -.018 3.00

.16 .01  .065 095  -.015 115 -.004 2.50
.095 | .097  -.032 136 - -.006 2.75

.125 .100 - -.051 160  -.008 2.87

.155 .103  -.072 .186  -.010 2.93

.185 107 -.094 214 -.010 2.96

2.98

|

215 «+  ,111 -.117 <242 =011



Table 5.3. (cont.)
Skew 1 ;
Class (b) WITH SORTING
K= .375 K = 500
¢y r a, MMI SD a, 0:4 MM1 sD 03’ o
.14 .04 .065: .014 .095 .031 2.84 .014 .095 .033 2.84
.095: .008 .119 -.020 2.90 .008 .120 .002 2.95
.125,-.001 .145 -.,062 2.90 -.000 .147 -.021 2.96
v.1555-.012 .172 -.,082 2.92 -.010 .175 -.043 2.94
.185;-.024 .200 -.085 2.95 -.021 .203 -.058 2.93
.215 -.035 .227 -.080 2.99 -.033 .231 -.065 2.94
.16 .01 .065'!-.015 ,115 -.004 2,50 -.015 .155 -.003 2.50
.095 -.031 .136 -.011 2.73 -.031 .136 -.006 2.74
.125 :-,050 .159 -.019 2.85 -.050 .160 -.010 2.86
.1551!1-,071 .185 -.024 2.91 -.070 .186 -.014 2,92
.185:-.093 ,212 -.026 3.94 -.092 .213 -.018 2.94
.2151-,115 ,240 -,028 2.97 -.114 .241 -.020 2.96
_— Skew 2

‘.14 .04 .065{ .014 .095 .028 2.83 .014 .095 .032 2.84
.095' .007 .119 -.025 2.89 .008 .120 -.001 2,94
.125:-.002 146 -.064 2.90 -.000 .147 -.027 2.95
.155:-.012 .173 -.082 2.92 -.010 .175 -.047 2.94
.185!-.024 .201 -,083 2.95 -.022 .203 -.061 2.93
.215.,-.036 .228 -.078 2.99 -.034 .231 -.067 2.94
.16 .01 .065:-.015 .115 -.005 2.50 -.015 .1l15 -.004 2.50
.095:~.032 .136 -.013 2.73 -.032 .136 -.007 2.74
.125,-.051 .160 -.020 2.85 -.051 .160 -.012 2.86
.155i-.073 .186 -.025 2.91 -.072 .186 -.016 2.91
©.185-.095 .213 -.026 2.94 -.094 213 -.020 2.94
.215 -,118 .241 -.027 2.97 -.117 .241 -.022 2.96

157
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‘of five. The two sets of Burr distributions aré denoted in the tables
by "Skew 1"’and "Skew 2", respectively. Conclusiohs similar to those
drawn for the normal case are also applicable in thebnon-normal cases
considered.' SDM, the a p§steriori q}, is slightly larger, with SDM = T/9
when‘ch = ,215T. However, variation in GXI this large will quickly be

detected by the range test, so this is not likely to cause problems.

5.9 Test Procedure When Resetting by a Fixed Amount
We will’sﬁmmarize the results by giving an outlined procedure to be
followed whehrfesting a tool wear process. Let T be the tolerance and
Mo the nominﬁl mean value for a part. Then the fpllowing procedure
will safely control the distribution of the part dimensions:
| 1) For each regular (equal spaced) periqdié sample of
_fivé parts from the process, find the average X
and the range R.
2) Sampies should be taken often enough such that the
téol wear rate r between testing procedures is
{01T <r <_.O4P. If the tool wear rate r is
unknown, assume r = .O4T until enough past
hiétory has been observed to estimate r.
3) The process is considered satisfactory at this time
if_both of the following are met:
.a)f by = T <X < by + €T | (5.9.1)

b) R < .55T



159

where if r £ ,01T , c, = .16

1
= ,02T , ¢ = .15
=.0MT , ey o= 1k

‘vk) if‘either or both of the requirements in step 3
is not met, action is required. If R is exéessive,
sort the recent product looking for the source of
‘the.éxcess variability. If X is beyond the upper
limit if p increases, or the lower iimit it p
_decreases, then reset by an amount 2clT, Reset
den if p increases, up if j decreases.
5) ldQ percent sorting of rejected material is not

- necessary, if rejected by the X test.

