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CHAPTER I

INTRODUCTION

We discuss various problems related to the maxima of a
sequence of :_cfa,;z@om variables defined on a Markov chain (M.C.),
vhich .a‘.re §qﬁditio§ally independent given the chain.

Let {J, 'x,n, n > 0} be a two-dimensional stochastic

process such that

xo _Q a.s.,

_ n
Py » k= 1yeee, m; Z'Pi;=l’
k=1

P[.}_’o = k)

and

P{Jn =J, X, 5-x{Jn_l =i}

i

Py Hy(x) = Q,(x)

for 1,’_;;1, «svy M The disteibutions Hi(x),_i = 1,.00,. M
are nondegenerate and honest (H i( +o) = 1),.

Immediate consequences:

(1) The marginal sequ_enc;é [Jn, n> O] " is an
m-state M.Os with P{J, = 3,y =1t =py - The tyansition:
ma‘trix‘_ P= {?15}"vi"j=l’. ey m_"is assumed to be stoehastic, .

irreducible and aperiodic. The stationary probebilities

J‘_l=i]



. - n-.n =
associated with P are (nl,..., ﬂm), E =1l where ni,j ﬂj .

(11)  Plx <xlo ) =1} =H(x)

}

(iii) - P{Xlsxl,..., X 2x |90 Jpseee, I

n
= 0 Plx; <xlo; ).
i=1

The random variables {Xn} are conditionally independent
given the chain in precisely the sense given by (1ii).
Remax_-ks: (1) We adopt the convention X, = -» instead of
thé more usual Xo = 0 because we deal with maxima rather than
SUIB.

(2) Tnere is no loss of generality in allowing
the distribution of Xn to depend on Jn-l only, rather than
Jand J_ . - Pyke {12, p. 1751] .+ The case vhere the
distribution of X depends on the pair (Jn-l’ Jn) can be
reduced to this case.

(3) The theory of semi-Markov processes employs
the same formulation except that the random variabl?a Xn
are required to be non-negative.

let M= max{Xl,..., Xn} and gﬂx) = {pini(x)} . The

distribution of Mn is obtained from:

(1.1) Plo =3, M <x|3, =1} = ofi’j(x) ,

vhere g?(x) = {ng(x)} is the nth power of the Q-matrix.



(Here we are not concerned with matrix-convolution powers».)

To prove (1.1) we use the conditional independence of {Xn}

Plg =J, M leJo. =i} =

Z z P{Jn = j, Jl = jl,o-', Jn-l J l’ I‘I < ! J

v=1 jv=l

z z P{M_ <x|J =1, 3 = Jppeen
v=1 Jv.‘l J = j

“B{I =3, 35 = psees Jnil_ = jn_lIJo =1}

= zl z H (x H (x) ces H (x) P, 'jJ_ 33 see Py
V=, J

= Q,. (x) Q. . (x) eee Q (x
z—:l 5 gl * JlJ2 ) n—lJ )

= 7, (x) .

There are several classes of questions concerning maxima

of a sequence of random variables:

i) Limit Lsws for M .« When do normalizing constants

a, >0, bn, n > 1, exist such that:
-1 ¢
- < =
a (M bn) < x] = &(x)

as n -~ with §(x) a nondegenerate distribution? What is

the class of possible nondegenerate limit laws &(x) ? Vhat

n= 1'j



are necessary and sufficient conditions for convergence to a
perticular member of this class? What are the properties of
the normelizing constants as bn ?

For iid random variables {Xn, n2 1} y these questions
were exhaustively answered by B. V. Gnedenko [5]. The possible

1limit laws are the so-called extrenme value distributions. PreQ

cisely, if {Xi? n> 1} is a sequence of i.i.d. random vari-
ables with distribution function F(+), and there exist

normalizing constants 8, >0, bn such that
-1 n ' ¢
Pla, (M - b)<x]=F (anx + bn) - 3(x)

where &(x) is a nondegenerate distributinn, then &(x)

belongs to the type of one of the following distributions:

(1.2) Ax) = vexp{-e-x} e < x <o
(1.3) ) ={ " *=0
o Cha { exp{-x"%} x>0
(1.4) ¥ (x) = exp{-(-x)%} x<0

1 x>0

o is a positive constant. Gnedenko also gave complete domain
of atiraction criteria and a specification of the norming con-
stants.

We extend Gnedenko's results to the case thet {Xn, n> 1}

is a sequence of random variables defined on a M.C. and con-



ditionally independent given the chaine.. The possible limit

léwé are again precisely the types of the extreme value
distributions. We give criteris for convergence to each type
and a specification of the norming constants. We also concern
ourselves with the existence of normelizing constants a,, > O,

ijn

b J ® lpeeep my n > 1 such that the expressions

1gn? 2

-1 n
= - < = 9 = -+
P{Jn s aijn(Mn bijn) < leO 1} Qij(aijn x bijn)

converge to nondegenerate mass functions Uij(x)’ ‘at all con-
. n
tinuity points of the latter and such that X Uij(x)’
J=1
i =1,ees, m 1s an honest distribution function. We specify
the possible limit matrices {Uij(°)} and give basic pro-
perties of the normalizing constants aijn’ bijn .

ii)  "When" problems: X is a record value of the

sequence {Xk, k> 1} if X > max{Xl,..., Xn-l} . Asking
when the largest of the values Xl,..., Xn occurred - or when
was Mh achieved - is equivalent to asking when records
occurred. Let Vk be the index of the kth record and

Be =V = ey
case basic properties of [vk} (13] ana {p ) T16,7,11,14]

the kth inter-record time. In the ieiede

were established such as.the caiculation of distributions and

logVk
moments. Also Renyi [137] proved k - 1 a.s. ,
log V. -k t 1.2
un Pt <8] =5 [ e,



and an iterated logarithm theorem for {Vk}‘. Identical

results heve been proved for {Ak} {6,7,11]..

iii) “Where?fp;pblems. These questions do not even
make sense for i.i.d. random variables Xn" Suppose
{Xiﬁ n> l}. is a sequence of random variables defined on a
M.C., conditionally independent given the chain. We inquire
vhere the maximum Mn was achieved. In what state In was
the M.C. when Mn was realized? Then In =3 iff J -1 = j
and Xk = Mn for some k = l,¢es, N « We give necessary
and sufficient conditions for the weak limits ;32 PII = j]
to exist and to have value Lj >0 . Existencg of weak
limité is not a class property as an example shows. How
often is the maximum achieved on state j ? State J 1is
meximum-transient or maximum-recurrent according as P([In = jli.0.)
=0 or 1. It turns out that a state must be either maximum-
transient or meximum~recurrent. We givebnecessary and sufficient
conditions for a state to be one or the other.

The behavior of sums of random variables 1s often determined
by moments or truncated moments. Fof maxims, the asymptotic
behavior of Mn depends on the amount of probability con-
tained in the tails of the distributions. TFor example, if
two distribution functions F(e) and G(e) are teil equi-
valent (1 - F(x) ~1 - G(x) as x ™ o), then for &(x)
an extreme value distribution;

: Fn(an x +-bn) - &(x)

iff Gn(an x +b )= 8(x) .



The behavior of the maxima of random variables defined on
a M.C. depends also on the amounts of time the M.C. spends in
each state after reaching equilibrium as reflegted by the
stationary probabilities ﬂl""’ nm .

One expects the maxima of the Srsystem to have the same
asymptotic properties as the maxime of the é;syatenb
éﬂx) = {nj Hi(x)} « If comparison theorems asserting the
identical asymptotic behavior of the two systems can be proven,

one need only consider the Q-system - a relatively easy task

in view of the simple spectral structure of the Q-matrix.



CHAPTER II

SEMI-MARKCV MATRICES

A semi-Markov matrix (S.M.M.) Qﬂx) = {Qij(x)} - is a matrix
vhose entries Qij(x) , 1, =1,.¢., m are mass functions such
that _%11 Qij(+°°) <1. AS.MM is gg_g_l_egc_.if for all i =1,.ies, m
equalig; holds, otherwise it is dishonest. Unless otherwise
specified all distribution functions and S.M.M.{s are honest.

Let {ngﬂx)} be a sequence of S.M.M.'s. The sequence of

S.M.M.'s converges ccmpletely to a limit matrix E&xﬁ irf Q(x)

is honist and for each i, nQij(.) z Qij(-) « We write
ORLOK

A matrix analogue of the classical weak éompactness theorem
for distribution functions holds for S.M.M.s: Given a sequence

of S.M.M.'s ngﬂx) ,  there exists a subsequence n_ and a

limit S.M.M. Q(x) (not necessarily honest) such that

w
FOREWOE

Two S.M.M.'s U(x) , V(x) are of the same type if there

w
Q(+) = Q(*) ; that is, for 1i,J = 1,..., m,

e

exist constants A > 0 and B such that for each 1,
Vij(x) = Uij(A x +B) . The following lemma of Khintchin is

useful L4, p. 2467

Lemms 2.1. Let U(°) and V(+) be two non-degenerate dis-
tribution functions. If for a sequence {Fn(-)} of distribution

functions and constants a >0, bn and o >0, Rn



(2.2) B (e x+D) = Uk), Flq x+8) V() .
Then:
(2.3) ZE—»A;EO, EEE:—EE—'B
n n
and then
(2.4) V(x) = U(Ax + B) .

Conversely if (2.3) holds, then each of the two relations
(242) implies the other and (2.4) .
The set of normalizing constants & >0, bn > n=>1

is asymptotically equivalent to the set of normalizing constants

o > o—,""Bn , 0> 1 iff

Z_n_ -1, 22 p
n n
A S.M.M. g}x) is a non-negative matrix for every x ;
hence the Perron-Frobenius theory is applicable. For a matrix
A with real entries, we write A > 0(>0) if 85520
(a'ij >0) for each i,j . For a complex matrix B = {bij} s
'E| denotes the matrix {[bij‘} .
A squere matrix B = {bij} s 1,3 =1,2,000, m, is
reducible if the index set 1,2,.4., m can be split into two
disjoint complementary sets il’iz"“’ iu ; k]_’kg””’ kv

(b + v =m) such that biu'ks =0 (o= 1,2000y p3B =1,2,00e, v) &
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Otherwise B is irreducible.

We use the following theorem [15, p. 30]:

Theorem 2.5 Let A >0 be an irreducible m x m matrix.
Then:

le A has a simple positive eigenvalue equal to its

~

spectral radius PA .

2e To the eigenvalue P A corresponds a positive eigen-

vector X >0,

3. Pa increases when any entry of ﬁ increases. (If

A is reducible, then pA does not decrease when any

entry of A increases.)

If A is an mx m non-negative irreducible matrix, let

k be the number of eigenvalues of A of modulus PA . If

k =

1, then A is primitivees If k> 1, then A is

cyclic of index Xk .

A stochastic matrix is irreducible iff its associated

M.C. is irreducible. It is primitive iff the M.C. is aperiodic.
Theorem 2.6 {15, pp. 28, 47]: ILet A and B be
two

¥ A is irreducible then P, =p, implies that |B]

Theorem 2.7 {15, p. 13]:

mx m matrices with 0 < |B] <A . Then Py S Py o
=A .

o~

If A is an mxm complex

matrix, then A" = 0 entrywise iff P, < 1.

radius we denote by P(x) .

For fixed x , Q(x) 4is a positive matrix whose spectral

P(x) is a distribution function.
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Q(+=) 1is stochastic; hence P(4®) =1+ Qew) = 0 5 hence
p(-=) =0, p(x) is nondecreasing by Theorem (2.5-3).

Furthermore:
Lemms 2.8 (1) If Sﬁx) is (right, left) continuous at Xq s
then p(x) is (right, left) continuous at Xg o

(2) If P(x) is right continuous at x, and

Q(xo) is irreducible, then Q(x) is right continuous at Xy »

If P(x) is left continuous at x,. and Q(x) is irreducible

0
for x >x,- ¢ for some €>0, then Q(x) is left
continuous at xof
Proof: (1) If Q(x) is left continuous at X select

O 2

a sequence X t x Then gﬂxn) t Q(xo) and hence

O L2
p(xn) t p(x) « Hence p(x) is left continuous at Xy »
Similarly for right continuity.

(2) Suppose p(x) is left continuous at Xy -

Choose a segquence {xn} such that x, - ¢ < X, t x Then

0 o °
Q(xn) - Q(xo-) < Q(xo) . If there exists (i,Jj) such that
2) < - ‘ 5w
Qij(xo ) Qij(xo) then P(xo ) < p(xo) by Theorem (2.5-3),
contradicting the left continuity of p(x) at X, » Similarly

for right continuity.

Lemma 2.9 Let {ngﬂ-)} be a sequence of S.M.M.'s and
¢ c
ngﬂ') - 8“) . Then pn(-) -+ 0(+) where p(x) and pn(x)

are the spectral radii of Q(x) and A%(x) respectively.

Proof: Weak convergence of distribution functions is

equivalent to pointwise convergence on a set everywhere dense
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on the real line, so ngﬁ') : S&-) implies that for x ¢ D,
ng(x) ﬂ(@(x) 5 D 1is an everywhere dense subset of R .
Hence for x e D, pn(x) - p(x) and hence pn(;) Z p(+) .
But Q( ) is honest, so gﬁ+w) is stochastic. Thus p(+2) =
and p (° )-'p()

We can say more about the spectral properties of a S.M.M.
Eﬂx) . Suppose tﬁere exists x, <o such that for x > x, Eﬂx)
is irreducible. Now let r(x) = (v (x),..., r (x)) ,
o(x) (gl(x seeey B (x)) be right and left eigenvectors of
‘g(x) corresponding to p(x) . The components of zﬁx) and
&ﬂx) can be chosen to be non-negative and for x > XO all
components are then strictly positive (2.5-2) . As functions
of x, Eﬂx) and Eﬁx) are only determined up to arbitrary
factors, since for any scalar functions kl(x) and ke(x) s
kl(x) Eﬂx) and kQ(X) éﬁx) are also eigenvectors. In order
to discuss continuity properties and limiting behavior of

r(x) and s(x) we must specify a version of the eigenvectors.

Lemma 2.10 Let Q(x) , r (x), 4(x) be as above. Restrict

attention to the domain x > x,. where gﬁx) is irreducible.

(0]
n
We normalize r(x) and g(x) by: I r.(x) = Z ) (x)
~ i=1 i=1
Suppose P = Q(+®) is primitive. We have:
. -1 -1
(l) llm 'I\'J(X) = (m AR )
x-'co
lim p(x) = (M ,ee., ™ ) vhere (W ,..., W ) are
s~ 1 m 1 m

the stationary probabilities associated with P.
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(2) 1f Q(x) is (right, left) continuous at X, > %,

then r(x) and ¢(x) are (right, left) continuous at X -
Proof: (1) r(x) is in a compact set. For any sequence

X, t e, {Eﬂxn)} must have a convergent subsequence, say

fr(x )} . Suppose limx(x )=r = (r,,..., r_) . Since
S~ n ~ 1 m

m ke k

L r, =1, not all components of r can vanish. Then
i=1 ~

lim Q(x_ ) r{x_) =1limeP(x_ ) r(x_ ), so Pr=r . Since
ko ~ Pk K ke &k Y ~o

'B is stochastic and irreducible, its right eigenvector corre-

sponding to Perron-Frobeniué eigenvalue 1 is uniquely determined

up to a factor and hence r, = m - 5 i=21.ve, m. Since
i

every convergent subsequence of {r(xn)} converges to the same

limit, 1lim r(xn) = (m‘l,..., m_l) « Similarly for p{x) .
e ~

(2) Suppose Q(x) is left continuous at Xy

Pick any sequence {xn} such that x_ < xn f x . Then

0 1
Q(xn) - Q(xl) and p(xn) - O(xl) « By compactness, there

exists a subsequence n, and § = (sl,..., sm) such that

m N

L s, =1 and limr(x ) =s . Hence 1lim Q(x ) r(x )

T I P

= 1lim p(x_ ) r(xn ), i.e. Q(xl) s = p(xl) s . But since
1{_%0 ~ k ~ ~ ~

Q(xl) is irreducible s = (xl) . All convergent subsequences

have the same limit; hence lim Eﬂxn) = r(xl) . Similarly for
n. ~o
7(x) and for right continuity.

Now let Q(x) = {pij Hi(x)} i,j =1,..., m vhere P = {pij}

is an irreducible, aperiodic, stochastic matrix and P’ =

s

and Hl('),..., Hm(') are nondegenerate distribution functions.



