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be k independent populations.

1. Introduction and Summary. Let = 5T

10 Toseee

Let A be an interval on the real line.. Associated with T (i =1,2,...,k) is a

k

real valued random variable Xi with an absolutely continuous distribution
Fi = FA R Xi e A, and density function fi z fA . It is assumed that the functional
i .

i
i A, A < A < ... €A
form of Fhi is known, but not the value of i Let (1] 21 = =Y be

k]

the ordered A's. The correct pairing of the ordered and the unordered A's is not
known. It is also assumed that F, is differentiable in A and that {FA}’ A e, is
a stochastically increasing (SI) family of distributions, that is to say, for

A <A', F, and F,, are distinct and Fl(x) Z.FAv(X) for all x. Let x;, X55... %,
be observations on Xl, X2,...,Xk, respectively. Based on these observations,

the goal is to select a non-empty subset of the k populations with the guarantee
that the probability of a correct selection, i.e. selection of a subset which in-
cludes the population associated with A[k] (A[ll), called the best population,

is at least a predetermined number P¥ (%-< P* < 1). If there are more than one
populations with Ai = A[k] (Ai = A[l])’ then we assume that one of them is tagged
as the best population. Letting P(CSIR) denote the probability of a correct
selection using the procedure R, the probability requirement can be written as

*
(1.1) inf P(CS|R) > P ,
Q
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where R is the space of all k-tuples (Fl’ F2""’Fk)' This requirement (1.1) will

be referred to as the P*—condition.

In the next section a class of procedures Rh is defined using a function
“h = hc,d’ ¢ >1,d >0, defined on the real line, for selection of the population
x]. This class of procedures is a natural generalization of a
class of procedures proposed and studied by Gupta [2]. A main result of this

associated with A[

section is Theorem 2.2 which generalizes an earlier result of Lemmsnn([6]. This
theorem is used to evaluate the infimum of the probability of a correct selection.
Section 3 discusses some properties of this class of procedures. The succeeding
section briefly deals with the problem of selecting the population associated
with A .

[1]

2. The Class of Procedures R.. Let h=h ., c e [1,), & € [0,) be a class of
h c

,d

real valued functions defined on the real line satisfying the following set of

conditions (A): For every x belonging to the support of F.s (i) h, d(x) > x,

2

(ii) h, (x) = x, (iii) h  _(x) is continuous in ¢ and d and (iv)

1,0 c,d
lim h d(x) = w, ¢ fixed and/or lim h d(x) = o, 4 fixed, x # O. Then the proce-
d')“ C, c>® C,
dure Rh is defined as follows. Rh: Include the population L in the selected
subset iff
(2.1) h(x;) > max x .

1<r<k
This procedure is a natural generalization of the one proposed and investigated by

Gupta [ 2}. Letting X(r) denote the random variable of the set X, X2,...,Xk which

is associgted with A and F =F denote the corresponding cdf, we obtain
[r] ®¢ FLx) = Fap
(2.2) P(cs|R ) = P(n(X()) 2 X(y> T = 1,2,..0 k1)
k-1
= I { Il F[r] (h(X)) } f[k](x) ix ,

r=1



where f[r] (r =1, 2,...,k) denotes the density corresponding to F[r] and the in-
tegral is taken over the support of the distributions which is assumed to be the

same for all FA’ A € A. Because {FA} is assumed to be an SI family,

(2.3) | P(cs|R,) > [ F%;% (h(x)) £, (x) ax .
Define
(2.4) P(r; c,d,t+l) = | F; (n(x)) £,(x) ax . ‘
Then
(2.5) inf P(CSIRh) = inf P{X; ¢,d,k) .
Q AeA

Because of the set of conditions (A) imposed on h, we have

(i) ‘JJ(M C,d,k) >

o

(ii) w(r; 1,0,k) =

o

(2.6)
(iii) 1im @(r; e,d,k)
d=>e

1, ¢ fixed, and/or

lim ¢(r; ¢,d,k)
fodea-d

1, d fixed .

It is easy to see from the above that constants ¢ and 4 can be chosen to satisfy the

%*
P -condition.