5.10 Resetting to a Fixed Point: Introduction

At the ﬁeginning of this chapter, in introduéing'the tool wear
model, two methods of resetting were mentioned. The first, resetting by
a fixed aﬁount, has been used in the model presented in the first half
of this chapter, We now will consider the second method of reset:
resetting to a fixed point, say By - aT, for some constant a (assuming
positive tool wear drift). In an earlier médel by Burr (1967a), the
constant a was given as .1l. We will consider a values of .050 (.025)

.150. The tool wear rate per unit time interval will again be assumed

to be rT, with r = .01, .O4, .07. Initially, let y = w, - aT at time

t =0, Assume T = 1.0. Since p increases by an amount r during every

unit time interval, the p level at time t is W, - &+ tr. We are
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interested in the probability of acceptance on the X test at time t,

say (e | t). Assuming normality, -
(X-p, +a-tr)

: p.o+¢l 20‘x //§ |
: Pi(ah:) =I £ ax
B s ! /2x OXA/§ '

s () A) e (5

for fixed a, Cys T and ox, and where

)/5 ] (5.10.1)

& = standard normal distribution function. |

Note that (5.10.1) is independent of the nominal mean e
| An 1mportant question now is: "What is the probability of a time

interval (run) of length h occurring”? A time interval has length h.
if the f’test is accepted for the first (h-1) peribdic tests, and
rejected on the hth X test. Let - . |

pa(h) = probability of a time interval of length h
It should be pointed out that beginning heré and throughout the model,
the definitiqns and derivations are for fixed values.of cl, r, qk, and

&, Howeﬁer, we will continue to use a as a subscript throughout the

notation. The reason for this will become clear later. Using (5.10.1),

h-1 ' .
pa(h) = [ A P—(ait)] [1 - P—(alh)] | (5.10.2)
- tr a - c1 - tr
{t-l [* (- il ox s 1}
a + c - hr a - c1 - hr
- (';—7,;"—) - m("c;'/;;—)}
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(5.10.3)

We now would like to solve for the a posteriori E(y | a) and cs |’

E(ula) =
~h=l ~
o p,o-a+hr
d
= £ p,(h) bt
=l 2 [Iuo_a hr ]
| =

B() (4, -2+ )

h= <

for E(h) = ;'h Pa(h) .

h=1
Similarly,
2 © l""o-a:’-hr 2
E(p |a) = £ p,(h) [ I = du]
| h=1 b -8 ‘
o
Recalling that
.Id xzdx =dz+dc+c2
d-c 3

c

then for z = p_ - &,

© v
X pa(h) (average y value up to time h)

(5.10,4)
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- o ) 2 2
2 , (z+hr)” + z(z+hr) + 2°
E(p |la) = £ p,(h) -
l2) = = pgm) [ 5 ]
® 2. 2 :
= 2 ‘ h™ r
hz&_pa(h) 2 +zhr+ 3 ]
2 r? 2
=2 + zr z h p, (h) + -3- z h" p, (h) (5.10.5)
h=1 h=1
: 2 s .2
Then for E(h“) = £ h° p (h) ,
" h=l &

ule

F) = (% | a) . [E(u | a)]z

2
2% + zr E(h) +_£§ E(hz)

-‘I:»z2 + zr E(h) + %? (E(h))z]
So

ula

{u E(n%) - -3 [E(h)] } ' (5.10.6)

Thus by knowing the point to which we reset each time a rejection

occurs we can directly compute the a posteriori E(p\a) and Oﬁla'