1k

There exists a real number Xy » such that for x > X

min le(x),,,,, Hm(x)} >0 . We may limit ourselves to the

domain x > x, vhere Q(x) is irreducible.

m m
The conditions T g.(x) r.(x) =1 and T s.(x) =1"
=1 -t i=1 *

determine a version of the right and left eigenvectors pos-
sessing the continuity properties and limiting behavior dis-

cussed in Lemma 2,10. This version can be obbained from the

m m
one satisfying I ri(x) = I ai(x) = 1 through the
i=1 i=1
r, (x)
transformations ri(x)‘?* — 5 1 =1,004, ma
.Z ri(x) Ei(x)
i=1

We assume henceforth that r(x) and y(x) are so normalized.

~

Form the matrix M(x) = {ri(x) zj(x)} s 1,3 = 1500, m .

Then:
(2.11) lim M(x) =1

X—.CD
(2.12) M (x) = K(x)
(2.13) For any vector V = (Vl,..., Vm) we have:

M(x) ¥ = (¥, 4{x)) r(x) and WM(x) = (V, r(x)) g(x} .
(2.14) Qx) M(x) = M(x) Q(x) = p(x) M(x)
Q%(x)

(2.15) lim S = H(x)

e P(x)

The proof of (2.11) follows from Mij(x) = ri(x) Ej(x) and

ﬁi(x) -, ri(x) =1l as X - o . The proof of (2.12) - {2.15)
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is given in [9, p. 248)
We examine (2.15) in detail. Set E(x) = %(x) - p(x) M(x) .

Then by (2.12) and (2.1%) , we have En(x) = %n(x) - p%(x) ’I\E(x) .

Theorem 2.153 Let %(x) = {pij Hi(x)} s M(x), B(x) bve

as above. There exists a real numker M such that

1im gn(x) = lim [gn(x) - p(x) M(x)] = 0 uniformly in x >M .
nw [ e

Equivalently:
(2.17) Q%x) = p™(x) M(x) + o(1) where 1im o(1) =0 uniformly
~ ~ ~ n__,w ~ ~

in x>M.

Proof: We can show by induction that ‘Bn| < |Bln for

integral n . Iet E be the mx m matrix Ei,j =1 and
B(x) = {Bij(x)} . PFix N, a positive integer such that
maxlplfj - TTJI < m“l . Set g = max pN
i,J i,3

. . -m.l . Pick
1,J J

-1
€ >0 such that o +e <m = . Since lim B (x) =p% -1,
x0 ™ -7

. N .
there exists My such that for x > M., |Bij(x)| <o toeyi,j=lee.,m.
Then |BN(x)l = {‘Blgj(x)!} <(x+e)ES< "t E. The spectral
radius of E is m so the spectral radius of (o +€) E is

is strictly less than 1; hence ({a +¢) Z)" = 0 as n-—®

by Theorems (2.6), (2.7) . So for x > M. iBN(x)ln -0
uniformly in x and since IBN(x)‘nZ‘BnN(x)i we have that
oo

|BnN(x)‘ — 0 uniformly in x > My -

Now for any n , write
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-] 2y n- ['I%jN

Tl <™ ]| (s

E
) B =] .

18%x)| = |B
For any n ; ‘the second factor is one of the following:
|§O(x)|, 'El(x)l,..., IEN-l(xH . PFor k =1,2,..., N-1 there
exist real numbers Ml,.. oy MN-l such that x > Mk implies

k

' ° > = ese
lg (x)1 <E So for x> M max{Ml, > My 15 MN} the
second factor is bounded by E ; the first factor approaches

0 uniformly in x ® M . This completes the proof.

We use the following lemma [3]:

Lemma 2.18: let P = {pi,j} be an m x m , irreducible,
aperiodic, stochastic matrix such that lim Rn = Il . Suppose
e ~

there are constants c,., with O<e,, <1, n>1,
ijn = "ijn - -

i, § =1,2,e4., m, such that 1im (cij ) =%,. . Then:

aco n id
0 n n iP5,
limf{e,. p..}V = [ 10 §.. 771
IR 51 Y B i,j=1 1 ~
vhere &9 is interpreted as 1 if &,, =0 and p.. =0 .
ij . iJ 1J

The matrix Q(x) = {nj Hi(x)} 1<i,j <m often arises
in conjunction with the system governed by Q(x) = {pij Hi(x)} .

We note some spectral properties of Q(x) :

(2.19) ox) = Y 7 E ()

i=1
(2.20) r(x) = ()™ (H(x), .00, H (x))
(2.21) W) = (e, )
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(2.22) Px) = 07 x) §x)

Direct computation shows (2.22) in the form

" m ~
gn(x) =(3 u Hi(:x))n"l Q{x) . The formula in 9],
i=1 _ ~

p. 249 for the spectral radius of a matrix and (2.22) combine
to give (2.19). r(x) and g(x) as given by (2.20) and
(2.21) satisfy the appropriate eigenvalue equations.

,P(x) may be conveniently represented as follows: We

m
have that ¥ £.(x) Q,.(x) = P(x) £.(x) for all J .
= LW :

Summing over J gives:

' m
(2.23) px) = % g,(x) H(x) .
i=1
The moments of the distribution function P(x) can be
studied. Although it is not used in the sequel, we give the

following representative result:

Theorem 2.2k: Let Q(x) = {pij Hi(x)} and suppose that

for each 1, Hi(-) concentrates on [0, ®) . let

[+ =}

M = f x dHi(x) . Then P(x) =0 for x<0 and

t Jo
o0
j xdp(x) <e® iff max ﬂi <o ,
0 1<i<m )
Proof: Given max T, <« . From (2.23) for each
1<i<m
x>0 :

min Hi(x) <p(x) < max Hi(x) .
1<i<m 1<i<m
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Then

t b
[@-eNaxs [ (1-mnm(x) ax
o :

Y0 i

N

= mex(1 - H,(x)) ax

“0 i
Lt m
< £ (1-H/(x)) ax
"0 i=1
m
< X My<> .
i=l

o0

o _
This holds for all t so that J' (1 - p(x)) ax =I xd P(x) <e.
0

0

For the converse, note that for every ¢, 0< g< min w,,
I<ian ¢

there exists M_ such that x > Me implies l,(’,j(x) - rrj‘ < ¢
(o=]

for j =121,+.., m . Then given J. (L - p(x)) ax <> we
0

have:

0

oo>r (1 - p(x)) ax
M

m
J, 3 400 - Hy(x)) ax

o

m o
2 2 (- ) J, (-6 ax

So for each Jj, I (1 - Hj(x)) dx < ® and hence TIJ. <®,

M
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CHAPTER III

IAW OF LARGE NUMBERS AND RELATIVE STABILITY

The results of this section give basic information about
the asymptotic behavior of {Mn} and preview the methods and
the kinds cf conditions that will be necessary for the proofs
of subsequent more general theorems. Xolmogorov and Gnedenko
[10] give related results for sums of independent random
variasbles. For the case of maxima of a sequence of random
variables see Gnedenko [51 for the i.i.d. case and Juncosa

{81 for the independent case.

Definition 3.1: The sequence of successive maxima {Mnl
of a sequence of random variables {Xn} satisfies the

Law of large Numbers (L.L.N.) iff there exist constants

{An1 such that
Bl - A f<e] -1

as n—-= forall € >0 .
For random variables {Xn} defined on a M.C., {Mn}
satisfies the L.L.N. iff there exist constants {An} such

that

m m
(3.2) z z Q';J_ (o +¢)p, -

iz}l j=1

H
H
ﬁlt\/ﬂ
[N
1 8
,k,t\’i
£
=}
[}
~~
v
jn
1
[©]
3
H
i
.-l
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as n—® forall €>0. Dyse+ey P are the initial proba-

bilities for the M.C.

Definition 3.3: The sequence of maxima [Mn} is relatively

stable if there exists positive constants {Bn} such that

M
P[lg'q - 1<e] »1

as n-=® for all e >0 .
For random variables defined on a M.C., {Mn} is relatively

stable iff there exists Bn > 0 such that for all e > 0

m m m m
(3:4) ) ) el (e - Y ) al (B(1-e))p -1

ij
i=1 j=1 i=1 j=1

as n — o,
We seek necessary and sufficient conditions for each
property to hold. For random variables Xn , uniformly bounded

above, the results are easy to state:

Theorem 3.5: Suppose there exist yi < ® such that
Hi(yi) =1, Hi(yi -e)<1l, forall €>0 and i =1,ee0, m .
Let max {y.} = x. <o . Then:

. i 0
1<i<m
(i) The sequence {Mn} satisfies the L.L.N. and

P

=X > . — - N
An 0o» 021 Hence Mn X, 8 n ®

(ii) Suppose X, >0 . Then the sequence {Mn} is

relatively stable and B =X, -
Proof: (i) We have that

‘ | m m n m m n
PIIM_-x{<e)l= % Z p, Q (xs+te)- T I p, Q (x,-¢)-
no 0 i1=1 g=1 + O i=1 jmp + 10
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m m 0

Because of the definition of x., T I p, Q,.(x, +¢€¢)=1.
o = = Pi %5\

i=1 j=1
It suffices to show that for all i and j, Qrilj(xo -¢) =0
as n-= %, But Q(xo -e) < P and strict inequality holds
for the components of at least one row. By (2.6) p(xb -e) <1l
and hence Qn(Xo -¢) =0 as n—~= by (2.7) . Similarly
for (ii). .

If at least one of the distributions Hl('),..., Hm(-) has

support unbounded above, then the results are deeper. In this

case P(x) <1 for all x .

Theorem 3.6: Suppose there exists i such that Hi (x) <1

0
for all X . Then {Mn} satisfies the L.L.N. iff for all

0

e > 0 one of the following equivalent conditions hélds:

e l-p(xte)
(3-7) iii 1 - p(x) =0,
m .
: l - n Hil(x + e)
(3.8) 1im =L — =0,
X 1- 0 H (x)
i=1
m
py "i(l - Hi(x +¢e))
(3.9) lim 1;1 =0 .
¥ oz om(1-H/(x)

i=1

Remark: The sequence {Mn} satisfies the L.L.N. iff the

sequence of maxima drawn from the distribution function p(x)
m ﬂli m

(or equivalently from either 0 Hy (x) or Z U Hi(x))
i=l o i=]
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satisfies the L.L.N. [5, p. 426] .
Proof : {Mn} satisfies the L.L.N. iff there exist con-

stants {An} such that

moom mom
r X Q. (A + .- £ v Q. .(A -¢)p."1 as n~@
I E Qs (A *e)p; ALY (A -¢)op, )
m m n
i.e. iff T 2 Q (A +¢)p,~1 and
i=1 g=1 9 7. *
mom
T £ Q. (A -€)p, =0
i=1 j=1 9 B *
as n-=%. Because Q% x) = P%(x) M(x) + o(1) and

A — =, the above conditions are equivalent to

m

m
z ™A + M, (A +¢)p, 1 and
B NIRRT
m m n
A- M A—S _—OOQ
Z 321 (A - e) M (A - €)py

Since 1lim Mij(An i e) = ﬂj we have that the L.L.N. holds iff
o

there exists {An} such that

(3.10) p'(a +te)=1 and
n

(3.11) p(a -e)=0

as n = o . These conditions are equivalent to (3.7),
T5.~ P 1'26] *
Because An - o and Qn(x) = p™(x) M(x) + gﬂl) ,

(3.10) and (3.11) are equivalent to



23

3.12) g“(An te)-1 and
(3.13) Qs - e) 0.

These conditions are in turn equivalent to

m n
(3.1k) [ n H (A 4 e,)] -1 and
k g1 L .

. m n
(3.15) [.n (A - e)] -0
i=l
as we will now show. Given (3.1k), we have that for
i=1e0e, m H:(An'+ e) =1 as n-® - This and Lemma (2.18)
give (3.12) . Given (3.12) we focus attention on any i’ .

n .
Select any convergent subsequence and suppose Hi%(Ank +g) = éi’ .

To identify Qi' we select a further subsequencg nﬁ such

! ‘

that for all i, H, (A, +e)—- &, , with &  the limit of
1 nk 1 1 .

the convergent subsequence. By (2.18), we have that

nI:: m TP, . mo T,
Q (A, +e)- ( T Qil Yns (1 Qi ) T eand since
E 1, j=1 ~ g P~ |
nﬁ m ﬂi
also Q (An' +e) =1 we have I 3,7 =1 and hence for
~ ~ i=1
each 1 @i =1 . In particular @i' =1 and since every

convergent subsequence converges to 1 s H?‘(An + o) = 1.
The index i' was arbitrarily selected so the result holds
for all i and hence for the product giving (3.1h4).

Given (3.13) we pick any convergent subsequence n, and

NN
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m

- ¢)= & . Select further subsequences
i=1 "

suppose

nt such that H:k(A - e) = §, - ‘Then by (2.18)

o mo g By
Q (A - ¢)=-(0I 3.°)0 and also Q “(A - €) - 0 so that
~ % =2t ~ M -

i

m T, m

I s =o0. Since T &. =&, we have that 2 =0 .
. i . i

i=1 i=1

m
All convergent subsequences of i Hril(f-\‘n - €) conwerge to
i=1

zerc and hence the full sequence converges to zero.
Conversely suppose (3.15). There exists a subsequence
n, and a matrix U = {Uij} such that Q,nk(An -e)-U.

k

In order to identify U select a further subsequence nl'(
n! ~

such that Hik(A ' - e) = tpi for i =1,..., m . Because of

8

m
(3.15), @ 3, = 0 and at least one of the <I>i's is zero.

i=1 !
By (2.18) we have that an(An;{ - ¢) -0 and hence U = 0.

~

n
Thus for all convergent subsequences n o, 9 k(An -e)=0
~~o k ~r

and hence the full sequence converges to zero giving (3.13) .
This completes the demonstration of the equivalence of

(3.12, 3.13) to (3.14, 3.15) .

(3.14) and (3.15) hold iff
m TTi n
(3.16) [izl HAA +e)] -1 am

(3.17) [iIrEl Hzi(An - e)] -0
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as n-© . Thus the L.L.N. holds iff (3.16) and (3.17)
hold and these conditions are equivalent to (8) [5, p. 426 .
(3.16) and (3.17) hold iff
i :

n i§l m, log H,(A +¢€)~0 and

n
A - e -4 - Y
n izl U log Hi( . ) ®

Since An - o , thege are equivalent to

(3.18) n Z TTi(l - Hi(An +¢)) =0
i=1

(3.19) n Y m(l-H(a -e) -
i=1

as n= o . So the L.L.N. holds iff there exist constants
{An} such that (3.18) and (3.19) hold. The proof that (3.18)
and (3.19) are equivalent to (3.9) is exactly the proof given
by Gnedenko for the i.i.d. case [5, pp. 426-7] and will be
omitted. This completes the proof of Theorem 3,6.

The results concerning relative stability are completely
analogous to those for the L;L.N. We will only sketch the

proofs.

Theorem 3.20: Suppose there exists io such that

H, (x) <1 for all x . Then the sequence {Mn} is relatively
0
stable iff for all k > 1 one of the following equivalent

conditions holds:

(3.21) lim
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m v,
1- 1 H (k)

. 1

i=1

(3.22) i-.lg T, =0,
1« 1 Hi (x)
i=1
m
.2 ni(l - Hi(kx))
(3.23) ' 1im l;l = 0.
X—o
izl “i(l - Hi(X))

Proof: The sequence {Mn] is relatively stable iff there

exist Bn > 0 such that

Izr?l I;:l Q" (B (1 +¢)) p, - ;E ? QY (B (1-¢))p, ~1
i=1 j=1 0 ° o=l g MR *
as n— oo j; i.e. 1iff

m m

z z Qri’j(Bn(l +e))p,»1 and

i=1 §=1

m m

> z Q;lj(B'n(l -¢))p; 0.

i=l j=1

Since Bn = o , these conditions are equivalent to
(3.24) p(B (L +e)) -1
(3.25) (B (1 - ¢)) =0

as n - o and (3.24) and (3.25) are equivalent to (3.21)

[5, p. 4287 .
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Now (3.24) and (3.25) are equivalent to

(3-26) a(B (1 +e)) -1
(3.27) gn(Bn(l -e))=o0

These conditions hold iff

(3.28) 1 oENE (1 +6)) ~ 1
i=l

(3:29) 1 HXB (1 4)) =0
i=1

which hold iff

(3:30) L Irlzll Eip (1 +e)] -2
i=

(3.31) [Ilzlll H:i(Bn(l - e))]n -0
i=

and these conditions are equivalent to (3.22) [5, p. 428] .
Taking logarithms and utilizing the fact that Bn - o
shows that (3.30) and (3.31) are equivalent to
m

(3.32) 2 ) m(1-H(B(L+e))-0  and
i=1l

n z m(1-H(B(1-¢)) ~o
i=1
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and these conditions are equivalent to (3.23) by a proof which
is completely analogous to the one given by Gnedenko for the

i.i.d. case 5, p. 429] .
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CHAPTER IV

LIMIT IAWS

Throughout this chapter we let Q(x) = {Pij Hi(x)}
where P = {pij} is irreducible, aperiodic, stochastic,

~

lim P* = 1 and Hl('),..., H(*) are nondegenerate, honest

distribution functions.