Sufficient Condition for the Monotonicity of ¥(A; c,d.k).

We state without proof as a preliminary result the following theorem which is
essentially the result of Lehmann [g, p. 112].
Theorem 2.1. Let {FA} be an SI family of distributions on the real line. Then
EAW(X) is non-decreasing in A for any non-decreasing function ¢, where E, denotes

the expectation w.p.t. FA'



A generalization of the above theorem has been stated by Mahamunulu [7] and Alam
and Rizvi [1] for the case of independent and identically distributed random
variables Xl, X2""’Xk with distribution function FA’ where w(xl, x2,...,xk) is
non-decreasing in each.argument. But what we presently seek is a generalization
of Theorem 2.1 in a different direction stated in the following theoren.

Theorem a;g. Let {FA}’ A € A be a family of absolutely continuous distributions
on the real line and ¥(x,A) be a real valued function possessing the first partial
derivatives ¥, and ¥, w.r.t. x and X respectively. Then EA(X,A) is non-decreasing

in A provided that

3(F,y)
(2.7) | é(-}:% | >0,
where
B
eo L] ERw e
2 F, (x) NERY)

Further Exw(X,A) is strictly increasing in A if (2.7) holds with striet inequality
on a set of positive Lebesque measure.
In order to prove this theorem we introduce some notations and establish two

lemmas. Let

(2.9) A(x) = [ w(x,2) @ Fo(x) = E, 9(x,2) .

A, and define

Let us consider A 1 < >

1 A2 € A such that A

2
(2.10) A(ga) = [ vlx,n ) aF, (x) , i=1,2

r=]
r#i

and
2
(2.11) B(Al,ke) = 121 Ai(Al,Az) ,



vhere F, = FX , 1 =1,2. We note that when A =2, =, B(A,A) = 2A(A).
i

Lemma 2.1. B(Al,kz) is non-decreasing in A,» when A, is kept fixed, provided that,

2

for Al Ay

(2.12) b (x,0.) £, (%) = =—F,(x) v (x,A.) > 0O
S A W x Bk, “ay et =

Proof. Integrating A (Al,x ) by parts and using it in (2.11), it is easily seen
that

(2.13) B(Al,ke) = a term independent of A, +

f {w(x,kl) f2(x) - Fl(x) wx(x,lz) } ax.
Hence

-F (x) Uy (x, Ay ) } oax

(2.14) = B(J\fk )= | {v, (x A) £,(x) -
1

9A

and this is non-negative if (2.12) holds.

Lemma 2.2. If Ay = A, = A, then B(A,)) is non-decreasing in A provided that

(2.12) holds.

Proof. We note the following properties of B(Al,Aa) which can be easily verified.
2

(2.15) S B, = ]

B(A A,)
i=1 "2

BA

(2.16) ~~-B(A JA ) = = B(A Al) =

9
3, ax, ay

where Al ++A2 indicates that after differentiation Al and A2 are interchanged in

the final expression. Hence

d =5 O
(2.17) ~EX-B(A,A) =2 5, B(Al,AQ)



a o 9
Thus == B(X,1) > 0 if &3 B(A;5A,) > 0 for

§_A2. Now appealing to Lemma 2.1,
1

Al
the proof is completed.
We are now equipped to prove Theorem 2.2.

Proof of Theorem 2.2. By Lemma 2.2, B(A,A) = 2A(A) is non-decreasing in A if (2.12)

holds. But for the theorem, it is easy to see that it suffices if (2.12) holds

when Al = A2 = A. Thus the sufficient condition reduces to (2.7). The strict in-~

equality part is now obvious.

Remark 2.1. In the proof of Lemma 2.1 we have assumed that all the distributions
FA have the same support. But the lemma is true even if the support changes with

A. If (a., bl) and (a2,b2) are the supports of F, and Fl" it can be easily veri-

Al 2

fied by integrating Al(xl,lz) by parts and differentiating w.r.t. A, that

LY
d _ d
(218) 5-4,000) =- [ 3 F, (x) v (x,1,) ax .
1 a 1M
1
Hence we have
Pp Py
9 = 2
(2.19) 5 BOA) = [ v, Gea)) gy () ax - [ o= F, (x) v (x,2,) ax ,
1 &, "1 2 a 171

which is non-negative if (2.12) holds. It can also be seen that (2.15) and (2.16)

are still true. Thus Theorem 2.2 is true when the supports are not the same.