.9.11 Resetting to a Fixed Point: Reset Error
Whenever we reset by aiming for a particular value of B, We always
have the possibility of reset error. Suppose we reset to By - a with
probability 76, and to (pb - a) + .025 with probability .2 each. We

may then recompute E(p!a) and oﬁ‘a for a = .075, .100, .125. Let
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E(ﬁp',a);= a posteriori mth moment of the proéess méan,
| assuming the reset error given above, m = 1,2
V(w, a) = a posteriori variance of the process mean,
assuming reset error
Then: _
E(p,a) = .2 [E(p la-.025) + E(u | a + .ozs)] (5.11.1)

+ .6 [E(u | a)]
for a = .075, .100, .125.

Now

27 )= g |, ¢ (e | )T
Hence

2%, a) = .6 { |, + (Bw | 217} - (5.11.2)

2 {Oﬁla-.OZS + [Bule--02) F 4 "’f,,.k“.ozzs'+ [E(”‘a+'°25)]2}

Thus

V(u, &) = B(u%, 2) - [(B(u, 8)F (5.11.3)

for a = .075, .100, .125.
It should.now be clear why it was necessary to explicitly denocte the .

constant a throughout the notation.
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5.12 Derivation of Moments when Resetting to a Fixed Point

We now wishvto evaluate the first four moments of the outgoing
distribution. We again will consider two ciasses of outgoing distributions,
as given earlier in this chapter: |

a) all material, whether accepted or rejected by

the periodic testing, is retained; or

b) the rejected material is sorted 100 percent to

fixed limits, and then combined with the accepted

material.
By comparing class (a) with class (b), we can determine whether 100
percent sorting of rejected material is worthwhile.

Consider first a class (a) distribution, where no sorting occurs.
To avoid notational confusion between the (a) in class (a) distriButions
and the constant a used in the model, we wiil use A to denote class (a)
vhenever necessary.
Define:

EA[(X -»ub):] = 0" moment of the class (a) distribution,

given €y r, ox, and a.

Now the pa(h) give the probability of a time interval of length h
occurring. If we can find the mth moment for each time length, from .
(3-1) to j, V3o then we can sum over all j = 1,..., and thus find
the overall m™® moment EA[(X - ub)gl . Define

qa(i) = probability of the process mean p being
-a+ (i-)r <y < by - &+ ir, i=l,...,e

Ko
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The qa(i) mey be computed at least two (equivalent) ways. For example,

one can easily see that:

q,(1) =1
q,(2) =1 -p,(1)
!
(1) =1- = p(3) | (5.12.1)
j=1

The ith term may also be expressed as:

- (i-)r (1 1)r

)5)- 8 () 51}

q (i) = q (i- 1){9 [(

(5.12.2)
Then:
B (X - p )"
Lo e
. 20
- Wy -atir © (X - )m e X
£ g ()] L [ 2 ax
i=1 p-a(i-1)r N oy
r q(i)
i=1 2
Mo -a+ir e _
'>: (3) Ll g (6+8) k) at
q Ip. a+(1 1)1‘ I‘j_m CX
- ‘ ‘ , (5.12.3)

[22]
T aq(i)
i=1 2
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for

ﬁ(t) = standard normal densfty function

Now, letting

[or]

I =j (t + &)™ g(t) at

-CT

y = -a+ir, i=01,...

and setting p = 0, we can reduce (5.12.3) to:

z q, (i) w (i) |
EA [(X Ho a] = i ) _ (5.12.h5
. 153 qa(l)
where _ yz‘ ) yz
wia(i) = 81 = a,i-1
| 3 3
Wy, (1) = oi + 3513; Ya,i-1 (5.12.5)
302 - h E
W3a(i) = -Eg Voi = Ya,i- l) ai ali-l':
o2 5
Wua_(.i) = 301;( + .2;3 (yzi i} yz,i-l) , Yai ;ry;i-l

If we define Mm = EA [(X - po): , m=1,2,3,4, then the outgoing
distribution mean, standard deviation, skeﬂness, and kurtosis are given
by equations (5.6.9) listed earlier in this chapter.