We begin with a lemma:

Lemma 4.1: If there exist normalizing constants a , b
n>1 and an index pgir (io, jo) , 1< igs §, < m, such that
2 ~
Q. . (a x+1b )=~ U, . (x) and
igdg ® n id0
QF () =P}, - w_ =U _(®), and
*odo ‘o' Jo  *odo

U, (x) 1is a nondegenerate mass function, then

00
0 ¢
Lla, x + ) = {U,(x)]
vhere

-1
U.-X = mw, m, U . .
00 = o, G

Proof: Focus attention on any (i, j, + (io,jo) + By the

weak compactness theorem for S,M.M.'s we may pick a convergent
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subsequence n, and suppose

B W
Qij(ank x+b ) = Uij(x) .

k

We wish to identify U.j(x) and so we select a further sub-
i

1 4
sz(ani x + bnﬂ) w, @i(x) ; l<i<m; éi(x) is a mass
' nﬁ w moom
function. Hence Q (an, x+b ,) = (1 8, (x)1 by Lemma
~ Ty i=1 ~
| m T,
(2.18) , which identifies Uij(x) = [n @il(x)wj . But
i=1

,m T, m
[ @il(x)]ﬂj =U, . (x) and therefore [ 1 @il(x)] =
{=

i=1 o o' 1

nt U, . (x) 5 this is a nondegenerate, honest probability
Jo *odo

n
distribution function. So lim Q.F(an x+b ) =U (x)=
koo T4 Py Xk J

[t

) U, . (x)Jm.. Since this holds for any convergent subsequence
Jo  *odo J

i

n -1
limQ,.(ax+b ) =10~ U, ., (x)..
e 130 Hnn Jg igdg T3

The pair (i,3) is arbitrary, which completes the proof.

Theorem 4.2 Limit Laws for the Q-Matrix.
If there exist aijn >0, biin’ iL,J =12 600, m,
n=> 1, such that

..]_(

[P[Jn = J, 83 -b, . ) <x|d =41} = {QV (a,, x +b,. )]
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where Uij(x) is nondegenerate, then
(1) Uij(x) is independent of i and is given by

PU(x)ﬂj 3 pU(x) is an honest, nondegenerate distribution

function, the Perron-Frobenius eigenvalue of {Uij(x)} .

(2) pU(x) is an extreme value distribution. 1In
n c
i .3 + -
fact for all i,j p <aijn x bijn) PU(x)
i t
(3) %5 in and bijn mai bgndhosen 1ndepeg§en ly of
i,3 . pU(x) is of the form 1 & "(x) where &, (x)
. i i
i=1
is an honest distribution fuanction such that sz(an x+b )
k
c
- @i(x) for some subsequence n,_ .
(%) The domain of attraction of pU(x) includes also

mom
o H " (x) .
i=1
The proof of part (2) requires a lemma. We state it now

but defer its proof until after the proof of Theorem (4.2).

Recall the representation Q (x) = P™(x) M(x) + o(1) where

lim o(1) = O uniformly in x ¢ [K, »] for a suitably chosen K .
Il__)m ~ ~~ .

3 > : i . . + =
Lemma 4.3 Ir pU(x) 0 theg ;13 MiJ(aiJnx bijn) uF

for all i,j . We can show more. If pU(x) > 0 then:

(a) 1lim Hi(aijn x + bijn) =1
e

(b,l) If there exists some i such that Hi (x) <1

0

for all x , then lima,. x+b,, =
ijn ijn

0

n—m

for ail 4,J .
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(v,2) I Hi(xi) =1 and Hi(_xi._ - €) <1 for all

€>O, i=l,2,--u,m and X =max{xl,--n, xm}<m,

(¢}
then for x fixed either

(v,2,i) a,. x+Db > x_ for finitely many

ijn ijn 0
-+ =
n and 1lim aijn x bijn xo
e

. + el
or (b,2,ii) 8540 X bijn > x, infinitely often

n
( +
and .3 (aijn x bijn) - E’ and
n
= . i +
PU(x) 1 (Note in S,(aijn x bijn)
we evaluate each component ng(')

at a,. x + bijn for k,p = 1,2,..., m) .

Proof or Theorem 4.2: (1) We have {Qij(aij1 x + bijn)}n =
n c _
{Pij Hi(aiJn x * biJn)} - {Uij(x)} = H(x) .

There exists a subsequence nk such that for all i,j:

% ow
Hi(aijnk 1Jn ) - @ (x)
for mass functions @ij(x) by the weak compactness theorem.
It follows from (2.18) that:

(oy, Bylayy, x+by, N EYE [ 1 g0 5]n

ij 71t idny 13n, 1, 5=1

(0" =1) . Therefore at all continuity points of u(x) ,

~

ng) = [ H l lJ(x)] n .

i, J-l
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Hence Uij(x) is independent of 1 . Further since the

Perron-Frobenius eigenvalue of 1 is 1, the Perron-

| : T.p. .
frobenius eigenvalue of U(x) , say pU(x) , is it @i% ix)
i,5=1 4
and U(x) = pU(x)E,. PU(x) is independent of the choice of
subsequence nk since
m
PU(x) = 5 Uij(x) for all i . By the

J=1

definition of complete convergence of S.M.M.'s pU(x) is an
honegt, nondegenerate distribution function.

Also:
(b.L) pylx) > 0 implies that @ij(x) >0

for 11 (i,j) such that By >0 -

Xt P; >0, then @ij(x) cannot be dishonest. Hence

c ;
>0 + s .
vwhengver Pis , Hi(aijn X bijn ) Qij(x)
k k
.. =0 - = . A .\
If P 5 s élj (x) =1 t least one @lJ( )
is nondegenerate for which pij > 0 since otherwise pU(x)

would be degenerate.

Finally:

m m.p,.

iY1i3 n c

(4.5) [i g_lHi (B m x* bijn)] = pylx)
) 3=

since every convergent subsequence will converge to pU(x) .
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(2) By Lemma (4.1) we have for each (i,j) :

n c
a,. X *b . - Ux) .
% ( ijn iJn) ~ﬂ )

If there are x such that pU(x) =0, then for each (i,J)

Q*a.. x+b..) - 0 .
" i ijn ~

For any ¢ , there exists N such that n >N implies
€,X gy X

that

QMa,. zx+b. . )
~ iJn idn

tA
o
1 H

Hence by (2.6), for n>N
€y X

Therefore pMa,. x+b,,. )= O

as n— = for every i,Jj.

If x is such that pU(x) >0, then Lemma (4.3) assures

us that for large n a,, x *+b,, will be large enough
idn iin

for Theorem (2.15) to be applicable. We have

lim Q?.(a.. x +b,, )
e 1d0 1dn iin

n
= 1i + + + .
Limlp (aijn x bijn) Mij(aijn P bijn) o{1)]
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Therefére:

n

o (X)), =1limp(a.., x +b,, )m,

U J . ijn ijn® " J
by Lemma (4.3) . We have shown that for all x .and for all
i,

. on
(4.6) pU(x) = iig p (aijn x + bijn) .

Therefore pU(x) is an extreme value distribution [5] .

(3) Because of (4.6) and (2.1), the sequences

[aijn’ bijn} 1 <1, <m are asymptotically equivalent.

ILet {an, bn} be any sequence asymptotically equivalent to
these sequences. Choose a subsequence nk such that for
n
all 1i,J : Hi(ai.n X+, ) &
Iy I8
functions 6ij(x) . For each 1, there is a jo such that

W
@ij(x) for mass

Py > 0 and as in the proof of (1) :
0

n
Hi(ai' x th ) kg 5., (x) .
do"k Jo™k g

Set @i(x) = &, {(x) and {(2.1) gives
lJo

T
Hi(ank x + bnk) S éi(x) .

Again by (2.1):

nk c
H.(a x +b ) B @i(x)

i ijnk ijnk

so for all i,J, @ij(x) = Qi(x) . Therefore:
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m mo TPy
H &, l(x) N J(x) PU(x) .
i=1 i,4=1 9
Hence by (2.18):
| o
fp. . Hi(an x *+b bh S pU(x) E'.

= K K
Since every convergent subsequence has the same limit,

n ¢
(pij Hi(a x +D )} = pylx) I

and {aijn’ bijn} may be chosen independently of (i,J) -
(4) As in (3), let {an, bn} be any sequence
asymptotically equivalent to {aijn’ b,.}, 1<4,ij<m.

Then from (4.5):

[n HllJ(a x+b..)]n 5 e (x) .
i, j=1 ijn ijn ]

From (2.1):

H H, s? 1J(a x+hb )1 r U

i H, l(a X +b )]n

i=l
c
= pylx) .
m ™,
Hence Il Hil(x) is in the domain of attraction of pU(x)

i=1

and by {2.1):



37

m ﬂk n ¢
I + ] =
[k=l Hk (aijn x bijn) pU(x)

for 1<1i,j<m. Itonly remains to prove Lemma (4.3):

Proof of Lemma L4.3: (a) We fix x such that

pU(x) >0 and pick a subsequence n_ such that

H + b, ., . S that

i(aijnk X lenk) converges uppose tha
lim Hi(a,. x+b,, )= g . There exists a further sub-
e 1my ijny

sequence ni such that

n!

k
+ -
Hi(aij . X bijni) yij(x)

and because of (L.4) and the assumption that pU(x) >0

we have '..(x) > 0 wvhenever p..> 0 . 5o taking logarithms:
11IJ.,] 13

t + -
nf log Hi(aijni x bijni) log Yij(x)

and therefore

and

H(a,. ,x+Db,, ,) =1 vwhenever p,, >0 .
1t 1gmy 1oy 1J
This identifies 4 = 1 and since any convergent subsequence
must converge to 1 we have H.(a,. x +b.. ) - 1 whenever
it 7ijn ijn

pij > 0 . The restriction that pij > 0 can be dropped as

will be shown in (b).
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(b,1) 1Ir H, (x) <1 for all x then p(x) <1

(o)
for all x by (2.6) and for ajl x lim Q(x) = 0 vy (2.7).
rI_mN s
Suppose a_,. x + b.. does not converge to +»o . Then there
ijn ijn _

is a subsequence o and a real number Kp such that

a, . X +b,. < Kp <+ for all k .
ijny ija, —

k
Then:

"k

n
Q Ha x +b ) <Q k%) -0 as k-o-

ijnk ijnk

In particular

n
Q.#(a.. X +b,., )= 0. Since
1§* 1oy 1jmy
Q?k a,. x +b,,. - x)m, >C we have a
13( 1Jnk 1Jnk) pU( ) J
contradiction.
For this case, since lima,, x +b,, = +a ; we have
e 1B ijn

immediately from (2.11): 1im M, (a,, x +b,, )= T, ,
e 1d ijn ijn J

A i + = < 3 5 .
1so iig Hi(aijn x bijn) 1, 1<4i,j<gm

i + > init
(v,2,1) Ir 8)4p % bijn X, for only finitely many n
then there exists a positive integer Nx guch that if n ~ Nk

th ‘s + <x. . i
en algn X bijn < x, Pick a convergent subsequence o

and suppose a x +b “x'<x. as k-o. If x' <x

1jmy 1jn, 0 0

then there is an € > 0 such that x' < XO - € . Then for
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n
all n._ sufficiently large Q k(a... x+b,, )< an(x -€e)=o0
k ~ ijny, 1dny " = 0 ~
n
k
- o t + - m >
as k but also Qij(aijnk X bijnk) PU(X) j 0

which gives a contradiction. Hence x' =x. . BSince any

0

convergent subsequence converges to x the sequence

O 2
converges to Xq

Hence for n > Ni ; X, >a x +b - X n—o;

0 - "ijn ijn o’

we have H.{a,. x +b,. ) - H.(x.-) . Since for a fixed i,
: it ijn - ijn iv o .

there is some J such that P ; >0, it fcllows from (a)
using this J that

(4.9) Hi(aijn x + bijn) -1,

whence Hi(xo-) =1 = Hi(xo) . So Hi('), i=13.4., m are

continuous at x, and hence so is Q(*) . By Lemma (2.10)

p(*), r(+), 2(+) and hence M(«) are all continuous at

. 7 i + = = .
Xq Therefore iig Mij(aijn x bijn) Mij(xo) ur

Also limH/(a,, x+b,. ) =1, 1<i,j<m.
e+ 1dn ijn - -

. + S s
(v,2,ii) If 83 5p X bijn X for infinitely many

n, then for infinitely many n, Q- .(a,. x +b,, ) =D .

n
iti Aa, . + - U,.
Ey supposition QiJ(alJ x bijn) UlJ(x) so we must have

n

n
+ had L] A2 . i i
Qij(aijn x bijn) us By Lemma (4.1) this suffices for

n n
Q, a. . X +b,_ g - H + : L . -
2 ( ijn 1Jn) E ence p (aijn x bijn) 1 Ir
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there are also infinitely many n , say {nk} , such that

<x then as above, X, >a.,., X *tb,. =X
= ijn ijn 0

’
0 k k

a,. x +b,,
idny 1Jnk 0

as k- o and HJ-L.H,QJﬁ are continuous at x, -
Whether or not such a segquence {nk} exists,

i N _ , -
1im Hi(aijn x bijn) 1, l<i,j<m, and
n_.m

3 + . R . .
Eig-aijn X bijn > X4 Hence theorem (2 15) is appllcable
| ' 2]
and lim Q?.(ai.n x + bi'n)

. J J J

]

' n
3 +
Llim[p (a,j x +tDb

+ +

)M, (a,
ijn’ 713 7ijn

I

whenee T, = lim Mij(ai' X +b,., ) . The lemma is completely

e Jjn ijn
proved.

Without loss of generality we henceforth assume that
normalizing constants are chosen independently of i and j .
That this can be done is not surprising in view of Lemma (h.l).
Also, when we take the nth power of the Q-matrix we sum over
all paths of length n starting at i and ending at j .

This entails sufficient mixing of the distributions involved

so that the effects of the endpoints i and j become

negligible for large n .

Corollary 4.7 Convergence to Types: If for given constants

> .
o, > 0, Bn and a, o, bn :

{Q;j(an x +8_)} S z(x) = {Vij(x)} and

n
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{Qrilj(an x +b) S Uux) = NEN

where Uij(x) , Vij(x) are nondegenerate for each (i,J) ,

then U(x) sand V(x) are of the same type. There exist

A~ 0 and B such that

A = lim a;ll a and B = lim a;l(ﬂn - bn) and
e n om]

{Vij(x)} = X(x) = E(Ax + B) = {Uij(Ax +B)} . Furthermore

u(x) = pU(x) I , vhere pU(x) is an extreme value distribution

~

and V(x) = pU(Ax +B) T .

Corollary 4.8 Asymptotic Independence: Given

{plo_ = ,j,a;l(Mn - b)) <x|3; =11} - {Uij(X)} = pylx) 1

-1 c
then P[an (Mn - bn) <x]= pU(x) and
lim P[J_ = j,a (M - b ) <x] =
n ’“n *'n n’ —
e
lim P[J_ = 3] lim P[ja'l(M -b ) <x] .
n n ' on n’ =7

Proof: We have that

. -1
lim P[Jn =3, &, (Mn - b

Lin n) < x!Jo =1i] = pU(x) "j SO

-1 o
1lim P[an (Mn - bn) < x‘JO =1i] = pU(x) and

-1
- < =
lim P[an (Mn bn) Sx)= PU(X) +  Therefore M has

==
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a limiting distribution which is an extreme value distribution.

Next we have that

-1
lim PfJ =35, a (M - b ) <x]=
- n n o n
. s -1 s -
1im P[Jn =3, a_ (Mn - bn) < leo =i} = ms pU(x)
e
lim PIJ_ = j] lim Pra_l(M - b ) <x]1 which completes
n - n ‘n n’ —
n—-c') n-—)CD
the proof.

Our results are related to those of Gnedenko by the

following theorem.

Theorem L.9: There exist norming constants ah >0, b,

n
-1 c
n> 1 such that P[an (Mn - bn) <x] = pU(x) where pU(x)

is a nondegenerate distribution function iff

n c .
Q (an x + bn) = pU(x) I . Hence pU(x) is an extreme value

~ ~

distribution and the only possible limiting distributions for

the sequence {Mn} are the extreme value types.

