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1. Introduction. Several years ago, some excellent work was done by Tukey
[1956b, 1957] and Hooke [1956b] in obtaining the variance of estimates of vari-
ance components when the standard underlying assumption of normality is omitted.
The method both authors employed was essentially the device of polykays (Tukey
[19562], and Hooke [1956a]. Tukey obtained results for one-way classification
models, both of a balanced and unbalanced nature. Hooke was more interested in
the balanced two-way classification. Unfortunately, the present author must
agree with Scheffé [1959, p. 346] that the latter results "..look discouragingly
complicated." It is hoped that the ﬁechnique used in this paper, that of
U-statistics (Hoeffding [1948]), is more illuminating.

Finally, it is hoped that the pPresent technique may be profitably used in
more complicated higher-way layouts, especially with unbalanced data. To this end,
the technique is applied to the unbalanced two-way layout. The results are essen-
tially in the same spirit as recent results of Harville [1969], however the weighting
scheme in the present paper is different from those investigated by Harville., Also,
the assumption of normality is dropped in the present paper.

Section 2 deals with the unbalanced one-way classification, section 3 treats
the balanced two-way classification, and section 4 handles an unbalanced two-way

classification. Some summary comments are made in section 5.

¥ This research was supported in pait by the NIH Grant 5T01-GM-00024 at the
Purdue University.



2. One-way classifications.

Consider the following model:

Yi,j =y + a; + eij’ i=1,..., I, J=1,..., Ji where § is some

overall constant, and the following are the assumptions on the main random effects

{a.}, and the error random effects {e, _}
i ij

Means Variances Kurtoses
Main random effects 0 02
. by m e A Ya
Error random effects 0 ci Ye

All terms in the table are finite.

I

In addition, the I + }Z Ji random variables are mutually independent. This is
i=1

essentially the model considered in Tukey [1957].

be I independent (not necessarily indentically distributed) bivariate random vectors.

In what follows, U-statistics (Hoeffding [1948]) will be constructed based on the

vectors {Xi}'
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£ (Xoel) = Yy 2 (Yczi. N Yal.) g
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I (2.1)
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yl¥) - }Z (1) (X, %) MCZ Y ey )
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ai<u2 i=1 j=1

where W = 2 LA

I 1 9

y(8) - z £*(2) (X"’l) = z Yo (Y5°Y, 2 -

i
czl=l i=1 j=1

Note that U(l) and U(z) are essentially U-statistics based on non-identically dis-
tributed random variables as outlined in Hoeffding [1948]. The only slight differ-

ence is that Hoeffding prefers to normalize each U-statistic differently.

2 -1, -1
o2 @+ 3,
1¢ 1 2

Since E £ *(1) (x l,XQ )] = W, W (20

*(2) _ -1) o2 .
and E [f (Xa/ = u, (Jo: )Ge , one obtains

1 1 1
I I
E (U(l)) = (W2 - 2 wi) o‘i + (zwi(w-wi)J;l)Gz >
i=1 i=1
(2.2)
I .
E (U(2)) = Z ui(Ji-l) 0’2 .
i=1

Hence an unbiased estimate of 0}2\ can be obtained from
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A=W - }: W,
1
el (2.3)
I
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B = Z vy (W-wi) I,
4=
I
C = Z u, (Ji-l) .
i=1

Thus to obtain var (82), one only needs var (U(l)), var (U(E)), and cov (U(l),U(g)) .

Using Hoeffding's notation,

2
S OL00 L
2 omy \e/ \2-c (2=c) (2-c) (2.4)

zg(l,l)
c(al,---;dc)ﬁla---a2'c57§1 .. Y2-c7\

where Z is over all disjoint sets of integers {al arc}, {Bl BQ—C}
, LI 3 , , a e 0 ’ 3

{Yl,...,ya-c} chosen from (1,...,I), and where
(1,1)
Qc(dl’”.’ C.’c) Bl,..., BZ-c; Yl,.,_’ Yoo =
. *(1)
wov (% B, 52-c(x°‘1,...,xac) e “1,..., C’e-c(xc‘l,...,xc’c))
*(1)
e ®1,e.e, aif-c(x“’l,...,x"“c) i
+(1)
Ef{rf (XC“'l’ Upsever @, Xpl,. .,xg::c | X . = X&l’.”,xac = xac) }