Remark 2.2. If y(x,A) = ¢(x) for all A ¢ A, then EA p(x) is non-decreasing in ) if

d

—5%-Fk(x) .,a;-w(x) < 0. If we further assume that {FA} is an SI family of dis-

tributions, then B, y(x) is non-decreasing in A if a%w(x)z_o, i.e. if p(x) is non-

decreasing in x, which is Lehmann's result.



Corollary 2.1. Let {FA} and P(x,\) be as in the hypothesis of Theorem 2.2 with the
additional condition that Y(x,A) 3_0. Then, for any positive integer t,

E, wt(x,k) is non~decreasing in A provided that (2.7) holds and.is strictly in-
creasing in A if strict inequality holds in (2.7) on a set of positive Lebesgue

megsure.

Proof. Let ¢(x,\) = wt(x,x) play the role of y(x,\) in Theorem 2.2. Then E, wt(x,x)

is non-decreasing in A if | g(i A) l > 0. Since I %%54%% | =
3 2

t wt'l(x,x) | ggi A) | and $(x,1) is non-negative the conclusion of the corollary is
2>

obvious.
Remark 2.3. Starting with integration of Az(ll,kz) by parts and then differentiating
B(Al,x2) partially w.r.t. A2’ it can be shown that A(\) is non-increasing in A if
_3(F,p)
I a(x’)\) l io .
Now we generalize the results of Lemmas 2.1 and 2.2 in order to use them

subsequently when we discuss the expected subset size. Consider Ai € A, i=1,...,k

subject to the condition that Al E.Ag < ves g_xk. Define

k
(2.20) Ai(xl,...,xk) = [ rgl w(x,xi) a Fi(x), i=1,...,k,

r#i

k
(2.21) B(Al,...,Ak) = iz Ai(xl,...,xk)
and
k-1

(2.22) Ark) = [ v (x,0) aF, (x) .

Then B(A,...,A) = k A(A,k). Integrating Al(Al,...,Ak) by parts and using it in

(2.21) and then differentiating w.r.t. A, we get

1



(2.23) 53— B(A ,...,0,) =
1
k X
9
Z ] n W(x,a) Lo,y (x,0)) £ () - 5= F(x) g (x,0 ) ) ax .
«=2 r=2 1 1

r#a
Thus we get the following lemma.

Lemma 2.3. B(A .,Ak) is non-decreasing in Ay»> when A «5d, are kept fixed,

l,n- 2,-.

provided that ¢(x,A) > O and (2.12) holds.

IfFA =...=) =X <A

1 m Ay 00 S A, ,1l<m<k,

— k’
then by a reasoning similar to that employed in the proof of Lemma 2.2, we can show

that

(2.2’4) ——QB(A,...,X, A ,.,,,}\k) =m ._3_. B(A

2 m+l axl l""’kk)

Thus we obtain the following lemma.

Lemma 2.4, If Xl = ...=A =A<

< A
m =

K 1 <m <k, then

., Ak) is non~decreasing in A when A

< Lee
m+l —

B(A,...,A, A .,A, are kept fixed,

1’ +1°°" k

provided that P{x,A) is non-negative and (2.12) holds.
As a consequence of Lemma 2.4, we obtain the following theorem.
Theorem 2.3. Let B(Al,...,kk) be defined by (2.21) and (2.22). Then the supremum of

B(A A, ) over A € A subject to the condition A, < A, < ... < A _takes

l,‘.., l,'."lk l 2 k

place at Al = ... = )\ provided that ¥(x,)) is non-negative and (2.12) holds.

We conclude this section by stating the following theorem which gives a
sufficient condition for the monotonicity of ¢(A; c,d,k).

