P

rar W i

»

. BIRA P T

b R O et ST R B

Lo agh 1 s o L ARG YR D Y A NI ¥ T bt

ON. SUBSET SELECTION RULES :ITTH CERTAIN

OPTIHALITY PROPERTIES

A Thesis
Submitted to the Faculty
of

Purdue University

4

by

Klaus Richard 0. Nagel

~ In Partial Fulfillment of the

Requirements for the Degree
&.
of

Doctor of Philosophy

4

August 1970




Meinen Eltern gewidmet

14
[ % &
- ¥ - .
"f .
< ¢
P,
-
N
2 '

A




tussions and suggestions.

iii

ACKNOWLEDGHENTS

I thank Professor S.S. Gupta for his continual interést in my work
and for the guidance and encouragement he has grven me since he first
introduced me into the field of selection and ranking problems in two
seminar courses in 1965-1966. I appreciate the invitation to work under
him which he extended to me as well as his provis1on of research support.
via the Office of Naval Research Contract NONR 1100(26) and the Aerospace
Research Laboratories Contract AF 33(615)C1244.

I express my thanks to the Operations Research Center and to the
Computer Center of the University of California which provided the facili-
ties to continue my work, while I was at Berkeley dur1ng Professor Gupta's

visit in the academic year 1968-69.

To Dr. Panchapzkesan I extend my appreciation for many helpful dis-

1 ‘thank ilyrna Harrison for the excellent typing of this thesis.

‘.

o

RN




1lv

- . TABLE OF CONTENTS

Page

Immrm - * .. L] 2 L] L d L] L L L] L] L L ] L] L] L] L] jS L * . L] e L] L] L] 1
CHAPTER I. SUBSET SELCCTION RULES . . . . . . . T
1.1. Subset Selection as Part of x'-iultiple Decision Theory. . 5

1.2. Definition of Selection Procedures. S -
1.3. Imvariance Under Permutation. . . . . . . . e e e e oo 11
1.4. A Sufficient Condition for inf P(CS|R)=inf P(CS|R). . . 13

. a R,

loS'm J‘lst SeleCtiOIl RUIOS- . . . ov . [ [ 3 . . ¢ e . [} [ L] . 18

1.6. ExamplesofJustRules............'.....23
1.7. Elimination of Randomization. . . . . . ¢ e ¢ e e s e 28
1.8. Two Selection Rules for Normal Populations. . . . . .. 30

CHAPTER IY. RULES YITH CONSTANT P(CS|R) IN ﬂo © s e e e e e ... 40

‘ 2.1. A Sufficient Condition for P(CS|R) to be Constant in a 40
F 2.2. Shape Parameter for Two Gamma Populations . . . . ... 42
2.3. Selection Rules for Binomial Populations. . . . . . « + 45
2.4. Selection Rules for Poisson Distributions . . . ... . §§
2.5. The Negative Binomial Distribution. . . . . ... ... 8§7
2.6. Fisher's Logarithmic Distribution . . . . .. .. ... &8
2.7. Rules of Gupta Type with Constant P(CS|R) inQ_ . . .. 61

CHAPTER III. RULES BASED ON DEPENDENT OBSERVATIONS. . . . . « « o 65

3.1. Selsction Rules Based on Ranks. . . . .. B 1
3.2, A Selection Rule for :ultinomial Cells. . . . . c e .. 73
3.3. GmC].lBion. S T . & o * & e o @ 76
BIBLIOGRAM - > - - Ld L 4 L 4 L] - L * L] L ] . L] L " L] L] I B .: l_- L] . L L] L] 78

”PMIX * - > o - e e @ .. ® @& & o o o .‘r”' * o . . l. e o 0.. (] L] 81

vITA"..-'-.'..........'...'. .V. ...‘Q'.. .vooloolos




LIST OF TABLES

Table | N .- Page
- : 1 Values of d and the Corresponding P* up to “hich the
RU].e RG i'iinim ZES Ems . - . . . . . L] . o o o e .o . L) . - 38

2 Comparison of Ropt and RG Constants for Ropt""' .« e s 39

q. fOI‘ 1‘"0 Gama Distributions. e & o & e o o .o e e o o o 44

(7

4 Exact and Approximate Values for ¢ and p, (Binomial
Poplﬂ.atiOﬂS) ooooo . ® e o 8. ¢ o & o & e e o = @ . *e o o 52
5 The Expected Proportion for Rules R (Upper Line) and
’ Rb (Lower Line) . . . . . . . v v v v v v v oo o oo .. 54
6 Comparison of the Rank Procedures R1 and R3 I ) |
Appendix ‘ ,
Table s

Al cp and g for Binomial Distributions: . . .. ...... 8l

A2 cT and o for Poisson Distribﬁtions .

A3 S and Pr for Négative.Binomial Distributions . . . . . . 94
Ad 'qr and . for Fisher's Logarithmic Distributions. . . . . 104
. F 3

”

LR




LIST OF FIGURES

. : Figure T | : Page
| 1 Curves of Constant Density Ratio and One A for
’ - &al (i) L] L) L] L ] L] L] L] . L] L] L] e - L] L] L) . * L] L d L) L] L] L] 33
2 Curves of Constant Density Ratio and Three A:'s
&r &al (ii)' . . L] A L] L] L] e L] L] * * [ ] L] L] L L] L] L] L] . “
3 ~ Partial Ordering for Binomial Observations k=3,n=2 , , .. 47
\'3! LS
‘,

R AR EL G - e




: ' ABSTRACT

Nagel, Klaus Richard 0., Ph.D., Purdue University, August 1970. On
Subset Selection Rules with Certain Optimality Properties. ..ajor
Professor: Shanti S. Gupta.

Suppose W= (xi’Ai’Pi)' i=1,2,...,k, are k probability spaces called
populations. Assume that Xi- X and Ai=-A for all i énd Pi belongs to a
family P possessing an order relaiion >. Let @ = {(PI’PZ""'PRJ} de-
note the space of joint probability measures and fﬁiggvn be the subspace
where all Pi's are identical. The theory of selectioq and ranking is
concerned with the determination-partial or complete- of the order among
the populations based on the observed random events Xie_Ai, i=1,2,...,k.
The investigations in this thesis are made»under the subset selection
formulation of Gupta [11], where the objective is to define a rule R
which selects a subset of the k populations with the gdarantee that the
piobability of a correét selection, i.e. the séléction'of a subset which
includes the populatién which is associated with Pi>~ Pj for all j, called
the best population, is at least g pre-assigned value P*. In case of
ties, one of the'populations is arbitrarily tagged as the best. Letting
PU(CSIR) denote the probability of a correct selection for men;fhe P*-

condition above can be written as inf P_(CS|R) > P*, Chapter I deals
- wew Uo7 T ;

-

with the central problem of evaluating inf Pm(CSIR). Subset selection

114
rules are formally defined and it is shown in Section 1.4 that, for R

’

restricted to the class of rules invariant under permutation, certain
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monotonicity requirenients on thg rules guarantee that“inf Pw(CS|R) =
iaf PG(CS]R) and also that the rule selects better popu?ation; wi;h
highe;'probability. These requirements which are, in general, hard to
.verify are shown in Section 1.5 to be ;atisfigd by 'just' rules, which
are defined for stochastically ordéred families as f§1lows: If pi(xl,xz,...
xk) dgnotes:the probability of selecting L based on the observation vec-
tor‘(xl,xz,,.f,xk) then pi(xl,xzf...,xk) :_pi(yl?yz,...,yk),'ﬁhere Y > x5
and yjig_fj'fbr j$i. These results are true for—a generalized definition
of stochastic ordering given in Section 1.5. In the next section many

of the rules investigated in the literature are shown to be jﬁst and a
procedure defined in'[28]vba$ed on ranks is shown not to be just, which
throws some light on the difficulties encountered in [28]. In Section
1.8, two:just and translation invariant rules are constructed to be used
in the ‘normal meanscase,_the_fifsé!gqlq<waxim§ging'Pm(CS) and the second
minimizing the expected subset size E (S) for_éome ﬁredetermined w. Since
9 itself is translation 1nvar1ant, the . translat1on jnvariant rules yield
constant P, (CS) for wefl and thus P_ (cS|R) > P* for some fixed w e 9,
implies the P*-condition, Chapter I? deals w;th_the_case where there

is no transfo:mation requiring‘invariance naturally. In this case, con-
stant-Pb(CS).fof meno can be realizez by imposing the condition |

P (CS|T=t)=P* for-all t, where w =(9,9,...,9)59 and T is sufficient for
-O. eApp11cat10ns are made to the case of gamma populat1ons and various
discrete dlstrxbutlons and tables are prov1ded in the appendix. Testing
against slippage alternatives which in the normal case leads to Gupta's

rule is extended.to the Koopman-Darmois family, yielding selection rules

with -constant Qn(CS) in Qo. Chapter II{_contains discussions on a




Iocally optimal selection rule based on.ranks and a rule for the problem
of selecting the multinomial cell with the largest probability which min-

{hizes P(CS) when the cell probabilities are equal and which maximizes

Pu(CS) for all slippage configurations.

o
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INTRODUCTION

The rejection of the hypothesis that the k tested populations are
identically distributed is in most cases not satisfactory enough to the
experimenter. lhat he really wants to know is_not whether the popula-
tions are different, but which ones are significantly differeht from the
ofhers and how big the deviation§ are. For the case where all but one
are identical an answer was fbund by liosteller [29] testing homogeneity
against slippage alternatives. The.genefal problem has been approached
in two different ways. The first, known as indifferent zone approach,
states the goal as selecting the best poﬁulation with a predetermined
guaranteed probability provided 'that this best one exceeds the others
by a preassigned amount in terms of a suitable defined distance function.
This formulation is due to Bechhofer [4]. The.second, which ié the one
used in the investigations of the present thesis, is the subset selec-
tion approach formulated by Gupta [11], where the goal is the selection
of a subset containing the best population with a preassigned probability
P*. Here the number of populations retained in the selected subset is
a random variable. The best population may be the one with highest
(lowest) parameter value if the distributions come from a one-parameter
family, in‘general.it‘is the one which prefgdes the.others with'respect
to some (partial) order relation. In case'of ties one of the qualifying

populations is arbitrarily tagged as the best one. The selection of a

subset including the best population is called a correct selection (CS)




so that the above P'-condition can be written as inf Pw(CS) > P* where
fidenotes the space of joint distribution functlongcgnder consideration.
The P*-condition alone does not necessarily lead to useful rules, e.g.
the rule which selects all populatipns regardless of the observations
satisfies it on any level P*. For a bibliography on these two approaches
see [14] and [19].

Using a maximum likelihood test for slippage hypotheses Gupta [11]
derived in the case of means from normal populations the following rule:
Include every population in the selected subset whose observed sample
mean is at a distance less than D from thé maximum of the sample means -
where the constant D is determined to guarantee the P*-condition. Pro-
cedures of this type have successfully been applied'to many other famil-
ies of distributions [12,16;22]. Deverman [8] uses a generalized proce-
dure of this kind for selectiné ; collection of fixed size subsets one
of which has to contain at least ¢ of the t best populations. Barron
[3] investigates a sequential subset selection procedure which on each
stage uses a rule of this fype. In most cases it could be shown that
the worst configuration lies in Q o the subset of Q where all populations

" have identical distributions. This reduces the evaluation of inf P (CS)
to the problem of minimizing un1va;;ate function so that the co:stants
necessary to guarantee the P*-condtion can be computed. iloreover one
expects a reasonable rule to yield the smallest probab111ty of a correct
selection when all populat1ons are 1dent1céi;y distributed, because in
that case no statistical information can be employed to select the one
which has arbitrarily been tagged as the best one. Gupta and Nagel [18]

~ showed that this is not true for the problem of selecting the cell with

highest (lowest) probability from k multinomial cells. IicDonald [28]



studies rules of this type based on rank sums where it could not be
shown that the worst configuration lies in Qo’ while Rizvi and Woodworth
[12} constructed a bimodal distribution for which it is actually not the
case..

One way to overcome these difficulties would be finding sufficient,
conditions on the distributions which would guarantee that the worst con-
figuration:lies in 90. Alternatively, we can achieve this goal, as in
this thesis, by imposing certain.conditions‘on the rules. In Section
1.4 monotonicity requirements are stated which yield this desired property
regarding the worst configuration, and which further guaraAtee that better
populations are selected with higher probabilities for rules invariant un-
det'gerﬁutations. In general these conditions are hard to verify, but
in the case of stochastically ordered families they are satisfied for
"just'* rules which are defined ;s follows: If pi(x) denotes the proba-
bility'ongelecting T. on observing x = (xl;xz,...,;k) then pi(y) z_pi(x)
_ holds for any vector y = (yl’YZ"'°’Yk) with Yi::xi’ yj_<__xj for j%i,
These results remain valid for a generalizeg definition of stochastic

ordering defined in Section 1.5. Examples in Section 1.6 show that many

of the rules considered in literature are just. The difficulties in [28]
witlh a rulle based on rank sums are partially due to the fact that the -
rule: is not just. 1In Section 1.8 an attempt is made to construét two
just and tramnslation invariant rules to be useh in the normal means case,
thg:ﬁirst:nule maximizing Pm(CS) and the ;:éond minimizing the expected
subset siz&-EM(S)'fOr»some alternative w. The conjectured solution of

the second problem is numerically shown to be.closely approximated by

Gupta*s rule. Since 90 itself is translation invariant, translation
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-invariant rules yield constant Pm(CS) for weﬂoband thus Pw-(CS)Z,P* for
. o

<some :fixed gde Qo implies the P*-condition. 'Fér the case where there
:is .no-transformation for which invariance could be ‘required naturally
sit-is shown in Section 2.1 that the condition Pm(CSIT = t) = P* for all
it ;guarantees constant probability of a correct selecgion in Qo’ where T
;is ;a sufficient statistic for @ in w = (9,9,..ﬂ,9)eﬂo} 1In the remainder
«f Chapter II rules of this type are investigated for gaﬁma populations
Aand -for binomial, Poisson, negafiQe binomial and Fisher's logarithmic
distributions. Tables for applications are provided in the ‘Appendix.
n Section 2.7 the above mentioned method 6f Gupta [11] is applied to
ﬁhp;KpgpmanFDarmois_family of distributions, yielding selection rules
\@th constant P (CS) in Q.

#n Chapter III a just and locally optimal seléction'rule based on
.ianks is derived. For the problem of selecting a subset containing the
multinomial cell with largest probability a rule is given in Section 3.2
aﬂ@sh_minimizes'?w(CS).when all cells have equal probabilities and max-

imizes if for all slippage configurations.

P
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CHAPTER 1

SUBSET SELECTION RULES

1.1. Subset Selection as Part of Multiple.Decision Theory

The theory of subset-selection is part of the general decision theory
-obtained from it by a specific choice of the decision space.

The Space of Observations Xk.

e are given k probability spaces (xi’Bi’Pi)’ i=1,2,...,k, hence-
forth referred to as populations T i=1,é,...,k. We assume that the
Xi's andlSl's are identical: Xi= X, Bi=B’ i=1,2,...,k, an& that all proba.
ability measures Pi belong to'somg family P. From each population we

observe a random element Xi. The space of observation is:

& = {(xl,...,xk); xieX}

In most applications Xk will be a real vector space.

The Decision Space 7.

The decision space D consists of the Zk subsets d of the set

{1,2,...,k}:

D= {dldc 1,2,...k)} .

A decision is the selection of a subset of the k populations. ied in-

dicates that wi is included in the selected subset if decision d is made,

Remark 1.1.1. Sometimes authors exclude @ from ¥ to guarantee the selec-

tion of a nonempty subset. If one does so, one should consequently removg




{1,2,...,k} from ? also, since that decision does not lead to a partition
into selected and not selected populations.

The Loss Function.

There is a great variety of reasonable loss furictions for the subset
selection problem. /e will restrict ourselves to loss functions based on
two criteria: | ﬁ

a) Correct selection (CS)

b) Subsetsize (S)

We a#sume that a partial order relation () is given in P :

Pf>.?f saying P, is better than or equal to Pj or P, is preferred
to Pj’ ni>-rj is used equivalently. e.g. If P is a one-parameter_family
Pi(x)aP(Qi,x), we may define: Pi>— Pj iff Qi 3_95. In a great bart of

this thesis P, >--Pj will denote stochastic ordering.

Def. 1.1.1. Assume wj>-ii for all i. The decision de? is called a cor-

rect selection (CS) if jed, i.e. if the best population is included in

" the selected subset. If there are several " 2<k, such that LP e

7L L
for all i, then one of the "j 's is arbitrarily tagged as the best one
A
and its inclusion in the selected subset is called a correct selection.

Throughout this thesis we will be concerned only with selection
rules R, which guarantee a correct selection with a probability at least

equal to a predetermined level P*, that is to say

P

(1.1.1)  inf P {CS|R} > P*,
| a ¢ B

where ng;Pk is the space of joint probability measures under considera-

tion. The points of Q are denoted by w=(P1,P2,...,Pk), PieP, and Pm




denotes the corresponding product measure with respect to Bk. In the
case of parameter families Pé{Pg},Q is used for the space of parameter
vectors equivalently. ,C 2 denotes the subset of @ where all Pi'_s are
identical. -

Remark 1.1.2. The reason for tagging one population as the best one in

the case of ties is done to guarantee -
(1.1.2) lim P (CS|R) = P (CS|R) for w e@ ,
o 0 N

whenever a meaningful convergence can be defined ih Q.

(1.1.1) will be referred to as the baﬁic probability requirement
or P*-condition. It shouid Eéfpbinted out that the P*-condition alone
ADes not necessarily lead to reasonable rules, e.g. the @ggengtate rule
~ select all populations no matter what the observations are,always satis-
fies (1.1.1). - N

Therefore, the expected subset size;is_intfqduced‘as_a_secoﬁdﬂg;i—
terion which evaluates the performanqe of a selection procedure.

Def. 1.1.2. Expected subset size E (S|R) whéreré is the random number

of populations included in the selected subset using .rule R and weQ.
Obviously 0 f_Em(SIR) <k holds. Frequently, instead of Ew(SIR)
we will use the ' -

Def. 1.1.3. Expected proportion

o

Y

A(R) = % E,(SIR).

The range is 0 :_Am(R) 5_1.




In general our objective will be to construct rules yielding a large
probability of a correct selection and a small value fdr the expected pro-
pé;tion, but unfortungtely we cannot control these two qﬁantities simul-
taﬁeously. An increase of P(CS|R) will be accompanied by an increase of

BN

Em(SIR) (or A (R)). Hence the ratio

| P,(CSIR)
(1-1.3) v nU(R) = ‘T(R)—
. - [1]

is a reasonable measure for the performance of R.
Def. 1.1.4. nm(R) is called the efficiency of R at w. It is obvious
that a random rule - i.e. one which makes a random selection disregard-
ing the observations-has efficiency one.

For each of the following two goals optimal rules will be investi-
gated: o

Goal 1: Maximize P _(CS[R) with inf P, (CS|R) = P*

w w'en ©

Goal 2: Minimize Ew(SIR) or equivalently A (R).

The maximization and minimization for both 1) and 2) are for a fixed al-

ternative wel and subject to the Pt-conditioﬁ, which for 1) is to hold with

_the equal sign: inf P_(CS[R) .= P,

wefd .
‘ .

1.2. Definition of Selection Procedures

Dof. 1:2.1. A measurable function § defined on XXx D is called a se-

lection procedure (or selection rule) provided that for each observation
xexXX : . _3'

é(x,d) > 0 and
(1.2.1) :
18(x,d) =1 hold.
?




9.

§(x,d) denotes the probability that subset d is selected when x is ob-
served.

Def. 1.2.2. pi(x) = z §(x,d) (Summation over all subsets containing i)
: dai

is the probability that LA is included in the selected subset. pl(x),...,

pk(x) are called the individual selection probabilities.

If the p,'s take on the values 0 and 1 only then

1 if d={i|pi(x) = 1}
[p_ othervise
i.e. A nonrandomized procedure is completely determined by its individ-
ual selection probabilities. The following example shows that this is

not true in general.

Example 1.2.1 . k=2. For some fixed x selection rules 6 and 8' are

~

defined by - : :
| sx.8) =1 §'(x,8) =0
s(x, 1) =1 s xq1) = 1
s izny -1 s'exizy =1
6(x,01,2)) = §'(x,{1,2)) = 0 .
.

Both rules have the same individual selection probabilities pl(x)=p2(x)=
- 1 . . " .
P (X)=py(x)= 3. |
We can now express the probability of a correct selection and the

expected subset size in terms of the selection rule §. Assume that M

is the best population, then

(1.2.3) . chcslc) = Emg §(X,d) = E p, (X).
dak
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le see that Pw(CSIG) depends on- & only through the individual selection
pt@babilities. The same is true for the expected subset size: Let s(d)

denote the number of elements in d

(1.2.4) E (S]8) =E ] s(sx,d)=E, ¥ Jox,a)=E § I &(x,a)=
“deD “deD ied “i=1 d

K
Eu .2 p; (X).
i=1
| C . |
Since we are only concerned with P(CS|$) and E(S|8) we can consider two
rules with equal individual selection probabilities as equivalent. There-
fore we will from now on use the following simplified definition of a se-

lection rule.

Def. 1.2.3. A subset selection rule R is a measurable mapping from Xk

into R* (the k-dimensional Euclidean space) k:x+(pl(x),;..,pk(x)),

0 _<_pi(x) < 1.

Def. 1.2.4. If the p,'s are restricted to the values 0 and 1 then the

rule ié called nonrandomized.

In that case R can also be defined by the sets'Ai={xeX|pi(x)=1},
i=1,2,...,k. Ai is the set of obsé;vations for which LY is selected.

In the sequel the use of the lette: R will indicate that the modi-
fied definition 1.2.3 was uéed. Let pm,i= EwpiIX) denote the probability

that ﬂi.will be included in the selected subset. For nonrandomized rules

we get

(1.2.5) | o bm’i =P (A).



Def. 1.2.5. R is unbiased iff "j >~wi, i=1,2,...,k, implies Pm,j 3_Pm’i

for all weql. ‘ . -

Def. 1.2.6. R is monotone iff nj>-ni implies Pu > P i for all i,j
—_— .

i—w,
and for all weQ.

Obviously monotonicity implies unbiasedness.

Remark 1.2.1. The efficiency of an unbiased rule R is at least 1:

kP _(Cs|Rr) kP, s kP

E (SR " 25
[ i ﬂ,i i w,]

- (1.2.6) n,(R)

assuming that 5 is the best population.

1.3. Invariance Under Permutation

Yo will restrict ourselves to selection procedures which are invar-

14

iant under permutations. Let G denote the group of permutations g of

the integers 1,2,...,k:

a.s.n g(i.z,..,,k) = (g1,82,...,2k).

Let h be the inverse permutation of g, h=g°l, and define

E
(1_'3'2) _. g(xl’...’xk) = (xhls--':xhk)
and.fbr.deﬂ ‘ >
(1.3.3) gd = {ilhi ¢ ).

Let G(i,j) be the following subset of G

-



e VT L Eup 0,
_geG

-

which in the case of nonrandomized rules, becomes

(1.3.11)

Z pgm(Ak)

ol i

1.4. A Sufficient Condition for inf P(CS|R)=inf P(CS|R)
: 2 2 .
[}

To satisfy the hasic-probability Tequirement (1.1.1)

(1.4.1) inf P(CS|R) > pe
]

the left hand side of this inequality ﬁas to be evaluated, a task which
often proves ta be tedious or which could not be solved as in the case
of rule Rl.in f28, IZI. On the other hand one expects a reasonable rule
. to yield the smallest probability of a cdrrect selection in the case,
where all populations are identically distributed, because in that case
no statistical information. can be employed to select that population
"uhich arbxtrar11y has been tagged as the best one. In this section a

sufficient condition will bhe given for
. 4

(1.4.2) inf P(CS|R) = inf P(CS|R)  to hold
- a a
[+ ]

" where a, Ciﬂ denctes the subset of the space of - distr1but1ons where all

T T

".u.

g
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decision on such events from X, whose probabilities increase if a popu-
lat:.on is replaced by a better one, or in the case of randomzed rules
one expects the individual selectlon probability to go up when the popu-
lation is improved.

Let t be a partial order relation in P, denoted by P > Q, meaning
P is better than or preferred to Q. Let p(x) be a measurable function
on X with 0 2px) <1 for all xeX. Let ¥ denote the set of albl such

crit:.cal functions. _
Def. 1.4.1. R =(pe¥|f,pdP > [ pdq for all P> Q; P,Qe P)
§ -{pe!’” de < [xde for all P)-Q. P,.Qe P}
Por regions in the case of nonrandomized rules we get the corresponding
Def. 1.4.2. = {A eBlP(A) > Q(A) for all P »Q; P,QeP} ‘-

A s {A eB'P(A) 2Q(A) for all P >Q; P,QcP)

Remark 1.4.1.  peR’  iff (1-p)e RT

+ c -
- AcAr iff A" ¢ Ar

where A® denotes the complement of A.

Remark 1.4.2. 1If p» (:r) is another part1al order relation in P such

that P ¥Q implies P > Q then R CP o and A CA , hold.