. e w e )
Thus . = cov (f, . X ), T X
1 {ay) B3y, 1By Ty lyy Ty
2 2
=w_ w, w_var (Y )
@ By vy “1.
2 2 -1,2
=V, W W (2 (cA +o, J, )+ Va0
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and C(l,l) (1) (1)
2 (al,a2) = cov (f2 (x& ’x&z) s £, (x& X, ))
1’ %
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Next, one obtains,

var = >
czl=l 1(0!1)
(2,2) *(2)
vwhere ([, (C"l) =var ( f (XG"ZL))
e 1 2 i
= udl le (Jdl-l) (v, +3 - (Jal- 3) (9, -1)
Finally,
(1,2)

cov (U(l), U(2)) = Z

“1 (o)) By s

‘wherez is over all disjoint sets of integers {czl}, {ﬂl} from (1,..., I) ,

2 -1 1,2 L -3 -
w, W, (2(2aA + (JCY +J 2)ce)+ 2v,0, + (Jal +J,

(2.5)

(2.6)

L

e

) .

(2.7)

(2.8)

(2.9)



(1,2) #(1) *(2)
and where (;l(cvl){il = cov (f . (X ), £, (X ))
2
= wdlelu cov (Y Z (Y - Y ) ) | (2.10)
-2 Y
=w w,u (J -1)J vy o
ozl Bl oy ey @y ‘e e
Next, one may readily verify that,
2 ! 2 2
P T h(Jal)lewBlel - z B(J, v, (W )
(o7 3N R i=1
19 otPydstyy (2.11)
I I I
i 2 2
+ ), 0wy - (V) () a@pw)
i=1 i=1 j=1
where h(Ji), g(Ji) are any functions in Js
2 I
(3 o, W v, =W (2 h(a v,) () we)
Hy,d i=1 i=1
(Zorsl
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and Z WC"l WO!2 h (Jal) g (JC"Q)
o

I I I
[():l vy B (3,)) (jzl g (3 - » n s ] e @
1= = 1=

In each of the above summations on the left hand side, the sum is overall dise
joint sets in the subscripts.

Recall that

I
W= Z wi s
i=1
2 I 5
A=W - EL wi) ,
i=
1 -1
B = Zi v (Wer ) 3.,
i=
I
C = Z uy (Ji-l) from (2.3).
i=
I 2 2
Let D = Z w, (W-w,)
1 1
i=

I 2 2 I o I 2 4 Iy o
F=Z,W1J.i (W-—Wi) +(}:wi)(zijj)-ZwiJi ,

i=1 i=1 j=1 i=1



2 -3 2
G = z LA (W'Wi)
i=1l 29/-7
I o o e XL ow 2 I 2 a0 &
H=2‘wiJ (W-Wi)-ZwJ +(ZwiJ),
i=1 i= i=
I 5 2 -1
L= 2‘ w (311) 3,
i=
I
2
M = E: u, (J.-1) ,
i=
v £ 2
and N = }J (W-w, o, (3,-1) 3,
i=1
Thus, using (2.11)-(2.14) in (2.4), (2.7) and (2.9), one obtains ,
(1) L 2 2
var (UV7) = (D(yA +2) +2 . E) o, * Ly S 2,16
. (2716)
-t Gy, t2H) o, ,
var (U*77) = (L Y, * 2M) oy A
and
b =,/
(1) (2)y _ ’
cov (U7, UM/) = N Yo Oy - (ﬂrig;
2. /Y 2,/7
Then, from (2.3), (&35) - (2738}, one obtains
2 -2 L 2 2
var (GA) =4 { (D (YA +2) + 2E) Gp ¥ L r Oy O (2,/
-1 2 2 2 -2

+((G-2BC N+B ¢ L) Yo 2 +2B C M)ce

If the data are normal, Yo T Ve T o .