Theorem 2.4. For the procedure R_ defined by (2.1), ¢(A; c,d,k) is non-decreasing

h
in X provided that



(2.25) ax A(h(x)) £ (x) - n'(x) £, (n(x)) == YR Fx(x) >0,

where h'(x) = %; h(x) and ¢(A; c,d,k) is strictly increasing in A if strict in-
equality holds in (2.25) on a set of positive Lebesgue measure.
Proof. The proof is immediate by letting ¥(x,A) = Fh(h(x)) in Theorem 2.2 and

Corollary 2.1.

3. Properties of Procedure Rh. Let LI (r =1,...,k) be the population associated
with A[r] and P, be the probability that ﬂ(r) is included in the selected subset
using the procedure Rh.

Theorem 3.1. The procedure Rh is monotone, i.e., for 1 < i < § <k, P; i.Pj’ pro-
vided that h(x) is non-decreasing in x. K

Proof. We need only show that Py S Py Let P(x) = H F[ ](x) Then

Py = [ w(a(x) Froy(n(x)) afp) ()< fu(n(x) Fppy(nlx)) aFp,;(x) because of
Theorem 2.1 and thevfact that h(x) is non-decreasing in x. Since
Froy(B(x)) < Fryy(h(x)), py < [ w(n(x)) Frpp(E(x)) aFp,3(x) = p

Let S denote the size of the subset selected and S' be the number of non-best

populations included in the subset. Then

(3.1) E(8) = E(ish) =Pyt ...+

and

(3.2) E(S') = E(S'th) =Pt ..t

Now by taking w(x,l[i]) = F[i] (h(x)), we see that p; = Ai(A[ll,.. A[k]) and

E(Sth) = B(A[l],..., A[k])' Hence, as the consequence of Theorem 2.3, we obtain the

following result.

Theorem 3.2. For the procedure Rh’ the supremun of E(SIRh) is attained at

AT A T e S IF, fordy <y,
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3

o By (B(x) £, (x) - n'(x) - F, () £, (a(x) > 0.

1 " 2 1 1 2

(3.3)

Lemma 3.1. E(S') is non-decreasing in A[l]’ the other A's kept fixed, provided
that (3.3) holds.

Proof. It is easy to see that P[] is mon-inereasing in A, ;. E(8) is
non-decreasing in A[l].if (3.3) hoids. Thus E(S') = E(S) - Pri] is non~decreasing

1
From the proofs of Lemmas 2.3 and 2.4, it is clear that E(S') =

in A[ ] if (3.3) holds.

k-1

izl Ai(l[l]""’ A[k]) is non-decreasing in A, where A[l] = ..., = A[

m]

NS Mgy e

to the following theorem.

S Ag)» 1 Sm < k-1, provided that (3.3) is satisfied. This leads

Theorem 3.3. For the procedure R, » the supremum of E(S') is attained at

Al = ... = Ak if, for Al 5_)2, (3.3) is satisfied.
Remark 3.1. It is to be noted that the sufficient condition (2.25) is included in

the condition (3.3). In many cases (3.3) can be verified to be true.

Some Special Cases.

(a) A is a location parameter, i.e., FA(x) = F(x-1), - ©» < A < », In this case
(3.3) reduces to

(3.4) h'(x) £, (x) £, (h(x)) - £, (x) £. (h(x)) > O .
M Ay A A -

Since h(x) > x, if fA(x) has a monotone likelihood ratio (MLR) in x and h'(x) > 1,

then (3.4) is satisfied. In particular, hi(x) = x + d, d > 0, is the usual choice.

(b) A is a scale parameter, i.e., Fl(x) F(%), x >0, A >0. In this case,

(3.3) vecomes



11
(3.5) =xh'(x) £, (x) £, (b(x)) ~ n(x) £, (a(x)) £, (x) >0 .
A A . A A
1 2 1 2
If f,(x) has MLR in x and x h'(x) > h(x) > 0, then (3.5) is satisfied. In particu-
lar, h(x) = cx, ¢ > 1, has been the usual choice.
(e) fA(x) is given by

-]

(3.6) f,(x) = Y owlr,g) g (x),
3=0 .

where gj(x), J=0,1, ... is a sequence of density functions and w(A,j) are non-

o3

negative weights such that Z w(),j) = 1. We will consider weights given by

J=0

g
(3.7) w(r,j) = RO A(x) > 0, A >0
and
(3.8) 4 = (q + pj)aj »3=0,1,... 3,020 .