Proof: Given the coanvergence of the Q-matrix, the desired
result follows from (4.2) and (4.7).

Now we suppose that Llim P[a;l(Mn - bn) <x] = pU(x) .
e

For some initial distribution (Pi) , i=1,..., m we have

from (1.1) that

m m

o op =1 . '

(4.10) iiﬁ Pla_ M -D) f.x] = lim EZ E: Qri‘j(an x + bn) p; = QU(X)-
i=1 j=1
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By the weak compactness theorem for S.M.M.'s we can select a

- subsequence n, such that, for some limit: U(x) = {Uij(x)} s

n
lim {Q.E(a x +b )} ={U, .(x)} . We will identify {U,.(x)} .
. iJ o, nk ij iJ

From (%.10) we have:

~iE

Uy () By = pyl) -

(.11) EE |
k=1 p=1

P

There exists a further subsequence ni such that

n’
H k(a , X+ bni) ¥ éi(x) with the @i(x) mass functions.
nl
We have Q k(a , X +b_,) - U(x) and also
~ T M ~

ni n ni
Q@ (a ,x+b ,)~=[0 & x)]JO by (2.18) . So
~ ko oi=l ~

m T,
Uij(x) = rizl @il(x)] ﬂj and from (4.11)
m m m ﬁi m ﬂi
pfx) =% » TH & x)}J7p = M 3§ ~(x).
u k=1 g=1 i=1 = Sy E

_ e
Therefore Uij(x) = PU(x) "j and {Qij(ank x + bnk)} - pU(x) E’.

Since this holds for any convergent subsequence we have

n C
+ - I. . i
‘8 (an X bn) pU(x) I By (4.2) pU(x) is an extreme
value distribution.
Criteria for the existence of a limiting distribution

for {Mnl are given in



Lh

Theorem 4.12: There exist constants a >0, b,

n>1 such that:
(4.13) g?(an x + bn) S pU(x) E

where PU(x) is a nondegenerate (extreme value) distribution

function
(4.14) 1£f p“‘(an x +b) Soy(x)
or ¢
o 1.Ti nc
(4.15) iff [_n H, (an x + bn)'i = pU(x) .

i=1

It follows that Mn has a limiting extreme value distribution
n

m .
pU(x) iff p(x) or equivalently it Hil(x) are in the
i=1

domain of attraction of pU(x) .

Proof: Given (h.l3), the latter two statements follow
from theorem (4.2) .

Assuming (4.14) there are two cases:
Case I: If p(x) <1 for all x << . Forall x such
that pU(x) >0, (4.14) implies p(an x + bn) -1, n-o°,
s, p. 439 . For such x, a X +'bn - o and therefore

1imM, .{a x +b ) =", .
iji n n J
n-tCO

Since an x + bn - o , Theorem (2.15) is applicable and:



so that

. .n
llm.S (an x + bn)

e

n:—m

. ~n
1im S (an x + bn)

=

pyy(x) .

k5

im o™ + +
lim Tp (an x bn) ’b\dl(a.n x bn)+-3(l)]

If there are x such that pU(x) = 0 then we proceed as

follows:

is continuous.

pU(x) is an extreme value distribution and hence

For any e

J

0 < pU(z) <e¢ . Ten z>x and

there is a z such that

0<TmQ™a x+b)<1imQ™a z+b ) =P (z)T<cl,
T e ™~ n n’ - —~ n n U ~ ~

Since e is arbitrary we must have lim Qn(an x + bn) =0 =09

-

[y

otx) E .

. n -
So for all x , ;1@ 3 (an x + bn) pU(x) E .

Case II:

oo

There exists Xy <= such that P(xo) =1 and

p(xo -€)<1 forall ¢>0. For a fixed x such that

PU(x) >0, suppose a x * b > x

n, then for n sufficiently large a_ x +b <x
n n—

fact a x +b - x as
n n

0 n

. . .

is a subsequence nk with an x + bn - X
k k

€>0, x'<x,-¢€. DNow

Then for some

[5) p. h39] and

lim p{a
k—ten

lim p(a

ko

0

for only finitely many

0" In

- ~ . To show this, suppose there

0

XxX+b )=1.
B

x *+b ) <p(x') < p(xO -e)<1

k

< x as k- o .
70

lim p(an x + bn) =1
n-—m

But

yielding a



contradiction. There are no subsequential limits less than

+ - . : + - =
Xg and hence an X bn xo Thus p(an b'd bn) P(XO )

and since also p(an x + bn) -1, p(xo-) =1 = P(xo) and

p(*) is continucus at Xy« So Q(e) , (), a(«), M(+)

are all continuous at X, (2.8-2), (2.10-2), and

i + = . i + -
iig Mij(an x bn) m Therefore since a x *+b -x,,

Theorem (2.15) is applicable and:

1im Q%a_ x + b ) = lim [p™a x + 1 ) M(a x +b ) +0(1)] and
o~ D n — n n’ J\"n n ~

(x) 1.

lim Q(a_x +Db ) =p
e, ~n n U ~

I

Suppose a x + bn > x. for infinitely many n , then

0]
pU(x) =1 and Qn(an x + bn) =P® for such n . If

an x + bn < x, for only finitely many n , then

0

lim Qn(an x + bn) =1l , as was to be proved. If a x+b <x

e 0

for infinitely many n then we partition the set of positive

integers into sets {n11 and {ne? such that a X +b <x

1 ny -~ (¢}
+ . A
for all nl and an2 X bn2 > XO for all n, s above
a x+b " x. as n ! 4 and M(:) is continuous at
n n 0 1
1 1
Xy s SO

n n
X 1 s 1
lim Q (a, x +b_ ) =1im [p (anx+bn)¥(anx+bn)+g(l)]

ni*ﬂ ~ 1 1 ni*” 1 1 1 1
nl . B
and lim Q (a x +Db_ ) =0 . Since Q (an x +b ) =1
-~ M o ~ 2 2~

1
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for all n2 we have

lim Qn(an x + bn) =1 as was to be shown.
e ™~ ~

If there are x such that PU(x) = 0, we proceed as
in Case I .

Now assume (h.lS) . By the weak ccmpactness theorem for

S.M.M.'s we can select a convergent subsequence n, such that

“x

W
+ b - U, . . To identif U, .
ij(ank x nk)} { lJ(x)} o identify lJ(x) as

pU(x) ﬂj , we select a further subsequence ni such that for

{Q

H
1<i<m, Hr.lk(a,x+b,)ﬂ@.(x) with
- - 1 nk nk 1

the @i(x) mass functions, and therefore

n! m T,
Q k(a. ,x+b ) [ I @_l(x)] I by (2.18) . But
~ o B s i=1 * ~

m T, nﬁ m o,
o Hil(an' x + bn,)] - I Qil(x) and also

i=1 k k i=1

moTy o mo Ty
{121 Hy (an}.{ x + bn{{)] = pylx)  so 121 8,7 (x) = pylx)

n
and {Qilg(ank x + bnk)'t - {UiJ.(X)} = py{x) T .

This holds for all convergent subsequences, and hence for the

full sequence.
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CHAPTER V
TATI, EQUIVALENCE AND ITS APPLICATIONS

It is intuitively clear that the properties of the
suecessive maxima of a sequence of random Vafiabies are
determined by the quantity of probability contaiﬁed in the
right hand tails of the distribution functions. In this
chapter we make this intuition precise.

Although it is not nécessary to do so, it is simpler to
agsume héfe that all distribution functions are right con-

tinuous.

Convention: For F(°) a distribution function set

2, = inf{y|F(y) =1} . ¥ F(y) <1 for all y then

Xy = . If two distribution functions are involved in a
diseussion we write xg . xg'; If no distinction by super=

seripts is made, it is to be understood that xg = Xg = xb .

Definition 5.1: Two distribution functions F(¢) and 6(-)

are tail equivalent iff :% = xg =X, and 1- F(x) ~ 1 = 6(x)

88 X - xo- ;5 1l.e. iff

We shall often speak of two distribution functions whose

tails have a ratio approaching @ wvhere 0 <@ <= .
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Remark 5.2: For two arbitrary distributions the ratio oc}uthe

tails need not have a limit as x — Xg~ * As an example,

let F(x) be any continuous, strictly increasing distribution
function. Pick x, such that F(xo) <1 and set xn to

be the (unique) solution of the equation 1 - F(x) =2 (1 - F(xo))\.

Define G(x) as follows: G(x) = F(x) for x <x 1 - 6(x

0’ 2n-—l) =

1- G(X2n) =1 - F(in) . For other values of x , define

6(*) by 1i t Th -—T——;l-F(xgn) 1
* ¥y linear interpolation. en lim =
e 1-Glx,
1-F(x )
and lim 5 x2n~l\l = 2 which shows i-g X{ does not have
fou) 2n+l —aX

a limit as x - » .

Theorem 5.3: F(*) and G(*) are distribution functions
such that
1-Fix ’
lim 1-Glx = O, O<y<oeo o
x—'xo-

If there exist normalizing constants a_ >0, bn ,n>1,

such that-

Fn(’an x + bn) - 3(x),

#(x) nondegenerate, then
1
n - 3o
G (an'x + bn) *(x) .
1-F(x

- o we have that as x —* x_-

Proof: Since T-60x) o

1-6(x) =a 1 - Fx))* ofl - F(x)) , and
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6(x) =1 - ¢ H2-P(x)) - (1 - F(x)) . Fix x such that
0<3(x) <1, Then since nfl - F(an x + bn)] - -log ¥(x)
{5, p. 438] and F(an x + bn) -+ 1 as n ™~ e we have

n
a x+b = x - . Therefore can ite a x+b =
n 0 o ore we wr G 0 n)

{1 - a'l(l - F(an x + bn)) - o(1 - F(an x + bn))1n a5 N = o .

= + . i - ’ +
Set y_ F(a.n X bn) We first show that o1 F(gnrx bn))
can be neglected by showing that d = {1 - a'l(l—yn) - O(l—yn)}n

- {1- a'l(l-yn)lnl -0 as n~= , Partition the positivd

integers into sets N, and N,

1 5 such that for n

5 € Nl s

- > -o{1- .
o{1 ynl) >0 and for n, e N, -o(l yn2) >0 . If either set
is finite it can be neglected. Otherwise

n.-1
d <nfl- a-l(l-y ) L o(1-y_ ) which follows from the
n, = 1 ny ny

Bl o for ¢ >0,2a>0.

inequality (t - a)® > t? - nt

Given any € > 0, for oy sufficiently large we have

o(1-y_ ) < e(l-y, ) so that
1 1

L1y )L a(ly )
d <€fl-¢o (1-y )]~ n(1-y
nl nl 1 nl

-1
ef1 - %Z—nl(l-ynl)]nlnl(l-ynl)

- e ea-llogé(x) (—log Q(X)) .

¢ can be chosen arbitrarily small so that we must have
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The procedure for n, € N2 is similar: For any ¢ ,

if =n

, 1is sufficiently large: |o(l-yn2)| = -o(l-yn ) < e(l-ynz) .

2
Then:
< (- @iy, ) ¢ e<1-y_n2>)n2 - (1 - orlu-yne))“?

o . né -1 N
i R "R VCUAR)

e(a~l-e)1og§(x) ) ea-llogé(x)
< ¥ %x) -1 .

Since e can be chosen arbitrarily small, we must have

1im 4 =0 . This terminates the proof that limd =0
n . n
By 2 o

and shows that ol - F(an x + bn)) can be neglected.

Therefore for all x such that 1> &(x) >0 :

1im 6%(a_ x +1b ) = lim (1 - oz'l(l - Fla x +o )"
n n n n
| cid [ags)

I

ot n
lim (1 - (—Jn (1 - F(a_ x + 1 )))
rr—tO

-1 1
- & logd(x) - (%) .

If there are x such that &(x) = 0 we proceed as follows:
#(x) 1is an extreme value distribution and therefore is con-

tinuous. Hence for any ¢ - 0 there exists 2z sguch that
Y
o
0<8&(z) <e . Then:
1
eyryniPn ¢ = Al o
0<limG(a x +D )< linG (a 2z +p ) =08(z) <¢.
e o e
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Since ¢ can be chosen arbitrarily small 1lim Gn(an X + bn) = 0.
bl

A similar procedure works if there are x such that ¥(x) =1
so that the proof is complete.

The converse will be given in Theorem {5.26).

An extreme value distribution raised to a positive power,
is an extreme value distribution of the same type. From

(1.2, 1.3, 1.4) we have for all x and Y >0 :

(5.4) A(x) = Ax - Log v)
1
(5.5) )Y = (v %)
A ‘
(5.6) v (0 = v (V%) .

As an application of theorem (5.3) we prove the following

particularization of a result by Barndorff-Nielson [1] .

Proposition 5.7: {Xn, n> 1} is a sequence of i.i.d. random

variables with distribution function F(-) . {Tn, n> 1}

is a sequence of positive integervalued i.i.d. random variables

with density P, = P[Tl =k}, k>1. {'rn'g
<
and {x} are independent of each other, § p, =1,
n k=1 k
* n
ET. = % kXp , and S = % T, . Set -
1 k=1 k n =1 J
Xy = max {XS TERRY XSn} and Mn = max {xl,..., an .

n-1
{@} has a limiting distribution iff {Mn'% has -

There exist norming coungtants a >0, brl , n=>1, such
n zZ

that a
+ = ) -
F (an x bn) P|TMn <a x ¥ bn] 8(x)
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with &(x) nondegenerate, iff

ET
P <a x+bJ=[8x)] *

Proof: The xn's are i.i.d. and

P[Xn_§x]=ZPrxnfx, Tn=k] ,
k=1
= % P[max{x yeeey X } SX:}P
k= Sn-l+:L Sn--l-"k k
® k
= 3 Fix)p -
k=
We have:
1- BlX <x] o B (1 - F¥(x))
1lim i = lim v il F( )
—_— 1 - P(x) X% o) -F(x

@ k-1 .
£ p(1-F)(E Fx))
k=1 3=0

2 - 1 - F(x)

v
g

~
= Y: k p = E T .
k=1 k 1

The conclusions of the proposition follow from Theorem (5.3).

Theorem 5.8: The following are tail equivalent:
. m
(1) p(x) and T T, H.(x)
i=1 * 7t
m n Tfi
@ m 1} .
(id) n T Hi(x) and H, (x)

i=1 i=1
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Since this property is an equivalence relation, p(x) and

m T,
1 Hil(x) are also taill equivalent .
i=1
0 m
Proof: (i) Iet x.=x. . Wehave ¥ £.(x) =1,
— 6] 0 . i
i=1
m
lim 5.(x) =T, and from (2.23) p(x) = ¢ 4.(x) H.(x) .
i i Gt i
XK )" i=1

Forany ¢, 0 <e< min m,
1<j<m

, there exists a real number

< s } <
M€ X, guch that x >M_ implies Mi(x) ﬂi! e for

i=121..., m. Forsuch x, O<ﬂi-€5_ﬂ.i(x)5ﬂi+e

so that for x. > x > Me we have

0
m
o {x)1 - Hx))
1 - p(x) _ g=1 9 J
iy - m '\
- ¥ T : m, - WX
1 A m, Hy(x) J_r:l J(1 i, )3

5 (ny )1 - ()

<j=l
TS n(1-E(x)
o7 (1l - H.(x
g 3
m
s (1 - H,(x).
=1 J
=l+€‘
s (1~ H(x)
Yy m{l - H \X).
P 3

<1+ e(min ﬁ,)-l .
< e
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Similarly we can get a reverse inequality so that for

X >X>Me we have

0
. 1 ) )
1 - €(max m,) " < i p(x) 51+e(min'ﬁj)l
J 1- v m H(x) J
AT S |
i=l

and since ¢ 1is arbitrary, we have

1lim 1&{ p(x) = 1
XX .-

0 1- R ﬂi Hi(x)
i=1

(ii) From (2.5), (2.6) we have

H H

_ 1 m
X —max{xo seees Xg 1.

0

We use the following:

(5.9) 1-2~1logz as z - 1-
m . m m,
1- 0 B (x) -log T H_ *(x)
i=1 % i=1 *
Then lim - = linm o
T 1. v omoH(x) TF oz o (1- H (x))
. i1 ) i i
i=1 i=1

il
- |
R log Hi(x)

m
XX -
o 3 my(1 - H(x)

i=1
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Theorems (5.3) and (5.8) explain why there are three
equivalent conditions which are necessary and sufficient for
the L.L.N. (3.6); likewise for relative stébility (3.20).
They also explain why {Mn} has a limiting distribution

. m n -
iff p(x) OR I Hil(x) is in the domain of attraction of an
i=1

extreme value distribution (4.13).