1./§
Note that (2v%9) agrees with Tukey [1957], even though the present approach

and notation is substantially different (note that a factor of 2 was omitted from

the coefficient of k,, in var {vetween} on page 52). The question of the selection
AT 7
of the weights {wi}, {ui} remains a difficult one althoughjfdiscussed by Tukey.

. . . . . . . 2
However, if one is also interested in making a test or confidence interval for GA’

a choice has been suggested in Arvesen [1969]. That is, the jackknife technique

can be profitably employed to obtain (asymptotically) a test or confidence interval
-1

for Gi if one chooses the weights w, = 1, u, = (Ji-l) . This unconvential choice

of weights is discussed in Tukey [19577, and they seem to perform well in the esti-

mation problem, especially if Yo Y 2re positive.
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3. Balanced two-way classifications.
Consider the model
Yijk =p o+ a(ui) + b(vj) + c(ui, vj) + e(uié vj)k R
i=1,.00,I, j=21,...,d, k=1,...,k ,

vhere the a{-), b(*), ¢(-,") represent the two main and interaction random effects,
and the {e(ui,vj)}k form the error variance, vhile y is the overall mean. In addi-
tion, the {a(ui)}, {b(vj)}, and {e(ui,vj}k are independent random variables. The
{c(ui, Vj)] are uncorrelated random variables, are also uncorrelated with the other

random variables, and are independent of the {e(ui, vj)}k' The following are

assumptions on the moments of these random variables

Means Variances Kurtoses
R 2
[a(ui)} main random effects 0 Sy Yp
{b(Vs)} main random effects 0 cg g
. . 2
{c(ui,vj)} interaction random effects ¢} GAB YAB
v 2
-I-
{e(ui,vj)}k error random effects 0 o Yo

All terms above are finite. This model is described in more detail in Cornfield and

Tukey [1956], and Scheffé [1959].
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As in section 2, let us now form the relevant U-statistics involved in estima~

\

tion of cg. Define

*(1) 2
f (ul,_...,uI 3 vBl, vaz) = (Y’Bl'— Y-ﬂe-) /2,
e ) y
f uou. v, V = (Y Y - Y +Y /&,

¢, %’ By By 2 Bye = Tagfy o TagBy . TaB.

(1) ;-1 *(1) a2 2
U= () j& £o(wy  wsvg VBE) = (3-1) E: (¥, -Y ), (31
p,<p t j=
172

voo=() (@) £ (u, ou, v, V) =

2 2 Z; al’ A Bl, B2

O!l C(2
1 J
-1 2
((1-1)(3-1)) z Z (Yia.? =Y - Y, +Ym) .
i=1 j=1
An unbiased estimate of cg is readily seen to be
2 (1) (2)
6y = U -0 /1. (3.2)
(1) (2) (1) (2)

To obtain var (G g), one only needs var (U ), var (U ), cov (U , U ). One

can also see that

(1) a1 & (1,1)
ver W ) =) ) & GB e, (3.3)
c=0 ’
(1,1) *(1) .
where QI = var fI;c (ul,”.’uI 5 vBl, % )), and
(o]
*(1)

T u u._ 3
Isc ( lye0ay, I°? vBl,...,vBc

*(1)
E[f ( 3 Va vy ) | u u. ;v v, ], ¢ =0,1,2 .
Y, B,'8, Lo T3 Brsenn, B



var (E [ca(ul,vl)'ul]) P

q
i

a
i

var (E [ce(ul,vl)!vl]) s

Q
1l

var (E [c(ul,vl) . C(ug’vl)lul’uzJ)
(3.4)

var (£ [e(uy,v;) . elup,vy)lvy,v,1)

var (E [b(v;) . e(uy,v)|w 1),

2, . 2 -
cov (b (vl), c (ul,vl)). .
Then one can obtain,

i

(1,1) o
CI;O c

-3 ,2 2 -1
=177 (@) +2(1-1) o)) + b I 3

(1,1)

Cryp = (/%) (v +2) of + 172

-1

.
Yap ¥ 2) oyp >

(T

+ @) (T y, v 2) g v url ol od (3.5)

-2 _ -1 2 2 -1 -1 2 2 -3 2
+ 4T7° K cABce+1+I K Og O + 3I o

-3 2 -3 2 412 -1 2
+ 3177 (I-1) o) + 6177 (I-1) o + 121 o * 61 cg) 5

and .

gfj;ll (1/2) ( (vg + W) og + T2 (17 vy + Wopy + (02 () y, +4) o
+ 817t og °§B #8172 g7t oiﬁ oi + 8171 g7t cg 02 + 3173 cf
+ 3173 (1-1) 03 +.6:["3 (1-1) 05 +12 171 ci + 617t cg) .