If we now consider the case of set-up error, then
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E, [(x -’pb):— = - (5.12.6)

2 @) w )+ ¥ i D1+ dran '
iz& q(a"g;%)w;(a'-é;;) 151 q(a+-g2%)wm(a+.82;) ' [;ziqa( )Wma(l)]

.2 ['—'ifl q(a-.OZs)(i) +i§IQ(a+-025)(i)] + .6 [ifl qa(i)]

The outgoing distribution mean, standard deviation, skewness, and kurtosis
may also be found in the case of set-up error.

Consider now class (b) distributions, where the rejected material
is sorted 160 percent to limits By + KT, andthen combined with the accepted
meterial. Define

probability of accepting on the X test at time t=i

1

PA, (i)

PRa(i) probabiljty of rejecting on the X test at time £=i.
Implicit in the above definitions is the assumption that the process
has been acceptéd on all X tests through time t = 1 - 1.
Eb,K,R [(X - pb)g = n™® moment of the class (b) outgoing
| distribution, considering only the
rejected material.

Then: '

a+c -r a-c¢
1
c.

S[(EEIY ] s (L2 ) )

a,(2)

PA (1)
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In general,

PAa(i) = qa(i+l), i=1,2,... (5.12.7)
Now
PRa(i) = pa(i) , i=1,2,... (5.12.8)

for pa(i) given in (5.10.2).

Then

F‘t’»,x,n'[(x - “’o):] =

X -4 2
v - 02
By -a+ir p +K m X
a o (X-pn) e dax
z B, (1) [ 2 :
i= -aﬁ(l r T b,-K /2n oy
ot
p-atir 4 pb+K . Zox
s p (1) j —ff = ax
i=1 wy-8+(i-1)r TR VAT
Wy -atir
Zp (i) [ (u)]
i=1 @ Iu -a+(i-l)r T m, K ' '
= _ - s (5.12.9)
Uy -a+1ir a U
z 7a(0) | L[ gee) at
-a+(i 1)r L
where
| U

Im,x(p) = JL dy (& +8)" g(t) at i (5.12.10)
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g(t)
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Lo.s
g

X
K
%x

-5

standard normal density function

Let P = &(U) - &(L), and evaluate (5.12.10) using the procedure given

fbllowing‘equation (5.6.12) earlier in this chapter. Let

b _-a+ir
w={" T ()| S
2 mo®) = | [1a,x0)]
a,m,K ub'a+(i'1)r m,K r }
for i = 1,2,...
m=1,2,3,4

and evaluate using Simpson's Rule with n = 2.

Au

(b, - & +ir) - [u - a~+ (i-1)r]
‘ —

nois

Then, for,yai previously defined,

1 .
Za,m,K(i)'= [ [Im,K(ya,i-l) * uIm,K(ya,i-l + bw) 4 Im,K‘yai)]

i=1,2,...

m=1,2,3,4
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Here note that the &, P. U, and L defined following (5.12.10) should
now be written as: Ga(i), Pa(i)’ Ua(i), and La(i); since we are using

Ypi a8 discrete values of p. Thus

«Q
| Y (1) 2, b k(1)
- L R (5.12.13)
. R pa(i) Pa(i)
i=1
Define
E, [(X - po)z} = 't moment of the class (b) outgoing
distribution
Then for m = 1,2,3,4,
B (X - w)] -
.E; [qa(i+l) wma(i) * pa(i) Za,m,K(i)]
= (5.12,14)
2 [aa6m)0, ) 2, ()]

For the case of set-up error,
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Bl (X - 1) | = (5.12.15)

{'Z{sgl[q (#1)W (@) +p (i) z (1)]

(a-.025) m(a-.025) (a-.025) (a-.025),m,K

sola @Ow (1) i -
i=1 q(a+.025§ m(a+.025)+p(a+.ézg)z(a+.é;;),m,K]}

£6 4, (LW, (1)ep, ()2, o ()] )