Example 1.4.1. Let X be the real line and let P consist of all probabil-
ity distributions on X. Let T be the stochnuc order relation and de-
fine r' by ' - .

r':p >-Q if P and Q are normal N(u »1) and N(u.,1) and p 2

UQ-

Then A consists of all mtervals of the form [a,=) or (a, ") @ Lac<om,

[T

e o
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These intervals are also contained in Ar,, which in addition includes

sets of the type [a,=)-N where N has Lebesgue measure zero. rloreover,
certain intervals of positive measure can be removed from [a,=) and the

remainder will still belong to A;, e.g.

L

(1.4.3) : A= ['1;01 Ufl,») e A;u

To prove this we have to show that P(A) increases in y if P is normal

N(u,1).

(1.4.4) P(A) = (-u)-2(-1-n)+1-0(1-u)
2 1

IP(B 1 2 -y
(lo‘.s) B e [ l’ ( + )

N = e e +e )]

3 £
- :—l-e 2 [-1+2e 2]- > 0.
2x

_This example shows that it might be difficult to find A’ for a partxcu-

lar part:.ally ordered family of dlstnbutmns while the structure of _
A for the stochastic ordering is simple. Hence we will look for suffi- )

cient conditions which guarantee Ae A (or peR for the randomized case)

If P is a one-parametric absolutely continuous family of cumulative

distribution functions: 3
(1.4.6) R Ps {FA’ Ael c_R_l}

where an order is defined by F\ > FA' if A > A' then in [30] the

condition




Qan 3 B® L p00 <0

is shown to be sufficient for ff“ p(x) dFA(x) to be nondecreaSing in A,

E£ﬁmp1e 1.4.2., Let Fl(x) = F(Ax), 2 > 0, where F is a given absolately
continuous cumulative distribution function, i.e.'{FA} is a scale parameter

family. Define s by F1 FA‘ if A > A'. (1.4.7) becomes
(1.4.8) | . xP'(x) p'(x) <0
(where F*' = d F, p' = 4 ) hence

a; » P dx P

>0 ifx< 0
P'(X) -

<0 ifx)so

i.e. R contalns the critical functions p which are nonlncreaslng for pOSl-
tive x and nondecreasing for negative x.
Lemma 1.4.1. If the critical function'p(xl,...,xk) as a function of x;

only belongs to R for all XyseeesX; 1sX; 1se002% , then P, >-Q1 implies
s

(1.4.9) fx...[x del,...,dP &"fx del,...,in,...,

Proof: Evident by definition of R

Theorem 1.4.1. Let R be a subset selection rule, defined by its individ-

ual selection probab111t1es P; (x), i=1 2,...,k Consider p, (xl,...,xk)

as a function of X5 for all j$i. If p; (x ,...,xk)cR » then
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(1.4.10) ~ inf P(CS|R) = inf P(CS|R).
1] Q
°
Proof: VWithout loss of generality we can assume Pk>-Pi, i=1,2..,.,k-1.

-4
Hence

(1.4.11) » P (CS|R) = Ix“'_jx Py (Xysee s )dP L. AP,

By Lemia 1.4.1 the right hand side of (1.4.11) does mot increase if P,...

Pk_lare replaced by Ql"”’Qk-l with Q1 >-Pi,- i=1l,...,k-1. Thus for every
wel there exists an w e @, such that P (CS|R) < P (CS|R) holds, which

. o .
proves (1.4.10).

Theorem 1.4.2. Let R be a subset selection ruie, defined by its indi-

~ vidual selection probabilities p'i(xl,...,xk), i=1,2,...,k. If R is in-
variant under permutation and if
(1) pick’ as a fﬁl\ctior'x of x; and any fixed set of x5's, jti
(ii) picR° as a function of X35 for all j#i and any fixed choice
of the other arguments hold, then R is monotone. |

Proof: To prove monotonicity it has to be shown that Pi >-Pj implies

Ep;=» N'i is selected} > P{nj is selected} = Epjh. Without loss of gener- .

- ality we can assume i=1,j=2. Then
A’.

(1.4.12) Ep, = ]x ...]x plcxl,'...,xk)dplcxl)...dpkéxk) >
jx..; Ipl(xl,...,xk) d?z(xl)dpz(xz)...dl’k(xi)

because 'pleR* as a function of X, and P1>- Pz, and changing the order of

integration for the two innermost integrals, (1.4.12) becomes

ra—
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(1.4.13)  Epy > [...f py(x)seen i )dP,(x,)dP, (X, )dP(xg) .. 4P, (x,)

and. applymg lemma 1.4.1 once more using the fact that pleR as a func-

tion of. Xys. we get.

(14.14)  EBpy.>..0> [ f py(xy,.e 0 )P (x,)dP, (x,)dP,(x,) . . 0P (xk)
, ..:[5.,];?25x13...,xk)dpl(xl)dpz(xz)...4pk(xk) = Ep,,

where the. identity follows from the invariance under permutation.
Theoren:1.4.1:allows the restriction to 9 to determine the infimum -

of the prc"bability of a correct selection if R satisfies (1.4.10). By
tiieorem 1.4.2 we can establish the monotonicity of a rule by verifying
that the individual selection probabilities belong to R* or R™ as func-
tions of one. argunent only. However, this might still be difficult for
particular families as example 1.4.1 indicates. On the other hand many
arder relations imply stochastic ordering (st) and the structure of R;t
is very simple. Stochastically ordered families in a generalized sense

 shall be investigated in the next section.

- 8
1.5. Just Selection Rules

. et (X, 8 P) be a probability space, where P belongs to a family P
of probability measures. ~ A partial order > is ‘given in X and we say 4
is the better than x if y>x (or equ:.valentl’y x=<y).
Def. 1.5.1. A subset A CXis increasing iff xeA and y > x imply, yeA.

Def. 1.5.2. Let P,QeP. P is stochastically better than Q (P > Q) iff
' st

P(A) > Q(A) for all incréa.sing séts AeB.
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If X is the real line and > stands for > (or >) then the increas-
ing sets are the intervals {a,=) and @@,=), which induce the usual sto-

chastic ordering on the distribution functions.

If X = R and > stands for component wise larger, then the increas-
ing sets are the ones introduced in [26]. |

Our cbjective will be to include the stochastically» best population
in the selected subset. '!'he following exaﬁple_ illustrates the advantage
of this extension of théb concept of stochastic ordéring.

Example 1.5.1. Let LAY be normal distributed N(O,oiz), i=1,...,k. n inde-

pendent observations Xi 12°»%;, are taken from each of the k populations.
Normal distributions with common mean are not stochastically ordered in
_ the usual sense, with respect to their variance az. Now, if we replace

> in X by the partial order relation > defined by
¢ ‘

LI
+ .

<

1.5.1) (xn,...,xik) p (le"_"'xjk) iff

. -2 2
};:' (x;0-%)" 2 E(sz - X%5)

and denote the generalized stochastic ordering by > then
v st
s .

@.5.2) N0 2 N0,P)  iff o > 2.

This result is based on the fact that the sample variances in (1.5.1)
‘have xz-distributions which are stochastically ordered with respect to
their scale parameter. For a more il_lust.rative example see (1.6.5).

The following lemma generalizes av result stated in [25].
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Lemma 1.5.1. Let g be an integrable function on X such that y > x implies

g(y) > g(x). If P >; Q, then
S

(1.5.3) | Bpg = [, 2dP > [, gdQ = Egg.

Proot: Let g be an indicator function g(x) = XA(x). From g(y) > g(x)
for y)--x follows that A is an increasing set and hence (1.5.3) holds
by the definition of stochastic ordering. ‘From ind;;cator functions this
result can be extended to integrable functions in the usual way.

Def. 1.5.3. A selection rule R, defined by its individual selection

probabilitie; pi(xl,...,xk). i=1,2,...,k, is called just iff

_(1‘.5.5) @) x <y,

(i1) X5 > ¥; for all j$i
imply |

<

Pi(rpsecearyd 2 p3(x0,.000%)

For nonrandomized rules, determined by acceptance regions Al""’Ak we
get the corresponding definition

Def. 1.5.4. R is just iff

(1) xeA,
(1.5.6) D x <y,
- (1ii) 'xj)- ;s for all 1#1
imply yeAi | - . ‘.
| For symmetric rules it suffices to verify these conditions for one

of the A, 's say Ak In plain words just means that the probability of

selecting population LA} does not decrease if the observation becomes more R
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favorable with respect to this population. The word '"consistent" would
describe that property better, but it was not used here to avoid confusion,

since consistent normally describes asymptotic properties. The importance

e

of just rulesbwas recognized in [35, Lemma 3.1 (iv)]. There it was shown
that an optimal rule for selecting tﬁe best of k populations with distri-
butions from an exponential family under slippage configuration has this
property.l

Some of the results on just rules can be proved moré easily using
randomized rules, but we will see later that for the construction of op-
timal rules, we can restrict ourselves to nonrandomized pro;edures, if
the probability measures are atomless.

Theorem 1.5.1. Let R be a just selection rule. Then

v

(1.5.77  inf P(CS|R) = inf P(CS|R) holds.

0 .
Q :

Proof: Since R is just P; is nondecreasing in X5 and hence by Lemma 1.5.1

o pyaP(x) > [ pidalx;)  Af P : Q

_i.e. pieR;t as function of xj, j=|=i..g

Therefore Theorem (1.4.1) can be applied, yielding the assertion

(1.5.7).

‘Theorem 1.5.2. Let R be just and symmetric. Then R is monotone.

Proof: In the proof of theorem 1.5.1 it was shown, that pleR;t holds,

when P; is considered as a function of X5 j$i, only. In the same way

we get pieR;t as a function of X+ Hence Theorem 1.4.2 can be applied

proving the theorenm.



Remark 1.S.1. The class of just procedures is closed under the formation

of unions and intersections, i.e. if R and S are just rules, then RMS
and R U S are just, where R Y S denotes the procedure, which selects that
populations that are selected by both rules R and S, while R U S includes

& population in the selected subset, if at least one of the rules Ror S

N

_ selects it.

Lemma 1.5.2. Let (X,A,P) be a probability space, and let > be a partial
order relation in X which induces the stochastic ordering > in P . Let

st
(Xn,A n,Pn) be the corresponding product space, and let > (c stands for

. c .
component-wise) be defined by (xl,...,xn) i—(yl,...,yn) iff xi>-y.1, i=1,
2,...,n. >induces the stochastic order relation > in P'. Then

c _ ” qst
P> Qqer" > q". -
st cst -

Proof: =>) Assume P >~ Q. Let A"e¢A" be an increasing set with respect
st ! '

to > The indicator function XA(xl,...,xn) satisfies the conditions
c R .

of lemma 1.4.1 for each argument. Repeated application of this lemma

with Pj= P, Q4= Q, i=1,2,...,n yields
P - ]x" X, dp > Ix“ X,dq" = Q" (A"
e Pt = Q" | #

&) Assume Pt >~ Q". Let AcA be increasing with re'spect‘ to > . Define
cst : .

n . < . . S ’ .
A" = {xeX® leA}- A" is obviously increasing with respect to >, hence
_ = A
P(A)=P(A") > Q(A™)=Q(A), i.e. P > Q. .
st

-

TP —— e e

N o S ST R




23

Remark 1.5.2. This result can be extended to infinite:product spaces,

since it is true on cylinder sets.

4

The definition of just rules aﬁd the results of this chapter show
that the class of just rules possesses some vefy desirable properties.
Another advantage is that this class is defined by a hatural basic prop-
erty of selection rﬁles, which usually can be verified very easily. The
definition does not depend on the specific form in which the rule is pre-
sented. On the other hand the class of just rules is not too restrictive,
it includes most of the selection procedures considered in the literature.
Hence it seems justifiable to construct optimal procedures in the subclass

of just procedures.

1.6. Examples of Just Rules

Example 1.6.1. Seal's class C

' Assume.that the populations Tpsees®y éfe stochastically ordered
in thg usual sense and that we observe the random variables xl,...,xk.
Let x[l]""’x[k-l] be the ordered set of the first k-1 components of
the observation-vector x. In [34] the foiléwing class € of symmetric

selection rules is defined:

Select m iff s
. _ _ k-1 _
1.6.1 . > c. X, ..- ¢t
¢ ) xk—jzl i Il

Pl

vhere the cj's are given constants satisfying

- | g k-1
(1.6.2) | izl ¢ =1, ¢ >0,
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Any rule from C is just: Let (xl,...,xk) satisfy (1.6.1) and let (yl,
...,y&) be such that Y; :-xi for i <k, Yx Z;xk holds. 'Thén y satisfies
(1.6.1) because the left hand side of (1.6.1) is nondecreasing and the

right hand side is nonincreasing, when the x's are replaced by the y's.

Example 1.6.2. Gupta's Rules
. The specific choice ci=0 i=1,2,...,k-2, and ck_lél in (1.6.1)
yields the rule: ' ¢

Select L' iff

(1.6.3) X 2 Xp g -t

X __, without changing

For t >0 x[k-l] can be replaced by max Xi= nax

i=1’.'l’k
the rule, which now can be written as

f

*, &
R

(1.6.4) | Select x, iff X, > X .d.
1 — max

In example (1.6.1) the condition Ic.=1 is not needed to pfove that the
Tules of the class C are just. Therefore the same proof applies to the
following rule: ' £

(1.6.5) » Accept}wi if X, > c X ax®

These rules were proposed by Gupta [11] originally for selecting a sub-
set containing the population with highest mean (resp. variance) in the
case of normal distributions, and have later been applied to other dis-

tributions [8,11,16,18,20,22,24;28,30].
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Example 1.6.3. The following generalization of Gupta's rule was pro-
posed in [11] and more thoroughly investigated'in [30]:
Rh: Select LA iff

(1.6.6) ROy 2%,

where h satisfies some additional requirements which are irrelevant in
this context. These rules are obviously just if h is nondecreasing.

Remark 1.6.1. In [30] the monotonicity of the rule (1.6.6) was shown.

Also

inf P(CS|R) = inf P(CS|R)

Q : Q
(4]

r

was shown Qithout the restrictisn that h is nondecreasing i.e. for not
necessarily just rules of this type. In the froof of theorem 1.5.1 prop-
erty (1.5.5 (i)) (resp. (1.5.6'(ii)) of just rules was not used. Thus
the assumptions of theorem (1.5.1) can be wegkened, such that theorem

(1.5.1) would imply this result in [30].

Example 1.6.4. In [28] the foilowing rank sum procedure, called R3 was

5 .
considered: Take from each population L the n observations xil""’xin
and let Rij denote the rank of xij in the pooled sample X100 %en

Define

o

§ v
H, = a (R..)
i 521 ij

where the scores aj= a(j), j=1,...,kn are given and nondecreasing in j.
Ry is defined as follows. Select m, if.Hi > ¢ where ¢ is to be deter-

mined to satisfy the P*-condition.
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Rs is just,because for any fixed i, an increase in xij results in

no decrease of H,, neither does an decrease in ij for 24 i.

Example 1.6.5. Barron [6] considers a sequentialvsubset selection rule

of the following type: Take a sequence of observations ng), i=1,... .k,
2=1,2,..., from k normal populations. (The xgz) may be sample means from
n independent observations on the ith populations) Define a sequence of
binomial random variables Y( ), where Y( ). 1 if populat1on m, would be
selected using Gupta's rule X(n) X(z) 'd - on the observations of the

Lth stage, whlle Y( ). 0 denotes the rejection. Define

T y(%)
s. = Y. -
im zzl i

The procedure is: Select . iff’S. >b. for the smallest value of m for

which S. *[a ,b ], where [a »b ] is a predetermlned sequence of intervals.

If we drop the assumption that the populations are normal and require
only stochastic ordering and if we replace Gupta's rule by an arbitrary
single stage selection rule R, then we can éonstruct a sequential rule

Rs(a;b) in the same way as in [3}. (a,b) denotes the sequence of inter-

".
| vals [az, bz]‘ .

Lemma 1.6.1. If R is just with respect to the partial order relation >,
then R® is just with respect to the corresponding component wise order-

ing »>. _ ‘ L
c . -

-

Proof: Let (x(1),x(D), .. ;(':‘t',f”, Y]EZ),...,)_and oM x3, . <
[

c

N .
(X(l) (2) ..,) for all i{k hold. S1nce R is just the select1on of m

if X£ ) is observed at the fth stage will 1mp1y the selection of ™ if Xéz

)
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’ N
is observed, for every stage £ . Hence y{z) 3_y£2) and Siz Z-giz hold

for all %, where yﬁz) and ;ﬁz) are the values of the binomial‘random var-
~ _ .
(2)

Xk » therefore R® will select w, under

iable corresponding to x{*) and X

"
X, if it does so under X.
This lemma shows that the sequential procedure so constructed is
monotone with respect to the stochastic ordering in P induced by > and

c
. that further

inf P(CS|R®) = inf P(CS|R®) holds,
a
Q

where a correct selection now consists in including the best population

with respect to the order relation >~ in P . But, by Lemma 1.5.2 and

cst
Remark 1.5.2, we know that this is equivalent with the order relation
>in P, 5
st .

Example 1.6.6. A rule, which is not just. Let Hi be defined as in ex-
ample 1.6.4 with a(j)=j. In {4] the rule R, was introduced by:

Select n, iff H. > max H.-D.
i i—-,
i=l,...,k

Choose k =3 n=2 D=7, _
Compare the following two sets of observations and the correspond-

ing values of Hi’ i=1,2,3.

ist: 1 3 6 12 9 11 3 9 9 9

2nd: 2 4 S 7 8 10 3 7 11 11




x11 and Xl2 obtain higher values in the second set, while all other
valhgs are less in the second set, i.e. the observationsrare strictly
more favorable for pophlation m in the second set. However R1 selects
™ in the first case and excludes it in the second.

This example makes it somewhat understandable that in [28] the infi-
mun of the probability of a correct selection could not be found, even
in tﬁe case of location parameters for normal distributions, and that
for less well behaved distribufioﬁs examples have been constructed with

!

inf P(CS[R)) < inf P(CS|R ).
Q a -

o

1.7. Elimination of Randomization

We wiil now see that randomization is not necessary. in order to con-
struct optimal just selection rules that are invariant under permatation
-if al; the probability measures under consideration are atomless. Let
R be.a just rule specified by its individual selection probabilities
p(x) = (pl(x),...,pk(x)), and since we assume symmetry the knowledge of
one of its components say p, is sugficiént.' If we assume that m is the

best population, then P*-condition becomes

0

(1.7.1) inf P (CS|R) = inf [, p, (x ,f.., )dP. > p*
wed_ : weR X k1 1 =

-~

(with the equal sign for goal 1). The requirement that R is just yields

the condition

(1.7.2) pk(xl,...,xk) is nondecreasing in X and nonincreasing in

XysXyseeesXy 15 both with respect to the partial order in X.
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~The goal of maximizing P, (CS|R) or minimizing qn(SIR) for some alterna-

itive weQ -is equivalent to obtaining the extremum of

(€1.7.3) | Y(R) = [ p (x,...,%) dQ,
where Q denotes the probability measure ﬁn or the one corresponding to
gﬁm{SIR), see 1.3.7.

At first we notice that the set of P's satisfying 1.7.1 and 1.7.2
is convex: Let p' and p'' satisfy 1.7.1 and 1.7.2. Define p=ap'+(1-a)p'"’
for 0 < a < 1. |

(i) 0<p<1
(ii) igf fdew :wigf fp'de+(1-a) ir{;f.'fp".de > P*
(1i1) p decreases resp. increases in the same coordinates as p'
- and p'’, ' _ :

Using the arguments of [9,10] it follows fhat the linear functional
!(R) éannot have any extrema in the interior of this convex region. -The
enly difference arising from the requiremeﬁf that R is just, is that the

boundary of that convex region contains in addition to the nonrandomized

rules, i.e. zero-one functions pk,ﬁalso the random rule

(.7.4) B (x) = P+,

v

P

as an extreme point. This rule, which makes no use of the observation,
is of no interest. Hence we can restrict ourselves to nonrandomized

rules, if the probability measures are atomless.
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1.8. Two Selection Rules fbr Normal Populations

: l;e.t'w'lr,tz,...,ﬁk be normal populations with common known variance 02
which, without loss of generality, can be assumed to be 1. The density

for Xi from L is given by

' 1 %"“91)2

(1.8.1) f(x,Oi) = —e
‘ V2n

le are interested in selecting a subset containing the population with

highest mean 8,. Since the 9;'s are location parameters it is natural

to require the selection rule to be invariant under shift in location.

This can be achieved by basing the rule on the differences

¥

(1.8.2) Zi = Xi-Xk, i=l,2,..f,k,

<

which have the joint density function

k-1 R -
(1.8.3)  h (z),...,7_))= j:[i-xil £(z;+t,0,)] £(¢,0,)dt =

k-1 1 -1 V@027
7 "7 2;4
(2x) k e -
T oy
"“hzgﬁig &{%LzFOmMm=(%ﬁzy”%L

Since the distributions are continuous we do not need randomization
and a selection rule will be determined by the sets Ai={(x1,...,xk)| T

is selected}. Because of the symmetry we can restrict ourselves to the
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determination of one of the.Ai{s, Ak say. Let Ai denote the correspond-

ing set of (zl,...,zk_l)'s.

(1.8.4) . Ag = {(zgheenzy 1) | m is selected)

The condition that Ak is just:

(1.8.5) (xl,...,xk)e Ak’ Y2 %e» Y £ %5 i#k implies (yi,..;,yk)e Ak’

reduces for Aﬁ to the condition:

(1.8.6)  (zy,...,7,_ )¢ Mo Vi S2g, dsl.. k-1 implies (Vpseeeay eA,

i.e. Ay is a decreasing set with respect to the greater or equal relation.
(1.8.3), as a function of w, is invariant under shift of the parameter

vector, hence, for the convenience of notation, we can assume

| k
(1.8.7) I o =0 ' |
_ - i=1 _ ' ’
o .
Denote w = (0,...,0)
« =.(°1:--'99k)s zei= 0.

Goal (i). Construct a symmetric just subset selection rule R such that

I
-

(1.8.8) P, (CSIR) = P* holds and
o

(1.8.9) & 1 P (csIr) is maximiged,
k! g€G gw :
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G = {g} is the permutation group of k!elements (compare 1.3). For just
and symmetric rules (1.8.8) guarantees the P*-condition. (1.8.9)
m1s the requirement that the expected probability of a correct selection
is maximized when the k! alternatlves_gw‘,geG,are equally likely. If we

assume 0 :_91 i=1,...,k, goal (i) is equivalent to finding a set A! such

that -
(1.8.10) S wa(Ai) =
1
(1.8.11) ——— (A!) maximal and
(k-1)! geG%k k) gm %
(1.8.12) Ai is a decreasing set.

By (1.8.3) and (1.8.7) conditions (1.8.10) and (1.8.11) become

k11 7 1623
(1.8.13) j‘i...fdp (2m 2 2 Iki"' Je =1 dz),...,dz =P+
k
N k-1 1 - L 1(z;-0,)%-7]
. _ 2.2 ‘i=
(1.8.14) Iﬁi"'fdp° =(21) | k !}k Y T 1)! GEk k)e
dz,, dz, .
- 1 'Z‘ |
large, where z = -~ z.. .
k i=1 1 -

Pithout condition (1.8.12) a solution would be supplied by the lemma

of Neyman and Pearson. This suggests the investigation of the density ratio
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k

N P k-1
. P @), 231 i§1 9212
(1.8.15) r(z) = =8 el .
.8 deO(z) DT b

r(z) is a convex function as a sum of convex functions of linear-and

_hence convex-functions. r(zl+t,...,zk_1+t) is a degreasing function in t:

k
1§ g2 k-l k-l
= ) @ |
. 254 1 t i§1 ggi+i§1 0pi%;
T(zp+t,. .,z 4t) = 0 y e 7% =
' (k-1)! geG(k,k)
-9t &P (2)
e -—__-’
dP, (2)
N [o]

“and from (1.8.7) and ok:-ei’ i=1,...,k follows ekz.o.

For k=3, Figure 1 indicatesthe shape of the curves of constant den-

sity ratio and the conjectured sets Ai in the zlzz-plane.

e ’a

728

Figure 1. Curves of Constant Density Ratio and

One Ai for Goal (i)

Aﬁ is the region to the left and below the bold line.
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A set Ak can only be a solution if P (B') <P (C') holds for any

pair of sets B',C! such that B'N Ak g, C c,Ak P (B') P (C') hold
“o
and such that (Ak C')UB! is a decrea51ng set. Choosing sets B' and C'

with Bm (B']=Pm (c") tending to zero, this condition leads to the:
(] (]

Conjecture 1.8.1. Aﬁ = {{z|r(2) < ch*-{z|min ) j_d}}c
i=1,...,k-1

is a solution for (1.8.10), (1.s. 11), (1.8.12) where B denotes the com-
plement of B, and B* denotes the smallest increasing set containing B

and where c and d are determined to satisfy

(1.8.16) Jpeef @ = pe and

A “o

af

(1.8.17) 1wl [ f ® scln [..f]  a,
eso © (dj;mdn£ﬁ+e}f7Ai @ e {d5;m1n§§+e}nAi 0

This region A! is essentially determined by {z|min z;< d}, which
. for thegxi's would lead to the selection rule
(1.8.18) Select w, iff x. >min x. + D
i i j
: _ J*l
This rule has two disadvantages: First, it selncts an empty subset if

D> 0 (i.e. for P*< k-1

) and the range of the X, 1s less than D (compare
Remark: B.l.l); Second, if the configuration of the Qi's is such that the

smallest one is essentially smaller than the others, this rule will tend

to select all the other 'k-l»populations no matter how far tﬁéir means
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are apart. This shows that goal (i) does not necessarily lead to useful
rules.