Next, note that

2
(2) . (2,2)
var (0 )= (B &) §; )y G R (2 (c <§_§2> G, (36)
c —O c —O
(2,2) *(2) \
where g 1’C2 = var (f01502 (1.1.(111’“.,\.‘1.0!c 3 g ’vBc }), and
- 1 2
#(2)
£ (u u, ;v v )
c, sC O ssaey, O B., s B
1°72 1 cl 1 5
TauN ) |
=B [f u o ,u 3 v, V u u 3 v, vy, ]
R T AR Y
One then obtains,
(2,2) 5
gl;O = (l/h) O
(2,2) >
gO;l = (l/h) Gv
(2,2)
Gy = (1/16) ((yyp#2) opy + K2y s2) of + kL o2, 0% + 307 + 302),
(2,2)
gz;o = (1/2) (0,12. + 205)) P
(2,2) 5 5
Cojo = (2/2) (o, +2 c_rw) ; (3.7)
(2,2) - -1
Cosr = (1/8) ((yug) opy + K2 (£ y sh) o + 852 02, 02 + 32 + 32 +62 )
(2,2) 2 . -
Crin = (1/8) ((vyg™) opy + K2 (K7 y sh) o4kl 02, o + 302 + 362 +60%)
(2,2)

L -
Cop = (%) ((vy) o + K2 (K7 y 48) 0! + 26K o5 0 + 37 + %2 + &

13

H

2
w) :



1k

Finally, one obtains

(1) (2 (1,2)
cov (U , U jz ( ) (2 o) Co. s > (3.8)
(1,2) *(1) | *(2)
where €‘2;c = cov (fI;c (u sl vnl’..',ygc), f2;c (udl’uag 3 vﬂl,.“,vpc)) .
From the definitions in (3.1), one obtains
g2;0 = (o - 2Gw) >
(1,2) 2 L -3 b 2 2 2 2 2
CZ;I = (l/h) I (YAﬁJAB *K Ye Ge ¥ 307 * (1-3)0v - GUw +1 cg) 4 (3.9)
(1,2) 2 Y 3 4 2 2 2 2 2, .2 2
Cojp = (W2 T (vpgoyp + K7 v 0, * 300 + (I-3)), * 2(I-3)0, + 21" o + 1% op) .

Hence, combining (3.5), (3.7), (3.9) and (3.3), (3.6), (3.8), one obtains from

(3.2) , |
a2 -1 -1y k4 -1k 2 -1 4
var (Op ) = (377yg + 2(3-1)" oy + 2(1(1-1)(3-1)) "o, + 2(KT(I-1)(3-1) T o
-1 2 .12 12 2
+ b (1(3-1))"%2 e iB + W(KT (1-1)(3-1)) "% EFQ + h(KT (3-1))7% of o
(3.10)
+2 (1(1-1)3)F of + 2(1(1-1))F (g(a-1)"t - 2 7Y o2
+ 4(z3)"r ((g-1) + (-1 oi + Wzt c: i
If the random effects are normal = 02 = cr2 = 02 = 02 = 0 This expression
' > Vg v o X £ : xp

agrees with Hooke [1956b], except for the coefficient of oi- The results were ob-
tained by very different techniques.

The most striking aspect of the above expression for var (3% ) is that unless
both I, J = «, one does not in general obtain a consistent esti;nate of 0'123. Thus

if either cz or 0)2( is non-zero, one needs both I, J - ®, Roughly speaking, 0)2( is

non-zero if interactions depend on the first main factor, and o, is non-zero if
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interactions depend on either main factor. This is in marked contrast to the situa~
tion where normality is assumed in which one needs only J = © for a consistent esti-
mate of c‘é (see Scheffe [19597).

