ON A MONOTONICITY PROPERTY RELATING TO THE GAMMA DISTRIBUTIONS*

Ъу

S. Panchapakesan

Department of Statistics

Division of Mathematical Sciences

Mimeograph Series No. 224

May 1970

^{*}This research was supported in part by the Aerospace Research Contract AF33(615)67C1244. Reproduction in whole or in part is permitted for any purpose of the United States Government.

ON A MONOTONICITY PROPERTY RELATING

TO THE GAMMA DISTRIBUTIONS*

bу

S. Panchapakesan

1. Introduction and Summary. Let $\{F_{\lambda}\}$, $\lambda \geq 1$, be the family of gamma distributions with density function f_{λ} given by

(1.1)
$$f_{\lambda}(x) = \begin{cases} \frac{\alpha^{\lambda}}{\Gamma(\lambda)} e^{-x} x^{\lambda-1} & , x \ge 0 \\ 0 & \text{elsewhere,} \end{cases}$$

where the shape parameter $\alpha > 0$ is same for all distributions of the family. We define

(1.2)
$$A(\lambda) = \int_0^\infty F_{\lambda}^{k-1} \left(\frac{x}{b}\right) dF_{\lambda}(x),$$

where $k \geq 2$ is an integer and $0 < b \leq 1$. Gupta [2] has discussed the subset selection problem for gamma populations with the same degrees of freedom in terms of their shape parameters and his numerical computations indicate the monotonic behavior of $A(\lambda)$ in $\lambda \geq 1$. This monotonic behavior of $A(\lambda)$ can be easily proved by appealing to the fact that the gamma distributions are convex ordered, i.e., for $0 < \lambda < \lambda'$, F_{λ}^{-1} F_{λ} , (x) is

^{*}This research was supported in part by the Aerospace Research Contract AF33(615)67C1244. Reproduction in whole or in part is permitted for any purpose of the United States Government.

convex on $[o, \infty)$ (see Barlow and Gupta [1]). However, the proof of this convex ordering property of the gamma family is very tedious (see Van Zwet [5]). McDonald [3] gives a direct proof of the monotonicity of $A(\lambda)$ with the purpose of avoiding recourse to the convex ordering property, but only for the case of k=2 and integer-valued λ . We first note that a general result of the author [4] is relevant here. This result states that, if $\{F_{\lambda}\}$, $\lambda \in \Lambda$, an interval on the real line, is a family of absolutely continuous distributions and $Y(x,\lambda)$ is a real valued function differentiable in x and x and x then, for any positive integer x, x by x for all x and x and

(1.3)
$$f_{\lambda}(x) \frac{\partial}{\partial \lambda} \Psi(x,\lambda) - \frac{\partial}{\partial x} \Psi(x,\lambda) \frac{\partial}{\partial \lambda} F_{\lambda}(x) \geq 0.$$

In the case of $A(\lambda)$ defined in (1.2), the condition (1.3) reduces to

(1.4)
$$f_{\lambda}(x) \frac{\partial}{\partial \lambda} F_{\lambda} (\underline{x}) - \underline{1} f_{\lambda} (\underline{x}) \frac{\partial}{\partial \lambda} F_{\lambda}(x) \geq 0.$$

However, verification of this condition in the case of the gamma family when $\lambda \in [1, \infty)$ presents difficulties. The aim of this note is to obtain sufficient conditions for $B(\lambda)$ to be nondecreasing in λ where $\lambda \in \Lambda_d = (\lambda_1 < \lambda_2 < \dots)$. This forms the content of the next section. The last section applies this result to establish the monotonicity of $A(\lambda)$ defined in (1.2) for $k \geq 2$ and $\Lambda_d = (1,2,3,\dots)$.

2. The Main Result. Let $\{F_{\lambda}\}$, $\lambda \in \Lambda_d = (\lambda_1 < \lambda_2 < \dots)$, be a family of absolutely continuous distributions on the real line all having the same support and $\Psi(x,\lambda)$ be a non-negative function differentiable in x. Then, for any positive integer t, $B(\lambda) = \int \Psi^t(x,\lambda) dF_{\lambda}(x)$ is nondecreasing

in λ over Λ_d , provided that, for $i = 1, 2, \ldots$,

(2.1)
$$\Delta_{\Psi}(x, \lambda_{i}) f_{\lambda_{j}}(x) - \Delta F_{\lambda_{i}}(x) \Psi'(x \lambda_{j}) \geq 0, j = i, i + 1,$$

where $\Delta \Psi(x, \lambda_i) = \Psi(x, \lambda_{i+1}) - \Psi(x, \lambda_i)$, $\Delta F_{\lambda_i}(x) = F_{\lambda_{i+1}}(x) - F_{\lambda_i}(x)$ and the prime over Ψ denotes the derivative w.r.t. x.