Goal (ii). Construct a symmetric just subset selection rule R such that

(1.8.19) P, (CS|R) = P*  holds and
rl - o
(1.8.20) E (SIR) is minimized.

Again the rule will be determined by the set Ak for the Xi's or by Ai
for the shift invariant variables Zi= xi-xk, i=1,2,...,k, so that (1.8.19)

and (1.8.20) become

k11 123
(1.8.21) IAI':W Jar_ =(2m) 2 2 IA]'("‘[ e 21 dz,,...,dz, _,=P*

k
--12- Y [(z:-0_.)2-7°]

k-1 _ i %i

1
9y e 2,72 ¢ i=1
(1.8.22) !Ai'" dem =(2m) “ k IA:'{'I DT ggce

dzl,...,dzk_1

small, where

(1.8.23) S Ai is a decreasing set.

A solution would be provided by the lemma of Neyman and Pearson if condi-

tion (1.8.23) was not present. The density ratio in this case is
k

| - Zo? k

(1.8.24) ( dq (2) 21 ; igleizi
1- L] r z) =. - . L
P, (2) (k-1)! o -

o
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The sets {z|r(z) < c} are still convex, but r(z)+t,...,2,_;+t) is no
longer a decreasing function of t.
Figure 2 shows the shape of the lines of constant density ratio for

k=3 and the conjectured solution A{ for various values of P*.

Figure 2. Curves of Constant Density Ratio and

Three A:'s for Goal (ii)

By the same arguments as in goal (i) we get the

Conjecture 1.8.2.

(1.8.25) A = {z]r(2) < c}, - {z|max z; > d}
| o isl,... k-l

is a solution for goal (ii), where B, denotes the smallest decreasing

~set containing B and where ¢ and d are determined to satisfy
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(1.8.26) i | ]A‘,‘...[ dP = p*
: (o]

(1.8.27) 11m'—-] NI dQ, = ¢ 11m l-f ¥ dpP
{d<z <d+e} Ai v € {d<z :g+g} v Yo

The correseonding rule will be denoted by Ropt' For k=3 and various con-
figurations Eei,GZ,GS) the values of ¢ and d have been determined numeri-
cally and it turned out that Ai is essentially given by the set {zlmex zigﬁ}-
For sufficiently small values of p* the complement of the second ter; of

(1.8.25) is contained in the first term so that

(1.8.28) A = {z]max z; < d} holds.

’

For the xi's this leads to Gupta's selection rule:

(1.8.29) Rg: Select m if x, Zmax  x.-d.
: J=1,...,k
Table 1 gives the values d and the corresponding values of P* up to which

Gupta's rule is identical with the c02?ectured solution for goal (ii).

Ropt is difficult to apply because the den51ty ratio cannot be eval-
uated easily. Another disadvantage is that this rule depends on a fixed -
alternative w and it is usually not known how to choose it. On the other
hand Table 1 shows that RG is optimal up to ratﬁer h1gh values of P*,
Table 2 compares the expected proportion (—-ES) of Gupta's rule with that

of the optimal one for three parameter configurations with P*-values above

the ones given in Table 2. It also gives the values of ¢ and d for Ropt

/
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TABLE 1. Values of d and the Corresponding P* up to

thich the Rule RG iinimizes EuS

w d i
-100% .10 2.107 2.033 .8713
a6 -1/ 1/3 11.937  1.0000
-107 0. 1074 2.087 .8749
-0.5 0. 0.5 2.123 .8849
a1 0. 1. 2.329 .9125 .
-2, 0. 2. . 3.218 - .9787
-1, 0.5 0.5 1.579 .7839
2. 1 1. 1.83 - .8369
-3. 1.5 1.5 2.388 .9194

(1.8.25). For slippage alternatives R, is optimal up to extremely high

G
values of P* and for equally spaced Oi's no w was found for which the

ratio Em(SIRbpt)/Em(isG) was less than .9999. Rop

improvement in the case 91 < 92= 03 but even there the ratio»Em(SIR

t yields the maximum

opt)/

. £
E (S|R;) was nevér found to be less than .97,

pr

LN



TABLE 2. Comparison of Ropt and RG. Constants for Ro

pt

39

Pt

C

d
Eu(SIROPt)/3_'
Ew(SlRG)/S

Bu(SIRbpt)/Ew(SIRG)

-1,0.5,0.5  -2,1.,1. .-2.4,1.2,1.2
.8577 .9887 - .9928
1.0374 4.4899 © 5.9383
1.9694 4.5202 4.9458
.7642 .8107 7704
.7643 .8294 " L7926
.9998 .9775 .9720

i

o

Ly




CHAPTER 11

) ) © . RULES WITH CONSTANT P(CS|R) IN no

: 2.1. A Sufficient Condition for P(CS|R) to be Constant in go

In the last section invariance under certain transformations was used
fof the construction of optimal just rules. Its importénce lies not so
much in the fact that it allows us to consider a smaller class of selec-
tion rules, but that these invariant rules yield constant brobability

of a correct selection in no:

(2.1.1) Jxpi(x) ap = jxpi(x) @, » 712,00k,
., 0 (Y

for all wo;u659° and for all invariant rules . By Theorem 1#5,1 this
guarantees the P*-condition for just rules.

For an arbitrary family of distributions in-ggneral there exists
no transformation for which one could naturglly'require invariance for
selection rules. However, invariance under those transformations is only
a sufficient condition for (Z.l.l)ﬁ Therefore, we can replace the invar-
iance condition by the requirement, that (2.1.1) is satisfied, and we can
. try to find other sufficient conditions to guarantee (2.1.1). It is rea-
sonable to require that the»probability,of;é,pqtrect;selegtion_is constant
iniqo,ibecause.in.stating the P*-ccnditicn one expresses that one is con-
tentgif'a correct selection is guarznteed with a certain probability and

‘one is mnot .interested in excecding that probability, at least not in Qo

o ; i o SRR S R DRSS Lk e i
| Godhisi et e ik i o SR SR S R i, (R NI R S I

G dS My e S e
o ioay)
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where it can be achieved only by increasing the expected subset size.
The following example illustrates this situation.

Example 2.1.1. Let Maeees W be binomial with success probabilities

PyscecsPy- Take m observations from each and denote by X5 the number
of successes. For selecting a subset containing the population with

highest p. the.foliowing rule R was proposed and iﬁvestigated in [22].
P; prop

(2.1.2) R: Selgct T iff X, 3-xmax'd whgre d=d(k,n,P*)
is the smallest integer such that the P*-con-

dition is satisfied.

This rule is just (see example 1.6.2); hence the minimum of P(CS|R) takes
place in 96, but depends on the common value p. It is minimized for some
value of p close to %u If p approaches 0 or 1 the probability of select-
ing all k populations tends to 1. This diShdvantage Qas mitigated by |

using the transformation

(2.1.3) | 2, = 2 arc sin /T]‘l n

and applying Gupta's rule to the zi's, which has the same effect as using
smaller values of d in (2.1.2) if the observations indicate that the com-
mon p lies near the ends of the unit interval.

In section 2.3 a selection rule will be proposed which has constant
. P
Puo(csl R) for wef .

The following lemma solves the problem of how to construct a rule
with constant P csir) for w e for families of distributions, permit-

o
ting sufficient statistics,
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: (8-1)[log x;+log x,] -(x,+x,)
(2.2.2) £, (xl,xz) =tr'2(9)e, ' 1 2 e 172
- (]

It belongs to the Koopman-Da:moiglfémily and shows that T=X1-X2 is a sui-
ficient statistic for .

 Our objective is to construct a just symmetric rule for selecting
a subset containing the population with the highest Oi. ‘Having contin-
uous distributions we can restficf ourselves to non-randomized rules.
Since the rule R is to be just it follows that the region of acceptance

for one of the populations, T, say, is of the form:

(2.2.3) | A= {x) > c(Pr, T},

14

(2.1.4) yields the condition

(2.2.4) ' !:(P_',T) ]ltf(x,;"—')dx = f;“i— f(x,g)dx- p*

from which c¢(P*,T) can be evaluated.
Although by construction this 1ule is just on each set where T is
constant, it does not follow that R is just. It will now be shown that

R is. just by proving - that xl(T) and‘xz(T) are increasing functions, where

(xl(T),xz(T)) are the coordinates of the boundary of Al’ Substituting
(2.2.2) in (2.2.4) yields '
T K
-(x+) - (x+)
(2.2.5) I:(P*,T) e' X dx = p* f: e X dx

from which we get by differentiation with respect to T
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Lemma (2.1.1). Let'Xl,...,Xk be independently and identically distribu-

ted random variables with the joint distribution P- Let T(X;,...,X)

be a sufficient statistic for 0.

(2.1.4) ‘ (i) If E(G(Xl,...,xk)lT)=P* for al; T then EOG = P*
. for all o. |
(ii) If T is complete with respéct to {Pé(xj}, then
EO(G(XI,..};Xk)ITj=P* is also necessary for
EQG =VP* for all @. |
Proof. (i) Egé =[,s dp, =7 E(8|T) dPg = P* where T and pg ate the
range and the distribution of T. (ii) fTE(slT) dPg = P* hence
]T(s(clr)-P*) dPg = 0 and becayse of the completeness E(§|T)=P* for all
T q.e.d. R
In the next sections this lemma will be_applied'to various families

of distributions.

~

2.2. Shape Parameter for Two Gamma Populations

Let ",» W, have gamma distributions with common known variances,
02 = 1 say, the densities given by

(2.2.1) £,(x) = s, =12

Take w = (6,9)e QO. The joint density of Xq 5%, is




“TABLE 3. CT for Two Gamma Pistributions

~ 1000.0

26.9294

25.7341

3 0.75 0.90 0.95 0.99
ol 01518 <0827 +0596 <0347
.2 .2364 <1383 «1030 <0628
<3 +3050 «1857 $1410 - +0883
.2 <3648 .2282 $1756 <1121
S <4186 <2672 «2077 <1346
<6 “4681 <3037 «2380 “1561
7 <5142 +3381 <2668 <1768
<8 +5575 <3708 $2943 <1968
<9 «5987 <4021 <3208 72162
' 140 «6379 «4322 «3463 -2351
270 9634 <6889 <5679 <4031
3.0 142213 <8988 <7525 <5478
430, | 1.2428°  1.0823 “9158 <6783
5.0 156404  1.2481 1.0644 <7987
640 1.8207 1.4008 1.2021 “9115
. 70 1.9877 1.5434 143312 1.0181
8.0 241441 16777 14533 151197
9.0 2.2917 . 18051 145695 142170
*10.0 2.4320 1.9267 - 1.6807 1.3106
200 3.5814 2.9387 2.6152 - 2s1114
. 30%0 4.4788 3:7428 343659 2.7684
4040 52428 4.4342 4.015a 33437
" 85090 | S.9204 550515 . 4+5979 3.8639
- 60%0 645361 5.6152 51314 43434
7040 | 741045 651376 5.6272 A57911
8040 76353 66271 60925 $¢2130
9050 | 8v13582 70893 655328 546135
‘ 100.0 ‘| 8.6091 7.+5285 69517 5.9958
20050 | 1254655 1141317 1054062 91794
- * 30090 |15+4523 = 13+9481 1341221 11.7108
. A00%0 | 1779837 1643473 154433 138883
. 5000 |20¢2219 1844762 175074 15s8330
6000 |22.2508 2044111 . 1943866 176092
70040 |24:1206 22.1980 211243 19+2558
BOO+O0 | 258640 238668 . 2257489  20.7985
900¢0 | 2745039 25.4388  24.2806 22.2555
29+0569 836402

a4
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) T
- (ev]) - (xo])
(2.2.6) [% c(P*,T)]e C = pe j:xlze x

T
dx-f°° l_e'CX+§)dx
c(P*,T)xz

and since lzis decreasing it follows from (2.2.5) that the right hand
x .
side of (2.2.6) is non-negative proving that xl(T,P*) = ¢(P*,T) is non-

decreasing in T and the same is true for

(2.2.8) x,(T,P*) = x,(T,1-P¥)

which completes the proof.

Table 3 gives the values of c¢(P*,T) for P*= 0.75, 0.90, 0.95, 0.99 '
and T = i.109, i = 1(1)10 ,j = -1(1)2. |

For k > 2 condition (2.1.4) can be satisfigd in many ways, so that

further conditions are necesSafy to determine a rule uniquely.

v .

2.3. Selection Rules for Binomial Populations

Let LOERERTL N have binomial distributions:_xi ~ B(Gi,n),i=1,2,...,k.
Denote w = (91,...,9k), Q= {w} and Q g_gd = (w|gi=9, i=1,...,k}. We
will construct a just selection rule R for including the population with
highest 8, such that ‘i

B

(2.3.1) P (CS|R) = P* for all w_ e 9 holds.
. ' wo . ;o [+) .

o

It is clear that this goal can be achieved only by the use of randomized
procedures, 5ecause in the case w= (0,...,0) or w= (1,...,1) the observa-
tidn will be x = (0,...,0) or x = (n »+++sN) with probability one, re-
quiring the use of individual selection probabilities_pié P*, i=1,...,k

in those cases.
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The density with respect to the counting measure of the binomial

‘distribution with success probability @ and n trials is
(2.3.2) Pe(x) = () 8% (1-)"7%
n 0 n
= (1-8)" exp[x log 1751 (-

Hence the joint density for meno is

x k k

: k ' ) n
(2.3.3) £ (Xy5--.5%) = T p.(x.)=(1-8)"" exp[log == I x.1 1 (O)
w1 " i=1 e'7i | 1-0 i=1 i=1 x;°
X ]
showing that T = Z xi is a sufficient statistic for 8. 0'= log 10
i=1

is an increasing function of 0, thus selecting the.population with high-
est 8' is the same as selecting the one with highest 8. Hence we have
to determine individual selection probabilities P;- and again because

of the symmetry it suffices to find one, say Py - which satisfy.

(2.3.4) E(pk(X)IZXi= T) =P* forT=0,1,...,kn.
‘.

and if

(2.3.5) C Y.

i j'xi, i=1,2,...,k-1, yk,;_xk then

P (X)) <P (YyseeaYy ) |

Figure 3 shows the partial ordering induced by (2.3.5) among the
observation vectors for the case k=3, n=2. A3 leads to a jﬁst rule if

it contains with any observation x all cbservations ranking above x, .
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indicated by arrows in the figure. Because of the symmetry only one of

the permutations (xl,xz,xs) and (xz,xl,xs) is plotted. The numbers under

3
the observation vectors denote the corresponding T(x) = Z X, values.
i=1
g 022\ |
¥ OIIlk\\‘\\\\\\\ .”’/,;/”ISP iszz~g\\\\‘\\\\\\
(0 0,.0) (0 1,1) 0 2,2) (11,2)
40 Iz “\\\\<::::j'.4 ~k‘\\\\<:::::f 24
(© 1,0 © 2,0 ¢! 131)// (1 2.2)
- 5
>SS
,”// : —
X 220)‘\(1 120)'/(1 241)‘\(2 I
; 1 . 7 1
a 230\ /(2 2:1)
(2 240)

L2

.

Figure 3. Pertial Ordering for Binomial
< - Observations k=3, n=2.

o

I
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Conditions (2.3.4) and (2.3.5) do not determine a procedure uniquely.

We propose the following rule Ro:

1 if x>
(2.3.6) pk(X) =4 p if X =Cp o,
| 0 ifx < T

_ k ' '
where p = o(T,P*) and CT=CT(p*%(T = Z xi))are determined to satisfy
s

(2.3.4):

- (2.3.7) E(pk(X)lT) = PIX > |} + PP{X = c [T} = p=,

The conditional distribution of Xk given T is hypergeometric:
I)n
-i

e
M
o))

)

(2.3.8) ' Pix, = ilT} =

‘To simplify the notation let us introduce a random variable ZT which is

distributed as (kuT):

‘.
(2.3.9)  PZ =) = P{X=i|T} for i=0,1,2,..., .
(2.3.7) then becomes
(2.3.10) _P{ZT > cT} + pP{ZT = cT} = P;

and the integers Cr can be determined from the inequalities

(2.3.11) P{ZT > cT} <-P*
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(2.3.12) - Plzp > ¢} > pe,

(2.3.10) yields

P*-P{ZT >°T}
P{2;= cT}

(2.3.13) | o a

Lemma 2..3.1. Ro is just.

Proof: Let x= (xl, . ,xk) s Y= (y1 sene ,yk) and denote the preference

k
Telation (2.3.5) by y > x. Define Tx = 2 X, .
_ k i=1

Case 1. Tx = Ty.

In this case y » x implies P (¥) > Pi(x) and the assertion follows
k
from (2.3.6).

Case 2. 'l'x # Ty' .

It suffices to show pk(y) > pk(x) for those pairs (x,y) where y
ranks immediately above x i.e. Y > x and there is no y' such that
k .
¥ >»y' > x holds. :
k k :

There are two types of such y's for each x.

Type 1.
P
Yk = %L, y;= x;  for ik, hgnce Ty= Terl. If p (x)=1

then by (2.3.11) P{ZT > xk} < P* holds, therefore
(2.3.14) | P{Z,ry> yk} = P{ZTX"'I > xkorl} < P{ZTx > xk} < P*,

'hence'pk(y) =12p(x). Ifp (x) =p >0 then by (2.3.11), (2.3.12)




vSO
(2.3.15) : P{ZT > xk} < p* and
x

P{ZTx 3_xk} > Pp» follow,

and by (2.3.14)

(2.3.16) PiZy >y} <P*  holds.
h s °
If also
(2.3.17) © PlZp >y} <P*  holds, then
y

P () =1 2 P (x).

It remains the case, where (2.3.16), but not (2.3.17) holds:

. <

P*°P{2Ty>yk} P*-P{ZTy>yk}.
(2.3.18) pk(y) = S 7T = Pz Sy, - IIPIZ Sy T >
T k T 7k T "7k
: y y y
.
P P{ZT >xk}
X ~+ = p (x),
X. 4 °x
. e . . P*.a P*QA . -
where the inequality is of the kind b-a 2 “goa With O<a§A§P*<b§p and
. . ) A
is seen to be true as follows: P*-a > Pr-a > P*-A where the second

b-a =B-a = BIA
- inequality holds because the expression in the middle is a decreasing

function in a.
The thixrd possibility pk(xJ=O is trivial.
IZEe 2.

V=% yj=xjf1 for §ome j#k, hence Ty= Tx-l; .The'proof is analogqus
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to that for type 1, with (2.3.14) replaced by

(2.3.19) P{ZT > yk} = P{ZT a? xk} < P{ZT > xk}.
: ) 4 x x :
This concludes the proof of Lemma 2.3.1.

Table Al gives the values for éT and p for various values of P*, k
and n.‘ Since T can take on the values 0,1,2,...,kn these tables become
very extensive for large values of k and n. Therefore it is desirable
to find approximations for ¢r and p. Normal approximation for the hyper-
geometric distribution gives good results when n is large and T is not

extreme (close to O or kn). Expectation and variance of Z.. are

T

|3

(2.3.19) ¥ o=

o

2. Gn-T) T(k-1)
2
(kn-1) k

yielding the normal approximation
(2.3.20) I ~ Newo%)

from which an approximate ET can be evaluated as follows:

(2.3.21) : B u-00~1(p*) %f
v A 1
o = &+ 2

where ¢-1 is the inverse of the standard normal distribution and [x] de-

notes largest integer not greater than x. For p we get the approximation
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TABLE 4. Exact and Approximate Values for St and pr

(Binomial Populations)

p* :
kK- = T 0.75 0.90 0.95 0.99
2 s 1- .05 1 .68 1 .89 0 .58
1 .05 1 .55 1 .84 0 .40
0 G 2 .26 2 .88 1 311 .93
2 21 2 .85 1 .23 1 .95
7 o 4 .49 3 .35 3 .83 2 .79
- a .44 3 .28 3 78 .2 .73
3 5 5 1 .53 1 95 0 .40 0 .88
1 .43 1 98 0 .30 0 .91
I IS 4 .44 3 .23 3 .74 2 .67
4 .39 3 .18 3 .66 2 .56
2 s 16 7715 .69 14 .18 13 .15
. 16 .76 15 .59 14 09 13 .03
5 5 5 0 .14 0 66 0 .83 0 .97
0 .20 0 .66 0 93 0  1.00
0 25 4 .52 3 .41 3 .88 2 .85
4 .46 3 .33 3 .85 2 .82
20 90 17 .33 16 A1 16 7115 .72
17 .31 16 .05 16 48 15 .31
0 s 2200 1 .29 1, .87 0 26 0 .85
- 1 .21 1 .85 0 230 .94
0 5B 4 .57 3 .52 3 96 2 .94
4 .52 3 .43 3. .88 2 .91
2 2 .62 1 47 1 .86 0 .69
2. .52 1 45 271 1.00 0 1.00

To every k,n,I,P* the table shows the integer cT and the probab111ty pT

(upper LGesP and their approximations cT and pT (lower lines).
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-~

(2.3.22) g = "c’.r +0.5 - ¢

Table 4 gives the exact and approximate values of r and Pr
for some selected values of k,n,T and P*.
e see that the deviation of the approximate values from the exact
ones is small. The non-randomized version Ré of Ro: |
R&: Select 5 if X; > is conservative, i.e. the P‘-condition will
be satisfied with a P*-value nbt iess than that for Ro' However,'Ré may
not be just and it selects large subsets if the pi's are clbsg to zero

or one. The performance of rule R (2.2.1) was studied in [22] and a

table was given for the expected proportion n(w) under various slippage

configurations. A comparison of Ro and R is difficult, because the lo-

cation of the minimum of a correct selection is not known. Since it

7 takes place near p = %-, the P* forvRo was chosen to satisfy
P* =P (CS|R) with w= (&, 1 1

2200 7

which makes the comparison slightly more favorable for R. Table S com-
pares the expected proportion retained in the selected subset for Slip—
page configurations and different values of k and n. Ve see that.Ro
yields better results for small values of § while R becomes better if &
is large. lﬂénée Ro should be applied if onlx small differences in the
_success probabilities of the populations are expected. This disadvan-
tage of Ro becomes more evident in the case of equally spaced configur-
ations, where almost surely more than half of the populations will be
retained in fhe selected subset if the number of obscrvations is increascd

indefinitely, whereas R will eventually select only the best one.
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TABLE 5. The Expected Proportion for Rules R

(Upper Line) andARo (Lower Line)

k=2 k=3 k=5 k=10

) X+6 N=5 N=10 =5 N=10 N=25 . N=10 N=25 N=10
0 0.5 .945 .942 .904 962  ,942 934  ,902 .961
_ .945 .942 .904  .962 .942 .934 .902 .961
0.75 .945 - .942 .904 962,942 934  .902 .961

.999 .966 .950 .984 .971 .974 .951 .990

0.95 .945 .942 904  .962 .942 .934 .902 .961

.945 .999 -999 1.000 1.000 1.000 1.000 1.000

1.00 .945 .942 .904 .962 .942 .934 .902 .961
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.5 938 .926 .898 .954 916 .928 .883 .959
.938 .925 . 895 .951 902  .923 .861 .956

0.75 .938 .923 .897  .953 913 .927 .881 .958

.952 .939 .922 .965 .919 .946 .887 .974

0.95 .937 914 .893  .946 .887 .921 . 865 .956

_ .989 .983 .984 995 .979 .994 873  .999

1.00 .938 911 .890 .941 .863 .916  .850 .954

.996 .994 993  .999 .994 .999 .992 1.000

25 0.5 .901 .838 .868 .915 .795 .900 . 805 .951
* . 896 .838 . 850 .883  .682 .853 .615 .926
0.75 .901 .838 .869 917  .807 .902 .816 .951

. 896 .838 . 849 .882 .682 . 849 .614 .919

0.95 . 896 .793 .859 .902 . 765 .893  .796 .948

° .934 . 870 .908  .928 - .696 912 .634 .968

1.00 . 896 .771 .852 .893 .737 .888 . .784 .947

.948 . 888 .931 .948 .707 .937 .649 .982

5 0.5 . 755 .549 774 707 .336 .815 .239 .939
: i . 750 .586 .667 .585 .338  .502 .206 .661
0.75 777 .627 .782 .799 .526 .833  .637 .933

t . 737 .607 .646 .588  .352 + 505 .223  .625

0.95 .762 .581 .783  ,801 .534 .839 659 .934

.744 .595 .657  .585 .343  .502 .212 .645

1.00 .755 .549 .779 .754 523  .836 .655 .933

R .750 .586 667  .585 ~.502 . 206 .661

.388
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: In,-Sectioh 2.6 a rule will be proposed, which combines the advan-

tages of bath R and R..