Finally, note that in this balanced model, (3.10) does not involve the
kurtosis of the interaction or error random effects. This phenomenon was discussed

earlier in Tukey [1956b].
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4. Unbalanced two-way classifications.
Consider the model discussed in section 3, except omit the assumption of
balance. That is

Yijk = IJ" + a(ui) + b(vj) + C(ui, v,j) + e(ui’vj)k,

i=1,...,I j=1,...,dJ, k = l""’Kij

In what follows, assume Kﬁj > 1 for each pair (i,j), and that Kij > 2 for some
pair (i,3). Unfortunately, this assumption eliminates consideration of many interest-
ing designs (e.g. BIBD, cells with no entries). It would be worthwhile to investie
gate how crucial this assumption is to what follows.

Several methods of obtaining estimates of the variance components in such un-
balanced models are due to Henderson [1953] and are also discussed in Searle [1968].
Also, Harville [1969] has given expressions for the variance of estimates in a
balanced incomplete block design. In an earlier result, Arvesen [1969] suggested
an alternate method of obtaining estimates of variance components in unbalanced
models. One advantage of the latter method is that asymptotically robust (against
non-normality) tests or confidence intervals for the variance components can be made
using the jackknife technique. It is this latter method that will be discussed in
what follows. Expressions for the other weighting schemes discussed above are also

possible using the U-statistic technique, but have been omitted because of their com-

plex interpretation.
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Let {wi} be a set of arbitrary weights, W = V.,

1

[
gl

*(1) 1 £ 2
f (ul,. Sup 3 vgl,vBZ = (W Z v, (Yiﬂl. - Yiﬂa.)) /2,
i=1
%(2) 2 )
f (w, w 5 vy vy )= (Y, -Y - Y +Y o ) /k (b1
@5 % * Py By @Py. Toqfp, Topby o Taby
K
v 0
" ) il< ) /¢ )
f u HERS = Y -Y K -1
e, 201 a. Bk o, B o B ’
1 1 11 1°1. 11
where the last kernel is defined only for those cells where K, 0 > 2. Using (k.1),
171
now define,
(1 ;. o *1)
U = (g) }_ f (ul,...,uI 3 vBl,vp )
B,<P 2
172
J I J
- (1.1 -1 -1 2
(7-1)" Z W Zwi (Yij. -J Z Yij._)] ,
Jj=1 i=1 j'=1
USRI QT Ly m "%, (1.2)
o <
Bl<82
4 I g I J
_ T -1 ¢ -1
i=1 j=1 it=1 j'=1
I J
) A 2
I ) ) Y )T,
it=1l j'=1
Ka B
1
(3) ¢ *3) 1 - 2
U =c f wo3v, ) =c (K -1) (Y -Y )
Z‘ @’ 8y z By Z @bk Tyby
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where in the last expression (and in what followS),iiindicates summation over all
C

cells where K > 2, and c¢ is the total number of such cells.

(3)

Note that the practice of pooling mean squares as in U may actually be preferred

lBl

it Yo is positive.

Next, note that

I
*(1) 2 .2 T 2 2
Ef f (ul .,uI R 61’ B2) 1= o * W 24 Wi O,
i=1
I
= -1 -1
' 2 2
+) W (Kig +Typ ) 0/ (20, (4.3)
i=
%(2) o -1 -1 -1 -1 o
Eff (uc,l,u(,_2 ; vﬂl’vﬂe) 1=oup + (K, g + KCY2Bl + Ko_,zﬂz) o /b,
*(3) )
Ef £ (ua s v, ) ] = o

The leading term in each of the above three expressions has coefficient one. It can
be checked that estimates based on such kernels satisfy theorems 10, 11, 12, 13, and
16 of Arvesen [1969], and hence one can obtain an asymptotically robust test or con-
fidence interval from such‘éstimates using the jackknife technique. The estimates
obtained by Hendersom's methods do not have this property.