Using (3.7) and successive applications of {3.8), we have

-a/p
(3.9) A(A) = a_ (1-ap) s
provided that A < %u Let us define
(3.10) r,(x) = A(}) £, (x)
and
(3.11) R, (x) = A(x) F,(x) .
Then (3.3) reduces to
(3.12) QAl(h(X)) rkz(X) - h'(x) le(x) rAe(h(x)) >0,

where

(3.13) Q) = 40) 5 R () - R G 52 A0
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Using (3.9) and (3.11), we can write (3.13) as

_]_—q/p . ,j-l
(3.14) Qx(x) = ao(l-kp) [ (1-rp) le GOT

Tay G (x)

. q Z j,an(x)].

The expression inside the square brackets of (3.1h)

«© co

J - 29
= jzo 3T %541 Gj+l(x) - jzl (qup) 2, G (x) - q a G (x)

A9
= = a AG,(x) ,
JZOJ. j+l J
where AGj(x) = Gj+l(x) - Gj(x).
Hence, (3.3) holds if
J o J
Ao
(3.15) ( Z 1 26, (h(x)) ( § -Fa.g.(x)) -
R j=0 ¥° 373
o _d ® J
, M Ao
h'(x) (JZ 3T 85 AGJ(X)) (jzo.ﬁT? 2 gj(h(x)) >0 .
Since (3.15) should hold for A} Ay we set A, =b A, b > 1, and rewrite (3.15)
in its equivalent form
(3.16) ( 2 1 865(n(x)) ( Z 3T 2P gj(x)) -
J=0
B'(x) ( ; N ( J
x i 3T AG x)) ZO j' a; b gJ(h(x)) >0 .

Now this can be simplified and using (3.8) rewritten as

(3.17) ITH T Ma e 1m0,
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where
i-a
(3.18) T (x) =v (q+ pa) g;_, (x) a6 (u(x)) -

(¢
h'(x) b (q + p(i-a)) g (h(x)) a6, (x).

Obviously, for (3.17) to hold, it is sufficient that for every integer 1 > 0 ,
i
i
(3.19) ZO () a, ay , T (x)>0.
Grouping the terms corresponding to o and i-a in {3.19), a more stringent condition

for (3.17) to hold is that, for a = 0, 1,..., [%ﬂ ([s] denotes the largest integer

<s), T (x)+ T, (%) 20, i

i-a
(3.20) ®  (q+pa) [g;_ (x) a6, (n(x)) - n'(x) g;_ (n(x)) 4G (x) ]

a
+b (q + pli-a)) [ga(X) AGi-a(h(x)) - h'(x) ga(h(x)) AGi-a(x) I.

>0 .

Remark 3.2. A sufficient condition for y(x; c, d, k) to be non-decreasing in A in

the three special cases (a) through (c) is given respectively by

(3.21) : n'(x) > 1
(3.22) x h'(x) > h(x)
and

(3.23) (qtpa) [g;_,(x) 4G (h(x)) - h'(x) g;_, (u(x)) 4G _(x)]

*+ (a + pli-a)) g (x) a6,  (n(x)) - n'(x) g, (u(x)) ac,_ (x)] > o. X
e AJ
SEE

Thus the densitieé gj(x) are weighted by Poisson weights. Familiar examples of

Under the case (c), if we set ¢ = 1, p = O and a =1, ve get wir,j) =

fA(x) in this case are the densities of a non-central chi-square or non-central



1k

F variable with non-centrality parameter A. The sufficient condition (3.23) in
this case with h(x) = ex, ¢ > 1, has been obtained by Gupts and Studden [4].
Again, if we set p = 1 and a =1, we get densities gj(x) with negative binomial
weights., The distribution of R2, where R is the multiple correlation coefficient,
in the so-called unconditional case is an example of the above. The sufficient
condition (3.23) for this case with h(x) = cx, c > 1, has been obtained by Gupta
and Panchapakesan [3]. The sufficient condition in these special cases of Poisson
and negative binomial weights have been obtained by the above authors by a direct
method in absence of the general sufficient condition (2.25).