2.4. Selection Rules for Poisson Distributiohs
Since there is a close relation between the Binomial and the Poisson
distribution, it is clear that a selection rule similar to R (2 3.6) can

be constructed in that case. Let xl,xz,...,xk have Poisson d15tr1but1on

-9, oF

(2.4.1) P(X, =X) = 1 ;}- 121,2,3,...,K

x=0,1,2,...

and for w = (© ,.,.,Q)eno the joint distribution is

. ; . ' Ix.
" oy = ke _8 "
(2.4.2) P[Xl xl: e lx-k"xk) € K-
- n xil
i=1

indicating.that T = tx; js a sufficient statistic.fof @. As in (2.3.6)
we propose a rule and again call it R which yields constant probability
of a correct selection in ﬂo. R, is i§f1ned by its 1nd1V1dua1 selection
probabilities

1 if X5 > ¢p

(2.4.3} | pi(x) =< p 1if x, = c; i=1,2,...,k

.0 if xi < St

where o= cf(P*) and p = o(T,P*) satisfy (2.3.7). The conditional dis-

tribution of Xk given T ynder w, eﬂo is:
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L 2 ' __.____1
xl Xpteootxy o =T-x LERRE Y
1
x ...+xk-T x. 1...x. 1 xkl

.(2.'4,4) . ,. Pwo{X](=x|T} =

and applying the relation

LT
(2.4.5) _!L_! & -1
Xp+eo.ex =T ¥ptee %
yields
: ' : o1y T-X
(2.4.6) ; Puo{xkgxlT} = (:) (kk%)

As in (2.3.7), (2.3.8) the integér Cp can be determined from

2.4.77 P, (X > c T <P
: : o .
Py X 2 eglT > pe.

which do not depend on the particular value_mo one chooses from Q,- ¢

again can be evaluated by the formula

P*-P{X, > crlT?
b= TP = o [TE

-

Table A2 gives the values of c; and p for k=2,3,4,5,10, T=0(1)50
and P*=0.75,0.90,0.95,0.99. The proof that Ro is just for Poisson dis-
tributions is essentially the same as in the Binomial case. The remark,
that Ro should preferably be applied if the Qi’§ are close together, holds -

for the Poisson case as well.
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2.5. The Negative Binomial Distribution

. Procedure Ro (2.3.6) can also be applied in the case of negative
binomial distributions (binomial waitingtime distribution). Let LOURETL

be populations with negative binomial distributions:
: ’ - = X1y o . X-r
(2.5.1) P{Xi- x} (r-l)-gi (l-Oi)

for some fixed positive integer r, x=r,r+l,...,0 <6 <1, i=1,2,...,k.
If 91=...=Gk=9, the joint distribution becomes
9 kr log(l-g)in k x.-1

25.2) PIX= Xppee K= b = () e A (poy )

Since log (1-0) is a decreasing function of 9, and sihce we are interested

in selecting the populations with large 0, we will now select a population
k
if small values of x; are observed. Again T = Z Xi is a sufficient sta-
_ i=1 :
tistic for 0. '
Define R by the individual selection probabilities

" -

13f % <o
(2.5.3) pi(x) =4p if X =&
| | 19 if Xi >

~ where c.= ¢ (P*,k,r) and p = p(T,P*,k,r) satisfy
(2.5.4) P, (X < cp|TI< pr
| o

(2.5.5)' ~Pw°{xk < cplTY> pe
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(2.5.6) [ {xk< eplThe o PlX = c T} = p#
o .

for all T and ubeno.
Since T is a sufficient statistic for the cormon value 8, the con-

ditional probabilities (2.5.4), (2.5.5) and (2.5.6) do not depend on the

ice of w &9 :
choice of LR

S : SRt 1)(T-x- )
(2.5.7) : P, {xk= x|T} = r-1’*(k-1)r-1
(]

T-1
(kr-l)

(2.5.4) th;ough (2.5.7) enable us to evaluate the Cr and p values in a

similar ‘way as it was done for binomial and Poisson distributions. The
| proef that R is just is essentially the same as in the binomial case.
Table A3 glves the values of r and p for k 2,3, 5 10, r=5,10 and
P*=0.75, @¢.9, 0.95, 0. 99

- 2.6. Fisher's Logarithmic Distribution

Ro €an also be applied for selecting a subset containing the one
with highest © from k populations which are distributed according to

4
Fisher's Iogarithmic distribution

(2.6.1) PX=x} =2~ & .3 ...

2" 0<9 <1

Under w_ = (9,...,8) the joint distribution is

k
X
| k gie1
(2.6.2) P{x1=*1 %= b= [lop(l 9)] X
T x,

i=1 !
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k

T=) X; is a sufficient statistic for @ and the conditional proba-
i=1 '

bility of-x1 given T is

1 [' ___l;__
x'x2+...+xk='l‘-x x2“'xk

(2.6.3) P{X, =x|T} =
o 1

e o Xyeee
Xl*. . .+xk"T 1 xk

The sums in (2.6.3) can be evaluated by using the recursion relation

with ;hefinitial values Al,T; %-, T=1,2,... Ry is defined as in the
Poisson case and the necessary constants caﬁ'be evaluated in the same
way. HoweygrlRo will not work Satisﬁ;ctorily in this case for the fol-
lowing reason: Unless 0 is extremely close to one, there is a very high
probability concentréted at one, e.g. PO'S(X=1)=O.72, Po.g(x=1)=0.39,
Po.gg(x=1)=0.21. Hence even for large 6 small values of X are very
likely to be observed, which leads to small ﬁéiues of S and hence the
rule with high probability includes all population§ in the selected sub-
set. This situation can be improved by taling répea;ed observations

n
xil""’xin’ i=1,...,k from egch populaFlon. Ti= jfi xij is a suffi-

cient statistic for 85, but unlike the Poisson distribution the logarithmic -
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distribution is not reproductive, i.e. Ti does not have a logarithmic
disﬁribution so that for each value of n a different table must be used.

_ Let.

) n
(2.6.5) 2™ o ¥ x.., X, i.i.d. according to (2.6.1).
» i jop i3 ij ~

Hence

: _ 1 z 1 ;
(2.6.6) PzMazy = L 3762 7 1 .

‘ i log(1-06) 'g xl...xn

X.=2
i=1 1!
-0 z _
ligﬁfizﬁji An,z z=kn,kn+1,...

For u°=(9,...,9)eno the joint distribution is given by

k
Lz, o
(n)_ Y L) DR I )
(2.6.7) P{Zl -zl,...,Zk -zk}-[m] 121 An’zi

Again T= tZi is a sufficient statistic for 8 and the conditional distri-

bution of Z-1 given T is

. _z X
A . mA
: : - M2 zz+...+zk=T-z i=2 n.2;
(2.6.8) P{z,=2|T} = . , Z=n,...,T-(k-1)n
)) : ’H;fAh,z.
zl+...+zk=T i=1
Define
. : _ k
(2.6.9) Bk’n’T = ) n Ah’z

214...+zk=T i=l B |
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then the Bk n T's can be evaluated from the recursion formula
E AL ]
| T-(k-1)n
€ 6. =
(2.6.10) By ot L Anv Beeln,Tov
with the initial values
12.6.11) Byt "Mt

Now we tan determine the values for Sr and p analogously to the other
cases.
Table A4 gives the values for Cr and p for k=2,3,5,10 , n=5 and

iP*=0.75,0.90,0.95,0.99.

r

2.7. Rules of Gupta Type with Constant P(CS|R) inﬁo.
@upta's rule (1.6.4) for selecting a subset containing the .one with
- ihighest mean from several normal populations was derived in [11] from a
Iikelihood ratio test under slippage hypotheées. This derivation can
tbe peneralized for Koopman-Darmois familes and more general hypotheses.
© Let X,,i=1,2,...,k have the prdbability densities

2.7.1) | E(®;5%;) = c(8,) e - h(x,).

s
-

- -
If we make the usual assumption that Q(Qi) is strictly monotonic, then
:Q(ei) can be assumed as increasing, so that we can consider Q(Gi) as the

parameter and rename it Oi simplifying (2.7.1) to

8.T(x,)
(2.7.2) £(9;,%) = c(9;) e 11 h(x,)
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Let us assume we know that the Oi take on the values Oi <9

but that the correct pairing is not known. Consider the hypotheses

1 '
2 ;...:_ Qk,

) 1 1”7k
: oy . = 0!

(2.7.3) | Hp: 0 =0}
H: -0 =0

i.e. Hi is the hypothesis that Qi corresponds to Qi without specifying
the parameters of the remaining (k-1) populafions. 1f Qi’ i=1,2,...,k
denotes the subset of @ where H. is true, then the likelihood ratio -test
of hypothesis "k against the alternatives Hl""’Hk;l yields the region

of acceptance: ’

K .
n £(e!,x.)
= S 20! [T, 1-Trsq] -
(2.7.4) y»z —X - se 1 L)1) > e,
max I f(0!,x.) '
we@ i=1 11

. } . ’ .= ) '
where the T[i] are the ordered values of,Ti- T(Xi), i 1,2,.,,,k and,?[i]
are the ordered values of T;» i=1,2,%..,k-1, Tik] = T,. Let rbe the

] : . ; )
rank of Tk among the Ti s, i.e. T[r]- Ti. Then (2.7.4) becomes

_ X . R
.75 Y 0.(T!,-T(.q) = (0. (-0.)T . #(0, -8 )T, > C,.
) se1 i [1]‘ [1]. j=§+1 J;I PG kT k=1

Under slippage configuration w, = (Qi,...,Oi) = (0,...,0,0+5) (2.7.5) sim-

plifies to

(2.7.6) -8 T
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or

(2.7.7) ‘ T > T[k] 2.

- If @ and § are known this gives rise to a selection rule.

(2.7.8) Select L iff _Ti.:-T[k] - <,

where c2=c2(P*,9,6) is determined by the P*-condition

(2.7.9) } = pP*.

(2.7.8) is Gupta's rule which we know is just from Example 1.6.2, hence
if we keep 0 fixed the minimum of P(CS) takes place if 6=0, in which

case (2.7.9) becomes

(2.7.100 [ou BS H(tec,)dR (1) = PY,

where F9 is the cumulative distribution function of T. For normal dis-

tributions with @ as location parameter, c, in (2.7.10) does not depend

2
on 6. In general <, does depend on 8 and if 0 is not known an estimator
for 0 may be‘used‘in (2{7.9). Since XTi is é;gufficient statistic for
0, this leads to a selection rule of the form:

(2.7.11) Select L iff T > Ty -c(ETi,P*)

(k]

By (2.1.4) this rule has constant P(CS) in ﬂo, if—c(ETi,P*) is determined

to satisfy:
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[ ] L ) -T-- - T - 2 -vl * L] = *j A 3 .
(2 7~.12) | »p%_{Tl_ 2 Ty cCT;0P )lzrl} P fof all IT,,u €.
However, it is not known whether (Z.f;ll) is a just rule.

Another configuration which brings (2.7.4) into a 51mp1e form is
the cas€ whete the‘O are equally spaced: 0, -9 +16, i= 1 2,....k. (2.7.4)

then becomes

(2.7.13) =5 §T c+ 8(k-T)T, > ¢f
J=r+1
or
, k
|
Wier LT

k =kt L Trres -

The samé methods as in the slippage case lead to the selection rule:

. k
3 o - . a 4 £ - l
(2.7.14) Select #, iff T. = T > —— T,.,-¢c"( T.
' i i “[r] = k-r jerel (i} le i’

-e. T., i§ now compared with the average of the Tj's better than T,.

c'( E_ Tj,P*) can be determined from
j=1

. 1
7. P T X > = S T...-c''{2T..P* T.}=P*

”;

for all ZTJ and w sQ .

Tt is not known whether this rule is just either.



CHAPTER II1

RULES BASED ON DEPENDENT OBSERVATIONS

3.1, Selection Rules Based on Ranks

In praétice it frequently happens that the actual values of a ran-
dom variable can oniy be observed under great cost or not at all, while
thgir ordering is readily available. This occurs for instance;in life
testing when one only observes the order in which the parts under investi-
gation fail without recording the acfual time'of the failuré; Problems

of this type suggest the investigation of subset selection rules based

’

on ranks. Although the distributions of rank statistics aré usually -
very involved, the resulting rules are often si;ple. Another advantage
of rank procedures is that under the null hypothésis-i.e. under the hy-
potheéis that all distributions are identical-the distribution of the
ranks does not depend on the underlying distribution. For this reason
rank procedures are sometimes referred to as non-pafametric rules.
McDonald [28] investigated severéi subset selection rules based on
ranks. In.this section a rule will be derived which satisfies the P*~
condition for some w, in € and which among all rank procedures yields
- the fastest increase of P(CS) in the neighborﬁbgd of w.
From éach of the populations LPP i=1,2,...,k we take n observations
xil""’xin' Let Rij denote the rank of xij in the pooled sample of the

N=kn observations (xll"‘f’xln’XZn""’xkn)'
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Def. 3.1.1. A rank configuration is a il-tuple A = (Al;...,Ad),
AiE{l,Z,...,k}, where 4,=j indicates that the ith smallest observation

in the pooled sample comes from " i.e., there exists an £ such that

Rjz= i holds.

Let /\= {A} denote the set of all rank configurations for a pair
k,n vwhich is kept- fixed in these considerations. A denotes the rank

configuration of x = (xll,...,xn?e 'FP? a fixed 8 let X, fi#?xl Pxff}f

Def. 3.1.2. A rank selection rule is a measurable function § defined on
A\xD, where U is the decision space introduced in (1.1), provided that

for each ac A\ (i) 6(8,d) > 0 and (ii) § (A,d)=1 hold.
T de? T
§(A,d)=p indicates that the decision d is made with probability p,

if the rank configuration A is observed.

As in Section 1.2 it can beksﬁown~thgt_the probability of a correct

selection and the expected_subSqt_size;depgnd'bn the individual selection

probabilities only. Hence, corresponding to (1.2.3), we can u§e_the_fol-

~ lowing simplified definition of a rank selection rule.

Def. 3.1.3. A Tank selection rule R is a measurable mapping from ZQ&into

k

Rz Rt 8> (8),...,p (8)), 0 < p.(8) < 1. Let the qi;;ribution of

6

5
1&, i=1,...,k, be given by a density function f(xi,Oi) from a one-parame-
tric family with the Oi?s belonging to some interval @ which, without
lnss:nf-generality, can be assumed to contain 0. . Furthermore let the

Fawmily {f(x,0}} have the:.following proper;iegf

3.1.1) | if(x,ﬂ)_is;absolu;elyAcqqpinupu§ in @ for almost every X,
(3.1.2) the limit £(x,0)=lim + [£(x,8)-£(x,0)] exists for almost
. 60 :
every X,
s N A gl O
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(3.1.3) Lim [ _|£(x,0)|dx = [ |f(x,0)|dx < =
- 60 : ‘

holds with f(x,0) denoting the partial derivutive withrfespect to 9.

Compare [24, p. 64].

Our goal is to, comstruct a selection rule based on ranks such that
(3.1.4) P (CS) > P* with w,= (0,0,...,0)
(4]

holds and that

apa(gw)(CS)l .

(3.1.5) e

Lol L

)

- geG 'a=0

r

is as large as possible for some w=(91,...,9k);;6= {g)} denotes the per-

mutations of {l,Z,...,k}.» For notation see Section 1.3. Since in Qo the

distribution of the ranks does not depend on the underlying distribution

of the xi's,(S—ldgimplies that P,(CS) is constant for'meﬁo. Hence for

just rank selection rules(3.14)is equivalent to the P*-condition. Condition

(3.1.5) yields the fastest possible expected increase of P(CS) at w
when the parameter vector is changed toward w=(91,...,9k) assuming that
all permutations guw ={9h1;...,9hk) where h=g'1, geG, are equally likely.

The probability that rank configuration A is observed under aw is

‘-’? .

X, N :

2
- igl f(xi, aQAi)dxl,...,de

(3.1.6) Pal® = 7, ffﬁ-;- /

Because of (3.1.1), (3.1.2) and (3.1.3)'the differentiation_with respect

to o can be carried out under the integral sign:

ERNENETEINY

SISOV R T A 1 e A -

TV VADS Y g LA e e
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' - P (8) x, N _
BT B (8) = —o— = Ifwjfﬁ...j_i L £(x.,09, )0,
o | J =1 %5
N
n f(x,,08, )dx d
gep Uy B
itj
. N N
(3.1.8) (A) = r: ffﬁffai GA n f(x )f(x )dx de =
_ j=1 “ji=1 .
itj
) Do, 1 oA )
0, A, = 0. 0. B, (a)
j=1 %53 g1 7§ j=1
where f(x) = £(x,0),
W% N
(€3.1:9) [’ Joeoo 2 £(x) T £(x.) dxy,...,dx,, i=1,2,...,N .
ool - b ] i=1 1 1 N |
it |
zand
(3.1:.10) | B;() = § A,
8=j
’.

"Thus :if we assume that Ty is the best population (3.1.5) becomes

en - 1 1 ok
((3.1:11) - 1 2 6 .B.(8) = ; B, (8) =
C k-DT geG(k,k) j=1 gJ j (k-1) 1 321 geG%k k) gJ

- k-1
1
T (k-2 vzl 9 2 B, (8)+(k-1)! 0,B, (8)} =

1-1
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o
1

LN e o
Il o~

large, where U =

k
and V= ) B; (8)=n
-1 i=1

Ai’ independent of A.

k 1

i
V is zero if the underlying distribution is symmetric. Since Qk :_Oi,

i=1,2,...,k, it follows k@, -U > 0. Hence (3.1.11) is a nondecreasing

k
function in Bk(A) and by the lemma of Neyman and Pearson the following

subset rule solves (3.1.4) and (3.1.5):

» 1 if Bk(A) >c
(5.1.12) - p(8)=jp if B () =c
0 if B (8) < c

- employing the fact that Py (8) is the same for all A. ‘¢ and p have to

o
be determined to satisfy ,
(3.1.13) | I P, W ep I Poa)=pe
: A o A %o
Bk(A)>c Bk(A)=c

This rule is based on weighted rank sums [28] using the scores

(3.1.14) A= faﬁi'l(wu)N'iy (u,£) du
with

_ —
(3.1.15) @ (u,6) = £ (F-I(_:x.,OJ.O

f (F (U,o) »0)

This result could be expected since these Ai's'are the scores which yield
locally optimal rank tests [24]. 1In section 1.6 it was shown that rules

of this type are just provided that the Ai's are non-decreasing in i,

T R~
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which fqr location parameters is always true iff f£(x) is strongly unimodal
i.e.-if ~log g(x) is a convex function [24, p. 20]. If the assumption
”o=(0,-~~u0) is replaced by the more general one mo=(9,...,9), then

(3.1.15) becomes

: _ PR
(3.1.16) @ (v, = LE_(2.8,9)
' . ] ‘ £ (F "(u,8),0)
which in general depends on 8. However it is independent of 6 if 0 is
a location or scale parameter. If £(x,0) is the normal density with

mean 6 then

o 1 ' - -1

£3.1.17) pm,f) = ¢ (v,

‘where ‘¢ iis ‘the 'standardized normal cumulative‘&istribution function, so
‘thdt the :scores can be evaluated as

(€3.1.18) .:gii(")e [iuirl a-uMi o wydu

‘For references on tables for these séores see [24]. If £ comes from a
‘Togistic family £(x,0) = e” " OW1ee )2, then p(u,f) = 2u-1 which
ijeads-to.equally -spaced scores: AgN) = a+ib where the actual values

céf:aN{and bN > 0 are irrelevant. Hence the rule R3 [28],

| 7?3- SSelect:q._iff.XBij_Z.c ,1is locally:optimal on the respective
rp* . level: if the underlying distributions are logistic with location para-
‘meter 9.

‘For k=3, n=2 the probability of a correct selection, the expccted

~gubset sizec and the efficiency using this rulo for various values of w



~ TABLE 6. Comparison of the Rank Procedures R, and R,

Normal Logistic

w _ Ry R Ry Rs
0 .0 A .9444 .9452 .9452’ .9461
| 2.7989 2.7990 2.7987  2.7988
1.0122 1.0130 1.0131  1.0141
0 .6 .5 .9754 9771 .9773 .9791
| 2.7726 2.7790 2.7684  2.7764
1.0554 1.0548  1.0590  1.0580
0 .0 1. .9929 .9938 .9939  .9947
2.6980 2.7386 2.6857  2.7344
© 1.1040 1.0887 1.1102  1.0914
) S SRS | .9390 ~  .9396 .9395 .9402
2.7989 2.7980 - 2.7987  2.7987
1.0065 1.0071 1.0070  1.0078
0 5 .5 .9585 .9622 .9601 .9644
| 2.7726  2.7980  2.7684  2.7631
1.0371 1.0425  1.0404  1.0471
0 1. 1, .9767 .9824" .9788 .9847
2.6980 £ 2.6681 2.6857  2.6468

1.0860 1.1046 1.0934 1.1161

" The three values in each block are from top to bottom: Pm(Cisi),
Eu(slki} and'%»Pm(CSERi)/Em(SlRi), i=1,3 forlﬁsrmal and logistic

_populatioﬁs.

71
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on normal and logistic populations have been computed. For. comparison
‘the corresponding results for Rule R1 [28] are also caluclated:

RI: -Select w, iff B. > max . B.-D
i i—. .
j=1,...,k

Rsi Select w, iff B, > C
i i~

R.., i=1,2,...,k.

with B.= .
. 1 p 13

Il o~—333

b
The values,K D=6 and C=4 were chosen because they yield the same value
= 214 3 o .
puo(CSIRl)-PwO(CS|R3)" T = 0.93 for wero so that a fair comparison

can be made without need for randomization. Table 6 shows these compari-

sons for six different values of w.

Remark 3.1.1. The differentiation with respect to a iS'mofe:tédious,
if it can not be done under the integral sign, but otherwise the same
methods apply, e.g. for rectangular distributions and shift parameter
0 one gets thg scores A1= -1, AN= 1, Ai= 0, i=2,3,...,N-1.

Remark 3.1.2. If condition (3.1.5) is replaced by the requirement that

the expected subset size E,, S decreases as fast as possible as a func-

tion of a at a = 0, minimizing the first derivative would not work
because ' ' 4
3 _
3—-5 S =0 holds for all w.
@ o |4ap -

V24

Hence second derivatives would have to be used and that would not .lead

to rules of a simple type like RS'
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3.2. A Selection Rule for imultinomial Cells
The theory of just rules as developed in Chapter I cannot be applied
directly to rank procedures taking the rank configurations with their
probabilities as bbseryation space, because the rank statistics (Ri,l""{
Ri,n)'i=1"“’k’ are obviously not independent. This fact accounts for
the difficulties which occurred in [28] for the rule RI, which in example
1.6 was shown to be not necessarily just. The concept of just rules has
not yet beén extend;d to the case of dependent populations. {Similar dif-

ficulties were encountered in [18] for selecting a’subset containing the

cell with highest (lowest) probability from k multinomial cells.  Taking

. 'k )
N observations with cell frequencies XI,M.,;Xk, ;2 *xi=N it is -shown that
-7 I T3 S
the rule of Gupta type: . '
{3.2.1) Select cell i iff X, > max “X.:=D
b 3
i _:J=_],,., - ,k

does not attain its minimum of'Pm(CS) in Qo’ thch.in'this case .consists
. . 1 1
of the single point w = (E""’Ea'
e will now construct a selection rule which yields a minimum of
PN(CS) for w =u and which maximizes Pm(CS) for w =(8,...,0,08+8), &0
k0+5 = 1.

Let ii, i=1,2,...,k be the observed value in the ith cell and let
X -
1 x=N. Let 0;, i=1,2,....k denote the cell probabilities, w=(8y,.+.,8,)-
i=1l - .

lle have

(3.2.2) P (%= %55 i=1,2,...,k) = (



- .74

(3.2.3) P (X=X, i=1,2,...,k) = (
N , w AL | xl”’f’xk

Let p;(x) denote the individual selection probabiiities and let us as-

sume that Qk 3_91, i=1,...,k. Again, we are interested in symmetric

rules only (compare section 1.3), hence

(p, (g%) seenapy (8¥)) = g(p; (), -,py (X)) for all geG.

