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Let £ = (£),£,,..

functions on a compact set X in Euclidean p-space. For each 'level” x

.,fk) be a vector of linearly independent continuous

in X an experiment can be performed whose outcome is a random variable Y(x)

k

with mean value ) Qifi(x) and variance 02, independent of x. The functions
i=1

f.,f,,...,f, are called the regression functions and assumed known to the ex-

1’72 k

perimenter, while the vector of parameters G=(91,Q ..,Qk) and 02 are unknown.

27

We will be concerned here with the problem of estimating the regression function
k

2 Gifi(ij, at a point X outside of X, by means of a finite number of uncor-
i=1

related observations Y(xi). The design problem is one of selecting the levels
X4 in X at which to experiment. The result here is approximate in that we

consider a design to be a arbitrary probability measure on X. For a more com-

plete discussion of the model see Kiefer (1959) or Karlin and Studden (1966).

k k .
For the case X={-1,1] and ) 0,f, (x) = Y Gixl_l, Hoel and Levine (1964)
i=1 i=

1
. k -1 _
showed that the optimum design for estimating z Qi X (for any x ¢[-1,11}
i=1

was supported on the points X, = -€0S Y v=0,1,...,k-1. Kiefer and Wolfowitz
(1965), Studden (1968) and Studden and Karlin (1966) give further results for

the case where the system {fi(x)}§ is a Tchebycheff system. Hoel (1965) gives
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a discussion of the extiapolation problem in multidimensions when the regres-
sion function is essentially of a product type.

In the present paper we consider the case where the regression function
is a polynomial in m ‘dimensions of degree less than or equal to n. The do-

main X will be a compact convex subset of the Euclidean m-space. Thus we

o o .

take our’fi to be the functions xl1 s xmm where the aj are nonnegative inte-
m

gers and Z aj < n. The number of such functions is k= (n;m)'and we assume that
j=1

they are arranged in some fixed order.

Optimal Design. The optimal extrapolating design is described as follows.

Consider a line through X which intersects the convex set X at two points, say
a and b, such that the tangent hyperplanes at a and b are parallel. (The line
in question exists but is not necessarily unique). The optimal design for ex-
trapolating to X is now obtained by using the one dimensional result for poly-
nomials of degree n on the line through a and b. Thus we consider the trans-
formation x(a)=[(l-a)a+(1+a)b]/2, such that x(-1)=a and x(+1)=b. The optimal
design concentrates on the points X, = x(av) where a = -COS %g3 v=0,1,...,n.
The optimal weights 2 v=0,1,...,n can be found as in the l-dimensional case

n
by solving the linear equations gg(a)= ) (-1)° p,g(a ) where x(e) = x and
v=0

g(u)=(1,a,...,an). The minimal variance is 02 Ti(a)/N where Tn(a) is the nth
degree Tchebycheff polynomial of the 1lst kind and N is the number of observation.
The result is approximate in the sense that the numbers va , corresponding to
the number of observations taken at x, may not be integer valued.

Examples. We shall not give any detailed numerical examples here. Instead we
consider some simple discussion involving the convex set X. The existence of
the line segment, on which the observations are taken, is shown intuitively in

2-dimensions as follows. We consider a ray emanating from x and let it sweep



through 360 degrees starting in a position not intersecting X. When the ray
just touches X the two points of intersection a and b coincide. They then
roll around the set X on opposite sides. The corresponding supporting hyper-
planes must at some point be parallel.

In cases where the set X is symmetric about the origin the line segment
in question is easily seen to go thru the origin. This is the case for example

m
with the unit ball X = {x=(x1,...,xm)|2 xi 5_1}. That the line segment and the
1

optimal design are not unique is seen from the m-cube X={x|max|x,| <1} . If
m=2 and n=2 and x = (2,0) one can use the three points (1,p) (0,2p) (-1,3p) for
any p with !p|§_1/3. It can easily be shown that any convex combination of
optimal designs (viewed as measures) is again optimal. Thus one can produce
optimal designs supported on any multiple of 3 points.
For the m-simplex, represented in m+l coordinates as
X = {x=(x0,x1,...,xm)|§ X;= 1}, the line segment goes thru the‘”opposite” vertex.
It was originally thought that when drawing the line segment thru x and
intersecting X at a and b, the required line was such that the distance from
a to b was a maximum, thus extrapolating to X with the longest one dimensional
set thru X. This is seen to be false by considering m¥2 and taking X to be an
extremely “elongated" ellipse.

Proof of optimality. The proof, as well as the result itself, was moti-

vated by a paper by Rivlin and Shapiro (1961). 'e follow closely the proof
given for the l-dimensional case in Karlin and Studden (1966).

For a given design or probability measure § on X the variance of the
k ,
best linear unbiased estimate of ) gifi(}j is proportional to
i=1



— 2
V(5 E) = sup — (LI
d [(d,£(x))° dg(x)

where f(x) = (fl(x),...,fk(x)), d is a k-vector and (d4,f) = ? difi. The de-
sign £ is said to be optimal for extrapolating to X if it m;nimizes V(§}£).

We consider the line segment thru X cutting the convex set X at two points
a and B so that the support planes are parallel. The existence of such a line
segment is given in Rivlin and Shapiro (1961) for X strictly convex. The
proof can be extended to just convexity. Now take a line segment thru x and
perpendicular fo the two parallel support planes. We consider a new orthogonal
coordinate system with this line as the first coordinate or axis. The origin
at the midpoint between the two support planes and the scale on this axis so
that the distance from the new origin to either support plane is one. This
involves a change of variable Z = A(x-c¢) where ¢ 1is the new origin and A is
a nonsingular mxm matrix. If B=A_1 then x=Bz+c and due to the polynomial na-
ture of our component functions we may write f£(Bz+c) = Af(z) where A is some

nonsingular kxk matrix. In this case we can work in the 2z coordinate system

‘with the same vector f(z) since (with the usual abuse of notation}

-2
sup —(LAE@D)

d(x,£) 3
d (d,Af(z))” dg(Bz+c)

- sup (e,ftig)z
e [(e,f(z))" dn(z)

where dn(z) = dg(Bz+c).