From (4.3) one obtains,

E(U )= c + W 24 Wy c WweJg 21 21 Wy Kij o
i=1 §=1 i=1
@) g
-1
E(U ) =oay, + (17) 24 2;
i=1 j=1
(3)
E(U )= o .
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2 .
Hence, an unbiased estimate of oy 1is

~ 2
_ -2 I )
wvhere A = W Z Wi R
i=1
-2 I J I
_ -1 2 -1 2 -1
B=W J Z Z (Wi-I Zx«ri,)x_:Lj
i=1 j=1 it=l

Note that if W, F 1, the coefficient of U(3) in (4.4) vanishes. To illustrate

the use of the U-statistic technique, the algebra becomes considerably simpler if we

assume W, = 1. Hence, the estimate to be considered is
2
5, = ul) o171 y(e) (4.5)

J I J
| 2
where (1) = (3.1)72 Z [t Z(Yij,. - gt Z AT
j=1 i=1 j'=1

and U(2) as in (4.2). Note that with this choice for {wi}, the assumption that

Kij > 2 for some (i,j) cell may be dropped.

2
To obtain var (Gﬁ), one needs to obtain var (U(l)), var (U(e)) and

(1) (@),

cov (U As in section 2, one is dealing with U-statistics based on inde-
pendent, non-identically distributed random variables. Again, var (U(l)) is as
given in (3.3), except that

(1,1)

Cie = (7 Yl (4.6)
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where E:is over all combinations (Bl ,BC) of ¢ integers chosen from (1,...,J),

g e

and
( ) ( ))
S : = var (f., u U, 3V v,
Tie(By .. B) Tie(By . Pe) " Lseees T7 Prseens By

" ( )
and f_ A u u. ;v v =

I,c(Bl,...jpc) 1yeee, I Biseees B,

*(1)
E{f (u v, }, ¢ =0,1,2 .

u_. 5 v A\ u. u. 5 v
ly.0.s I ’ ﬂl, BE) l l:-'-s I’ Bl,..., c

The computations that follow are essentially the same as in section 3, taking

account of the unbalanced design. In an attempt to simplify notation, let

1 J
_ -1 -3
¢ = (1J) Z Z Kij s
i=1 j=1
J 1
-1 -1 53 -1.2
D=J Z (1 7 Kij) >
3=1 i=1
I J
D=1 Y ) k), (4.7)
i=1 j=1
I J
-1 o7 -1
E = (1J) §: ); 1
i=1 j=1
I J

b
I
P
=
o
e

]
'__l
I~
Rt
He 1
e N



Then one obtains,

(1,1)

CI;o 3(0 + 2(1-1)c ) + yrt i s
(1,1) -3 -1 2
QI;l(ﬁl) (l/h)[(vB+2)o 1781 AB+2)0 s 17 z: Kig e +2( 24 K;g
i=1
T
-1 -3 -2 2 2
+ 41 o +1+I ZK o G+’+I ZKiB 05 I
1
i=1
-3 -3 -3 -1 -1
2 2 2 2 -2
+3I o +3I (I—l)cv + 61 (I-l)om + 12T oy + 61 cE] ,
(l,l) -2 -1 Ll- -3 )+ -1 o
G151 (l/h)[(vB+2)c I (I yypRloyy + I (Cy rID)o, + 4T ol oy
-2 -1 -3 -3
2
+4I  E ciB o+ 41 B og i + 31 of + 31  (I-1) o2
-3 -1 -1
+6I (I-1) c? #1121 o2 + 61 of] ,
w X S
(1,1) 2 -1

Crso0p, 8, (1/1) rz(yB+u)o PRI (T y,Hh) ciB

-4 ‘ﬁ -1 -1 2
N
f1o(), (K *m”*“Z(Kl*KwQ)”%
= i=1
‘ -1 o5, g -3 53 -1 -1 5
+ 161 oo, _ + 8T (K., *+K., )o .o
B AB & 1Bl 182 AB

- -1 -3 -3
2 2 2 2
Z (Kiﬁl+Ki52 og o, * 61 o  + 61 (I-1) c,

-3 2 -1 -1 5
+ 121 (I-1) o+ 2h1 o, + 121 o.],

N

(o

L

e

(4.8)

21
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(1,1) -2 -1 L
Cr,o = (1/2) Dlvg*h) oy i +1 (1 Yap™) 94
‘3 2 -1 2 Ll- -1 ) 2
+(I Cy, +2(I (3-1)) ((J-2) D+ JE »<;e + 81 Op Tap
-2 -1 -3 -3
+8I E ciB ci +8I E cg ci + 3I cf +31 (I-1)oc
-3 -1 -1

+ 61 (I-1) 0% + 12T o° + 61 o
W X

(2)
Next, note that var (U ) is as given in (3.6), except that

1.