In particular we get the condition

1 .
(3.2.4) P (X) = = P, (%)
AR (S gsg(k’k) k
Hence we get the conditions )
(3.2.5) | P (CS) = 1} PP (=) p (I, N ).(-1‘-.)“= p*
28 Rk OO A ey
Xy*eo ot =N
) : ' “N-: .
(3.2.6) P, (Cs) = Y . Pk(x)(x N xk)o x (9+6)xk_1arge.
x 12

xl+...+xk=N

The lemma of Neyman and Pearson yields the solution

~

~

1 >
: N- N
(3.2.7) p(x) = 90 if0 x"‘(GMS)xk = C(%)
0 : <
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for some constants ¢ and p» such that Pm (CS) = P* holds. Since for 8> 0

- _ o :
e xk(0+6)xk is an increasing function in X this rule reduces to
| l'l >
(3.2.8) pk(x) = 4 p if X = d
0 <

-

The integer d is easily determined from the conditions

NN ,
(3.2.9) ® ) Oantiao
i=d+1
| N N :
(3.2.10) ® I Oa-nMies
i=d
from which follows - ’
N . .Lb
P Y D-n™t
(3.2.11) o= ]
(k-1)

_ For genergl w= (91,02,...,9k) assuming gk:L;éi’ i=1,2,...,k-1, we get

' 4 k x.
(3.2.12) P (c5) = ] ( Vet
Xpbeootx =N X1ty d
%> d
k 'x.
+p ¢ " )E o=
A e T I S
X =d
N . -
D) (;‘)eﬂ ) ( N )knl 0. .
J=d+1 Xpteeotx  =N-j Xpreoos X1 i=y 2
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“N-d k-1 x

p()e Y ( ) -m et
(s - Xy peeos i=1
Xyte e 4 X =N-d 7107 ke e

N . .
: Nyadry_0 yN-J N, d i o N-d _

¥on 5 10 g3

a-0) ) ) eja-et e, 2 (Pog-0,"
j=d+1 o ;j=d

which increases as a convex combination of two increasing functions in

OE as can be seen by the incomplete beta-function‘representation

N .
1 1 N-d -1
(3.2.13) J_cZM(J)e’u o) = secaT N (1-t)at

Hence the probability of a correct selectioﬂ is minimized wheh Gk-isfas
small as possible i.e. for w = (%3...,%9.
3.3. Conclusion

The idea of just selection rules as introduced in Chapfer Iis a
very basic concept which can be apSlied in many areas of multiple deci-
sion theory as the various examples indicate. Hence this thesis cannot
be expected to give an exhaustive treétise of all problems related to
just subset selection rules. The most urgent question concerns.the ex-
tension of just rules to dependent variables so that the methods of this
thesis can be applied among others to the multinomial and multivariate
normal case, for selecting the component with highest cell-probability

and highest mean, respectively. The conjectures in Section 1.8 should

\'
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be investigated and it would also be of intérest to construct optimal
justirules for other than normal populations. An upper bound should be
deri&ed for the ratio of the expected size of the subset in Gupta's rule
and in the optimal rule. If this bound turns out to be as high as the
evaluations for k=3 indicate, this would be a strong argumeﬁt for Gupta's
rule which is easier fo apply and has the advantage that it does not de-
pend on a specified alternative. Results on the existence of just rules
with constant probability of a correct selection in 2, would also be use-

ful, in particular it should be determined if the rules of the type

(2.7.11) are just.

-

R




BIBLIOGRAPHY



4.

5.

10.

11,

78

iBIBLIOGRAPHY

Barlow, R.E. and Gupta, S.S. (1969){ Selection procedures for re-
stricted families of distributions. Anmn. iiath. Statist. (40), 905-
917. .

Barlow, R.E., Gupta, S.S. and Panchapakesan, S. (1§69). On the
distribution of the maximum and minimum of ratios of order statis-
tics. Ann. iiath. Statist. (40), 918-934.

Barron, A.li. (1968). A class of sequential nultiple decision pro-
cedures. Ph.D. Thesis, Dept. of Statist., Purdue Univ., Lafayette,

Bechhofer, R.E. (1954). A single-sample multiple decision proce-
dure for ranking means of normal populations with known variances.
Ann. Math. Statist. (25), 16-39.

Bechhofer, R.E., Kiefer, J. and Sobel, . (1968). Sequential 1den-
tification and Ranking Procedures. The Univ. of Chicago Press,
Chicago. '

Bechhofer, R.E. and Sobel, ii. (1954). A single sample decision pro-
cedure for ranking variances of normal populations. Ann. itath.
Statist. (25), 273-289. :

peely, J.J. and Gupta, S.S. (1968). On the properties of subset
selection procedures. Sankhy@ Ser. A. (30), 37-50. '

peverman, J.N. (1969). A general selection procedure relative to
the t best populations. Ph.D. Thesis, Purdue Univ., Lafayette, Ind.

_pvoretzky, A., Wald, A., and Wolfowitz, J. (1950). Elimination of
yandomization in certain problems of statistics and of the theory

of games. Proc. Nat. Acad. Sci. Wash. 36, 256-260.

pvoretzky, A., Wald, A., and Uolfowitz] J. (1951). Elimination of
randomization in certain statistical decision problems and zero-sum
two-person games. _Ann. ilath. Statist. (22), 1-21.

Gupta, S.S. (1956). On a decision-rule for a problem in ranking

means. Himeo Ser. No. 150, Inst. of Statist., Univ. of North
Carolina, Chapel Hill, N.C.



12,
* populations. Ann. Inst. Statist. [lath. (14), 199-216.

13.
14.

15.

16.

17.

18.

19.

20'

21.

22.

23.

24.

79

Gupta, S.S. (1963). On a selection and ranking procedure for gammé

Gupta, S.S. (1963). Bibliography on the multivariate normal inte-~
grals and related topics. Ann. Math. Statist. (34), 829-838.

Gupta, S.S. (1965). On some multiple decision (selection and rank-
ing) rules. Technometrics (7), 225-245.

Gupta, S.S. (1966). Selection and ranking procédures and order sta-
tistics for the binomial distributions. In Classical and Contagious
Discrete Distributions (G.P. Patil, ed.), pp. 219-230, Pergamon Press,
N.Y. '

Gupta, S.S. (1966). On some selection and ranking prbcedures'for
multivariate normal populations using distance functions. CIn liulti-

" variate Analysis (P.R. Krishnaiah, ed.), pp. 457-475, Academic Press,

N.Y.

Gupta, S.S. and ilcDonald, G.C. (1969). On some classes of selection
procedures based on ranks. Proceedings of the First International
Symposium on Non-Parametric Techniques in Statistical Inference,
Bloomington, Ind.

Gupta, S.S. and Nagel, K. (1§67). On selection and ranking proce-
dures a~d order statistics from the multinomial distribution.
SankhyZ Ser. B (29), 1-34. ;

Gupta, S.S. and Panchapakesan, S. (1969). On a class of selection
and ranking procedures. In Design of computer simulation experi-
ments (ed. T.H. Naylor), Duke Univ. Press, Durham, N.C. 132-160.

Gupta, S.S. and Panchapakesan, S. (1969). Some selection and rank-
ing procedures for multivariate normal populations. In flultivariate
Analysis II (P.R. Krishnaiah, ed.). pp. 475-505, Academic Press, N.Y.

£
Gupta, S.S. and Sobel, i:. (1958). On selecting a subset which con-

tains all populations better than a standard. Ann. iijath. Statist.
(29), 235-244, :

Gupta, S.S. and Sobel, ii. (1960). Selecting a subset containing
the best of several binomial populations. In Contributions to
Probability and Statistics. (I. Olkin, ed.), pp. 224-248, Stan-
ford Univ. Press, Stanford, California.

Gupta, S.S. and Studden, Y¥.J. (1969). On some selection and rank-
ing pro?edures with applications to multivariate populations. In
Essays in Probability and Statistics (R.C. Bose, ed.), Univ. of
North Carolina Press, Chapel Hill, N.C.

Hajek, J. and Sidak, Z. (1967). Theory of rank tests. Academic Press,
N.Y, London. » ;



28.

29.

v

Lehmann, E.L. (1959). Testing Statistical Hypotheses. 'filey, N.Y.

Lehmann, E.L. (1955). Ordered families of distributions. Ann. i'ath.
Statist. (26), 399-419.

Lehmann, E.L. (1563). A class of selection piocedures based on ranks.

Math. Ann. (150), 268-275.

ifcDonald, G.C. (1969). On some distribution-free ranking and selec-
tion procedures. :iiimeo Ser. No. 174, Dept. of Statist., Purdue Univ.,
Lafayette, Indiana. - '

MoSteller,»F. (1948). A k-sample slippage test for an extreme popu-
Jation. Ann. iiath. Statist. (19), 58-65. ‘

Panchapakesan, S. (1969). Sdme contributions to multiple decision
{selection and ranking) procedures. Dept. of Statistics, Purdue
Univ., Mimeo Series #192, Lafayette, Indiana.

Paulson, E. (1949). A multiple decision procedure for certain
problems in analysis of variance. Ann. :ath. Statist. (20), 95-98.

Rizvi, M.H. and Woodworth, G.G. (1968). On selection procedures
based on ranks: counter examples concerning least favorable con-
figurations. Tech. Report #114, Dept. of Oper. Research and Dept.
©of Statistics, Stanford Univ., Stanford, California. :

Robbins, H., Sobel, ii. and Starr, N. (1968). A sequential procedure
for selecting the best of k populations. Ann. ilath. Statist. (39),
B88-92. _ '

Seal, K.C. (1955). On a class of decision procedures for ranking

'means of normal populations. Ann. Math. Statist. (26), 387-398.

Studden, W.J. (1967). On selecting a subset of k populations con-
taining the best. Ann. Math. Statist. (38), 1072-1078.

E

Zan




4

APPENDIX

R

o



ol

66 'S !S6° ]S 06° S SLe S [ST |L6° v [SBc fr jOL* (v (g MWD
06° © 8¥° € 66° 7 (89° v €1 |sSe [2 |LBe (€ [s9° |E [86° |v (21
16° ¢ LE* e [g6° € g¥e [ |11 @ve |1 [8L* |2 |[s¥°°|8 |64 € (OT
38* 1 66° 8 [8L* |2 (SI1° |8 |6 [L6* (T |vSe* |1T [NO° |1 vS* |8 |8
wq._o ltgs {1 lose |t [es* |e |t joLe |0 |L6* |1 [LLe T jLUe (U |9
88 10 |Ov* 0 |S6° {1 [€S* {1 |S 6° |0 |89° |0 [sE° [0 BL* |1 v
96° i0 [18° |0 |29° |0 (SO° |0 [€ [86* |0 [88° (O |LL° |0 [g¥° |0 |2
86° 0 [€6° |0 iS8° |0 [€9° |0 |1 l66° |0 (S6° |0 |06° |0 |SL° |0 O
86°=d 156°ad [06°=ad (6L =d I [66°=d [G6°=d 106°=d ISL°
66°

86° v 6 [96°

g8* 1@ L |8S°

v6°* i1 S 26

8s* |0 € [96°

86° [0 T |66 [0
§€vad L |68vad

SUOTINQFIISTQ TeTuOUTE 305 Lo pus

L

SO TV d78vl




82

(psnuruo)) TV T18VL

66 (S |S6° IS (06° S |SL* IS [s€ |S6° SLe W Jos* v m6-|S [vE
oL [g {s6° |v iom. v lse* v lcz |vee |[e [gve |€ [86° v [89° |v |28
ces 2 laze le Wvele lise v |18 jeLc |2 [v6- € |TLe € jT0° € 10T
g6+ [z |1e- [z l6s* [c |vee & |61 je1e |1 |€9° |8 (€1 1B |36° € |81
09+ [t ligelz lwefe lezeje |e1 [ose |1 [s6° |2 |69 [ |56° |€ (9T
16° 11 lwae |t loge |2 |z8* |2 |st le&c |1 [gs* |1 [86° B ([S¥° B Wi
ece lo ltze |t loge {1 |s9+ |2 {e1 |6s* [0 |w8° |1 [€se U (@B° 3 |31
eLe lo Ivee 1t loee |1 |66° |2 |11 [es+ o [g1° jo |€8~ |1 s@° |1 |O1
gge 1o lece [0 lvee |1 |owe |t l6 {16° 0 |tse|o vic 0 €911 |8
vee lo l69e |0 lscs |0 BLe [t | sec |0 |eLe |0 -|wSe JO E6° T 19
16° 10 les* o |99* |0 lvielo [s |t6° |0 {L8° |0 |vLe jO |SE° (O ¥
g6+ lo loee [0 los* |o lose [0 & |86° |0 [e6° [0 [wB* |0 }I9° |0 |3
66° 10 Iv6* [0 les* o |69°lo |1 |e6° [0 [s6° jo 06° |0 |SLe JO |O
g6°=d 1c6'=d 106°=d 16L*=d [T |66°=d [G66°=d 106°=d [SL°=d 1I
S =N S =X
. | _j66 s [s6° IS [06° |8 |SLt|S |08
96+ v |08° [ [09° [V co* v i |18* [c [so° g |89° os* |v |81
66° £ l69° f€ |1ee le |ote v L1 f1L- @ [@6° € |69° 00° 1y |91
26+ 1z lece |e |t6e le love le |st lesc |1 |69 [2 [L3* |8 [99° |E v}
1ze |t lege l2 l1oc |2 les je [ev |gge’jv ie v [@8° @ i61° 1@ BT
g6 |1 less |1 le6* g leve|e (11 [see Jo |sLe |t g€ 1 [@Le @ (O
99+ [0 |63+ |1 [c9o° |1 |es* |z |6 |osc jo [gOe jo |ise 1 e 1 8
gg*l0 love |0 [c6° |1 |swe |t |t [86° |0 [19° j0 [€B° 69° {1 |9
c6* |0 lvLe |0 lawe o [Lse |t s [96° [0 [@8° |0 [69° 11e {0
L6* |0 hw.ko see lo jeeefo & [gec [0 [16° |0 [@8c |0 [sS* |0 B
66° |0 le6° Jo l8° T Lo lo |t 6° r G6° |0 [06° sLe jo o
Z6vad 166°=d 06°=d 15L°=d [I 66°=d [6°=d [06°=d [Si°=d U
S =N v =}

PRSI S



(penut3uo)) 1V I14VL

66° |5 56 |S (06° |S |SL°*|S
06° 7 10S* v 100° | [EB8° (S l6¥ [66° v jLLe |¥ |0G* [ [E6° (S
6G° e leg* v loLe |y [ot° (¥ Lt (18 |c [86° |[v (28° ¥ |[EE° |V
26° I lgce lc g6 |v- 6w v S l66° | (LS | [€0° |[€E 289° ¥
gce 12 2L e lic* | €L v lev |g9° |2 (€9°* ¢ [|0G* |[€ (SB* |¥
LLe 2 lge* & Wocle 26 | |Iv (LB |2 |66° [E [SL°* |€ [¥O* €
v6e |2 [v3° @ [s8° | [28° | |6€ |66° |3 [w¥e |8 [€6° [E |9€° |E
Geg* {1 6S* |2 [co* |2 |6v* |€ L€ (Lve |1 |OL* |2 |ve°* @ |[09° |t
g9+ i1 |o8* jg¢ |owe |2 [oLe |€ |SE - [EL* |1 (LB° @ [vG°* | |6L° |€
18° |1 [vee* |2 |S9* |2 (BB* |€ [cEe (LB8° {1 {10° |1 |vL°* [ [B6° [E
g6 |1 (ge2* |t |es* {2 [21* |2 1€ |96° [T |BE* |I [|06° |8 |[98° |8
oo*mnt {1sc it jLec |2 |gc° |3 |62 (02 |0 [19° |I |60° |1 (6%° |8
LE* 0 loL* |t [s2* |1 |6G* (@ |L2 (0S°* (O (LL* |1 |6E°* |1 [B9° |8
09° £€8° (1 |oS* |1 [LL* |2 |s2 ([89° |0 |68° {1 [6S°* |T |[S8° |G
vL* 0 [v6° |1 [89° |1 [wvee |@ |€2 [BL* |0 (86°* |T |[SL* [T |vO° (I
28* 0. [t1e |0 |18 {1 [g1° |t |12 |[s8° [0 (92 |0 |[LB8° |1 (63° |1
g8 [0 [BE* |0 €6° |1 [ow* [T (61 [6B* |0 [L¥* |0 [86° |T (6% |1
16° Gs* |0 [tte |0 86 |1 LT [@6° |0 [29° |0 (w2°* |0 |99° [t
£6° L9 |0 se* |0 fLe [T |ST [v6° |0 [8L* |0 [v¥e [0 [18° |1
G6°* |0 (9L° |0 |16 |0 |68 |1 [ET [96°* |0 [6L° [0 |8S° |0 |L6° [T
96° 28° [0 {£€9* |0 [8O°* [0 |TT |[L6° |0 [v8° |0 [89° |0 |02° [0
L6" 9g8* 0 |8L* |0 62+ |0 |6 g6° |0 [88° |0 [SL* |0 [BE* [0
86° 68° [0 [8L° |0 |s¥° |0 |L 86° |0 |[06° (0 |08 |0 [IS° [0
86° 16° 0 |[€8° |0 |[LS° [0 |S g6° |0 [86° |0 |SB* 0 [19° [0
66° €6° |0 |98 |0 [S9° |0 € 66° 10 [v6° |0 (88° 69° |0
66° |0 6 |0 [68° [0 3L°* |0 |} 66° 10 [S6° |0 |06° |0 |SL* {0
66°sd [|S6°=d |[06°=d [SL°=d [I [66°=d [S6°=d [06°=d [SL*=d
S =N Ol =

o

ﬂ..P.. .

ORI R <
Tm TG il AT PRI




66 |01 (S6° |01 [06° [OF [SL° JOT 10€
3 L6 (6 |S8° |6 |OL* |6 |SB* |6 |68 (06° |9 |25° |8 [€0° |8 [B9° |6 |83
99* L {16° [8 {89° |8 {108 (L2 li6* L les |t |e6* |8 los* |8 |93
2L |9 |88 |t [LS* |t [¥8* |8 |s2 |86° |9 lece |9 |08 |2 |wee |t lwE
L9+ IS l6L* |9 |L€° |9 [€9° (L |3 |ve-|s letels lsie |9 |vee |2 32
0S* [v [€9° s [wO° s |sce°lo |12 (s8* |v {16° |s les* |s loze |9 |oz
Sis |c [9€* v [vBe s [00° s |61 [99+ ¢ leze v l61¢ v [ewe |5 g1
Coe € [96° v |09 [vis|S (L1 |93 |2 |eve e (te* v |so° v 91
L9e (2 |wLe e [cee|e |vve (v |sT1 |68° |3 (96 (e 09° | |sie v (w1
Tie {1 |pee |2 |98 € [so°|e €1 |9se |1 loce |2 st~ |2 levs le g1
08¢ {1 |t6* |2 (vs* |2 leL*|e (11 |c6* |1 lze* |t los* |2 loo* 2 ot
GT* 0 |26 |1 |oo*fz [se* {2 (6 [vse |0 [sze |t [ive |1 [g9° (2 g
vLe |0 w6 |1 (L9 (1 wec (2 [t jcse o le2efo lese |1 leze |t |9
16° (0 [vS* [0 80° |0 [as* |t |5 [vé* |0 [at- lo leve o Isse |3 . v
96° 0 [28* 10 [¥9* 0 (11°]0 [E |86° [0 l68° [0 |LL° [0 [eve o f2.
86° |0 |€6° |0 s8° |0 €9° 0 |t [66° |0 |s6° |0 |o6° [0 Iste o o n
66°nd [G6°msd 106°sd ISZ°=d [T 166°sd [S6°=d 106°=d [SL°=d I
) Ol=N € =X
| .|66° |01 [S6° [OT [06° |0V SL° 0T |03
B6° 16 |06 |6 [0B° 0S* |6 |61 [96° |8 [6L° 8 IsS* 18 lgs6° |6 81
16° |t (es* L lsoe €9 |8 Lt {tLe |9 L6 (L leee e ltre f1 ot
gee s |sLe |9 |sEe 2Le (L ST |c6° s [1e*ls [ss* 9 lsze |9 My
69 & ls8° (s |15 LLe |9 (€1 |oo*ty lvelv Réc s [1E s (21
LLe m 06° v |LS* 6L° S |11 lwie 3 lise |e loge ﬂ € T o1
" e 06° |6 |LS* 6L° v |6 |oo°13 (v |2 Pee i €
69° [I' |s8* |3 ise LLeje b Jese |t [iee [t lsse le loze |z
8c° [0 [sL* {1 2Le |3 5 |eecjo [eec |t fere ju leve 3
£€se |o 9|t |6 [96° {0 l64° |0 Bs* [0 Be* |1 |3
o |o6° |0 os* [0 |1 Ta. o ls6e Jo loss o [si* [0
l665ad 65w ived [ d

l665ed [56°nd [06°ud ISLv=d L.
| |

OleN 8 =

(penutiuo)) v 379VL

e



66° S6° |01 106° {OT ISL* {01 |O%
96° |6 [0B°* |6 |0S°* |6 |00° |6 Tn €8* 8 €1* B [6B° |6 [|0S* {6 [B€
Ble |L 1B@Le 8 |9€° |8 |[LL* |6 |LE [08° (L [96° (B [cL* |B |€0° |8 |9¢C
00° QL |0S* (L (96° (B8 2k B |SE [99° (9 (I18* [L [eve* |L |oL* |8 [vE
c6° |9 [¥O°* (9 EL* |L (6° B [€E€ [wEe. £€G° |19 [S6° |L [82° (L |2€
vL® s |08° (9 (GE° |9 [LS* L (1€ M6 00° 59 [99° (9 [e8° (L |0F
vee |v SV S [68° |19 (BO* |9 (62 |OL* €L |S [61° S |O%° |9 (82
C6* W E6° |G (€S [S [99° 19 LT |L1-* B2 (v |LL* S |68° |9 |93
LS* 1€ (09° Iv [L6° |S [L1°|S |[S3 [0B* [c [e8° [v [SE* | (9% IS |[vE
S6° € [66° ¥ 109° | 1L |S €@ [L2* [ (|9t | |es* |v |e6* |5 (2@
6S° |8 |£9°* |& [00° |€ (B3 (¥ |1e |[6L* 2 (€8° |€ [sE€* {€ lé¥ve v loOC
£6° [ |66° |€ [19° € 2L ¥ (61 (€1 (1 [ec- |2 [18° e |v6* |v |81
Ly |1 J6S* 12 |86 [€ fe2* |€ L1 [69° (1 [8L* (2 joEe (8 i8¥* £ |91
€8° |1 |€6° |8 [SS° @ |1l € ST [e6° |T |ST*!1 |sLe (2 [16° |c |vi
00°Yl vwe T (16° |2 (BI* |2 |ET |SE* [0 [S9¢ (I Wi |1 [e¥e (B8 |2T
gS* |0 [08° |1 [I¥°* T [S9° (2 T [aL* |0 [16° |1 (25° |1 [s8* [2 |oOt
18° |10 [¥0° |0 [B8L° |1 [80° |l |6 bw.to vee (0 |I6° (T [(vE°* |1 |8
16° |0 |¥S* {0 |BO°* |0 {9G" [v |L ¥6°c 10 [89° |0 [|SE* |0 [¥ie* (T |9
S6°* [0 |LL* (0 [¥S°* |0 [26° T |S L6° |0 €8 |G |L9° |0 ({LI* |0 |¥
86°* 0 188° [0 (9L O Tn. o & B6° 0 |16° |0 [©8° |0 [SS° |0 |
66° |0 |€6° |0 [L8° |0 [L9°* |0 |1 66° G6° 10 106° 10 iSi° (0 [0
66°nd |S6°md [06°wd [Sle=d Il 66°=d [S6°=d [|06°=d |[Si°=d 1
A