5{.2{1;[q (i+1)+p (1) P (1) +;[q (i) +p (1) P (i)
=1- (a-.025) (a-.025) (a-.025)- i=1" (a+.025) (a+.025) (a+.025)

+ .6 izi rqa(i+l) + Pa(i) Pa(i)] }

If we define MM = E [(x - ub)Z] , m=1,2,3,k, then the class (b) out-
going distribution mean, standard deviation, skewness, and kurtosis are .
given respeétively by equations (5.6.18) listed earlier in this chapter.
This may be.done for both with and without set-up error, using (5.12.1h4)

and (5.12.15).

5.13 Test Criteria Evaluation when Resetting to a Fixed Point

In order to find the most desirable ¢y value for the X test with
a sample size of five, equations (5.10.%), (5.10.6), (5.11.1), (5.11.3),
(5.12.4), (5.12.€), (5.12.14), and (5.12.15) were evaluated, for:

.14(.02).20

a
1]

r = .0L, .04, .07

Q
il

X c% = ,035 + .03j, j=1,...,6
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~
]

. 375 ,.500

.050 (.025).150, except when set-up error is

[
u

assumed, and then a = .075,

.100, .125.
Let SDM represent the a posteriori standard deviatioh of the process
mean, °L°. The remainder of the notation should be_quite_familiar by
now. Tabie 5.4 gives a summary of the criteria used to select the most
éppropriate c, values. For a tool wear rafe of r = .01, ¢, = .18 seemed

1

to be the best compromise choice. For r = .0k, ¢, = .16 was chosen; and

1
for r = .07, ¢ = .14 was chosen. Interpolation for 0L <r <.07 is
possible in order to select the best compromise él value. The above
results are given for a = .125; that is, we will reset to p_ - T/8

'following a rejection on the X test, with positive drift. This seemed
to work out best among the alternatives considered. Values in Table 5.k
are given for class (a) distribuﬁions only; that, no sorting of rejected
material is éonsidered. When 100 percent sorting of rejected material
ﬁas assumed, very little effect was noticed, so these values were omitted
from the table. Finally, all results are given assuming reset error.
Following a brief discussion of the effects of moderately skewed process

distributions, we will summarize these results in an outlined test

procedure.

5.14 Reset to a Fixed Poipt: Non-Rormal Case

In order to consider the effects of moderately skewed process

distributions. on the X test, a procedure analogous to that used earlier



Table 5.4.

= ¥ Test

Summary of Selection Criteria for Positive Tool Wear
with Reset to u, - T/8 (Normal Case).
Constant, r = Tool Wear Rate.

c1 T Ok SDM Ml SD a3 qa
.18~ .01 . .065 .088 .021 .108. .008 2.56
.095 .091 .012 .126 .017 2.80

.125 .087 .001 .149 024 . - 2.91

.155 076 .018 174 .029 2,96

.185 .062 .036 .199 .029 2.99
' .215 .050 .054 .225 .023 3.00

.16 .04 .065 .089 .027 111 .029 2.55
-~ .095 .091 .023 .131 .037 2.78

125 .092 .019 .154 .037 2.89

.155 .090 .012 179 .035 2.95

.185 .087 .005 .205 .031. 2.97

- .215 .083 003  .232 .027 2.99

.14 .07 .065 .089 .026 111 .054 2.57
.095 .091 .026 «132 055  2.79

.125 .092 .023 .156 .051 2.89

.155 .092 .020 -181 .045 2.95

.185 .091 .015 .208 .039 2.97

.215 .089 011 .235 .034 2,99

173
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in this chaﬁter was again employed. The reader may{wish to review
section 5.8 before continuing. Table 5.5 gives the values of the

various criteria used to find the most desirable cl and the X test,

under the assumption of non-normal process distributions. The results
were quite close to those obtained in the normal case. Therefore,

values are given only for the moderately skewed Burr distribution denoted

earlier by "Skew 2".