FAL N V]

(2,2) r - - (2,2) (4.9)
¢, . ' T Y . -
Cl,c )\ ) C (O’ ,(Ycl) 5 CZ(Bl,oc-,Bc2)
-
where }ais over all combinations (ql o, ) of c, integers chosen from (1,...,I)
seves Cp ,
and (Bl B_. ) of c, integers chosen from (1,...,J), and
seces Cp 2
(2,2) ) )
o . .
gcl (al,..., ¢y ? cE(Bl,...,ﬁc2
*(2)
= var (f (u u, ))
ey (o) %) cz(ﬁl, ,ﬁcz) 12002 cl B1’ e ﬁ2
*(2)
d T
an c ("’ o )) E(ﬁ ﬁc ) (uo'ln° :u(-"’c Bls"-: B )
> T2 1 2
*(2) .
= E { f ) u, PV v, .
oy ¥ P, | Upaees @ 7 B By J
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One then obtains,

(2,2)

2
(2,2) o
Qo;l = (l/u) GV >
(2,2) I -3 -2 4 Lo o2
Cl (cvl);l (Bl) = (1/16) [(YAB+2) Oap ¥ (Kolel Ye ° EKCJlBl) Oe ¥ hKo.'lBl %a8 %e
2 27
+ 30’1’ * 30\) 1 ?
(2,2)
b0 = (1/26) ] (vyg)ogy + (€ v, + 2r)o] + U ofy of + FF 4 % | ,
(2,2)
Coso = (3/2) (o +200)
(2,2) 5 o
Cojo = (1/2) (o, + 20,) , (k.10)

(2,2) r ) -3 -3 -1 -1 2y,
QQ(dlCZg);l(ﬁl) = (1/16) |2 (Vapttloyp + ((K(Ylﬁl-’.KonBl) Y, *+ 2 (KC‘J_Q;KQ'gﬁl) )ce

-1 -1

2
8 ( a'lBl+KCJEBl) %AB

2 2 2 2 ]
o, t30,. +3 o, * 6 oy | >

(2:2) 1

Cosn = (1/8) [(ypp#ilogy + (Cy, +2(1-1) 2 o2

((1-2)F + ID))s: + 8 E oy %

2 . 2 2 ]
+30T+30v+60w ,

(2,2) -1
;0 = (1/8) [ (YAB+N)GXB + (cy, +2(3-1)  ((3-2)F + D) o: +8 E ciB ci

+ 30 +'3oi+6c§]



2l

(2,2) N ( -3 -3 -3 -3 )
= | K + K + + K
C‘E(a'l,a'z) ; 2({31,(32) (1/16) | (YAB )GAB +. ( o8y By Ted B, Ve
-1 -1 -1 -1 2
L
"e (K‘"JlﬁlJr K"’lﬁ; KC‘251+ K“zpz) ) %
-1 -1 -1 -1,
L(x K K K
" ey Py e “’2‘32)0“\3 Ce
2 2 2
+ 120 +120\)+21+cw] s
(2:2) h -1
C oo = (/M) | (rg®logy + {c v 2((-1)(3-1)  ((1-2)(7-2) F
+ J(I-2) D'+I(J-2)D + IJE2) } cleL
+16EciBoz+3o$+3oi+6ci:] .
Finally, note that cov (U(l), U(Z)) is as in (3.8), except that
(192) I -1 (152)
- JN
ge;c ~[<2)<c>l Z 6 2(0{1 o) ; c(ﬂl [‘C) (h.11)

=
where ); is over all combinations (ozl,cvz) of 2 integers chosen from (1,...,I) and

,...,ﬂc) of ¢ integers chosen from (1,...,J), and

(3,2) *(1) |
ée(al,%) 5 c(By B) T I c(pl’“‘,ﬁc)(ul,...,ul 3 Braeeest c))

*(2)
f2(@ln@2) 3 C(Pl,..,,PC)(ual’qNQ 3 vpl’.-.,vpc)‘> .