Ol = N v =




86

. 66° 101 156° 10T 106 (OT |SL* |01 §OS
G6° |6 |SL* |6 [0S* B w6 Ol |6V |EL* |18 |96° (6 (18° |6 |G€° {6 |[BV
96° (8 [2S* (8 |66° 6 [€9° |6 |L¥ [9S°* [L |18 |8 l6¥%* B8 [28° |6 |9V
L8* |L |66° |8 [SLe B [¥O° |8 |S¥ |60 [9 [B¥° |L [¥6° |8 |[9€° (B (V¥
29° |9 |GL*|L [0E° (L |09° B €Y [98° (9 (¥6° |L [|09° |L (I8° B |8V
10° |8 BS* (9 [18° |L |0O°YB |1V |OS* |S [6G°* |9 |[B6° |[L |[OEL* (L |OV
LL* |G [18° 19 |eE* 19 [€9°* L [|6€ [€6° |S [|L6° |9 |6S°* |9 |[vL* |L |BE
eg* [ .|1E* S [0B* |9 |€6° |L |LE (LS ¥ |6G° S |96° |9 (LI* |9 [9€
BLe ¥ (6L |S |92° |S [|e¥° |9 |[SE [€6° [ |56 |S @G [S |E9° |9 |vE
91+ € |82 (¥ |EL* |S [28° |9 (EE€ |0G°* € |0S°* |¥v (06° [S {(00° (S |c€
TLe (€ (T2 ¥ (VI ¥ |[LS* [S [Y€ [98° € |L8°* ¥ |[6€° (¥ (6%° |S |OE
L6 |E |10 |€ [09° 89* |S |62 (L8 | |2€* €. |BL* {7 |L8* |S |[8%:.
¥S* |2 {96 |E |v6° W LO* [¥ L2 [2L |2 et | |9le e |1€* i |98\
&8¢ |2 (8B € |Iv* € [8S°* |¥ |S2 |S6° | |00+t (19° |€ [OL* ¥ ¥C
gl* |1 .- |6C° |2 [BL* [E [8B° ¥ |€E2 |[I¥* |1 {(1G* |2 ©6° |E |BO° |€ |G¢C .
19¢ |1 (69 2 [8Tl* |2 (I1€* |€ |12 |(SL* |1 [88* | |9FE* | |[IS* [E (0@ X
S8°* |1 w6* |2 [96° [ [69° 6 |61 [26° |T |T1* |1 |SL* |27 |98° |€ (81 3
86° |1 |9€°* (1 [G8* e WO°* [8 |[LY [82° |0 |vSs* (T |L6° |2 |L3* (@ (91 3
Pye (0 |69 {1 |02 {1 (9%° [ |51 {09° [0 [08* IT [Ive (T w9 |2 [v1 k
ILe O [06° |1 ([8S* {1 [08° | |€T [BL* |0 {86+ (1 (SL* |1 [96° |2 |c1 3
vg8e |0 |61 |0 (€8° (T [LT° (T |IT1 ©88° (0 |6E° O [€6° |1 |LE° |1 |O1 !
16° |0 |vS°* |0 [80°* [0 WS* (T |6° g6° 0 |59 0 [0E* 10 69 T |8 3
S6°* 10 (EL* |0 9% 0 W8 |{I |L 96° |0 (6L* O |6G° |0 B6* |1 |9 3
. |L6° 0. |¥8° |0 (B9 O [0S |0 |S L6° |0 (LB* 0 |GL°* |0 |LE° 0 (¥
gé6¢* (0 |06° |0 08 |0 |0S* |0 (€ 6°* |0 |©6° O g* |0 {19° 10 |S w
Omo_o ¥6* |0 [88° |0 [69° {0 {1 mo_o 66° 10 _06° |0 |SL° |0 |O :
§67=d T567=d 067=d [5L7=d [I' l66T=d  [S6T=d logT=d lsLv=d 11~ _ﬂ._
0l = N s = M ’
VY, om P gy ,H
3




87

i rvr

86+ B [90¢ [2 (39+ | (99% |V |6V |I1* 1 12+ 2 (oL (€ |SL* (v |
98 |1 [E€° je¢ (8L € |vBe |y [Lw |6C° |1 |swe |2 [98° |[E {€6° |V
0S* (I (¥Se* |c [E6° € |EO0* (€ |SVY 6G° {1 |€9* @ l66°* |E (SI* |E
99+ i |tzefe le1- |z |92+ le lev leee |1 |see fg lsee |2 |tee e
6L |1 [ree [z |eeel2 feve|e |iv lese |1 loes [g lwe |2 lose |e
88+ |1 [s6° |2 |9se |z |s9° e lec |16 |1 |zoe |1 Woe f2 |vie e
se* |1 |91 {1 |3z |2 fese|e [Le [se+ |1 [sze |1 l6Le |o |16+ [c
€0* J0 l6€* |1 {98 |2 |66+ [¢ s |s1e o [gve |1 [zee {8 [t1° |2
0c* |0 |9s+ |1 |gee|g lces [e lec lowe lo [voe |1 |sos |1 leee |2
6ve o loze |1 [12° |1 leve |2 |1c lose jo [oze |t [gee |1 |ese |2
goe o J1se |1 Jive |1 |19+ |2 |62 [89° o |os+ |1 Jose |1 |69 |z
2L o [16° 1 lsse |1 |eLe |2 [tz lots o sec |1 soc |1 |sse |2
6L+ 0 |e6* |1 |iLe |1 le6 [z |s8 [za- Jo |60+ o |tev 1 |10 |1
vge 0 [13* 0 |ess |1 [e1+ |1 [c2 |os* o |ie- lo [sge 1 leee |
88+ o |ove o |ese {1 |eee |1 |12 [63° Jo leve lo lsee |1 [ewe [1
16* [0 |[vse [0 [soc |0 |15+ |1 |61 [|e6- Jo oo+ lo [s1° |0 lese |v
£6° |10 (79 |0 (628° |0 (99 T (L1 |v6°* 0 (69 |0 |LE® {0 {E€L°* |1
v6* o o= |0 [sve jo [18° 1 |sT |see fo |oL= o [1s+ o |gs- |1
96+ [0° |8+ [0 |Lse |0 |s6° |1 et [o6c lo [19° jo [g9+ lo Wo- |0
Lé* jo les* jo {99+ o |st=Jo |11 |eee Jo |ss* o oze |0 [vae |0
L6* |0 [g* jo leLelo [ecejo |6 [s6* |0 g8+ [0 |oze o |owe |0
86+ [0 |68 [0 l6Lc o lovelo 1z [ss* lo loss lo |13+ jo [ese |o
86 o |16 Jo less o ltse o s oee W 26+ o lss* [0 [e9° |0
66*j0 |6+ jo [98° o 99 |0 [¢ [e66° lo fves lo lgss o le9* o
66° J0 lv6* Jo les* fo lezelo It lese fo lse lo loee lo lsie lo
Je6Ted Te6T=a JosTed sted | fegTed [sgred We=a [sLind
Ol =N O =X

(PeREFIIY) Ty 2784 X




AT RS Tk ETMAYIRLY TR D A———

88

66° 101 |S6° 101 106° {01 |SL* |01 {001
06 |6 [0S* (6 |00° 16 [EB° 01166 |66° 6 e le lose |6 |cee |01 (86
€9+ |3 |oe* |6 loLe |6 |60° |6 [L6 |vBe |8 |00°T6 |€8°16 €c* {6 |96
cee g |sce |8 leee |6 |ewe |6 [s6 B+ |L |19 |8 |60° 8 [E9° 6 |v6
oce I loLe |g loes (s lece | |e6 |ste |t [88* |8 |vs® |8 [E3° 6 |26
g8 b lLev |8 l69° |8 |e6° |6 |16 |L6* |L |61° |4 |08 |8 |90° 8 |06
oze |9 leve |2 lose g8 le2c |8 |68 |swe |9 |09° L |66° |8 |8C° g8 |88
g9e lo loLe |z |1ze|e |1s= |8 |L8 |sLe |9 |vBe|L |6E°|L (89 |8 98
6g° o “le6e L [vse |t [eLe |8 |s8 |L6° (9 |€O° |9 [L9° L |EB° g |vs
L1+ lc lsze|o |sLe L [c6° |8 [e8 |tve|s |vve |9 L8 iL WOC L- |28
ece I le6ce |9 lose |t |evs (L (18 |aLe|s |1ec |9 |11} [E€° L 08
sge I |ise o leze |9 |swe L |6 {16°|s (06° 9 |wbe |9 9G° 1L gL
16° lc I86° |9 ltse |9 (29 (e et st (v |sue (S (899 |Ll° L 9L
oee b lcce s |see |9 [eeefe |s¢ lese |v [gve s [L8° |9 [96° L (UL
oo lv |09+ |s g6+ |9 |60° |9 [eL |oL- |v |1Lc|s [80° S |B8B° 9 2L
vge v 09 | |[p2e|s |see |9 [1L [16° v [68° s |6€° (S [ow* |9 oL
g6s Iy 196° |s lise|s [tselo |69  [ere e |60° [v [89° S 1L9° 9 89
' zoe o loge v |2Le |s |teelo L9 |Lwe|e |ove lv |180 S 198°19 |99
ece 6 lese v les* | |sé+ |9 |59 |ote|e |v9° v |L6° S |LO* S V9
gLe |6 leLe v |11 v loss|s |9 |[s8° (€ (18° v (S8 v BE° S 29
26 | l6g* |v |gee |v leve |s |19 |L6° € [96° v 10S° W s |s |09
10° 2 leosle loge |v |voe|s |65 |[se- [ [€8° (€ |OL° W (€L® S 86
ovs 2 loce |e |sLe |v |ese |s |Ls [ese (@ [8ve | |98 |v 16° S 9¢
29+ |2 |6S* & |v6* |v [00° |v |sS |TLe (@ [B9° | [€0° |E [€1° ¥ vS
grs 12 lozele lL1ele |se* |v |es [v8* e (€8 € [0€° |€ L€ W 1BS
o6 |2 lo6° |6 leve e [Lve v |15 lve- e |96° € jBse |€ LS* [V [0S
|66°=d 156°=d [06°ad [GL°=d l66°=d [S6°=d [06°=d [sL°=d (1

Ol=N Ol=X

(ponur3zuo)) (v I18VL




89

11° 191 18L° |61 |ES°* |02 |6€° |82
6° |91 |29° |81 [E¥* TN vge |18
09 |51 |9s° |L1 |[vEe (BT o2 |02
c9e o1 [v¥e (9T [E3° |LT |€3° |61
LYye (€1 |0E* ST [21° |21 |31 (B
92 |21 |ST° |v1 [00° 19T [B1° (L}
110° |11 |66 V1 {16° [ST {30° |91
o+ |11 |gg° (c1 |29 Iv1 |00° 191
oL |07 lsLe |BT 3L |61 [66° (ST
0S* |6 le9° |11 [29° (81 [68° ¥1
ggs |8 [8ve |01 [0S* (1T [€8° €T
16° |8 |2c° |6 |BEe [OT 8L |1
18° (L |31 |8 [vB° [6 [aL* |11
19° |9 [¥v6° |8 |60° |8 [69° |01
vee s [09° L lvee |8 [8G5° |6
g6 |[S |S9° |9 less |t (1s* [B
og* v |ove |s loLe (9 leve L
gGe ie |22° v [95° | (€ |9
g1 |3 [96° |v [8c° [v [93° IS
cge |2 l6Le (e |9tc € [ST° |¥
vSe |1 |LS* |3 |v6° [ [20° [E
96° |1 €3 |V [LLe|B [16° €
85 |0 (B8 |1 [96° |1 (08°* (8
26° |0 [09¢ |0 [03° 0 L9+ It
86° [0 (06 |0 |0g° |0 l0S° [0
|66°sd 1S6°ad [06°sd [GLsd

suoTInqraasig uosstod x03 Lo pue 1> -zy 378VL

€L* [LY [SE°* |61 |€0° |03 06° |£C |OS
6% |85° |91 [23° |81 [v6° |03 [SB° (B2 |8Y
LYy |iwe {S1 {80° [LT |98° |61 [0B° |13 |9¥
Sy [02° [¥1 [S6° (L1 {BL° (BT |SL* (0T V¥
€V 126° |¥1 [SB® |91 [69° [LT [IL® |51 |3V
Iv [vBe |€1 frLe [ST [09° (91 [29° (81 |0V
6€ |69° |21 |29 |v1 |O0S* |ST |19° [L1 |8C
LE |06 (11 [BY* €1 |6E° |¥1 |55 |91 {9€
SE |g93° |01 [¥E- (81 [L2° |€1 [0S° ST [VE
€ [00° |6 |LT* [VT |ST* (31 [w¥e Rr1 [CB€
1€ |s8° |6 |66° |¥1 |00 |1V |BE* [E1 |OC
62 [89° |8 |L8° |01 |16 (1T [3C°* @1 |8C
L |9ve (L |vLe |6 [0Be |OT |S3° |IT |9
63 |L1* |9 [6S° {8 [69° |6 [BI* 1OT |¥e
€2 [16° (9 [eve (L |LS* ({8 [OT° e
13 [8L* |S ([12° 19 jeve |L (10° o2
161 lLve (v (L6 |9 (|LS* (9 p6* g1
LT [LO* |E (€8 |S (8O0° |S |L8B® 91
ST [¥B° [€ [S9° W [B86°|S [6L° 9 (Vi
€1 [8S° |2 [Eve (€ [BL* ¥ [IL° c1
1t |80 |1 |[ITI* |2 [1S° € [B9° o1
6 18° {1 [98° 128 |(I¥* 3 g 8
L u@n. 0 €9 |1 [OI* |} e 9
S (¥8* |0 (03° |0 [eB° |1 [8Cr T
¢ |96° [0 08¢ |0 (09 |0 [O° 8
1 66° |0 |S6% |0 |06° (O i 0
€6°ad |56°sd 106°=d ISL°=d U
g‘.




90

Tl

, gE° (6 ﬁm. 11 (80° |31 |€1° ¥ 1 [0S
39° (6 |VS* [IT1 |OV* |31 |S¥° (¥'1 |6V |v8°* (6 [08° |11 |69 (21 [SL* (¥1 (8V
GO°* |8 [(vO° |01 lt6e |21 |50° |[ET |L¥ L€ (B |LE* |01 |93° (1T [BE* |ET |9V
£9* |8 (59 |01 {ose |11 [69° €1 {S¥ (s8° |8 [68° [0 |[€E8° |11 |85 |ET |¥¥
GO* |2 (L1° |6 {ot* lot [1c° (21 |cv |[8E* |t |[g¥° |6 |3¥e [O1 [89° (31 |V
€9 it IvLe l6 loLe lo1 {16 [31 {1V |v8* (L [96° |6 [S6° (O1 |€E8° (11 |OW
€0° (9 [g2* |8 |L28° |6 |ss* |11 ]6EC (9€* |9 LG+ |9 |LG° |6 |vB° |11 (8E
39* 9 [18* |8 |c8° l6 |s1° (01 (LE |€8° |9 |[50° |{L |01° |8 |L¥* [O1 |9F
66° (9 |LE* L (2 |8 [LLe |01 |SE (€S 9 |L |OL* |8 [|90° |6 |¥E
gGe [s [L8° |t |ve* |8 [6E€E* (6 €€ |6L° |G [c1* 19 |sae |L |69° |6.|8C
96° |5 |vwe |9 |sSe | |L6° |6 (1€ S8 |v [oLe |9 [18°|L |0E* (B |OF
gs* v [a6° |9 |s0° |9 [19° (8 |68 |vie|v (02 |S ([8€° |9 (68° |8 |BEB..
i6* v [6¥* IS |99 |9 ([18° (L [L3 et {€ |wvLe|S |06° |9 [B8S* |L |98
cve € lvGe s (8Te s [18° |L |53 [99*|€ w8* |v (8¥* S |Il* |9 |v3
vee I @S v [vie (s leve |9 €83 |L6°|€ 9L |v [L6° |S 2L |9 |e3
L2+ |8 |s6° v [82° v [|56° |9 |12 lese (B [ve2e e |LG* v |ec° S |02
gLe (e |es° It |o8° v [39°ls |61 _[B8* |8 |sLe |E (30°* |€ |C5e (S (BT
6s* 12 le6e e lsee jc |12 v |L1 |oce |1 |183* (2 |2%9° | |[1S° 91
6S* |1 |6 |2 [v8° | l6L* |v ST {eLc |1 |ILe* |38 [LO°* |3 |LO°® vl
sg° |t |68° | |6€* |2 [6€° | €T |56° |1 |60° |1 |v9° |2 [89° et
vI* |0 [Ovye (T |¥y8° |2 €6 {e |1t [B¥° |0 [es° (1 |s0°* |1 is2* [ |[OF
29 {0 |08 |1 [Lee (1 |vsei2 |6 |vLc |0 €60 |T [19° (1 (08 R |B"
amwvo GI* |0 j08° (T [20° |t |t |68° |0 [ev* |0 [S6° |1 |[BE* {1 |9 |
26* |10 |29° 10 we* 0 [¥9* it |S S6° |0 [SL* |0 [6¥° (0 {L8° [T (¥ _
L6° |0 |€8° [0 (99° |0 [91° |0 | [B6° |0 [68° (0 |LL* |0 |V¥* ﬁ 2 |
wo.;o €6° |0 {S8° |0 €9 [0 T |66° |0 |s6° [0 l06° |0 isLe 0 O
|66°ad [S6°=d 106°=d ISL°=d I  [66°ed [S6°=d .wadum Sle=d [
€t =

.
[

(P3NUTYRD) 2y 19V




91

9Le g8
60° 18 JLE° vo* €€
ss* |8 |1ge 6v° vLe
£€6* (B8 |82 I8° vl
8E* (L €L 131e 6S*
8L |L [61° £Ge S6°*
61° |9 [s9e £8° awe
g9+ |9 |g0e 3t 18°
L6° |9 |sS¢ rge 13°
YV (S (g6 cg. " A
28+ |5 |ope LO® 86
g2+ v |[sge 0s* vue
voe v sge aLe 8¢
L6* v (BL* Lé* 0g2*
2ve e |eae Le* 19e
sLe |€ |L9° g9e €6°
vie |2 |60° Lge LE*-
96+ |2 |yge 00° cLe
L8* |2 |v6e vy 10°
92¢ |1 (Ove 89 Qe
€9+ 1 |og* gge LLe
68° (1 [23° 06° 00°
s2¢ |0 |c9e v6° vy
85 [0 |L6° L6° 89°
9L* |0 [t¥e 86 28
L8* |0 [L9° lese 06°

d 1SL°= l66*m= | 106°=

6°m

(ponuyiuo)) zv 319Vl

——ag




92

A AN IS S

(psnut3uo)) 2v ITAVL

| . . 99+ b (96° 19 (90° |9 |6v* |8 [0S
8L v (vi°|S [98°(9 |L9* |2 l6¥ (88 |v (c€e | |cve |9 [vBe |9 |BW
96+ [v leve s |o9- |9 [10° |z |ev [81ele |voe|s |sie o oze |t |ov
oce |& |tLc]s |sse |9 |ser |t [sv [ovele |o6els |cos|s |tse |t v
6s* & |20 v e~ |s |vee |t lew [tee e [zee v |tve|s [16* L [8¥
19° /¢ lec* |v L5 |s [60° |9 |1y lo6* |€ |sse |v |aLe|s |sa+ |9 |ov
gse |c |69> v [98°|S [tve |9 |ee |vis |z [1Be |v |e6* s [s9- |9 |s€
leee j3 le6s v [B1e v |18 |9 e |eye|g |90s |6 |see |v |sec |9 o€ -
09+ [3 (s2° [¢ lese v |t1s|s [se |tee {3 [awe|e |t9° v [eer |s |ve
08* |3 [tse le |18 |v |vse|s |ec |sse |z |ozs e |vee Jv [tze s [a€
c6* |8 [28° |¢ |01+ |e |L8+|s |1e [o0* |1 |c6* |e [63s | [vO* |v |0t
gze |1 |s0° | |owe |e [wa* [v |68 |ove {1 [vee e |19+ ¢ [eve |v s
vse |1 [tve [ |vee e lese |v |22 |voe |v |sse |z |t8s (e [oLc v |93
vie |1 [89° |38 |66° | [16° v [sg (13 |1 |6Le |28 |81+ |2 [s0° ¢ [vE
gas [t |69 [3 |oc* | |se+ |c |2 [vé* |1 [sec |2 |ise |e |ove ¢ |82
86° [t ote |1 |s9¢ |8 |e9°|e |13 [ete |0 [ees |1 [eLs |2 [6L° [¢ |0z
1€ o |sve |1 les* |2 w6 le |61 lwwe |o [190 |1 |66 |3 [21e |3 [sU
9c* lo [tes |1 |6te |1 |16+ (3 [L1 [voe jo [tee |1 [oge |1 leve |2 |oF
aLe o |68 |1 (15 {1 |voe[@ [st |eeejo [s6e |t |voe |t leLe |3 [vi
28* [0 |60° |0 Isee |t [vee |z |et |ss* o [t3c lo [sse |1 [31° |1 [o1
88° |0 [ave 10 |vee |1 [tee |1 |11 |16+ |0 [ese o [z0° |0 |ewe v [of
€6* |0 [€9° |0 [s8* |0 |g9r |t |6 [v&* o loze [0 |ovs o |szeft s
s6° |0 {oL* jo [aselo |68 |t [t |se* jo [182 lo |39+ |0 [sos |0 |o
L6210 [s8° 0 6970 [v3° (0 |5 [86° |0 [88° |0 |9usfo [6€c [0 |v
£6° 0 |06° 0O |08° (0 {16° |0 (€ 86* 10 |€6° 0 ¥B* O (19° |0 |B
66 Jo ke lo lteelo lsorlo |1 les* Jo ls6s jo loes jo lszelo o
66°=d [S6°=d [06°ad [SL°=d I [66°=d [S6°ed [06°nd ISL°=d IS
g o}




93

ge |I [¥8° |3 |v2°* | [01° |€ |6V
6° |t lvee |2 [1ve |2 [63° |€ |LY
6° |1 |so* |1 lss* {3 [9ve (€ [SV
1o |0 |vee |t |69 |3 [E9° € [E¥
cze |0 |68 {1 {182 | |6L° [ IV
6c° [0 |€5° |1 |86 |2 w6 |E |6€
1c* |0 |v9oe |1 [vOe |1 [e1° |8 [L€
09° [0 v+ |t |eB* |1 (1€° @ |SE€
g9 |0 lege |t |6€° |1 [t |B (EE
L* lo [t16° |t jes* |t [€9° |8 |I€
eLe o [pse |1 [g9° |1 [BL° |8 |68
cg* 10 |yt* |0 (9L |y [€6° |@ |L3
og* o loce [0 {98+ [T [¥¥° T |S@
lege lo lvwe |0 |s6° (T [68B° |1 (€3
16° |0 |vse |0 |60°* |0 |[S¥e T |13
€6° |0 |€9° |0 [98° |0 (09 [V 161
vee 10 loLe |0 [ove |0 [wic |t LY
c6° |0 |oL* |0 |1S° [0 187 |1 IS
95 o |oge |0 [19° |0 [20* [0 [ET
L6° |0 lvge |0 |89 |0 |02 |0 |1}
16° 0 l28* |0 [wi* |0 [5E° |0 16
g6 lo |o6° [0 (6L° |0 |8¥* |0 |L .
g6 10 |26° |0 |€8* |0 [BS* [0 |S
66°* €6° [0 [98° |0 |99 |0 |E
66° m vee [0 l68° [0 JeLc 0 [
i66°=d *nd [06°sd [SL°=d [L
(panuravo

p ety

€8

1 |6L° |8 ist*|e |OO° € |0S
68° |1 |68+ |2 |tE* |38 02° [€ 8%
s&* |t |B6° |3 |B¥" S gee € |9V
66° |1 lste |1 |29° | |SS° s |e¥
9t1* |0 |8e°* |1 |SL* |3 1Le |E |2V
2c+ 10 |9ve |t |98° |8 Qg (€ (O¥
ce |0 |66 |1 [L6*|C 20°* |[@¢ |8¢C
96+ 10 |OL* |V (¥I° 1 (323 |2 |9¢C
v9e 0 |6L° |1 (1E° |1 |6E" e ve
12° |0 LB |1 |9¥* |1} GG+ |3 . |2¢
9L* |10 (S6* ~ 6S* |1 1L* |3 on
18* |0 |vo° |0 (1L}l 68 |3 [BS.
¢ge lo {€3° |0 |18° |1 |10° T {92
L8° |0 |{LE* |0 |06 1 |03 |1 |v©
o6* |0 |6¥* |0 [66° |1 LE* | |88
36° |0 |6G° |0 |B1° 0 z2Ge |t (03
- lce* {0 {L9° |0 [EE°* [O L9* i1 (81
- lgs* 0 |eLe |0 |9%* |O 08 |1 |91
96°* 10 [gL* |O 96 |0 |v6° (1T (¥l
06° |0 (28° |0 [|S9° |0 (1I*|O 31
L6° |0 (98 {0 [IL* |0 88* |0 |01
g6 |0 [88° |0 |[LL° |0 |[C¥° 0 (B
g6 |0 |16° |0 {18° |0 |ES® 0 |9
g6 10 [26° [0 [S8° |0 c9° [0 |¥
6° |0 v6° {0 [88° |0 [69° 0 |8
6° 0 |s6°]0 |06° |0 [SL* [0 [0
wa.la mo.lm ou.nm Slenad |4
o1 =
2) ¢V 19vi