The case of binomial weights can be brought under (¢). We have

o d -3
w(r, i) = (3‘) A (1-2)  ,3=0,..., 0, 0<A<1. Ifweletyp=2r/(1-A),
Jd a
wix,3) = %T-K%ﬁj-, where
s J =0
(3.24) a, = -N(N—l) eoo (N=3+1), j=1,...,N

) , § o= N+l,... .

and A(u) = (1 + u)N. The density in this case becomes

(3.25) fu(x) =

q + pJ »J =0, 1,...,N
2
We see that —= bod
aj
0 > J = N+1,... .
where ¢ = N and p = -1. Though we assumed earlier that P and g are non-negative,

all we need is that q + Jp be non-negative for all J in the finite mixture. Since
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u is an increasing function of A, we can easily see that the sufficient condition

(3.19) reduces to

min(i,N) _
(3.26) ) (*) M (x) >0 for i =0, 1,..., 2§-1
a=max(0, i+1-N) ¢ ¢
where
(3.21) M (x) = o, [a(x) 80, (n(x)) - b'(x) g (n(x) a6, ()] .

We conclude this section by stating a lemma regarding the MLR property of fA(x)
when it is given by (3.6).

Lemma 3.2. Let fA(x) be a density given by (3.6). Then fA(x) is totally positive

of order 2 (TPQ), i.e., for A, <,
N
and X < X5 fA (xg)
1 [
P > 0 provided that
£, (x,)
AE 2

gj(x) and w(A,}) are TP,.
Proof. The proof is a consequence of the basic composition formula of Polyéd and
Szego (see Karlin [5], p. 17), which in the present case is

. {
1r (x,) £ (x,) g, (x;) (x,) §1 win s3,) wln,.d,)
R A2 f B3 Bt 171 172

;;fla(xl) fke(xz) ' ’5 gjz(xl) gja(xz) .l W(Aa,dl) w(Aa,Ja)

for xl < x2 and Al < A2 .

4, Selection of the Population Associated with A'l]' In this case we will only
S

briefly mention the modifications made and state the results without proofs. Let

H=H ;¢ e[1l,#0), 4 €[0,»] be a real valued function defined on the real line
1]
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satisfying the following set of conditions (B): For every x belonging to the

support of F , (i) H, d(x) < x, (ii) H, .(x) = x, (iii) H d(x) is continuous in
H - ]

1,0

(x) = ~», ¢ fixed and/or lim H, d(x) = 0, 4 fixed.
]

c and d, and (iv) lim H
c orco

d>ro »d
Then the class of procedures RH for selecting a subset containing the population
associated with A[l] is defined as follows.

RH: Include the population Hi in the selected subset iff

(.1) . H(xi) < min x_ .
1<r<k

This procedure selects a non-empty subset because of the condition B-(i). The
probability of a correct selection is given by

k

(4.2) P(cs|R,) = [ n2 F%r] (H(x)) aFr,q (%),
r=

where F[r] (x) =1 - F[r](x). Because of the stochastic ordering of F,, we have

(%.3) inf P(CS|RH) = inf ¢{A; c,d,k) ,
Q Ael
vhere
k-1
(k.4) ¢(A; c,d,x) = [ F, (H(x)) aF,(x) .
Because of the conditions (B), we get
(1) $(x; e,a,k) > &
(ii) ¢(x; 1,0,k) = %
(L.5) (iii) lim ¢(A; c,d,k) = 1 and/or
droo
k-1
(iv) 1lim ¢ (A; e,d,k) = [1 - FA(O)]

(o]