Proof. For
$$\lambda_{i_1}$$
, λ_{i_2} , ..., $\lambda_{i_{t+1}}$ $\in \Lambda_d$, define

(2.2)
$$A_{\mathbf{r}}(\lambda_{i_1}, \lambda_{i_2}, \dots, \lambda_{i_{t+1}}) = \int_{\substack{j=1\\j\neq r}}^{\frac{t+1}{n}} Y_j(x) dF_j(x), \mathbf{r} = 1,2,\dots,t+1,$$

and

(2.3)
$$A(\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_{t+1}}) = \sum_{r=1}^{t+1} A_r(\lambda_{i_1}, \lambda_{i_2}, \ldots, \lambda_{i_{t+1}}),$$

where $F_j = F_{\lambda_j}$ and $Y_j = Y(x, \lambda_j)$. For any positive integer s,

(2.4)
$$A(\lambda_{s+1}, \lambda_{s+1}, ..., \lambda_{s+1}) - A(\lambda_{s}, \lambda_{s}, ..., \lambda_{s}) = (A_{0} - A_{1}) + (A_{1} - A_{2}) + ... + (A_{t} - A_{t+1}),$$

where A_m stands for A with the first m arguments equal to λ_{s+1} and the remaining t+1-m equal to λ_s . Let us consider a typical term, namely, $A_m - A_{m+1}$, in (2.4). We can see that

$$(2.5) \quad A_{m} - A_{m+1} = m \int \Psi_{s}^{m-1} \Psi_{s+1}^{t+1-m} dF_{s}(x) + (t+1-m) \int \Psi_{s}^{m} \Psi_{s+1}^{t-m} dF_{s+1}(x)$$

$$- (m+1) \int \Psi_{s}^{m} \Psi_{s+1}^{t-m} dF_{s}(x) - (t-m) \int \Psi_{s}^{m+1} \Psi_{s+1}^{t-m-1} dF_{s+1}(x).$$

Using integration by parts, we obtain

Using (2.6) in (2.5) and regrouping the terms, we can write (2.5) as

(2.7)
$$A_{m} - A_{m+1} = m \int Y_{s}^{m-1} Y_{s+1}^{t-m} [f_{s} \Delta Y_{s} - Y_{s}^{t} \Delta F_{s}] dx$$

 $+ (t-m) \int Y_{s}^{m} Y_{s+1}^{t-m-1} [f_{s+1} \Delta Y_{s} - Y_{s+1}^{t} \Delta F_{s}] dx,$

which is non-negative if (2.1) is satisfied. This completes the proof of the main result.

Remark. The non-negativity of $\Psi(x,\lambda)$ is essentially needed when t>1.

3. Application to the Gamma family. Let F_{λ} be the distribution function with density f_{λ} given by (1.1) and let $\lambda \in [1,2,3,...]$. In order to establish the monotonicity of $A(\lambda)$, we need to show that for any positive integer i,

(3.1)
$$f_{\underline{i}}(x) \Delta F_{\underline{j}}(\frac{x}{b}) - \frac{1}{b} f_{\underline{j}}(\frac{x}{b}) \Delta F_{\underline{i}}(x) \ge 0 \quad \text{for } \underline{j}=\underline{i},\underline{i}+1.$$

It is well-known that $\Delta F_i(x) = \frac{1}{\alpha} f_{i+1}(x)$. Hence, the left hand side of (3.1)

$$= -\frac{1}{\alpha} f_{i+1} \left(\frac{x}{b}\right) \qquad f_{j}(x) + \frac{1}{b\alpha} f_{i+1}(x) f_{j} \left(\frac{x}{b}\right)$$

$$= \frac{e^{-\alpha(\frac{1}{b} + 1)x}}{\Gamma(j) \Gamma(j+1)} \qquad \alpha^{i+j} x^{i+j-1} \left(\frac{1}{b}j - \frac{1}{b}i\right)$$

$$\geq 0$$
 for $j = i$, $i+1$, since $b \leq 1$.

REFERENCES

- [1] Barlow, R. E. and S. S. Gupta (1969). Selection procedures for restricted families of probability distributions. Ann. Math. Statist. 40, 905-917.
- [2] Gupta, S. S. (1963). On a selection and ranking procedure for gamma populations. Ann. Inst. Statist. Math. (Tokyo). 14, 199-216.
- [3] McDonald, G. C. (1969) A note on monotonicity in the gamma distributions. Research Publication GMR-930, General Motors Corporation, Warren, Michigan.
- [4] Panchapakesan, S. (1969). Some contributions to multiple decision (selection and ranking) procedures. Mimeo. Series. No. 192, Purdue University, Lafayette, Indiana.
- [5] Van Zwet (1964). Convex Transformations of random variables. Mathematisch Centrum Amsterdam.