94

£Ge |8y [31° YV By |IV [EV* |9 |09
OL* ILb 18C* |E¥ |IL® |O% [28° |SE |66 [68° |9V [¥9°* [2v [00° OV [18° |SE (8BS
00°* 1Sk |L8* {1V [2€* [6€ |09° [WE |LS [03° |S¥ |2 IV [29° BE |66° €e [9S
gce lvr lece {ov |16 |LE l6ce [€€ |56 [SS°* |cv |v9° |6€ {13 |LE [LL* |BE VS
1Le lzv |Lg* {8€ [25° |9€ [91° |2€ [€S [L8°* |I¥ [@81° |BE€ |I18° [G€ [9G° |I€ &G
10° |1y lece lee [11° |sg [vee |og {15 [123° low |[¥v9°* |9 2¥* [¥E [¥E° |O€ |0S
one l6c |tge [se laLe |ec [eLe |63 [67 (LG |BE |21 |SE [00° U2E |[21° 1623 |BY
eLe 1€ l6E° |ve |ace |eg |25 |82 [L¥ (88 |9T |¥9° €€ [89° [I€ |06° |LC |9V
20° log |[Lg° |2¢ {16° o€ |oE* |L8 |S¥ |28 |SE |21° |2€ |18° [OF |69° |92 WV
ive lve le6ce |1€ les* |62 |80° |92 [ev [8S° |€€ (¥9° |OE |18° 83 |8¥* |S@ |o¥
yLe |2¢ 28° |62 [01° |82 [98° |v2 |I¥ [|88° [IE€ |[81°* |63 | [LC |93° |¥C OV
20 |1€ |6€* |82 [tL°* |92 [s9° €23 |6€ [€2°* |0E [¥9° |L3 |66° (ST |€0° |E8 [E
ere 62 |£8° |92 {1€° |s2 ey (22 [L€ |6S° |82 [11°* |98 [25° [ve |e8° |13 |9¢
wvLe |22 |gee |s2 [06° |€2 |12° {12 |5€ (98° |92 [€9° |[v2 |08° [€B |09° (0T V€
10 |92 |og* lc2 |gse |22 |86 |61 (€ [€2° |SB |0T° |[€2 |08° |I2 [6E°* (61 |BE
aye n2 |sce |22 |60° |12 |LLe [BY (1€ |6G° [€2 [€9°* |13 |I¥* |02 [91° (81 |OF
vie |22 |s8° {02 |oLe |61 [96° {LT |62 |L8° |18 (80 |02 |L6° BT |E6° 91 [BS
g6 |0z |Le* (61 [oE* |81 [vE* |91 L2 |02° |02 |29 |81 |09 |LT |8L° |ST |98
ove le1 lvge |Ly |t [oT |11 ST |s2 |LGe (BT [SO* [LY (L1° |91 |IS° (V1 [¥E
12+ (L1 |se° o1 leve |s1 |88° |et1 le2 |v8° |91 |09 (ST (LL* {1 [B2° |E1 &C
vee |61 |18 [v1 |€0° (w1 [L9° |31 |12 (BO°* (ST |66° \E1 [LE® I ¥0° |21 (03
cc* (V1 |1€° [ET (99 (ST [S¥e 1T (61 [I1S° (E1 96 21 {16° (1T (28° [OT |B1
coe |21 2L (1T l2@° |11 |22 |OT |LT |9L° (TT [W6° |GT [WS° Ot [19° {6 |91
vge (01 |12° |01 l6L° |6 |s6° |8 i1 [06° |6 |6W°* |6 |66° g [Be* (B (¥T
vé6e |8 |(69° |8 (L€ |8 [EL°|L |EV [96° L [S8° |L €9° L (80° |L Nm
86 |9 [06° |9 08° |9 |0S*|9 |1l 6°* |S [S6° (S (06° SL* |§ |01
g6*ad (56 nd [06°=d [5L°=d (L [66°=d [56°=d 106°=d Isie=d |-

¢ =3 g = X

-

SUOTANAT4ISTA TeTWOUTH ATIEARN 403 Yo pue ha gy 3Tave




95

(panuTauo)) €V F18VL

: €6° |8€ |G6° |EE |88 |1E |W9° |98 |S9
2€* |8€ [EV° |EE |EL® |0 |€8° |98 |[v9 |OL® |LE 1BB° 3¢ |vae |0E {18 (G2 €9
w0* |LE [C° |8€ |sL* |68 [1v° |SB (39 [w¥* [9€ |OB° 1¢ |s2° {63 |86° [¥vS |19
0g° |ct (o2 [1€ |9L* |92 |8G° |[v3 |09 |91° |SE |eL°® 0¢ {L3° |93 [91° |¥C |6S
cge lve L1 |OE |LL*|L3 [SL® |€3 |BS |68° (€€ [W9° 62 |83° (L2 [¥E* (€T |LS
gze lec |goe |62 laLe |92 |26°* {88 |96 |99° |B€ |9S° B3 |68° |9¢ |G |8 |SS
g6 1€ |66° |13 |08° |53 |01°* |32 |vS |O¥* |I1€ LV L2 |1€* |S2 |69° |18 |ES
9Le |0 {16° |92 {18° [¥2 [82° |12 |8S O1° |0E |6€° |92 |2E* |¥B [98° [0S |1IS
1s l62 lc8° |52 |e8* (€3 |9v° |02 |06 |S8° |8C [0€° G2 |€E* |€2 |€0* (03 |6V
22+ |az |sLe |ve |€8° |28 |€9° |61 [B8Y [19° |LC 08° v |6E* {22 |18 61 (LY
vee |92 (L9 |c2 lvse {12 |08° [B1 |9¥ (vE*® [5T |T1° €3 9ge |18 |6€° |81 [5Y
1L* |s2 |6G* |22 |s8° |02 |96° |L1 |¥¥ |S0° |S& |00° 23 |LE* |03 [LS° |LT (EY
Gy lva |ose (12 |98° |61 |sT° |L1 [e¥ [08° |€T £6° |02 gee |61 (L |91 |1V,
vie lc2 [1ve |02 [Lg* {81 [€E* {91 |OY |SS° [B& |SB° 61 (6E° (81 |06° |G1 |6€
Lg* {12 |2€° |61 [LB° [L1 |0S* |G |BE |S8° {15 |LL® 81 |0t (L1 |LO® |ST |LE
woe |02 |22 |81 I88° |91 |L9° |¥1 [9€ [v6° 161 B9 LY {Iv°* |91 |98° [¥] |SE
gce lo1 [0t |21 |68 |S1 |v8° |ET |[vE [B8L°* BT |09° 91 [1ve [T [€¥° |ET |EE
00°ULT |66° |GV |68° (¥1 |66 |81 [2€- |S¥* |LT [0S~ ST jg¥* v1 |09 (2T {1
6L 91 [16° |v1 l6ge (€1 (BT1° 131 |[0€E |60° (91 |O¥° (W1 [SW* €1 (9L |11 |6C
26+ Ic1 [28° (€1 |68 |21 |9€* |11 |88 [€8° |V1 |83° €1 &W° 2l |e6° |01 |LC
91° |v1 {cLe (21 [88° |11 [€S° (01 |98 |BS® €1 |vie |81 [Ive |11 |BO° |01 |S3
gge 131 |c9° |11 |t8* |01 |89° |6 (v (81° |81 |B6° O ove* |01 |98° |6 |EC
69* |11 |15 (o1 {s8° |6 |cee |8 |38 |98 |01 88° |6 g€* |6 gV |8 (1T
goe* lo1 lse* |6 |8 |8 |s6°¢ [L |02 [9S5° [6 [9L°® g |ee* (8 [BS*|L (61
ig* |8 [c0° |8 [8Le|L [OTe|L BT [26° (L (0O9° L [02° (L [OL°|9 |L1
L6° |9 lsge |9 oL |9 |s2° |9 91 [66° (S [56° s |os* s |sLe|S |S1
66°=d |G6°=d [06°=d ISil°=d |1 66°=d |66°=sd [06°=sd [Si°=d U1

€ =¥ € =




96

(panuriuo)) §v F7avL

-

el |2t |10° |82 |LG* |SS |6S* {12 |0L
Ic* |2 B9 (L2 |B1°* [S2 {L2° 12 69 (28L° |1€ (81° |L2 (08" 2 1S6°* |02 |B9
12 (1€ [LL* [92 |E¥* ¥2 |S9° D2 L9 2L* |0F [SE* |92 (£0°* |b2 |¥Ee* |02 |99
0c* |10€ (16° (G2 L9 [c2 [20°* 08 59 IL® |62 [1G* (G2 (62 €2 |SL* |61 |¥9
0c* |62 [90° |G3 |06° (23 [1¥y* 61 €9 IL* |82 |[L9° |2 7G°* |22 |60° |61 (89
61° (82 [¥S* W3 |¥1¢ |22 [BL* 181 (19 TL |L2 |18° /€3 |LL* |12 (8% 181 |09
61° |LS OV (€2 [O¥°* (12 |51* |81 I6S OL* |92 |S6° (22 |66° |02 |78 L1 [BS
gl* |92 [9G° [22 [¥v9°* |02 IvSe* (LT LS 0L* |S2 |11° [S2 |S8° |02 (23* (L1 og
LT |92 [TLe |12 |98° 61 [06° |91 5SS |69° (y2 (82°* (12 [05° |61 {09* 91 S
91 (2 |S8° |02 [OT° |61 |62° |91 €S [|89°* |€2 |Sy° |02 |EL* IR 96°* ST |28
Sl* |€EC |86 |61 |9€°* (8T (L9°* |ST {1S L9 |22 |09 |61 |S6° |L1 (9" S11]0S
Tle [2C |ST* (61 |09 [LT (20 |ST l6y |99« 12 (¥L° |81 |02° (L1 [€L° |¥1 I8V
cl* {12 [2E* |81 [28° 91 [V V1 (LY |S9° {02 |BB* |L1 Sve |91 |60° |V QV;
Ot1°* (G2 |8¥° |L1 [E0°* |9T |6L° €T SV [¥9° {61 |00° (LT 69° |ST |gYre el Y
BO°* |67 [E9° |91 |0C* ST [91° I£1 s c9°* |81 |81° (91 |06° ] lvBe (21 oy
SO* |81 [9L- mu ¥S* ¥1 [sSe 121 {1y [19° LT [#€° ST (ET* %1 [22° |21 OV
10 LT |68° [T [9L° |ET [06° {11 l6E 6S°* |91 [0G°* {¥'T (6" €1 |09 (1T |2¢€
86* ST [00°TET |96* |21 l62° |11 LE |9G° |ST |v9e* (€1 (29° |21 [G6° 01 |9¢
96° YT [LT* [E1 |12° 21 |99 O7 |SE" |ES* (¥ T |92 |21 (28° It |SE°* |OT |¥E
€6 €1 [£E* 21 9% (11 l66° 6 €€ (8w |ET |L8" (1T |00 |11 fLe |6 |2€
68° 12T (LY |11 [29° [0 oqo}m 1€ |e¥° |21 |96° |0 |L2°* |01 [vOe 6 |0
S8° {11 |09° (0T |98° |6 |Sie 8 |68 [¥E* |11 [90° [OT {IS* |6 Icwe 8 (|82
08°* 0T |OL* |6 10 |6 |BO* I8 {228 |L1° ot (o2 |6 [0L* |8 |8L* (L |92
cL® |6 [LLe B8 [L3° |8 st |2 G2 [96° |8 (62 {8 [v8° |L |01 L ¥
9S* 18 118* L uve L 6L |9 Iez 98- {4 oge|e (26 |9 lose |9 |z
96* 19 [08° |9 09 |9 |00°1s |18 lsecls [s6e s loss ls lsie s o
é6%ud u 6'nd [Sited [ |é8%ed [G6°sd [06°=d [Si*=d |I
§ s 4 ¥ ay




97

: €G° |BS [18° ¥3 166° (12 |1S° 1B |SL
80° 188 98¢ €2 jOL* |13 |98° 81 |vL ([69° L2 |vSe [e2 love |12 00° LT |EL
L8* |LS |81 €2 |LO° |12 9L L1 (8L |vB° |92 [€9° |23 |LL° |02 SS°* L1 1L
Sv*® 198 [0S 82 |[L¥* |02 [92° L1 |oL |e6° |se [vi* |33 ls1- |02 66° |91 169
89* S8 |08° (12 [v8° |61 [9L° |91 |89 |21 |52 [ty |12 [5S°* l61 1S* (91 (L9
LL® VB OT° |18 [€8° |61 (92 (91 |99 [9€° |vE |tLe" |02 [16° |87 66°* S1 |59
16 |1€3 1€V 108 |29* |31 9L |ST [¥9 [€G° |€3 [s0° (02 |1€° {B] |1 St |E9
LO® (€2 |¥Le |61 86 L1 [98° |ST1 (29 [69° |23 [obe |61 [oLe L1 66 w1 (19
9Ce |G |10 (61 |6€° L1 9L (¥1 {09 (v8* {12 [OL* |81 |sO° (L1 IS* W1 |6S
7y (1S |SE* |81 |9L (91 [98° w1 |96 |L6° |02 [L6* |L1 [9ve |97 66° |E€1 (LS
19° 102 (99 LT |€1* |91 |SL* (€T |9S |STe* |02 {1€° |21 [e@° |51 [1g° €L |SS
SL® |61 [E6° (9T [vS* ST |SB°* €1 |vS |vEe |67 |29° |91 |12 [g1 86° |21 (€S
68° 181 [92° 191 |68* |¥T |SL* |21 |25 |1S* |21 [06° |ST [09° |v1 IS* |21 |16+~
10° 181 8S° |G1 [83* (1 |S2° (81 ([0S [99° [L1 |12° |51 [vee (g1 L6* |11 (6%
0S* LT |98 |v1 [L9° [ET L |11 (8%  [6L° (9T [vGe* [v1 loge g1 0G* 11 |4v
BE* |91 [ST* W1 |66° (1 [¥2° (1T (9% [16° |51 I8¢ |IET |EL* (21 [96° o1 |S¥
{rS* ST [S¥e €1 8v* BT [eL* (0T [v¥ [20° |ST [80° |1 |90 ol (6w 101 |EW

89+ W1 |9Le 121 8L+ |11 28 0T [Bv [13° |v1 [2v~ |21 [8ve (11 [s6= |6 [1v
6L° IET 166° 1T B1° |11 8L* |6 [ov [e€e[€X |12+ [11 zpe |01 oo |6 log -
68° [T GE |11 [€S* |0T (02 |6 |o¢ [aSe |21 [c6- |01 91+ |oT le6e lg |z
96° |11 w9* (0T [98° (6 loL* |8 9 [€9+ |11 [v2* |01 [15° |6 |ove |3 lce
SO° (11 198° 16 118° 6 |L1* |8 |ve [cLe [0F |SS* |6 Lo+ |8 |o6e I [ee
g1e 01 [0° [ loge |g L9* L f2€ |8Le |6 |tee (8 [eze s |awe I [ic
mael6 lovels |zse|e lote |z loe |1s° |8 |o6e | |eoe L lv8* ]9 lez
91° 8. Wo. L olvie |2 Fmo. 9 182 [sLe (L |66° |9 [es° |9 fwee o li2
S6° |9 st |9 lose |9 lwee s [0z le6°|c |ses s los- |s lsze lo s
6°=d [S6°ad d d I [66°=d [S6°=d [06°ad ISi*=d |1

[06°=
. S =¥ ¢ mw¥N.

(ponutiuo)) ¢v 31749VL




- 98

L6° |81 186° IST |SG* (v B2 |21 |00L
e8° |S1 |BE* V1 /v1° 121166 |85 |81 ]99° |51 |12° [v1 |00° |21 |B6
Bye IST |80° |¥1 (68° |11 |26 |80 |81 (62 |ct |gg° [V [LLe |11 |96
BO® |ST [bLe €T (S9* |11 /56 [89° |41 |06° |1 |6G° |€T1|ES* |11 Ive
SLe VL €V |1ET OV (11 €6 (02 |LT [LS* {v1 |s8° [T {L2° |11 |26
6E° |¥I 1LO° IET (E€T° |11 |16 |9oL* [91 (B1° (v1 |16° |21 |86° |01 |06
L6° €1 [LL* (21 {L8° |01 |68 |OC* 91 |28° |€T |€9° |ST |9L* {01 |88
99¢ €1 |LU° (21 [v9° [O1 {L8 (v8e* ST |8¥e [€1 (63° |21 |16° |01 |og
Bee |ET [TT° |21 |BC* |0OL |S8 [OW° |S1(90° €1 |vee 11 |63° (O |#8B
68°* |1 |08 |[TT1 |01 (OT1 {€8 |06° lv] 7L [ST1 |89 |11 |96° |6 c8
9S° 131 |0G° (11 |S8° (6 |18 (6% (w1 [LE* |21 (c€* (11 |vLe |6 o8
ST* (ST (W1° (Y1296 |6L |S6° |cT |se" 1T |96° (O1 |6 |6 (8L
08* {T1T |c8° |01 [9E° |6 |[LL |i5° IET1 |v9e 11 89° (01 |38° |6 |9L
S¥° |11 |2GS°* |01 |LO* |6 |(SL |66° |21 €S |11 |GE* |OT |V6° |8 L
66° |07 |91 |OT |€8° |8 (€L {€9° |21 |sg° |OT 9616 (1L |8 |2L
69 |01 ¥8°* |6 [6S° (8 |14 (90° |31 |1G" 01 [69° (6 |o¥* |8 |[0OL
CE* (Ol [¥S* (6 [cE€* |8 |69 [L9* 1T |70° [OY |9€E* |6 (21° {9 |B9
|68* |6 ST (6 [10° (8 (L9 (O1° (%1 £Le |6 |96° 18 [06° (L |99
9G¢ 16 |€8° |8 [6L° (L [S9 |OL* |01 [vE~ |6 |69+ |8 [g9° L 79
L0® 16 €5° 18 |SGe|L €9 |60° |01 [06° |8 [vEee |3 |zwe (L |29
SL* |8 |01 (8 [L2*|L [19 [69° |6 LS* |18 |€6° (L |60°|L |09
€E€* |8 |08° (L (¥6° |9 [6S |66° |9 00° I8 [S9°* (L |v8° |9 |BS
88° L (LY L |EL* |9 (LS €9 |8 EL* It (g2 (L [19° |9 |95
IG* [L |L6° |9 |[S¥* |9 ISsS [26° |¢ 91¢* |L |SB* |9 [1E€* |9 |vs
S6° |9 |1L* (9 |L0° |9 eSS [st1°* L BL* |9 |0S° (9 [26° (s |[2s
|0S°* |9 [00° |9 (eB*|s [t1S§ |e6° iS S6* (S |06 ]S |si° s om
S6°nd |06'wd [SiL°=d [} 66'=sd [S6*'sd [06°=d |SL°=sd |1

% = H 01 » X
(panut3uo)) ¢v Favi
AT




99

(penutiuo)) €V I19VL

: . €0°® |0G [ST* |9V [16° |EV [66° |6C |OL
IE€* |6 |BY° |GV |12B° [EV mv.,an Tw LS*® By [6L° Y To. e [v8° (BC [B9 -
0g* (LW OY° 9% |L6° ~cghm. B€ L9 [20° |Ly [w¥e [cV |SE° (1Y [OL°® {LE |99
1€ 9V [SL* |3¥ |0l |O% [TV (L€ 69 lr1ge S% V0 Y ¥0°* (O |¥S° [9E (¥9
08° ¥ |GE* |1k |CW* |6€ (96° ISC [£9 [c0° vy (oL lov (LLe 2€ |[6€* |SE |29
1€ [C% |66 |6€ [TT* |BC [1B* %€ |19 L5 |cv UVE* [6€ |67 |LE (€8 |¥E |09
CB* (I¥ |59 [6E [€B° [9€ [99¢ (£€ 156 [10° |1V Ivee LE 1BT* |9€ |2L0° [E€ |8S
1€ 10 [28° [LE |GG°* |GE |05 |2E |LS |L5° l6E |19+ 9¢ |68 (¥t |26° |1€ |98
6L* |BC |06° |SE (€3° WL ISE* (1€ 1SS |00° [LE l€3* [SE [S9° €€ |LL® |OC (VS
68° LE |96 |VE {G6°® |BE 16T (OC & 95 |9€ (S8 [E€ |gE* [B€ |19 |6 |ES
BL* |S€ |LY* |EC |B9* (I [CO* |62 |IS 86° |vE 0S* [2€ |00* HOg [S¥e {28 [0S
Bee W€ [08°* [IE |6E° |OE [£8°* |L2 |6 |vSe |e€ 0T [1E leLe |62 0€~ (LE |8V
LL® [2€ [SV°* |0OC (LO" |63 [BL® |93 LY [96° |1E SL® |6C (Sh°* |BC Y1 (92 |9V
Sd* (1€ [C0° |62 |6L° |LC LS |€8 I5Y |26+ |OC [RE* |92 ET1* |LS (L6 (V2 vk
GL*® |6C 59 (LT [IS°* (92 [Iv°* [¥3 EY [vese (e [96° [92 |vge* |ca 3B8* |te (ey
1T | IE® |93 |61 |62 [S8° [€2 (Iy (6% (L2 |[€9* [sg |95 (ve L9 (22 |0V
ClL* |9 |06° |¥3 (88 |€2 |80° |22 b [Cc6°* |sB [c2° a2 Gc*.|€EC |8%°* |12 |8F
€1° 162 |LS* €2 |19° (22 [26° |02 ILE |[cve* |¥2 [¥v8°* |22 |26 |12 SE* |03 |9¢C
L9* €2 [ET* |2 [CC* |12 |9L° |61 [SE |S8° (22 |6be* (12 |59 103 |g1° 61 e
0014~m LL® (02 |S6° (61 [19° BT [EE (EE€°* |13 |00 16T {vE" |61 |l66° lL1 |2€
6S°* |03 |8C° |61 |89 (81 {v¥* (LTI (1€ (BL® |61 [89° 81 [L6° |L1 [v2° |91 (0€
S6¢ BV [I6° (LT |LE° |L1 [L2* |91 1583 |60° |31 |¥2* |L1 |0L° (97 |89° |51 ig82"
Sbe (L1 [LS*® |91 |96 IST |90 (ST L8 [G9° {91 {18 IST {L€° [51 |15 v1 [0
6L® |ST 86" |1 (69 |*T |B3* €1 S8 |83 |¥1 [8€° w1 [26° (€1 |2E* £t vE
€6* (€1 Wo. €1 |0E° |€1 [BL® (@1 £2 [96° (S |18° (21 139 |21 |sO° BT |22
£6° |11 |06° (11 |08°* |1 |CS* 11 |12 [66° |01 Wu.Eou 06° |01 |SL* (O} [0C
EﬁdLm me.lm O6*=d [Sil°=d L 66°nd [S6°md [06°nd GSl°=d 11

Ot = ¥ e = X




100

, 2ve |0V |1ve |9C |L8° |¥E |EL° |OE |08
G8°* |6€ [16° |SC |1B® |EC |WE® |OE (6L |BE* |6€ [S¥* |SC [LE* |EC |¥6° 6O 8L
oL |9€ m6° v [16° |2€ [96° |63 |LL |12* [BE |6%° |¥E |8¥* [S€ |91° |58 9L
89 |LE $G.Lwn 00° |2€ [LL* |92 [5L |60° [LE |BG° |€€ |85 [1€ [8E° |8 VL
g5+ (9¢ 00°13C {21° 1€ |86 |LB |TL |26° |SE|SS* |2€ |89° |OE |09° (LT |TL

sy |SE €0 let €2+ [0€ {03° [LS |IL [06° |vE|B5°* |I€ (BL® 62 (18°|9¢ |0L

“lage lve [Lo* 1€ [vE” |63 [E¥e (92 |69 [28° [EE |19°|OC |LB* |BC [S80° |9C |89

L3 |€€ |01 |OC [Wb® |BS (V9 [ST L9 |EL* [BE |VI* |63 |96° LB c2* |52 |99

g3* |zE 1. |62 |lvse [LB3 |68 |¥8 |89 |€9° |1E |L9* {82 |90° |LC |LY¥° |¥E V9

20° [3€ L1 183 |voe |92 |90 |v3 (€9 |€G° |0E |OL® [L8 [L1° (93 |B9* |€2|C9 "

£6° |62 103 |13 |cLe |52 |62 |€8 |19 [BY* |63 2L |92 |88°* |SC (68° |22 |09

voe |92 |e2° |92 |28 |v8 |16 |32 |66 |0E° |9C |SL* |S2 |BT* |¥3 [01° 3T |36 .
cLe |18 |98 |52 |16° €2 |B3Le |18 LS |91~ (L2 |LL* |%2 |8¥° |ET|EE*|1T |95 ,

c9* |92 |nae Ive |66 |32 [86° |03 |SS [10° oS |6L° |€C |BS® |28 |VS* |0 |¥S .