5.15 Test Procedure When Resetting to a Fixed Point

The folloﬁing procedure should be used whenever the tool wear
process is'réset to a fixed point following a rejection on the X test.
Let T be the tolerance and o the nominal mean value for a part. The
following procedure will safely control the distribution of part
dimensions:
l) For each regular (equal spaced) periodic sample of
five parts from the process, find the average X and the
range R.
2) Samples should be taken often enough such that the
tool wear rate r between testing procedures is .OlT <r < .O7T.
If the tool wear rate r is unknown, assure r = ,O4T until
enough past history has been observed to estimate r.
3) The process is considered satisfactory-at this time
if both of the following are met:
a) b - T <X <p + T | (5.15.1)
b) R < .55T

>
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- Table 5.5." .Sdmmary of Selection Criteria for Positive Tool Wear
' with Reset to W, - T/8 (Non-normal Case). c1 = X
Test Constant, r = Tool Wear Rate, Skew 2 Only.

c r o SDM M SD a

1 X 1 3 %
.18 .01 _ .065 _ .087  .021 _ .108  .011__ 2.56
.095  .090  .011  .126  .019  2.81
125  .088 -.001  .149  .024  2.91
.155  .077 -.017  .174  .028  2.96
.185  .062 -.036  .200  .029  2.99
.215  .050 -.055  .226  .024  3.00
.16 .04  .065  .089  .027  .111  .030 . 2.55
.095  .091 .02t  .131  .037  2.78
©.125  .092  .019  .154  .038  2.89
.155  .091  .013  .179  .035  2.95
.185  .088  .006  .206  .032  2.97
. .215 .08 -.003  .233  .028  2.99
.14 .07 ~ .065  .089  ,027  .111  .054  2.57
.095  .091  .026 . .132 .05  2.78
.125°  .092  .024  .156  .050  2.89
155 .092  .020  .181  .045  2.94
.185  .092 - .016  .208  .040  2.97
2,99

215  .090 _ .011 _ .235 .03



where if r = ,Q1T, ¢y = .18
= .OhT, Cl = -16
= 07T, e = L

L) If either or both of the reéuirements in step 3 is

not met, action is required. If R is excessive, sort the

recenf product looking for the source of the excess

~ varisbility. If X is beyond the upper limit if

increases, reset to By - T/8; if X is beyond the

lover limit if u decreases, reset to u_ + T/8.

5) 100 percent sorting of rejected material is not

necessary, if rejected by the X test. |

By comparing the.above procedure fo that given in section 5.9,
one notes that the above iz a more relaxed test oh f, for a given
tool vwear rate r. This is due to the method of rgset following a
rejection, and is a natural recommendation for rgsetting to a fixed

point rather than by a fixed amount.

176
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CHAPTER VI

SUMMARY

The current application of specification limits, with no other
control over the distribution of part dimensions, has made it difficult
for design éngineers to safely take much advantage of the square-root
tolerance formula given by (1.3.2). What is needed is emphasis instead
upon controiling the distribution of the parts, specifically by
maintaining the average close to the desired nominel mean Hos while
préventing.the variability from becoming excessive. It is then
possible and safe for the design engineer to use (1;3,2). We maintain
this part distributional control through the use of statistical tests
based on the sample mean and range. Such tests have been developed in
the areas of‘acceptance sampling and process control, with both randomlv
acting assignable causes and tool wear models considered under process
cdntrol. It islrmed that these tests can be implemented with ease,
and yet be powerful enough to produce assembliesbmeeting all design
engineering requirements.

Several areas of future research were mentionéd in the body of the

thesis. These include the effects of non-normal process distributions
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on (a) the overall probability of acceptance for the ; and R tests,
(b) the distribution of the sum-range, and (c) the derivation of the
moments of the outgoing distribution. Item (c) has been investigated
in this research to a certain extent, but further investigation might
prove worthwhile. The author hopes to consider thesevproblems at a

later date, and suggests them as well to the interested reader.
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