U

We use the geometrical result of Elfving which states that: If
R+={f(Z)|Z€X} and R_ =—R+ and R denotes the convex hull of R+U R_ then

the design n is optimal for z if there exists a function ©(z)+ 1 such that

1. rf(z) 9(z) dn(z) =8f(z) for some scalar B8 and
2. Bf(z) 1is on the boundary of R.
Moreover 8-2 = min d(z,n).
11

To apply this result we rely heavily on Hoel's one-dimensional extrapolation

result. Let zy denote the first component of z, g(zl) = (1,2 .,z?) and n

1’

the optimal one-dimensional design for extrapolating to E}. Then the one-dimen-

sional result states that
- 1 -
(1) fg(zl) qi(zl) dnl(zl) = TTET%ITT- g(Zl)

where Tn is the nth degree Tchebycheff polynomial of the 1lst kind. Moreover
the coordinates of Tn define the support plane to R (for the g system) at the
boundary point (1). (If d* denotes the vector of coordinates of Tn'then the
support plane is either (d*,y) = +1 or (d*,y) = -1).

The procedure now involves showing that the same result Holds for the sys-

tem £(z) where n, (which is presently supported on the z. axis) is replaced by
1 p PP

1
a measure ng obtained by moving the mass of ny perpendicularly off of the 24
axis to the line segment from a to b.

Let e* denote the k-vector with components corresponding to Tn whenever

z, appears and zeros elsewhere. Then e* gives the support plane to R (in the

f system) at the point f(E}/ITn(Ei)[. Thus it suffices to show that



2 J£(2) gy(2) dny(2) = —— £(2)
IT )]

where @O(z)= @1(21) and wl is given in (1). Note that componentwise equa-
tion (2) holds for any component involving only 24 while the right hand side,
for any component involving something other than zy5 is zero, since

zZ = (E&,O,...,O). It thus suffices to show that

o,
(3) fwo(z) . zil dng(2) = 0
1

L=

1

whenever ai + 0 for some 1 = 2,...,m,
Now the mass of n, was moved perpendicularly from points zl(v) on the zq
axis to the line segment from a to b so that the mass of Ny is now on points

Z + tv(b-z),v = 0,1,...,n where t, = (zl(v)-zl)/(bl— Zl)" Omitting the

m b. o,
factor I (b _i_) 1 equation (3) can then be written as
i=2 "i™"1
: 6. m a.
(4) [z} 1 (2,-7) ' @, (2) dn(2)
1 . 171 0 0
i=2
a% a‘i‘ %20 myy =8
= [ e (). (p)zd (-2) %, (z) dn,(z)
£2=0 2 %o Kz Zm 1 170 0
m
m m .
where Y=o+ g Ei and § = ; (ui—ﬂi). Now by equation (1)



Therefore, omitting the factor involving Tn’ equation (4) becomes

a o
2 ma, e § —p
Do DG (e
£2=0 £m= 2 m
m m
where p = Z a,. Since §= z (ai-ﬂi) this expression is zero by the binomial
1 2

theoremn.

Further Remarks. The optimal extrapolating design enables one to de-

termine the support of further optimal designs. We will show that one can
easily find the optimal design for estimating the coefficient of the term x?
for each 1 and also the sum of the coefficients of all of the nth degree
terms.

If c¢ denotes a k-vector, we consider estimating the linear function
{(c,0) = Eciei. Suppose that the optimal designs for estimating the séquence
of linear functions (c(r),g) have support on finite sets Br € X. The number
of points in Br can always be assumed to be at most k(k+1)/2 + 1. If c(r)
converges to ¢ and the sets Br converge to B(in the obvious‘manner) then
there is an optimal design for éstimating (c,9) that is supported on B.
This follows readily from the compactness of X, the continuity of fi and
Elfving's Theorem. This procedure was noted previously by Kiefer.

n

To obtain the optimal design for estimating X

and ¢(™ = f(?{r))/lii(r)ln. Letting Ei(r)+'w the vector c(®) converges to a

we take x(r) = (Elcr),o,...,O)

vector with a one in the appropriate coordinate and zeros elsewhere. To ob-
tain the design for estimating the sum of the coefficients of all of the nth
degree terms (including the 'cross' terms) we let Etr)=(§i(r),ii(r),...,ii(r))

and take c(r) as before. In each of the above cases the appropriate weights



As an example consider m=n=2. If X is the umit circle then the de-
sign for the coefficient of xi is on (-1,0),(0,0) and (1,0) and xg is on
(0,-1),(0,0)(0,1). The design for estimating the sum of the coefficients

2 2
of X{s X, 1%2

on the circumference. Note further that if we take X to be any circle (not

and x is on the 45 degree line at the center and the two points
necessarily centered at the origin) then the designs remain the same in the
sense that they are still on lines thru the center of the circle; the lines
being the horizontal, vertical and the 45 degree lines again.

In the multivariate case we may wish to determine whether the coeffi-
cients of the nth degree terms are all zero, in which case the regression is
of degree at most n-1. We note that the optimal design, for estimating the
sum of the coefficients of the nth degree terms, is not readily effective
for this purpose. This is due to the fact that the individual terms may be

nonzero but cancel each other out to get a sum equal to zero.
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