£Se g2 |1e° |2 |60° |28 {E€1° |03 [€S [S6° (Ve |1B* |2T |L9* |18 [SL* |61 as

lve v3 l£C° |T2 |cg* |18 |9€° |61 |16 |[28° |€3|83° |1S |SL* |08 [v6° |81 |0S

68+ (€2 [vc* |12 {0 |02 |LG* [B1 |6V |SL® (32 |E€8° [0S [EB* |61 {91 |81 |8V

30° (22 |s€° {02 |6€° |61 [LL° LV |[L¥ |[6S° |18 |¥yA°* |61 |06 |81 |8E° |L] |9V

v6~ {02 [9C° |61 |sve |21 |96° [91 (5% |S¥° |08 |y8e [BY [96° L1 |65 |91 V¥

g8 |61 |9€* [BT1 {SS* {L1 |81 |91 {c¥ |s8° |61 |E8~ |L1 [20° |L) [BL® ST [C¥

1Le {81 |s€° [L1 |29 |91 {ove |ST {1¥ |66° |LT [SB° |91 |[O1° (9T [S6° (¥1 OV

G L1 {3€° |91 |89 |S1 [6G° vt |68 [L8° |91 (0B ST [L1° (ST |L1° Vb1 |SC

o2* (91 |L2° |V (8L |¥1 |LLe |€V |4€ [SLe ST (9L (¥1 |32° |¥] |BE® |ET |9€

G6° T |LTe [p1|SLe (ST [36° |31 |SE |EV* |¥1 |OLe [ET [ES° [ET |9G* |CST |¥E

L2 [e1 L6 |31 |{SLe |31 |L0° [31 [€€ [26° |31 [8S* |2V |ST° |21 |69° |11 |S€

L6° |31 |s8° J1t oL {11 lsae |3t {1C (66° |0 |S6° |OT |06 [OT [SLe [OF [O€

|66°nd [S6°wd [06°=d [SL°=d I |66°=d §6°xd [06°=d [Si°=d |1

0Ol =4 € =3

(penutiuol) £V 18Vl




101

99+ (yE [¥6° |OF |20 |62 [¥6° |S2 |06
12° &€ |09° [OF {OL® |33 |S9° |62 168 |6L° [E€ |18° |0 |9€° B2 9¢e |62 |88
Lee ¢€ |vse® |62 |66° L2 |50° |52 |48 [16° |3€ |8Y* |63 |89° |LT oL® |3 {98
1S+ 2¢ |80° |68 |e€° [LB |Ly* |v8 (S8 [€0° |2€ |EL* |83 96° |93 Lie |v8 B
59¢ 1€ |9oce |88 [s9° |s2|L8e |E2 €8 |61 |1€ |S6° |L2 oce {92 |96 €2 |28
LL* OF |19° |L2 |c6° |[sB |9 [c2 |18 |sE€° |OC |B8° L8 |19° S3 |L6° |22 |08
58 62 |v8* |93 |[s2° |sT |69 |28 [SL |6%° |63 |6W° |93 106° ve oy |32 |8L
66° 02|90 |oB |35 |vE |60° |28 |LL |39¢ (88 |EL® |ST |83° ve [08° |12 ]|9L
91 82 |9ce |sT (LB |ca|1G* |12 |SL |SL* |LE |56° [¥2|S5° €2 |03* {13 (¥l
1ce 22 [19° vz |g1° |2 |06 (03 [eL |98+ |98 |22 |vE |¥8° 23 [29° |02 |8l
cye 93 |yg* (€2 |15° [23 |{3€° |08 |14 |S6° S8 |B8V* €3 UT° 22 oouﬁmﬂ oL
26e 62 |90 |¢2 |08 |12 (2L {61 |69 |80° ST |SL* |38 |LV° 12 |I€¥° {6189, .
0.e ue |vee |22 |go* |12 |11 |61 |L9 |vEe [wE (€6 |1C [9L° 10T 2g8° {8199 v
08¢ €2 |6S* |18 |e¥e {02 |vS* |81 |59 |LE* |€2 BT |1 |BO° 02 [ce° (21 |v9
6€9° 22 [18* |02 [2L° |61 [16° |L1 |[€9 |0S* |23 |S¥° O3 |LE® 161 v9°* |L1 {29
16° 12 lee* |61 |L6e |81 |vee |L1 |19 [19° |18 (89° |61 |L9° |81 |00 L1109
- lgo* 12 i@z |81 |16 {31 [EL* {91 |65 [1L° |02 |LB* |BT |B6° |LY WV° 91 {8S
2g* 0z |cG* |81 |19 |L1|21° |91 |LS |6L° |61 [LO® |81 |¥T° |L1 ©3° St |9S
wee 61 vL* |L1{L8° |91 |vS* (ST |55 |58 |81 [SE* |LT (SS° |91 [ga° st i{vs
yhe 81 |16° 91 |ST* [91 |06 (vl |[ES [06° |L1 1LS* |91 08" st |29 [v1 |28
1S* 41 |o1° |91 |y |61 e |vE |16 [W6e |91 |SL® |ST |80° |ST |46 €1 |0S
LS* o1 lsge Ist|aLe v loLe |€1 |67 [S6° |ST |68° ¥ |9€° qﬂﬁoqw €1{8%
09 S1/56° w1 |a@6e [e1 |c0o° |E€T |ty ([S6° |v1 |66° |ET |29° |ET [9L° 21 |9v
6S° viloze et Lue [er Ly |2 (sy [e6° (€T |LT° €T |08 |31 [BO° 21 vy
gye €1 |6L° |21 |vve [21 [BL |1V |€EY |SB° |BT |S3° |B1 (16° 11 lose (11 ]e%
96° 11 (08° [11]09° |11 00" |11 |Iv [66° |OF |S6° |O1 |06° 0t |sL° jO1 |O%
56°s3 [C6°nd 106°nd [Si°=d [T [66°=d [S6°=d [06°=d GlL*nd |1

(ponut3uo)) £V I8Vl

Ol s4 ¥ =X




.

102

R N VR N

- Tm. O 1€S* (LB |6L° |S2 |BO" €2 (001
SS°* 10€ |128° 12 s mwﬁom. ce 1566 huo\on 06 (9% |€3* (53 [L5° |az 826
€8¢ 162 |29+ o2 v6* v [2€ |2 |16 Ve 162 |1€° |98 B9* |13 |LO* (23 |96
5C* 168 |16 ST |Ive [v2 |vge 1z 56 (LLe |9z OL® |S2 |01 (v2 (19 1c |v6
er* 122 (0ve [c3 [cpe teiLe. |13 [c6 10° |83 |90° |g2 LG jeB [21° {12 |26
ILe 12 (8L° |p2 ga¢ (€2 o9 |02 16 |see (23 oo Ve [L6° |22 |99 |G 08
§6° (98 [51° [y cL* |32 |eve (o2 68 (79¢ |0z [gge €2 ISy |58 |L1e |0z 68
Le* 98 Lce g S1* 122 (26 (81 L8 (68° |52 lbge €2 ILB* (12 (0L° |61 98
LG 163 (36 |22 19* 118 |1y |ay S8 181 (52 [pge 3% |8C* 13 |sa- (61 ve
€8* %2 (ece |2z 00°* 102 [96¢ [n7 €8 (eve [v2 (gee 12 (9L |02 |4 1 icg
LO* wB(1Le |12 |gpe 02 |1S* |81 |19 SL* (E3 [tve (12 81108 [9ge 81 log
I¥* (€2 |s0e (12 58° (6100 YL1 6L [L6° |32 [pye 02 [€9s |61 |22¢ |11 8L
89+ T8 [eve {0z SE€* |61 |55 |¢1 LL 10E* (3B |g]e 08 |80° 61 |0E~ (21 9L
06°* 112 [v3° |61 LL* BT [v0e° |21 €L (6S* |12 |cge 61 10S°* BT |19+ |91 ve
Ble 112112 |61 61° 187 |85 |91 €L |28 [0z [gg. 81 168 |L1 [ves (91 oL
6V* 02 [19¢° |g1 79° (L1 |LOe ST 1L [20° [0z |gge Bl ISE* |11 |yge ST (oL
€L* 163 |26 |17 00* L1 (23 |51 ]69 SE* 61199+ (11 9L |91 [Les |51 |gs
€6 13T /€€ (11 |6tre ST |0T* [ST j29 89° 181 |6« |91 21* 191 |59« |o1 (o9
LI* BT 0L* |91 [1g¢ ST (%9 v1 |59 [2ge LT [LE* 19T (29. g7 6y |71 v
L% 1LY (L6° ST[1€° |S1 (210 Y1 €9 [L69 |91 mha_mn S6° %1 (L8 [¢1 |20
69° 191 |6g+ |g1 SLe W1 (59 |o1 I9 (€3¢ |91 16¢ PUIEYs 1 l1we (g1 09
78° ST (2L |vy [goe PUICIe ey los [gpe SILIBE* bt 6L jo1 L9° 181 [8s
T6° W1 w6 €1 |age €1 /89° 3T |ts |gge Y165 g1 (31 [p1 O%e* (31 |95
68° 121 |63 |£T €8 21 [BO° |21 |g¢ SL* |€T1 |68° |21 9S° 18T [¥8e {171 Jvg
00 21 (09 |27 Ole 131 (29° |11 -l¢¢ LL* (BT |26 |11 G8° 111 (vee (11 |3g
S6° [Trlsee 11 0Se (11 v6° |01 (15 €6 101 /56° |01 06° [0T |SL* |01 |os
66°sd [Géemg C6°agd Sil°=d 1 66°=d [S6°ud 06°sd [GLead i<

Ol =4 ¢ ay

(Ponut3uo)) ¢v g1gvy

PIFE M i

-




103

. : : w9+ |22 |81° 103 |96° |81 |60°* L1 10ST
Cye |32 166° |61 [E8° BT |96° (91 [6¥1 |€8° |33 |98° |61 |OL® g1 |s2° |91 BV
66° 112 1BL |61 |96 18T [vL* 9T |LV T (¥8° |12 LG |61 [S¥” g1{€9° (91 |9¥1
g9+ |12 [ow* |61 |93 BT {15 |91 ISV T 6% |12 [32° |61 20° {81 |6€° |91 |7¥1
L2 |12 |co° |6t w6 |LT [98° {91 |E¥ T [BO: |12 |28° |81 18° (L1 |81 |91 |V
Lse oz laLe |1 (A% (LY |36° |ST |3v1 1L |02 |09 |81 yGe |L1|28° |81 {0%1
2Ge |cz ey |BY [6E* [T |LL* |ST |58 |1€° |GT |58° 81 (€3 |LY [E9* (51 [BET
cos loz [voe |8t [vor LT {Ecs |ST [LeT1 |68 {61 |06° (LT |16° 91 |ire (ST {9E1
gLe (67 {LLe|LY (6L ST 15T |ST IGET GGo |61 |29 |21 |59° |91 (w1s |G |VET
€Ce (8T (SP*|LT |15 |91 oowm¢— ey |90° |61 |52 (LT (G |91 |58° |V |BET
cp* |81 (c0e|Ltlgte |91 (2L (YT |1ET |UL® |81 |06° {9 [66° ST |L9° [¥7 |OET
cse |gt{eLe |51 {28° [s1 56 [v1|631 [c€° |81 |89 |01 |SL° St |E¥e VT [BST
gor (81 ]sve Q1 |19° |GT |68° [¥1 |L31 |68" |L1 |9C° |91 |9V° gl St vl (581
eLe L1lcoc|et |62 |ST GO HET [52T |USe (L1 |G6° |ST |OT° s1(68° [ET (¥TT
1€ |21 loLelct [vee [WT (6L €T |€BT |00° [LT |19= (ST |€3° V1 LO” £1 |eat
Le* |91 |vyelct |69 w1 |SG® ST {181 [1Le |91 [€83" ST [5S° (¥ gve (€1 |0ET
0g* |91 |c6° vl |9ce [v1 63 [e1 {611 98° (91 (LB (VT 61 ¥T IWI® €1 (81t
ose |stleLe VT {662 (€1 |85 BT [LVL [S88° |ST |LS* |V L3*|E1[3B° (3T |911
c9s |gr|see vt lsLe |ET (Ll |21 ST |Ive IST (€T |¥T [19°I€T 59 el |vit
LOs[stlvee et |oye [€1 (vSe |31 €11 |06° (¥1 (1B° [E] [¥C” A BN BIAR
vie |v1l992 €1 |00 121 {92 [3T [T 25° |¥T |L¥* |€1 [68° |31 80|21 |01}
Lie|lvtlzasict|oLe |21 [v6° |11 [607 [E6° (ST [S6° |ST [S9* |31 VB 11 {801
Lielgt|vgelat [ywe |31 |cLe |TT |LOT (€S [EV |65 |21 |61° 131 39" 11 (901
coe [e1leve |zt |ses {11 |ove |11 |sOT |68 |21 |11 |31 wB* (11 (BE° |11 v01
oLelet|e6 |11 (TL |11 (80 (1T (€01 B80® |ST |BL® 11 lose {11 |26 |01 jSOT
06° |11]/0G° |11 ]00° 01 (€8~ |OF |1OT |66° |OF |S6° 0t |06 |01 |SL° |01 (00T
66°nsd |G6°=d 06°sd ISi°»d I 66°=ad |G6°=sd [C6°=d [Sli°=d |1

Ol =4 Ol =X

(ponuyauo)) ¢V FT9VL




104

SUOTINQIIISTI] dTwyiraedo] s,a9YsTy 103 1s pue Lo -pv F18VL

22% 16 |9L° 191 €2 |12 1G5 |GE {801 |68* |6 |v6° {91 |1G° |12 |16 ¥E |901
loge |6 121*lc1l6Le |12 |20° |€E [vO1 €V |6 |OE° |S1|LO° |02 |C9* (EC (301
'1g° |6 |awe [sTloce |02 |0ge |22 [001 |96° |6 |99° |ST1|S9° |02 |9L° 2€ 186
o le lyger|s1lve- |Gz lee~ |12 |96 |2t~ |6 |30° |¥1|€3°|61]68° |1E ¥6
6L° |6 |tee|vilase |6t love|oc 36 (99° |6 |[O¥= (Y1 |IB* |61 €0° 62|06
£ 6 1sS* |vtltrie|at 1o |sa |88 |10°|8 |[BL® |¥1 |1V 181 (81|83 98
60 |3 leec|vritee (BT |5L B8 (re [81°|8 |L1°|€1100°|L1 EE" |LC|CB
L3 !9 [Leelet|ree|Lv|i6e (£33 {08 [9€° |8 |95° |E1 89° L1 }5¥° 193 8L
vve |2 |gLelcticee et (L0 |52 (9L (€S |8 |96° (€T (€8° |91 ]GT9° 14T ¥L
1os lg lotvelai|sse |9t [vee |va [8L [OL°|8 [LE® |21 [98°|91]23° Ve |0OL
gL+ la lgseigilese st |1ve (€2 |89 [99°|8 [6L° |21 |6¥°|ST|CQ° BT |99
vee lg lese |21 {18 lst1 |09°|2e |v9 |€O°|L |13° |11 |vi*|v1i61° |12 B9
vi= (L |vwelty{svelvtloLe|12/09 |s3°|L [S9° |Vl }6L" |V1}|6E° 03 (BS
ceelr (rg* |11 l2te|c1 (66° |02 (96 |9¥*|L [60° |01 (9% |ET(09° |61 VS
g6+ it lecejot]ose|c1|oce |81 |25 [99° (L [9S°|OT |wi°|2F|18°|B1 [0S
9L° (L |6L° 0T [6%° |21 |ave|LY 8% |SB°|L |C0° |6 |v3° |81 v0e |91 9%
c6* [¢ Is2s|e |61 |11 09|91 v (909 |€G° |6 (96|11 |8BcC°|Sl[SW
oz*lo lerels |1 l11lose|st oy (vEe|9 |10+ |8 |82° |01 |€S° (V] 8E
Lty 19 leze |8 |99 {01 |91 |c1|9c |09°]|9 |95 |8 [80° |6 [0B° €1 |VE
aL* |9 lzgela |ave |6 |rve|21|cE (€8°¢|9 [BO*|L {08° |6 |8O° |11 {0C
€6°19 leceiL |oz*|9 |cLe |11 (82 [90°|S [89°¢|L [19*18 |&E°|0T|9C
L2* ls lveelL leselg |voele [ve |sve|S (L2e |9 |(wwe |l (SL°|6 [T
19+ |s o9+ {9 lsge|L lece |8 |08 |vi°|S [LB* |9 |0E* |9 [90°|L |81
vBe S |82°|s |vLe|9 |[Sie|L [91 [86°|S 6S°|S |LI°|S |9V 9 vl
96 |l l2g*ls |s9* s |gc1els |21 |66°]S |S6°|S [06°|S |SL°|S |O1
§6°=d |G6°=d |06°=d I[Sl°uwd |1 66°sd |G6°=d |06°=d [Sil°=d |1
S =N ¢ =3

4

Natse]

A



105

61° |T1]S6°|ST (18221111

LO® {11 (8L (ST (88B° {€2 |ET1 [L0° |L .
1€ N1 IET* %1 7S |22 {601 [61° (L [ave |11 1€ |¥1 LB |B2|L0T
PSe (11 18% (W1 [12* (12 |SOT |0E* |2 [59° |17 |99 LARLA MR EARA )
LLe [TT w8 w1 [88° {12 101 [1ve |2 |g8Be |11 10° €1 13° (02|66
00°Wt1 j0c |€T1 [SS* |c2 L6 |16+ |1 |(21° |01 BE* €1 |68°|02|S6
Se* |01 |95+ |ET (€2* |61 |[€6 [289° (L {Le° |oT1|wLe E1|LS* (6116
0S* [0 [26° |ET [26° |61 (68 |2L* L |29 otjtre-jer(92*|81(L8
vL® |01 10€° |21 [19° 81|58 |28° L (L8° |01 6%° el |S6°|81]¢8
66° |01 189 [B1 [GE* (LT {18 |26° |L |21° |6 L8 (el [s9°[LT]|6L
9C° 16 [90° |11 ]00*8LY (LL [cO* |9.. lov- |6 9G° |11 |SE*|971{SL
J€S® |6 9% 1T (1L (91 |eL |BT* (9 [99. 6 |99° |11 |%0°|S1 L.
5L° 16 1SB° |11 [S¥* [ST |69 lec* (9 [26° |6 [coe OT [LL*|ST|L9 &
90° 18 198+ |01 [CT1° |[¥T {59 [1be |9 [13e B [Lye OV |CS*|¥TI{E9 -
9€° 18 1L9° |01 (98 [vT |19 [09° |9 [1ge 8 |L8° |01 |28°|ET1|6S
S9° 18 |80°[6 |[65S* |E1 LS et |9 leLe 8 |0E°[6 [96°(€1|sS
€6° 18 JeG° |6 ([€E* (31 |€S |sB° (9 8O L |EL*|6-|OL*|B1]|T1S
S&° L |v6°16 (80° |11 |6 |96° (9 [epe L [L1*|8 (9W-|1T LY
LS L {1y* |8 [v8° |1V St [|vre|g ey L [E9°i8 [22*|01|Ew
LB8° |L 1S8° (8 [19° [0T |1y |sce |5 |zoe ]9 BO* L |66°]01]|6E
cc* |9 |[vE* L |6E° |6 LE wSe (5 11y |9 [ggse|s |gL°|6 Ige
6Se (9 {I18*|L (BI° |3 |e€ |69° |5 gL 9 |€0° |9 [8S°|8 |1
C6° 19 |2€° |9 |L6° (8 |62 (18 |5 [Lo* S |8S° |9 |6E€*|L |LZ
€ IS |18° /9 |sLe L |s2 |06 |s 8S*1S |v0*|S |38°|9 |c&
89° 1S [9€*|S €919 [12 [96°|s |oge S [19°]S j20°|S |61
68° |S |6L°|S 9w+ IS L1 l66° |s Igee S |06°]S |SL*|Ss |s1
S6°=d |06°ad |Si°=d |1 66°=2d [S6°wd [06°=d |Si°=d |1

S =N € =y

(penutauo)) v 31gvy




~yT

TABLE A4 (Continued)

K= § N= §

T| Pwe75] P=e90| P=e95] P=.99 T| P=.7S5| P2e90| P».95]| P=.99
25| 5] «75] 5| «90] S| +95] S| «99| 30] S|[.3a4] 5].73] S| .87[ 5 97
35| 6] «TA| 5] 45| 5[ «73] S| «95| 40| 6|17 5|.04] 5] .52] 5| .90
45 T| «60f 6]73| S| «25| 5| «85] 50| 7|.03] 6|.20] 6| «95] s «78
SS| Bf «48| 6| +02] 6| «75| 5] «70| 60| 9|+92| 7|.72] 6| «53] 5 «60
65{ 9! «38] 7| «40| 6] «29] 5| «42| 70|10} .85 7|.06| 6| .03| 5 » 37
75{ 10| «32] B} «76] 7| +83| 5| «24] 80| 11]|.80| 8|«46] 7| «63[ 5 «09
85{11] «28| 8|15 7| «43] 6] «97] 90} 12| 77| 9]|+86| 7] e21| 6 «$0
9S| 12| «26| 9| «57| 8| «99] 6] «83] 100{ 13| 76| 9] .29 8] «B1 | 6f{ «75

105 13 «26] 10} «99 8] «62 6] «671110|14|77/10]+73 8| «R3] 6] ¢59
115| 14| «28| 10| «46{ 8] «24] 6| «50| 120| 15| .80/ 10]|«19]| 8] «.04] 8] 4t
125/ 15| «32| 11} «92| 9 «87| 6] +32|130|16|.8a|11].66] 9| «70!| 8! .23
135/ 16| «36[ 11| «&0] 9] «53| 6| 13|/ 120|{17|89[11]<14]| 9| «35] 6| .04
145{ 17| «42] 12[ «89] 9] «18] 7| «96|150]|18|+98]|12]| «e64]102.00] 7| .90
V155] 18] «50| 12| «20| 10| «B4]| 7| «82| 160| 18| +04|12]«15]|10] e69]| 7] e 77
165/ 19| 58| 13] «90| 10] «53] 7| «71|170[ 19| 12| 13| +67!{10| «37 7| «64
175[ 20{ «67| 13| «43| 10| «21} 7] «57| 180|20| 22! 13| 19]|10] «04]| 7] «51
185| 21( «77] 14| 96| 11| «89 7| ¢44[190|21{33{14|73|11] «74! 7] 37
195| 22} «89| 14 «50| 11| «¢60] 7| «30] 200{ 22| e45(1&] ¢27|11]| e85| 7| .23
205 22| «01| 14]| «043) 11| «30] 7} «16[/210{23|57{15]|+82[11]| 15| 7| <09
215/ 23| «13| 15] «60| 12100 7| «02{ 220| 24} +70|15{ «+38|12] «86| 8| «96
225) 24] «27] 15] 16| 12| «T2] B8} «91]| 230| 25| «84]| 16| «54 12| +59| 8| «85
235| 5] ¢4 16| «72| 12| «45| 8| «80| 240| 26| «58| 16| ¢S1{12]| «31| 8| «75
245) 25| «S56] 16| «30] 12| «17] 8| «6% 250/ 26| 13| 16| «08|12| «03| 8| «64
Q55| 27| «T1| 17| «87| 13| «90] B| «56]| 260| 27| «25| 17} «67|13| «76| 8 .53
265 28! «871 17! 461 13} «63] 8! 47 270) 281 «06] 171 25113 «50! 8! 442
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TABLE A4 (Continued)
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K= {0 N=

ol]l P=e75} P®=e90| P=.9S5! P=.99 T| Pue?5! P2e90]| P=e95| P=e99

SO| S5}|«7S| 5190 S| «95| S| «99| SS| S| .59] S| .84 S].92 S| «98

60| S5|«38] S|«75| S| «88] 5| 98| 65| 5| 10| S| .64 S| .82 s 96

701 6|«B8| S|e51] S| «75| 5[ +95] 75| 6| «55] 5| «3a2] S| .67 5| «93

BO| 6[+28| 5{«15 S| 58] s5|.92| 85 QW.oo "6| «96]| 5| «47| 5| 89

90f 71+73] 6|82 5| .34 S| <87 95| 7l .a7] 6| .67| s «20| S| .84
100| 71+20) 6|«52[ S| .05| S|«81|105| 8 93] 6| .38 s 94| S| .78
110] 8]+67] 6]+19| 6| «85| 5| «74{115| 8| .a1| 6| .01] 6|75 5| «70
120| B) 15| 7|87 6| +66| S| .66|125] 9| .89 7| .72 6] «55| 5| «61
1301 9)+64] 7]+58] 6] «a5| S| «57/135| 9| «38] 7| .43] 6| .33 S| «52
1401 9|«13| 7|.28| 6] .22| 5| .as3|145|10] .88] 7 o12] 6] 10| S| .41
150/ 10{.53] 8197 7| .98] 5| «35/155/10| +38| 8| .8a] 7] .50 5] .29
160) 10| +14]| 8|+70| 7| «81| 5| .23|165|11] «89| 8 56| T| 72| 5|17
170{ 111 65! 8|«42] 7| +62] 5| +10|175|11] «41} 8| 28] 7/ .53 s «03
1801 11{ 17| 8|14 7| «a3| 6[.98|185(12 .93 9{.99| 7!.33 6| «95
390|121 69| 9|«87| 7| 23] 6] «92(195[/12] «as| 9| 74| 7] 13| & «E8
‘200]12| .22 9[.61] 7| .03] 6| -85 205 13| «29| 9| «48] 8| «94]| 6] «32
210{13[+7S| 9]+34| 8] +86| 6| «78[215|13| 52| 9| .21| 8| .78 6| .75
2201131 «29| 9(¢08| 8| +69| 6] «71/225| 13| «06[ 10| +95] B[ 61| 6] «67
230]14[+83{10|«83| 8| 52| 6| «64|235| 14| «61} 10| .70 8| «44 6] «60
240(141+38)10[+58| 8| «35| 6| 56| 245 14| «15| 10| +46] 8| 26| ‘6] o852
2501 15{ 9311033 8| «17| 6| «48{255| 15| «70]| 10| 21| 8| .08] 6| .2z
260(15] «43[/10]+08] 9| +99| 6] «40| 265! 15| 26| 11] «96| 9| +92| 6| o35
' 270[ 15} +04111}.84] 9} 84| 6/ +32/275| 16| +82{ 11} «72{ 9| «76| 6] 23
280|161 «601 11|61 9| «69| 6] +24/285|16] +38! 11| 49| 9] +61] 6| <19
290! 16 181371 91531 6! «151295!1 171 «94l 11l o25! 9l .45 6] .11
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