Using the dissection principle {2, p. 83] and Theorem
(5.3) we achieve the obvious extension of Proposition (5.7)
and the natural reduction to the i.i.d. case of the limit
law problem for maxima of random variables defined on a M.C.

Pick an arbitrary state || and suppose is the time

o

of the first visit to state j and {Tn , n>1} the

waitingtimes between visits to j . {Tn , n>1} is an i.i.d.
n

sequence and S = £ T, 1is the time of the (n + 1l)st
k
k=0
visit to state j . Let Ngn) be the number of visits to
state i which occur between the nth and (n + 1)st visits

to state j, i =1,..., m; i.e. the number of times Jk =1,

k = Sn-l +1,..., Sn « Then:

v xin)

T N =T n>o0
=1 + B -
EN(in> = m, ﬂgl n>1.

Set Xo = max {Xl,..., XTO'I"l.;,..', Xn = max {XS l+2,--o, XS +l] .
. n- n

We calculate the distribution of xn :
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!
o)
~

PX, < xle(n) v=1..., m]

m o
I H (x) .
\):

Therefore:

m o (n)
2 s e Z P[anx, N\) =n\), \)=l,--.,'m]‘
n. = o =
1 m
[ee) @

m n\) (n)
= £ .. 5 I H (x) PIN =m0 5 v =1, m)
nl—O nm=0 v=1

and so:

()

P[x, < x] = E izl Hil (x)

where "E" is mathematical expectation. For n > 1, the
distribution of Xn is independent of n . (Alternative
formulations using taboo probabilities are available. They are

not used and hence we omit them. )
m Ngn)
Theorem 5.10: The distribution function E 0 Hi (x)
i=l

is in the domain of attraction of an extreme value distribution

m T,

¥(x) ifr O Hil(x) (equivalently p(x)) is in the domain
i=1

of attraction of an extreme value distribution of the same

type. There exist normalizing constants a, >0, bn , n=21

such that

PM <a x+b]- #(x)
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iff
i
ﬂj ETl
Prmax{xo,xl,..., xn1 < a x + bn] = 8(x) Y = 8(x) .
o
pist
Proof: As previously, X, = max {xo yeens Xg 1 . Ve
have that:
m N(l) m N(l) 0 -1 m NS,l) k
1-ET HY (x) Bl-log T HY (x) - % k (1-TH (x)))
v=l - M k=2 v=l ¥
m TT m ‘IT\,
1- 1 " Yx) l-HHv(x)
w=1 v v=1
o - o b
-1 -1 V) k
- % M ologH(x)-EW kK (1- I HY (x))
- J v=1 v ) k=2 v=1 v
m T
1- 1 va(x)
v=1
so that by (5.9) :
m N\()l)
1-E 0T H (x)
1im v=l Y
m ™
X" 1- 1 B V(x)
v:
° -1 nowt
E y» k (1- 0 HY (x))
= 1ip S =l .
. Yoy~ m T
J 0 1- 0 " Vx)

v=1 v

To show that the last term is zero observe that
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5 K H1- 0 HY (x)F “log T HY (x)
k= \):l v < V= v
g ﬂv - m "v
1- H, (x) 1- 1 H (x)
V= V=

m
-log T H (x)

_ v
=7 ( z\;_l = ) =7, (1)
1- 1 va(X)

v=1
so that
- n L)
s KH1- 1 HY (x)
k=2 v=l VY is bounded by

m
1- 1T HVx)
v
v=l

an integrable function and we can apply Fatou's Lemma:

® 1 m Nil) X
sk (1- 0 HY (x))
e~ k=2 v=1
0< 1l1im B
T oxex - L
0 1- 1T HYx)
v=l Y
S o Nil) x
sk (1L- 1 B (x))
_<_E E‘n k=2 m\):g; - 0
X'"‘XO" 1- 0 va(x)
-\)=

since



Vv
— k= v=1
0 < 1lim e
"Xo” 1- 0 HVx)
v
v=1
m T
1,2
(1-(0 E ()
— v=1
:;j;m = Tl o nv
0" (I H (x)) "(1- 0 H,(x))
v=1 v=1
mn T=1 m
2 1 2
(1- 0 B &) CE (TE NN
- im v=1 V p=0 _ y=1
—dlm m v-n-\-) : m Tl
*¥0T (1 - B H (x)( T H(x))
v=1 V v=1
a )
(1~ TH(x)) 2
=1V Ty
< lim Y
x'x - . My o 2
o (1- I 5 (x) (I H,x))
v=1 v=1
= O SeSoe
Thefefbre we have that
o L
1-E I HY (x)
\Y
lim = =l - &
_.1_ mo T S,
X %o 1- I 7 Vx) J
v=1 v

and an application of Theorem (5.3) gives

= TTi n
I -
[i=1 H, (an x + bn)], 8(x)
iff
1
(D) 1

. T,
(g 0 Hil (an x + bn):]n -~ 8(x) J .
1=3



61

For all x such that 0 < &(x) <1 a x *tb - X4~ - For

such x

< + =
P[XO Sa X bn]

v {35 (ax+b)...Q. (a_ x +b )}
k=0 j ki Jl+J ata Jgpd P n

H(a x+b ) =1
g n n

as n-®, Hence for all x

m T, n
1 -—_
{izl B (2, x +p )} = &(x)
iff

P[max{xo,o-.-, Xn} < afl x + bn]

[ m Ngi)
=PIX, <a x+b ] {E I H, n
0 n n jo1 I (an x + bn)}
x
.

Convention: If @(x) is an extreme value distribution and
F(x) is a distribution function in the domain of attraction

of &(x), we write:

F(x) ¢ 8(x) .

If F(x) e 8(x) , there exist a >0, b ,n2>1,
such  that Fn(an x + bn) - &(x) . Gnedenko [5]
" has shown that {an} and {bn} can always be chosen in a

precise way. Any other choice of normalizing constants is
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asymptotically equivalent to this choice which we will tabulate.

For this purpose, set F-l(x)

any distribution function F(*)

inf{y|F(y) = x} for

-1 1
and put B =F (1 - n) .

If in a discussion more than one distribution function are.

involved we write ui = F-l(l -

Clearly b, S pn+l and 1if o
1

set A= {ylF(p) =1-3, B

inf A = pn+l =

uneAﬂB and so F(u.n)=l-

B = inf B .

i <

n) » Observe that By SHpg
= un+l were true we could

- ylr(y) =1-==1 so that

n+l

Because of right continuity

Y whldh gives a contradiction

and shows that strict inequality must hold.

The extreme value distributions @a(x) , Yd(X) , Ax)

were given in (1.2), (1.3), (1.k) .

Gnedenko's results: ’

(5.11) I F(x) ¢ & (x),

1 - Fix

then F(x) <1 for all x ,

. o

and ;im T - Flkx k for all k>0 .
X o

We can set an = un and bn =0 .

(5.12) If F(x) ¢ wa(x) , then xj <= Also
X
1im &= Flkx + o) _ ¥¥ for all k> 0O and we can set
1-Flx +x)
x-.,O (o]
’an = xO TR bn = xo .
(5.13). If F(x) ¢ A(x) , then we can set bn =W,

- L Ly _
and an =F (1 ne) By oo

For an extreme value distribution &(x) Ilet Fy = {FlFr ¢ &)

be its domain of attraction.

Partition #

5 by the equivalence
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relation: F(°) 1is equivalent to G(°) iff lim L= Flx)

X=X - 1- G(xj-

0 <o <= . Suppose ﬂ§ is the class of all segs of normelizing

@ J
constants (an, b, n2 1) such that for some F ¢ & and
some constants C > 0, D: Fn(an x + bn) - %(cx +D) .
Partition Ny by the equivalence relation: (an, bn) is

. . -1 -1
equivalent to (an, Bn) iff o a” - Aso, a (Bn - bn) - B
(cf. 241) . The partitions of ﬂ@ and %§ are in 1-1

correspondence as shown by the following lemmas which lead up

to Theorem (5.26) , the promised converse of Theorem (5.3) .

Lemma 5.14%: F(*) and G(*) are distribution functions.

Suppose for normalizing constants an 20, b ,n>1,

n
n n -
F (a.n x + bn) Qa(x) . Then G (an x + bn) @d(Ax + B)

and A >0
iff B=20 and
1 -F(x) _ L@
HnoTT6 A
1 - Fx)

= A%, then by Theorem (5.3)

Proof: If 1lim —i—:—azz) =

X—'oo
we have that

-0
n A
+ bad =
G (an X bn) {éa(x)} éa(AX) frem (5.5) .
For the converse, we can let a = ui B bn =0 so
F F

n
that we are given that Gn(—ﬁ X - —E B) = @a(x) as n” e .

But since G(x) ¢ Qa(x) we have that Gn(pg x) = @a(x) and

therefore by (2.1)



uG
n 1
(5.15) F i
u’n
- ui Aty
(5.16) -— 0
p’n

as n-®. Since A>0, (5.15) and (5.16) can both hold
iff B=0O.
Given any € » 0 , there exists because of (5.15)

an integer Ne such that for n> N we have
€

l-LG

n 1 .
- 3l <es
By

F -1 G -1 F
ice. p,n(A - e) < p:n < (A + e) “‘n .
G

Since N < ui aq ® , we have that for every x sufficiently

large there exists an integer n = n(x) such that

X e [ug ’ “’iﬂ_l « Then
G
1 - P(x) 1- F(u‘n)
1-6{(x) - G
- G(“‘n'l‘l)
<

(- P (A - 6) 1 (a+2)

1- FFat - ¢))
e T e - R
1- F(un)

w (Al )Y a5 - vy (5.11) .



65

1 - P(x) < 1

Therefore lim :
1-6(x) - (a7l - )

Xeo

Similarly lim 1-F(x) > 1
x°  1-G(x) (A-l + e)cz

and since € is arbitrary

.1 -Px) Lo
1n 3G = A

X <
Lemma 5.17: F(') and G(*) are distribution functions and
(a >0, bn , n=> 1) are normalizing constants such that
n

n -y ~ n ]
F (a.n x + bn) Ya(.&). Then G (a x + bn) —*ya(Ax + B)and A > 0

iff B=20
xF = xG =X and
0] 0 0
lim i . g(;) ATY .,
X"XO—
Proof: If lim ;L'—F?(-}—{%: A% then by (5.3) we have
—— 1l - Gix
XX .~
0 o

0(a, x + b)) = (Y01 =y () vy (5.6)

F F
For the converse we can suppose an = Xg Wy bn = X5

so that we are given that

n,, F F -1 F F F -1 -
G ((xo -p.n) A7 x +x - (xo -P‘n) A"" B) ‘Ya(x) .

This means that G(x) ¢ Y, (x) « Therefore xg <o and

G (xg - ug’) x + x.G) - ‘i’a(x) .
By (2.1)

F

X [
(5.18) L

0

P .
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G F F Fy B
x. - (%, = (¥, - B ) =)
A
(5.19) S
%o " bp

as n- o, Combining (5.18) and (5.19) we have that

G F
X, - X
0 ) . G G G F
P b d - - =4
XG - G B~ ® and since Xo = By 0 , we have Xq = X
0 IJ'n
and B =0,

From (5.18) for any ¢ > O 5 there exists Ne such

G
Xn = 1 -
that for n > Ne’ Lil———% - A + <eg ; l.e.
X0 7 Hy
-1 F G -1 F
- e - < < - - - .
(5.20) xg- (A7 +e)(xy - p ) <p <xy- (A7 - e)xy - u)

For any x < x, but sufficiently close to x there exists

] 0’
' G
an integer n = n{x) such that x e[un, uﬁ+l] . Then
G
1 - Flx) o1 F)
1 - G(x) - F
1- Gl )

[A

(n +1) {1 - F(x. - (A-l + e)(xO - Mﬁ))}

1

(n+1) {1-Fal[-(e+ A DT+ b))

-~ - log Y&(X)lx =-(a7t + )

"

(A-l + &) .
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so T 2=F() o a L ) | simitary
l-G(x} -~
x 'x -
0
lim - Flx) > (A—l - ¢)¥ and since ¢ is arbitrary
—— l - G. X —
XX -
. 1 - F(x) _ ,-o
lim m = A .
X% 3

Corollary 5.21: Let F(*) and G(*) be distribution functions,

. n, F - G, F_ -1
(i) » F (un x ) @d(x) and un/un A then
. 1 - Fix _ a0
lim T - Gl = A" .
. L ¢ . n F
(ii) If Xy =%y <@ and if F ((xO - ”n) x + xo)
X pG
- . 0" P -1 .1 -Fx) _ a-w
Yd(x) , and ;ig 7 =A ", then ilm T 66 - ATH
e X x4

Lemma 5.22: F(*) and G(+) are distribution functions.
Suppose for normalizing constants a, >0, 'bn s, n>1,
n . n
+ =3 . -
F (an X bn) O'(x) Irf G (an x + bn) (x), ¥(x)

nondegenerate, then %¥(x) = QG(AX) for some A >0 and

1l -F(x) _ e
lim i—:—aéiy = A%

X0

Proof: We have F(x) <1 for all x . Without loss
F
of generality suppose a, = T and bn =0 . Then Gn(uﬁ x)

-~ ¥(x) and since uﬁ t ®» we have &(x) =0 for all x<O .

The only possibility is that &(x) = QB (Ax) for some B >0 .
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To show B = o ¢ We have Gn(A_l ui x) = @q(x)

and Gn(ug‘x) - ég(x) so that by (2.1) pg/pi -7t

By Corollary (5.21)

limi_ix =&Y . But
X - x
n{l - F(p,F x)} = -log @ (x) =x7
n o
and

n{l - G(p,'z x)} - -log @B(AX) = (Ax)'8

as n = o ., Dividing gives:

¥
1- F(“'n X) R B-ov
. = A X IS

lim 7
e 1 - G(p,n x)

R .l-Fx)_cx
Since lim 1ol = A

and uﬁ - o we must have B =«
X

which completes the proof.

Lemma 5.23: F(*) and G(+) are distribution functicns.
Suppose for normalizing constants a > 0, bn , n>1,

Fn(an x + bn) - Ya(x) . If Gn(an x + bn) - 8(x), &(x)

nondegenerate, then 3¥(x) = Y&(AX) for some A >0,

F_G _ . 1 - F(x) ,-o
Xq = X = X5 and lim ET:_EIE% =A .

XX o

Proof: Since F(x) e Yy(x) 5 xg < o . Without loss of

. __F ¥ _F
generality suppose that &, =Xy - un and bn = xo

0 . We

show that xg = xg . Suppose G(x) <1 for all x . For



69

any x there exists a positive integer Nx and a real

F F F
- + <
number MX such that for n > Nx ) (xo u,n) x *x, Mx

and therefore Gn((xg - p:l:‘l) x + xg‘) < Gn(Mx) “0 as n "=,

If G(x) <1 for all x , then &(x) = 0 so that we must

1

have xg < ®

Ir xg>xF

(o) s

G
Similar arguments show that X = x'g :

then there exists e ® O such that xg - e > xg so that for

any fixed x , if n 1is sufficiently large

F
(x,,

F F G n F F F
- + < - - +

Pan) x +x,<xJ-¢. Consequently, G ((xo p.n) x xo)
< Gn(xg - €)= 0. Sowe must have xg < xg . If strict
inequality holds then for any fixed x, if n is sufficiently

large we have that (xg - u,i) x + xg > xg » For such n

a™( (xg - M]t':) x + xg) = 1 and therefore &(x) ¥ 1 . This

F_G
shows that XO = xo .

For x~ 0, Gn((xo—uﬁ)x+xo)=l for all n so

that 2(x) =1, x>0 . We can only have &(x) = xya(Ax)

for A>0, B>0.

To show B = &: We have G (xo - p,f;) N xo)

- \yB(x) , G (xo - ug) x + xo) - \yq(x) so that by (2.1)

0~ kn -1

lim ——— = A~ . By Corollary (5.21-1ii) 1im i - F =AY,

5 1l - G(x
XX, -

) -
L= X = by 0
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Also nfl - F((xo - “‘i) x + xo)} - (-x)a and
F B
n{1 - G((xo - p,n) x + xo)} - (-Ax)"” so that

F .
1- F((xo - p,n) x + xo) i &P

lim

F - 8 *
- - +
me 1 G((xo “‘n) X xo) A
Since 1lim i - i;:) = A" we must have for all x <O
XX -
0]
that A_B xd_B =AY, Tis requires o =B and the proof

is complete.

Corollary 5.2k: Let F(*), G{*) be distribution functions.

Suppose there exist a, > o, bn » n>1 such that
n ' n
+pb- )= A . - o
F (a.n X bn) (x) If G (an x + bn) 8(x) , ®(x)
nondegenerate, then &(x) = A(Ax + B) for some A >0, B.