25

One then obtains,

(1,2) -2, 5
¢ 2;0 I (o - 20(1)) >
(132) -2 h ‘3 -3 -1 -1 ) u
| = 2 p) -
C‘Q(czl,czz);l(ﬁl) (1/8) 1 1: Var’as {(Kcvlﬁl * Ko.lzpl)Ye * (Kclel KaeBl) }Ge
+ 602 + 2 2 26° + 2 ¢ .2 )
. (I-3)c\) - 125, I % | >
(132) -2 h -1 h 2
C oy = /M T [y + €y, +20(T-1)  (F-D)} o + 307
+ (I-3)0° - _— 12 21 (k.12)
=39, © O i > _ :
(1,2) : 2 b -3 -3 -3 -3
¢ 2(@1’0!2)52(131,[32) = (1/8) T | Mvpyp {(Kc./lBl * Kalﬁz * KozzBl * Kazﬁz)ye
-1 -1 2
2 -
' (%ylﬁl K&Eﬁl)
Y -1 -1 -1 -1 -1 -l -1 -1
+ b(K K - K K - K K K o)
By TegBy  TogBy Teby oy By Tefy  Tegby
"'l "l 2} l{,
+ 2(K K ~)}o
Py Py
¢ 107 + U(1-3)0% + 8(1-3)0% + 8T o2 + M1 o |
b 18o, + W(I-3)0 + 8(I-3)o + 8I o, + U o |,
(152) -2 r u -1 5 h
Coyp = (1/2) 1 ' Yafag T 0 v, ¥ 2r(x-1) (3-1)) ({7-2)(F-D) + J(D'-E"))} o,

2

202+I c
X L]

1.

+ 335 + (IF3)c§ + 2(1-3)03 + 2T

FALIN\V
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2
Combining (4.8), (4.10), and (4.12) with the expression for E'B in (4.5) one
obtains,
2 -1 -1 N -1 i
var (G g) = (J vy * 2(J-1) )cB + 2(I(1-1)(3-1) Sap

+

3 -1 3 32 2 2
2(1 (J-1)2(I-1)2) 1}i (J-2)+(1-1)(1-2))D+I E -I (J-2)F-(21 -31+2)D']02

-1 -1
+ U(1(3-1)) og ciB + b(E 1(1-1)(J-1)) oiB 02 (4.13)
-1 5 5 -1, -1 -1 -1 2
+ 4(BI(J-1)) og 0, + 2(1(z-1)J) o, * 2(1(1-1)) (a(g-1) -2J )Gw

-1 -1, -1,
+ Ub(13) ((3-1) + (3-1) ) o + 4(17) e -

This expression agrees with (3.10) when Kij = K, and the only difference is found in

coefficients of terms involving the error variance.
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5. Concluding remarks.

The present author has examined variance expressions for variance components
estimates using Hoeffding's U-statistic approach. It is felt fhat the results
themselves are not of interest, but rather the method in which they were obtainedam?ﬂz
That is, one might really be interested in some "optimum" selection of weights in
either (2.3), (k.4) or some even more complicated design. Tukey [1956b] has done
a good job of answering this question for(2.3). However, in a two-way classifica-
tion, the results for arbitrary weighting schemes would be very difficult to inter-
pret in any general sense. Even the results of Harville {19697, and the above re-
sults in section 4 are difficult to interpret.

But it is for these reasons that the U-statistic approach is felt to offer
some promise. Computer calculation of terms like (4.7), (4.9), or (4.11) would be
relatively simple in any specific case, and would be much more meaningful to a
practitioner than an expression like (2.19), (L4.12) or something undoubtedly more
complicated. It is also by means of such an approach that one may possibly be able

to eliminate the requirement that Kij > 1 for each pair (i,j) as mentioned in section

L,
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