If (iii) holds, then for every A, c and k, we can choose d such that the P¥—condition
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is satisfied. If (iv) alone holds, then for every A, d and k, we can choose ¢ in

k-1 > P* for all

order to satisfy the P¥-condition provided that [1 - FA(O)]
admissible )\ and P¥. Since P¥ can be chosen as close to 1 as we desire, we must
have FA(O) = 0. Thus, if (iv) holds but not (iii), then to obtain values of the
constants whatever P¥ be, the random variables must be non-negative. A sufficient
condition for the monotonicity of ¢(A; c,d.k) is given in the following theorem.
Theorem 4.1. For the procedure Ry» ¢(r; c,d,k) is non-decreasing in A provided

that

(4.6) H'(x) £, (H(x)) 55 F, (%) - £,(x) 5= F, (H(x)) >0,

where H'(x) = %;-H(x) and ¢{(r; c,d,k) is strictly increasing in A if strict in-

equality holds in (4.6) on a set of positive Lebesgue measure.

The procedure RH is monotone, i.e., for 1 < i < j <k, pi >p Further

5
E(S') = Py * ee. + P = E(8) - P,- As in the case of R , we obtain the following
results.

Theorem 4.2. For the procedure RH’ E(s) is non-decreasing in A[l] when other

A's are kept fixed provided that, for Al 5_A2,

) 9
(b.7) H'(x) £, (H(x)) == F, (x) - £, (x) =—F, (H(x)) >0 .
A2 311 Al AQ SAl Al
Theorem 4.3. E(S) attains its supremum over Q at a point where Al = Az = ,.. = Ak

provided that (%.7) holds.

It can also be shown that for A[l] f-l[2] = .. = A[m] = A E-A{m+l]§-"' E.A[k]
for 2 <m < k, E(S8') is non-decreasing in A provided that (4.7) holds. Because of
the stochastic ordering, E(S') is non-decreasing in A[l]' Thus we have the follow-

ing result concerning E(S').
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Theorem 4.4. For the procedure Ry, sup E(S') over © takes place at a point where

Al = .= A provided that (4.7) is satisfied.

Remarks 4.1. If A is a location parameter, then (4.7) is satisfied if fA(x) has

MLR in x and H'(x) < 1. In the case of a scale parameter A, (4.7) is satisfied if
f,(x) has MLR in x and H(x) > x H'(x) > 0. In the case of £,(x) given by (3.6)

and (3.7), the condition (4.7) is satisfied if, for a = O, 1,000, [%ﬂ .

i-o
(4.8) b (g +pa) (H'(x)g,  (H(x)) ac (x) - 8;_o(x) 4G (H(x))]

o
* b (q +pli-a)) [B'(x)g, (H(x)) ac, (x) - g,(x) a6, (H(x))]>o0 .

Remark L4.2. The condition (4.7) in the case of R, corresponds to (3.3) in the
case of R . Suppose we use R, with h(x) = x + 4@ or h(x) = cx (in the case of
non-negative random variables) and use RH correspondingly with H(x) = x-d or

H(x) = %u Then it is easy to see by change of variables thet the conditions (3.3)

and (4.7) are the same. Consequently, the sufficient conditions for ¥v(A; c,d,k)

and ¢(Ar; ¢,d,k) to be non-decreasing in A are the same.

5. Concluding Remarks. Most subset selection procedures discussed in the literature

fall under the class of procedures Rh and R The general results of the preceding

He
sections are directly applicable to specific procedures discussed by Gupta [2], and
Gupta and Panchapakesan [3]. For details on these applications reference can be
made to Panchapakesan [9].

Nagel [8] has discussed the construction of subset selection procedures satis-
fying certain optimality conditions and has in this context defined a just rule.

In our set-up, let x ,xk and yl,...,yk are two sets of observations from the

l’lll

populations such that xi f_yi and X for all j # i. Then a rule R is Just if

3 =73
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the probability of selecting LA based on the observations yl,...,yk is at least as

large as that of selecting “i based on xl,...,xk. It has been shown by Nagel that

the procedure Rh(RH) is just if h(x) (H(x)) is non-decreasing in x.
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