Proof: Suppose 2(x) = @a(Ax + B) (Ya(Ax + B)). Then

a
n, n By .
G (Ax *b - a A) @a(x) (\ya(x)). and so by the previous
n, ®n* B '
—_— - =) 5 t. ]
lemmas F ( X b - a A) 3, (A x) (‘}'.Q,(A x)) for some
A" 5 0 which gives a contradiction to the fact that

F(x) ¢ Mx) since a distribution function can be in the

domain of attraction of at most one extreme value distribution.

Lemma. 5.25: F(*) and G(*) are distribution functions, and

a, >0, bn ; nh>1 are normalizing constants such that

n — A y n —
F (an x + bn) (x) . Then G (an x + bn) A(Ax + B)
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dnd A >0 iff A =1,

P xG = X and

*0 T %0 T %o ¢

i 1 - F(x) B
}l{_l;‘ I-ax) T ¢ ¢
0
Proof: If 1lim '}. - ii = e then by Theorem (5.3)
XX -
0 -B

we have that Gn(a.n x + bn) -~ AMx) € =A(x +B) by (5.4) .

Conversely if Gn(an‘ x + bn) -+ p(Ax + B) , we can without

loss of generality suppose bn = F’fl so that

n,%n F B
G (—A—x T, -oay K) - Mx) . But also

a™ [G_l(l - -31‘—) - ui] x + U-g) ~ Mx) so that by (2.1) we

e

have that
F-a _B__ G
By n A p‘n .
a -0 Ta8 N~ e ; i.e.
n/A
F p,G
Hp = P
e T A
n

Given e there exists N such that for n> N
€ €

F G F

B B
- (= + < - (= = .
Hn (A c) & < Hp p‘n (A ¢) s

For any x sufficiently large, there exists n = n(x) such

that x ¢ [p.i , p,?l+13 . Therefore:
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N
1-Fx) _ - Flu,)
-G = O

<+ D0 - R -(F +e) +0d)]

- e ™ B = e]_a/A e® .
X = '(K +¢)
- 1 - F(x) B/A e -
So limG ) <e e . Similarly
XX .-
0
lim % : g z > eB/A e”® and since e is arbitrary we have
XX
l-F(x) _ B/A . o maan .
;;imG m = e . Since this limit is finite and
xx
0
N F G
positive we must have XO = X5

To show that A =1, observe that n{l - F(a_x +b )}

~

™ and nf1 - G(an x *+ bn)} - e.h(AX+B) . Therefore

1 B F(an x ¥ bn) ~-x+HAx+B

1im T -G(a x5 = e « For all x ,
e n 0 .

0<Ax)<21l sothat a x+b = x.- . Since
n n 0]

lim i:g );) =eB/A
x—'xo—

If B=0, then -x +Ax = O requires A =1. If B Lo,

then setting x =0 gives A =1 and the proof is complete.

we have that for all x , -x +Ax +B = B/A .-



We have proved:

Theorem 5.26: Let F(+), G(*) be distribution functions

and let &(x) be an extreme value distribution. Suppose
F(x) ¢ &(x) and that Fn(a.n x + bn) - §(x) for normalizing

n - 1}
congtants a >0, b , n>1. Then G (an x + bn) $'(x) ,

3'(*) nondegenerate, iff for some A >0, B :

3'(x) = ¥(Ax + B) ,

X0 =% = % ¢
. 1l - Fx
linm T - Glx exists
XX -
0
and if
(i) #(x) =& (x), then B =0 and 1iml‘FX)_A°’
o e L - G(x
(11} ¥x)} =y (x), then B =0 and 1lim :{:g: =47¢
X"‘XO-

(111)  #(x)

A(x) , then A =1 and 1im i : g i = eB .
X"'XO-

In Chapter II we showed that {Mn} had a limit distribution
m 1T

iff the distribution I Hil(x) vas in ‘the domain of attraction
i=1

of an extreme value distribution. It is natural to ask domain

of attraction questions for products of distribution functions.

The following theorem offers some information about this class

of problems and is an application of Theorem {5.26).
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Theorem 5.27: F(*) and G(°) are distribution functions

and &(°*) an extreme value distribution. Suppose Fn(a.n x + bn)

- 8(x) for normaslizing constants an >0, bn > h>1.

Then (F G)° (a,n x + bn) = Fn(an x + bn) Gn(ar1 x + bn) = 3(Ax + B)

ifrf (i) &(x) @a(x): B=0, 0<A<1 and

.1 - F(x) 1
lim =
e G(x) A%
(ii) @(X)=‘¥Q(X): B=0, w>A>1, and
un g -
. A%-1
%o
(i1i) ¥(x) = A(x) A=1,B<0 and
. 1- F(x; _ 1
lim T ol = . .
XX " e -1

Proof: ©Sufficiency follows in each case from Theorem (5.3)
(5.4, 5.5, 5.6) .

Necessity: (i) By Theorem (5.26-i) (replacing G(x)

by F G(x) we have that B =0 and lim %—5—%—&%{)—; =AY

X o

n n
+ -
For x>0, F (an X bn) G (an x + bn) Qa(Ax) and

n )
F (a.n x + bn) - @d(x) , so that, since F Gn(a.n X + bn)

< Fn(a.,n x + bn) , we have ch (ax) < Qa(x) . Therefore,
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Ax <x and A.<1. Also for x>0 Gn(anx +bn)

8 ( L

“Ax) 3 ((A™? )—5) d by Th (5.26-1) we have:
- W_ o -1 b’y an Y eorelm 5.26- we have:
.1 - P(x) 1
lim = — .
X0 1 - &lx) A% 1

(i)  As in (i), B =0 and Fn(an x +b) =¥ (x);

(F e)? (a, x +b )~ y (Ax) imply that Gn(an x +b)

1
y (Ax) 5
- m =y ((A%1)” x). By Theorem (5.26-ii)
o o
1im o E) 1
) 1l - Gix Ao"-l
» x—»xo

Mso (FQ)" (a_ x+b ) <«FXa x +b ) so that ¥ (Ax)
n n°- - n n o
< tya(x) and for x <O Ax <x so that A>1.

(iii) As above, applying Theorem (5.26-iii) gives A =1 .

Then (F ¢)° (a.n x + bn) - Alx + B) and Fn(a.n x +b )

n
AMx + B
- A . . n -
(x) implies that G (a.n x + bn) _L_(TZA =

1-Fx) 1

1-6x) "B, "

Alx - log(e-B- 1)) .

and applying Theorem (5.26-iii) gives lim

F
x"xo—

Since (F @)" (an x + bn) < Fn(a.n x + bn) we have A(x + B)

< Mx) so that B<0 . This completes the proof.
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CHAPTER VI

WEAK LIMITS AND RECURRENCE PROPERTIES

We now change our point of view. Instead of investigating
limit laws for Mn » We ask where the maximum Mn was achieved.
We are interested in the state of the M.C. when the maximum
was achieved. Also how often the maximum occurs in a particular
state. These questions are concerned with the degree of
intimacy between the maximum term and the underlying M.C.

Let In be the state in which Mn is achieved; i.e.

In = J iff for some k =0,1,..., n-1, Jk =Jj and

Xk+l =M . In order to insure that In is well defined, we
must preclude the possibility of ties. In this chapter, we
assume that Hl(‘),..., Hm(') are continuous.

We calculate the distribution of In using the conditional

independence of the random variables {Xn} :

n-1
P[In = jIJO = i] = kEo P[Jk = j, Xk*l = MnlJo = 1]

n-ln-1 m
=% £ Pa =7, d4,=3
k=0 @=1 j_ =1 *F @
otk ¢

+
| S
il
=
o"—!
|
-
-}



T

n-1 n«l1 m }I
=% ¥ v P[X ,. > mex X}|J. =1, J
k=0 g=1 § =1 1 1<pen 4O o
otk @ Jx sl

= ja’ l<o<n-l,
o L k, Jk =3) P[J& = ja’ 1@ f n-1, + k, Jk: j‘JO = 1]

n-1 n-1 m

-y ¥ % ] H(x) B, (x) e By () H,  (x) en By (x) dHy(x)

k=0 g=1 j =1 1 k-1 Jr+1 n-1
ofl ¢
*P.. P, s se+ P, DP..  eee D. .
13y “didp Ig-19 " Lg4 In-29n-1
Introducing matrix notation gives:
n-1 = m m
. . k -k-1
(6.2) P{I_=jloy=11= v J Q) % by » QT (x) @ (x) -
k=0 ® e Y e=1 % g=1

We wish to study the limiting behavior of expression (6.1) .
First a remark: Consider a two-state alternating M.C.

{Jﬁ , m>1} on which are defined random variables Xﬁ with
A
< = = = = .
P{Xﬁ_le‘?1 n =7 (x), P{Xngle‘g 2} Fa(x)

Quantities superscripted by "A" are defined in the alternating

system. The transition matrix is i (O L

1 0) and suppose -

Jﬁ = 1 a.s. Then:

P[Mgn <x] = F?_(x) Fo(x) P[Mg

_ ontl n
n+l 5 .X] - Fl (x) Fe(x)

and

(6.2) Pl =1 - r Fa(y) A F,(¥)
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(2]

(6.3) Pri, =2] = Fiy) a (y)
(6.1) Pl , =11 = [: Foly) 4 7} (y)
(6.5 M, -21= | #y) amge)

]

The limiting behavior of (6.2) -~ (6.5) is the same as the

) (-]
1imiting behavior of j Fg(y) d Fg(y) . The study of the
-l

limiting behavior of (6.1) reduces to an examination of the
(ou]
limiting behavior of the integral J Fi(y) d Fg(y) , B8O

so that this simple alternating scheme contains all the

difficulties of the more complicated general scheme. This

will be made precise in the Comparison Theorem (6.11)-
Recall that for a distribution function F(-) ,

xlc'; = inf {y|F(y) =1} .

We begin a study of lim J F;(x) a Fg(x) by considering

e -
Fl F2 Fl
- < . =
the case vwhere -« < Xy < X = @ Set x; =x,7,
F
-y 2 S
x2 = xo . Then:
[=<) Xl X2
I ) d FHx) = f Fi(x) d F(x) +J a Fi(x) .
o 1 2 d ool 2 2
- - X
1
b'd

"L
But _[_m Fl(x) a Fz(x) < Fz(xl) 0 as n and



(&

X

2
n _ - n - -
I a Fz(x) =1 F2(xl) 1 as n—o 80O
X
1 (2]
n e}
f Fl(x) d Fz(x) - 1.
««CD
The interesting cases are when either Fl(x) <1l,
F F
1 2
< = < o .
Fg(x) 1 for all x, or X, X

The following lemma is very useful:

Lemma 6.6: Let Fl('), F2('), G(*), H(*) ve distribution

functions.
i) If Fl( *) and G{<) are tail equivalent and
lim J Folx) d F(x) = 4 , then 1lim I aNx) A FX(x) =2 .
1 2 ’ 2
oo - e -
[e=] (=9} n
ii) 1im f Fi‘(x) d Fg(x) = limJ\ Fi(x) H(x) & F,y(x) .
e ~cD n -

Here "1im" is understood in the sense that the limit of one
side exists iff the limit of the other side exists in which

the case the limits are equal.

Proof: i) We suppose. for simplicity Fl(x) <1, Fé(x) <1
for all x . If not, the proof will still go through after

trivial modifications.

M
Observe that for any M, [ Fi(x) a Fg(x) -0

c
as n -, so that I F;(x) a Fg(x) - 4 . We will show
M

that for any € , there is an M such that

Il - sitla iy <26 -
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Because of tail equivalence:

G(x)_= Fl(x) - o(1 - Fl(x))

F (x) = G(x) - ¢(1 - 6(x))
as x™® . Given €, pick M so that

lo(1 - 7)) s ¢ (2 - 7 (x))

lo(1 - 6(x)} <& (1 - 6(x)) .
Since all distribution functions are assumed continuous, the
sets B = {x > M|a(x) > Fl(x)} , B = {x>Mlex) < Fl(x)}

are measursble . Then:

" 16 - #ola 2
jM l6"(x) - Fix)la F5(x)

g

o (6%(x) - Fi(x)) a Fy(x)

+ I(M, (F2(x) - 6%(x)) a Fy(x)

c:)B‘

g

o 6"(x) - (6(x) - o(1 - 6(x)))" a F(x)

"oy

soe| ol - o) arie)

+ne J.; Fi'l(x) (1 - Fl(x?) a Fg(r)

i(x) - (Fy(x) - o(1 - Fy(x))* a Fp(x)
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This last step follows from the inequality (t - a)® > t".na t™t s

for t>0, a>0, and from the fact that on B ,
ol - G(x)) >0 and on B , ofl- Fl(x)) > 0. Integrating

by parts shows that the above is bounded by
G )
€ j Fo(x) a ¢%(x) + GJ Fi(x) a F(x) <2 ¢ .
M 2 M 2 1 -

We have that

=)

4 -2e<lim r ¢(x) @ Fy(x) < Tim j ¢"(x) a F;(x)
™ M M

[

<L +2e¢.

M
But 1im | 6%x)a Fo(x) = 0 so that

e o

(o=} o
z-2e<limj Gn(x)ng(x)<limj GHx) daFHx) <y +2 ¢ .
— Aim < p(x) =
I - e .o

This requires lim‘[ eMx) a FHx) = 4 .
0 Y e 2

11) For any e , choose M so large that for

x>M, |1-H(x)| <€ . ‘Then:
0 <Tam I ¥x) a 7ix) - [ #%e) H(x) a #2x)]

< Tim r F;(x)'l - H(x)| a Fg(x)
e -



= lim i FHx)|1 - H(x)] a F°
Tin jM 1)L - Hx)| @ Fp(x)
< _anl_g € J; Fi(x) a F;(x) <e.

Since ¢ 1is arbitrary, the proof is complete.
For the following theorem we suppose for simplicity that

Fl(x) <1, Fz(x) <1 for all x . Only minor changes are

FLB
necessary when xo =X, <o,
Theorem 6.7: Fl(')- , Fz(') are distribution functions

such that Fl(x) <1, F2(x) <1 for all x . Then

: = 1-7P_(x)
(6.8) ;J;-;li l—:—f;-(;-y = L
for O0<L <= iff
i 1
(6.9) un [ #(x) a B}(x) = (1 + 1)t .
e ¢ oo 1 2
Remark' Lemms. (6.6) and the fact that for all real

M, 1mJ F (x) dF (x) = 0 show that l].mj. ’l‘(x) d Fz(x)
¢ {r=

depends only on the tails of the distributions.

From (6.8) , F(x) =1-(1- Faix)> - o(1l - F2(x))

(oa]
n
as x ™ = . Hence limf F;(x) d F2(x) =

D
B

1lim [ (1-(1 - Fa(x))L- o1 - Fe(x)))n a F,g(x) . After ghowing
n— “M
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that o1 - Fe(x)) can be neglected , substitute y = Fe(x) .
The resulting Beta-integral can be calculated and the limit on
n evaluated to be (1 + L)"l .

This is the rationale behind Theorem (6.7). A Tauberian
argument supplied by Professor H. Pollard is strong enough to

prove the theorem in both directions.

Proof of Theorem 6.7: We make a series of substitutions

designed to'bring the integral into a form where the Karamata

Tauberian Theorem is applicable. At each stage we keep track
1 - Fl(x)
of how the substitutions affect 2_'1(.3;:;1 i—_—F—;;{-)- . If

3
limj FHx) d Fi(x) = (1 + L)‘l , then setting y = F (x),
o 1 2 2
e -
-1 1 n n-~1 -1
&(y) =F (F."(y)) , we have lim[ nG(y)y dy = (1 + L)
172 ) Mo "0

1-F_(x)
Also lim y—girpy =L iff lim -1-1’—_(}@ =L
X0 2 y1 y

1 ..n
_ 1(y) 1
set H(y) =y G(y) and we get JO - &~ T

' 1-F_ (x)
: . 1 . . Y'HSI!
as n-=—=® and lim =5 iff lim =L .
> l-szxs l-y3

v 1
"
Putting y =e ' gives I H*e™Y) av ~ £ and setting
0 n{ 1+L
® 1
K(v) =H(e™") gives J K(v) av ~ . Then K(0) =1,
0 n{ 1+L
1- Fl(x)
K(go) =

0, and lim = L 1Iff
l-FQij

W0
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-y -V
lim S—m X2 If‘(r") =L irf lin S—= K L,
vOo+ 1-e v =0+

-v -V
iff l»-K(v) - Lt-e + 2 -KLV)-ol+L as v~ 0+ .
v v v
If log K(v) = - 8(v) , then Jm e-nS(v) dv NE(J.—IT_ITF .
0 .

Substitute u = S(v) and set &(u) = S-l(u) so that

“®  -nu 1 3 - -,.Fl(x)

‘[0 e dag(u) ~ O Also ii.;n -i-f-f;m =L
i u -

irf 3(u) ~ T3 @ u-=o0.

(s3]
~nu 1
Observe that J e ad(u) iff
0 n(l + L)

C2
lim x f e ™ qg(u) = (1 +1)"Y . This is shown by the
blanad ¢]
inequalities:

[xﬂ: o~ ([x]+1)u a#(u) < x J'm

e XU a®(u) < (Mx]+1) J‘m e-[x]udé(u)
0 0

and by multiplying and dividing on the right by [x] and on
the left by Ix] +1 .

We have shown that:

(os]

. _-l
i‘{: j_mFtll(x) d Fg(x) = (1 + L)

iff lim x j e % as(u) = (1 + L)'l s
X0 0 :

and also that:
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1 - Fl(x)

lim < . =L
— 1l - FEZX-F

iff Q(u)~1—l_=1|;—ﬂ as u-0 .

By the Karamata Tauberian Theorem L, p. L227
u
@(u)~l+L_‘u 0
iff

® xu 1
e d@(u)'“m p X = .

0

This completes the proof.

Before proving the Comparison Theorem we need a lemma:

Lemma (6.10): (Cf. Teorem (2.15)): There exists a

real number K such that for x > K, gn(x) = p™(x) M(x) + o(1) .
For x> K, o(1) = 0 uniformly in x at a geometric rate

as n-—« , There exist constants € >0 and O <A <1l

such that for x>K, |o(l)|l<e A" B, n=1,2,... .

Proof: From Theorem (2.15) we have that o(1) = B™(x)

= Q(x) - pn(x) M(x) . Also there exists a positive integer

N such that for x > K, lBN(x)|f(a+e)E<m-lE .

~

Since E® = m*t E we have

BNx)] S (@ +e)" BR = (¢ +€)" n? L g

< {(a +¢) m}n-l E .
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Therefore:
N n-[2]N
3% < gENJ (o}
n
=N
< | e

n]l
< (o + ¢)m) ¥ }

-~

2 td

e 1
(o + e)mjtmj

IA

and setting A = (@ + €)m gives o <A <1 and

Bl < "B .

Theorem 6.11 Ccmparison Theorem: We have:

lim PI =3ldy =11 = lim P[I = j]

o' o]
n-1 = k m n-k-1
= lim ¥ Q (x) E P., & Q (x) aH . (x)
@ k=0 Vow 19 o= Y g o .

= lim f ro H (x)] d K, i .
Mo = -2 kJ

Here and in the sequel the equalities are to be understood in
the sense that the limit of any of the quantities exists iff

the limit of all the qQuantities exists and then all the limits

are equal.

Proof: We proceed by steps:
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(1) Suppose that:

[+ ﬂi n ﬂjn
(6.12) i-lfi [_m (3, 5™ a 10 (x) = 4

By Theorem (6.7), this is true iff
LU
1- 0 H, (x)
!
14 it] _1-4
im e ==

1 - Hjj(x)

m T,
1-T1 Hil(x)
iff lim izl =

w.
1- HJJ(x)

T

iff 1im l_'_'_p.(il_. =

™,
1- Hja(x)

= |

X

iff

(6.13) lim -
X J
m T,
vhere we have used the tail equivalence of 11 Hil(x) and
i=]1
p(x) « Hence (6.12) holds iff (6.13) holds.

(2) We nave that:

. |
lim n j' 0% () aH (x) = L
rr-ow - J

1-H.(x)
iff lim ———d—
x* 1 - p(x)

= I .
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To prove this note that

© 1
[ 7w anm [ v an (67w)

-0

0
= [ ™ an (e He™))

[~}

. J‘m eV a(1 - B (p7He™)) , where 1 - (pHe™)
0 . Jd

is.a distribution function. As in the proof of the Theorem

(6.7)

® 1
1im nj' P Hx) aH . (x) =L
o Ve J
iff
= x 1 L
I e 7va(1-H (p"HeT)))~2, x-w
0 J X
iff
-1, -
1-H(p"(e™))
lim J : =L
Yo v
iff 1
1-H(P(y))
lim D =L
iff
1-H,.(x)
lim = L
o "log P x)
iff
_ 1- H.(x)
lim — = .
l-p x)
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‘ "
So (6.12) holds iff 1im ==Blx) _ 'z‘l
x= 1 - H (x)
and hence iff
(6.14) lim n ﬂj j pn'l(x) dH.(x) = ¢ .
e -0 J

At this point we rule out the possibility that there
= < .
exists an x, such that Hj(xo) 1, p(xo) 1 Ir
this were the case»then there is an index k such that

< = j = = .
H(x,) <1 and hence i-ig PMI JIJO i1=0

Eliminating this possibility means that for any € ,
_there exists M such that HJ.(M) <1, p(M) <1 and for
X > M:

L

' k ,Q-k(x)l <e,

|1 - rk(x)l <e,

K=1lyees, m &

Observe also that for each k , rk(x) and zk(x)
are continuous functions with limits at += go that for any
conveniently chosen T, rk(') and zk(-) are uniformly
bounded on [T, =] . We denote these bounds by !lrkll,

Hel! -

(3) We have that (6.14) holds iff

(6.15) vin ol 0% Mx) 4,(x) @ Hy(x) = . -

e -
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Proof:  Given (6.14). Then

— 7 el ® nel
0= 3;_1,2 In J_wpn (x) 45(x) a Hy(x) - n J'_wpn (x) m, a Hy(x)|

<limn ‘_"w " Hxd2 - ;,j(X)ld H (x)
o T =0 .

- Eé n f; p™Hx)[1 - ,(x)la B ()

° n-1
P (x) 4 Hj(X)

IA
L]
2,

il
M
=
b |

Since € is arbitrary, the limit of the difference must be

zero so thet (6.15) follows.

Given (6.15) we have:

o«©

o0
0 <1im |n f pn-l(x) 0.(x) dH,(x) - n pn-l(x) . d H.(x)
o - 3 3 - 3T
a1
<limen j 0" (%) d H.(x)
el M J

A
™
*

{ inf 2.(x)}_l
Tx<eo 9

vhere T is chosen less than M but large enough so that

inf ¢.(x) > 0« As above, (6.15) implies (6.1h4) .
T<x<
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(L) By the same technique one shows that (6.15) holds
iff ‘\
-~

(6.36)  mn [ " Hx) ry(x) 25(x) a Hy(x) = 4
s T -
(5) (6.16) nholds iff

. > n-1 p
(6a1)  uma] ") 5y () 40 (g

ra(x)) a Hj(x) =4 .

(6) (6.17) nolds iff

m

© oo}
- n-1
,.n" p(x) M, (x) T T p_ M_(x)aH.(x)=4
_lJ.m o ij Kol ool | Jo0 ak( ) J( )
iff
n-v (-] m

m
. P ty) Tz M H.(x) =
(6.18) 3.3: ﬂfv j._m (x) iJ(x) et o2 Py dk(X) a J(x) ’

(=] - m m

. n-1 -
since 2v [ o (x) Mij(x) § {: Py Mak(x) d Hj(x) o,
—e k=1 g=1

(7) For any M such that p(M) <1 :

n-1 I,M k( ) m m n-k-1 ) )
(6.19) lim X Q..(x) Tp, T Q (x) dH (x) =0.
g k=0 " -o 1J o=1 JO 2=1 ol d
n-1 M m m
k n-k-1
Proof : M Q..(x) T p. & q
o J_m iJ i s (x) d Hj(x)
n-1 m m
< ¥ 3z oafm z v, QM) E ()
k=0 L=l J Cl’:l Jor



m hn-1 x
T T Q ;) Q“‘ (M)
=1 k=0

fi

m n
r Q (M-~o
e

A

as n— o since P(M) <1.

(8) For any fixed integer Vv

n -k-1

(6.20). 1in % f Q 5(x) . (x) 4 K (x) =
m® k=0 =1 Jor 2=1 Qf/
Vel @
: E .
Proof k-o f Q (x) §1 Py 2 de Y(x) a HJ(x)

V-l @ n m
-V
<z J' Qlicj(X) T p, % Qnﬂ (x) a H (x)
=0 ‘M o=l 9V g=1 @ J

V.1 m © m

<(E 5y Z v I Z % "(x) a H,(x)

0 as n-o o

by the Lebesgue Dominated Convergence Theorem.
A gimilar proof shows that
n-1 0

k o n k-1
(6.21) lim ¥ Q. .(x) z > Yx) an, (X)
I k=n-v+l ‘YM T = T g oy

N
(9) Given any ¢ > 0, there exists a positive integer

Vo such that for Vv > Vo and n sufficiently large:
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n o on- k-l
(6.22) lki) j' q 5(x) §1 Psy ;lq (x) @ #,(x)

n-v )

m
-Zf “‘()M(x)r T p
k=v =1 =1

jo M J(x) dH (x)l

<e¢ uniformly in M.

To show this we pick M large enough that Theorem
(2.15) is applicable. Substitute pk(x) Mij(x), + o(1)

for ng(x) in (6.22) . After a similar substitution for

n-k—
Wﬁ

/]

(x) we use Lemma (6.10) and the difference (6.22)

is bounded by:

neVoe® n n-k-1
1z e 2 E ey anol
=V °M 9=1 o=1 oo

n-v @
+]| 2 n-k-1 5 am
|21 oGy Crgr D) e KE)

n-v @ m m
+‘ bX [ Z c)\kclnhk-lp. dH(x)‘
K=V 'M g=1 =1 Jo = d

<mec llM (x)" Z xn'k'l
k=V
n-Vv n-Vv
+ ¢ supl|r ()| = xk +em o At
j J k:V ) k=V
where Ilrj(x)ll and ||Mij(x)|l are the suprema of these

continuous functions with limits at +=o over any convenient
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interval [T, ®) such that Q(T) is irreducible. Taking
suprema over such am interval guarantees that the resul%

will be independent of M . The above expressions are bounded

by:
e m |uy(x)]| %;;E +e l;ggm ||rj(x)!l 3§;
+ c2 n (n hn~l)
and since 0 <X <1 we can choose Vg 8© large that the

first two terms are less than €/3 . For n sufficiently

large the last term will be less than ¢/3 .

(10) If (6.18) holds then by (9)

n-Vv © m m
k n-k-1
2-¢€<lim 2 f Q.(x) T p, I q
e k=v M iJ o=l Jo 4=1 of (x) dHJ_(x)
<lim <g+te .
IT~co
Taking into account (7) and (8) we must have
n-1 G m m .
k n-k-1
p-e<lim T [ Q(x) Zp % Q
s k=0 Cew 10 o3 0¥ ,oq o (x) a Hj(x)

which requires that

n-1 @ m m
(6.23) lim X I Q?j(x) Y p, I Qn'k'l

e k=0 Y. o=l 0 o od (x) a Hj(x) =4 .
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Similarly (6.23) implies (6.18). Since (6.18) is equivalent
to (6.13) we have completed the proof of the Ccmparison Theorem.

Studying lii;m P{:In = j] is thus equivalent to studying
these probabilizi:s in the alternating casé. In fact we can
Junp all the states k != J into a single class, adjust the
distribution functions to take into account sojourn times and
study the two-state alternatiqg scheme with distribution functions
T, m
HJJ(x) and I Hkk(x) .

k{=J
The Comparison Theorem (6.11) and Theorem (6.7) combine

immediately to give:

Corollary (6.24) Weak Limits Criteria:

For 05,(7,151,

Lim P[I_ = 1] =4

e 1
m
k
1 -kréi H (x) 14,
iff lim - = )
X 1- H.l(x) 1
i
or equivalently iff:
.
1 - H,%(x)
. i
1im = B, .
X=4C0 1 - p(X) -
Remark: In the above, 0(x) may be replaced by any tail
m
equivalent distribution function such as % ™ Hk(x) or
k=1

k11
m
1 Hkk(x) .
k=1
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The results obtained in proving the Compsrison Theorem
(6.11) afford us the following interpretation of Corollary

(6.24): TIf we evaluate (6.1) using the matrix
Qx) = {ﬂj Hi(x)} , then we obtain:

% n=-2
14
w B (x))

(6:25) BT, = 313 = 1} =Tle) [ m(x) (2

dH. .
J(x)
Then
d i1} T.n
n .
un [ (nEFe)"an I (x) =,
e - k%,] J
1-H/(x) ( )
iff lim = L 6.24
. 1 - p(x ﬂJ
iff
. l-HJ.(x) 4
im m - "J
1-2 ¢ H(x)
yop K
iff
© 3 n-1 2
lim n f (= ™ H(x)) aH, ==
e Ve k=] J J
(Theorem (6.12-2))
[am (2 ee)”
iff lim n . H(x) (¢ H (x dH, = ¢
e R k=1 & K J

(same proof as Theorem (6.12-3)) .
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We have proved:

m PLI_ = j|9, = 1) = ¢
n 0
iff
1im B[I = 3lo, =11 =4 .
e n Y

The two systems governed by the S.M.M.'s Q(x) = o Hi(x)}

and Q(x) = {"j Hi(x)} have the seme properties as far as

the existence and numerical value of lim P[In =31 is
a0

concerned. Likewise with respect to the existence of limiting
extreme value distributions (4.12, 5.13). The limitnng
behavior of the sequence {Mh] is determined by the quantity
of probability contained in the tails of the distributions
Hi(') , 1=1,..., m and also by the relative amounts of
time the Markov chain spends in each state after.the chain
has reached equilibrium.

We postpone a discussion of solidarity questions till the
end of the chapter and proceed to investigate recurrence
properties of the sequence {In} .

Let (Q, F, P) be the underlying probability space. Then:

Definition 6.25: State j is meximum-recurrent (max-rec)

iff P{[In = j] i.0.} = 1; i.e. for any integer N, there exists

some n(®) > N such that In(w) = j almost surely.

Definition (6.26): State § is maximum-transient (max-trans)

e P[I_ = jli.odd = 0; i.e. iff for almost all ® there
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exists a positive integer N{®w) such that for all n > N(w)

I{o) 3 -

Definition (6.27): (Cf. [11, 13, 14)): For a sequence of

random variables {Xn, n>1}, Xj is a record value of the

sequence if it is strictly greater than all preceding values,

i.e., if XJ S max (xi,..., ) « By convention Bi is

Xﬁ-l
a record value.

For n > 1 define the events Ag by

J _ - _ s
A = [Xn is a record, J . = J] .

Ag is the event that a record occurs at time n in state j .

We have that

(6.28) j is max-trans iff P{Ag i.0.} =0

(6.29) j is max-rec iff P[A‘rjl i.0.3 = 1.

= 1lyees, m be

s

To calculate PAg, let fpﬁl} y 2

some initial distributinn. Then

i .
PAY = P[Xn > ma.x[Xl,..., xn_l}, J g = 33
m m m [
= Zp I ...2 PlX > mx{x x MHa =y, d =
2 by o “m 170007 Sl g S Iy = dpseess
4=1 dy 1 Jp-o 1. ‘
Jn-2 = Jn-2’ Jﬁ-l =]
: P[Jn_l =5 Ty p = dppreres I = jllJO = 2]
n m m @
= Tp v Z p . D, e.ep, H (x) B, (x)...H, (x)d H.(x)
gL F gl g o= B Thde Tyl o0 Yy In-2 g
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Introducing matrix notation gives

<

o n-1
(6.29) md- zop [ @Mx)am(x) .
n £=l E -0 EJ J

For an i.i.d. sequence {Xn, n>1} , the events
A =X  is a record] are independent - Remyi [13] .
Although our events Ag are not independent they exhibit some
properties of an independent sequence, namely they satisfy
a zerO~one law. We will show that the only values for
P{Ag j.0.} are O or 1 . Hence a state must be either
max-trans or max-rec. Before a formal statement of these

results, we prove a lemma:

Lemma 6.30: For any M such that p(M) <1,

o . ® dH (x)

£ PA) <o irr [ s <=,
n=1 M P

L j ®© g H.(x)

z = i = .
n=1 M

«© . m [--]
Proof : From (6.29) we have that I P Ai = ¥p I
| n=1 g=1 % ¥ e

[+-]
T Q%(x) dH (x) . For any M such that p(M) <1
oo 8 j

m M @ n n © n
T p J Z Q. (x)dH(x)< v p. £ Q. (M)H(M).
g1 Ay nmo 3 ge1 b pmo A J

For fixed M, there exists a positive constant kM 50 large

that Q°.(M) < k. P (M) {, 5 < >
a Qij Sk P for 1<i, j<m, n>1.

u

m
Sc the above is dominated b z H.(M <o,
y O P, J( ) T
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@

Therefore Z P A'J converges or diverges according as
1

Z P, J‘ 2 Q" (x) d H (x) converges or diverges.
M n=0 3L J

Now for all x sufficiently large Q™(x) = p™(x) M(x) + 3(1)

where |g(l)| <c )\n E, 0<x <1l (Lemma (6.10)). Hence:
m © ~

TP J‘ E Q% (x) a H (x)

g=1 *°M n=0 J

; P(x)M (x)dH(x)+
M n=0

=z
=

©

+ 3 P, jw of1) a H,(x) .
2=1 M n=0

The last term is dominated by

° e(1 - H,(4))
Tt (1-H.(M) = 1_53 <o .
n=0 J

«©

So ZP AJ converges or diverges according as

X , [ Z 0™ (x) M (x) d H (x) But we have:
=1 7 M n=0

© daH(x)

min inf M, (x) I ——J-T
e ree 0] Plx)

I/\

%j E o) i (x) a4 H,(x)

M n=0 2J

In

e, ()] J.“’ dH , (x)
max sup M,.(x ——-J—-(—y
1 Txge 9ty 1P
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vhere T 1is chosen less than M but large enough so that
min inf |M (x)]>0 . Hence Z P A ana S d H
lgdn T 4 n=l O MI- px
converge or diverge together and since

M a Hj(x) H (M) .
X_m I-p(x) = l ) <7 ¢

this suffices to show the desired result.

I - el > _ . .
Let Vl infin lan is a record, Jn—l il , 1i.e.

Vi is the index of the first non-trivial record in state j .

Theorem (6.31) Recurrence Criteria:

State j 1is mex-trans iff (1) P{al 1.0.} =0
© .
iff (ii) ¢ P Arf <
n:
o d H(x)
. ] oo
iff (iii) IM if:ﬂsz;3-<
. . J = 3
iff (iv) P{vy ==|x, =y, 3, = il >o0

for some y .

State j is max-rec  iff (v) P{Ar‘;j i.0.} =1
m »
iff (vi) I pa)=e
n=1 n :
o dH (x)
ire (vii) J‘ m

M - p(x)
. \ e J . - 31 =
iff  (viii) P{Vl = W!Xl =Y, Jy = il =0

for all y .
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Proof: The equivalence of (ii) and (iii), and (vi)
and (vii) follows from Lemma (6.30) . That (ii) implies
(1) 4is the statement of the Borel-Cantelli Lemma .

We have that:

P{1in (47)%)
e

P{The number of records in state j is finite]

@

5 P{The last record in state j is at irdex n]
n=1

-]
z P[X is a record in state Jj; there are no

n=1
records in state j among Xn+l’
Xn+2"" ]

© o

= Z f P{There are no records in state j among
n=1 °-®
X Xn+2,...|Xn is a record in j, X = v}
-d P[Xn is a record in J, X, <vyl.
Now P[Xn is a record in §, X < vl

Ply > X > max{X,..., xn_l}]

m

Y
n-1
Z o, FCAROEENCRS

7

Therefore setting

P{There are no records in state j among X X

n+l, n+2’...
‘Xn is a record in J, Xn =y}

- plyd - = 3 -
e P{vl = OolJo = d Xl - Y}
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gives:

(6.32) Pl (4))°)

n e«

m o . ©
= = PIVY = w|J. = j, X }EQ% (y) aH .(y) .
o _f_w vy = =lay =4, X, v} 2 Al a sy

0 and

If J 1is max-trans, then P{Ag 1,043
Pflim (Ag)c} =1 so that (6.32) requires that we have for some y ,
n_.co

P{Vi =o|X; =y, Jy =34} >0 and (i) implies (iv) . Still

0
assuming (i) we note that P{Vi = w]Xl =y, JO = j} is non-
decreasing in y and hence lim P{Vi = ﬁ|Xi =y, Jd, = 5}

¥y 0
exists and is strictly positive. Therefore for all g

©

J _ s ~ n
PVy =3y = 35, X, =) z Q5 (y)
. n=0
lim -
(e}
r z Q% (y)
n=0 #J
= 13 J = =9 =
= lim P{Vl leo 3 X, =y} >0
Yy
s0 that

m @ .j l
P = =3, X
) h I-w {Vl Jb Js

= } ; o H < o
z y A U, (y)d j(y)

1

m [=+} [}
iff L p, f T Q% (y)ad H(y) <e

-0 n:o zJ

and this happens when and only when
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® g H.(x) |

fM r—Lrsy <@ by Lemss (6.30) .

Therefore (i) implies (iii) .
If state J 1is max-rec, P{Ai i.0.} =1 and

P[Lim (A2)°) = 0 so that from (6.32) we have that:
ne

(=) n @
o={ Pvi==lg =4 2 =yl2 p, T Q" (y)au(y .
T 0 1 g1 % p=0 A J
Let y, = inf{y| min Hk(y) >0} . Then for y > Yo
: 1<k<m
o, E o 3 < o
> i = ® = j = >
Y P, x ng(y) O so that if P{Vy Iy = 3 Xy yo} 0,

then Hj(yb) =1 . But by the definition of y, and the con-

tinuity of the H's, there must be a subscript zo such that
Ha (yo) =0 so that j could not possibly be mex-rec.

0

Therefore P{Vi = wIJO =3, X = yo} = 0 . Suppose there

1

i > > ] - i
exists y, >y, such that for y >¥, . Then Hj(yl) 1 and if
there were a subscript k , 1 <k % j <m, such that B (y;) <1
then j could not be max-rec. Therefore for all k , Hk(yl) =1, In
particular if there exists an index o, 1 <y < m such that Ha(y) <1
for all y, then P[Vi = ”!Jb = J, X, =y) = 0 for all y. Othervise we
observe that P{Vi = mIJO =J, X = y}3 =0 for all y
such that min Hk(Y) <1 . For other values of y , the

1<ken
conditional probability is not well defined and we can ar-
bitrarily assign it the value zero. Therefore (v) implies

(viii). Conversely if P{Vg = m|JO =j, X, =y} =0 for

1
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all y, then P{Ar'f i.0.} =1 by (6.32) so that (viii)
implies (v).
Given that J is max-rec, this implies

P{Vi = w[JO =3, X = y} =0 for all y and therefore
[‘” a H.(x)
—d

‘M1 - P(x)

J dis not max-trans. Hence = o and we have

shown that (v) implies (vii). The proof of Tﬁeorem (6.3)
will be completed once we show that (iv) implies (i). For
this demonstration we assume there is an index k such that
Hk(x) <1 forall x . If this is not true, the proof will
still go through after trivial modifications.

Given that P{Vf = leO =3, ¥, =y} >0 for some ¥y,

1
there exists an N> 0 and Yo such that for y > Yo

P;vij = °°|JO =4, X, =y} 2 7M. Since H(x) <1 for all

X , Mn = o a.s. as n =« ., By Egoroff's Theorem, given

any e > 0, there is a measurable set Ae such that

P Ae < g and Mn(w) = ® yniformly for ® ¢ Q - Ae . Therefore
there exists n, (independent of w) such that for n>n

0
Mn(w) >y, forall we- Ae . We have that

l-e<P AZ = P{Az[There are infinitely many records in

state j among Xno+l’ Xno+2,......]}

+ P{Aszhere are finitely many records in state

among X .5 X nsee+]}e
no 1 no 2
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Also:

P{A:['Ihere are infinitely many records in state j among
X X -

+17 . b

o 1 nO+2

< P{Ag[There are k records in state j among Xn ny
0

X, +23....]}

0]

<1 - n)k—o 0

as k =« . This last step follows from the fact that on

c j .
) > > < @ = =
A€ 3 Mn yo for n By and P{Vl IXl Y, JO J}

<l-17 forall y> Yo Therefore

1-e<pa® = P{A:[There are finitely many records
e

in state j among Xn Yy Xn +2,...]}
0 o]
< P[There are finitely many records in state 31 .

Since e can be chosen arbitrarily small, P{Ag i.0.} =0
and Jj 1s max-trans. Theorem (6.31) is completely proven.
We now investigate the connections between recurrence
properties and weak limits and give solidarity results. For
the construction of counterexamples recall the following:

m
= T|' < 3 i < = k) -
If Py 5 50 1<1i, j<mp then p(x) LN Hi(x)

i=1
It is often convenient to take pij = mnl so that p(x)
m .
gl Z Hi(x) . We give our results as a sequence of
- i=1

propositions:
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Proposition (6.33): If 1lim P[In = j) = 23 > 0 then

[0 et
J is mex-rec .
© d H.(x)
Proof: Observe that I I:ﬁjrzj- = & , Now
m,
M (6.24))
lim PI_ = j} = 5. >0 iff 1im =94, Corollary (6.2
. n J 1-P(x J
l—Hi(x) 2
iff lim = ~%=>0 .,
o l—prs ‘n'J
® g1, (x)
i - |
erefore the integrals y TP(x
© gy (x
and -———7T~) converge or diverge together and j is

max-rec. (Theorem (6.31))

Proposition (6.34): If lim PFIn =3l =0. Then j can
e
be either max-rec or max-trans. A weak limit of zero gives

no information about the recurrence properties of the state.

Proof: Take a 2 x 2 stochastic matrix with entries

Pij = % y 1,5 =1,2. Take any two distribution functions

Hl(x), He(x) such that there exists x, with Hl(xo) =1

0
-1 1
but H2(x) <1 for all x . Then p(x) = 5 Hl(x) *5 H2(x)

l-Hl(x) a” (x) ° dHl(x)

and E:ETET_ 0 as X = o . Also J ——Eczy - i:arzj

<(1-plx )t <= .
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Therefore: 1lim P[I_ =1} =0 and 1 is max-trans.
=% n
We now give an example where the weak limit is zero but

the state is max-rec.

ol

Consider again the stochastic matrix pij ==, i,j=1,2.

It suffices to find two distribution functions Hl(') and

l-Hl(X) o dH (X)
He( ) such that 3(__'1.:} T:Ig(;:—}- = 0 and j TH__(;)

l-Hl(x) l—Hl(x)
This is sufficient since iiﬁ l-H2 v i 0 implies E:ECET— =

l-Hl(X)

518, (x)) + 5(1-Hy(x)

-0 as x = o,

1-H2(x) l-H2(x)
Also Top(x = T T =
§(l-H1(X)) + E(l-He(X))
1 ® dH (x)
T (x) - 2 as X = ® 50 that ——-—(—) and

X

1-H (xs)

@ aH, (x)

126 (% will converge or diverge together.

Tt is sufficient to find a continuous function f(z)

on (0,11 with the following properties:

i) £(1) =

ii) 1im =z f(2) =
z—=Q+

iii) f(+) 1is decreasing on (0,1]
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iv) lim f(2) =
20

1
v) Id‘f(z) dz =@ .

Given such a function f('), select any continuous

distribution function Hl(°) such that Hl(x) <1 for
all x and set L = f(1-H (x)). Then H,(x) =1 - L .
l-Hefx) 1 2 fil—Hle5§

We have that HE(-“) =0, Ha(m) =1, and 'Hg(') is non-

decreasing so that H2(°) is a distribution function. Further-

1-H. (x '
more iﬁi ifﬁi%;; = ;iﬁ (l-Hl(X)) f(l-Hl(x)) =0 and
© dH (x) rL | &

where 0 <g<1l.

To construct the required function we define f as

follows:
(1) = 1,
1
r(x) =1, 5Sx=21l,
1
f(ET) = (n-2)! n>2.

For other values of x in (0,1] define f(*) by linear
interpolation. f(*) has the required properties. For any

x ¢(0,1] there exists n such that xefzz%ijT s %7] S0

1
f( 51)'
that x f(x) < atl): = % -0 as x=-0 . Also

ni
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1
lim f(x) =« and j F(x) dx = » . This follows by a direct
x0 0
summation of the areas of the rectangles and triangles under

the curve:

Jlf(x) dx

0

i

5 {(%T - R}ﬁ_ﬁ) (n-2)1

+

%(_i.? - TE—“};m.)((n.l): - (n-2)1)}

1 n-2 ©

1
(o*t1)(n-1) 3 % (atl)(a-1) = °

o™

Proposition (6.35): If state j is max-trans, then the

weak limit exists and lim P[I_= j} =0 .
o n

-
Ve

Proof: If state J is max-trans then P([In = j) 1i.04) =0
or equivalently 1im P( U rIk=j]) = 0 . Therefore

- kZn

PII =3]J<P(U [Ik=i])-o as n=*®.
n k>n

Proposition (6.36): Suppose Jj is max-rec. This gives

no information about the existence of the weak limit

lim P[I_ = j] .
[0

Prcof: We construct an example where j is max-rec

yet l1im P['In
6 nnacd
showed how to construct two distribution functions Hl(') B

1-H_(x)
. 1 .
HE( ), such that lim E:ﬁ;(;j does not exist. If necessary

3] does not exist. In Remark (5.2) we
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the method of construction can be slightly modified to insure
l-Hl(x) > lfHe(x) for all large x . Let the stochastic

matrix P be defined by Pij = % , i,j = 1,2 so that

p(x) = — H ( ) +5 (x) Then lim PfI = 1] does not

e
l-Hl(x) (l (l -H (x))

exist since lim = 1lim does not

$Hoo 1-pix - -H (xS ) -
exist. But 1 1is max-re¢ since

J i) (x J dH (x) I dHl(x)
> ®= o .
=g Ham, (o) + 20 ™ Pn )

Proposition (6.33) showed how to construct an example

where j was max-rec and lim P[I =j) = 2 >0 and
o™

Proposition (6.34) showed how to construct an example where

J wes max-rec and lim PrIn =3l =
e

Proposition (6.37):  Maximum-transience is not & class

property. In fact, it is impossible for all states to be
max-trans.

Proof: Suppose all states are max-trans. Setting
)

I X is a record, J = k] gives y P Ak P[X_is a record].
n n n-1 kel n
-} © m k m -} k
Therefore % P[X is arecord]l = ¥ T P An = v (TP An) <o
n=1 ' n=1 k=1 k=1 n=1

by Theorem (6.31, ii). Hence by the Borel-Cantelli Lemma
P{[Xn is a record) i.0.} =0 . It is impossible for there

to be only a finite number of records a.s. as the following
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dissection argument shows. Pick an arbitrary state Jj and

let T. be the time of the first visit to state j and 1let

0]
Tn’ n>1 be the waiting times between visits to j .
n
{T , n>1} is an i.i.d. sequence. Set S = § T, and
n - D420 k
x0=ma.X{Xl,..., XT +l]’ x1=m.a.}C{xS +2).oo, XS +l}’coo,
0 0 1
2% = max{XS wprores Xg +l} . 'The sequence {2;, n> 1}
n

n~1

is i.i.d. and 2% is a record value of the sequence
{zh, n > 0} iff at least one of the random variables

XS YREED XS +1 is a record value of the sequence
n

n-3

{Xn, n> 1} . But the events [[?i is a record value of the
sequence (2%, n>1)]} for k> 1 are independent and have
probabilities k'l'rl3] . Hence ; P[Q% is a record value of
the sequence (2%, n > l)] = © .an§=%y the Borel Zero-One Law:

P{E%{ is a record value of the sequence (?%, n>1)ji.0.} =1.

With probability 1, the sequence {Zé, n > 1} has infinitely
many records and this is true for the sequence {2%, n > 01

since 550 is exceeded a.s. This completes the proof.

Proposition(6.38): Maximum-recurrence is not a class
property. State j max-rec does not necessitate all states

being max-rec.

Proof: Pick two distribution functions Hl(°), He(‘) such

that Hl(xo) =1 for x. <o and Hg(x) <1 for all x .

0
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N

Let Piy = 5 i, = 1,2 « Then P(x) = % Hl(x) +'% H2(x)

© di (x) 1
< <o, .
and f l_p(x > l_p(x67 ® Therefore state 1 is

max-trans and by Proposition (6.26), state 2 is max-rec.

Proposition (6.39): Existence of weak limits is not a class

property. The existence of lim P[In = j1 does not imply
n—-om X

lim BfI = Xk] exists for k L j . However, if all the weak
n—-ow

limite exist, then they form a probabilifty distribution:

it
=
.

n :
T lim P[In = j]
j=1 nwe

Proof: The last statement is proved by integrating by

parts:

-]

Gl n [
[ on 550 e —1-@} . B 5(x)" at ().

- k%g

Hence:

zj" (kgdH())dH %) = 1

It is easy to show that lim P[I =3] =0 doces not
> 1

imply that other states need have weak limits: Take any

H3(') for which there exists x, < ® and H3(xo) =1, As

in (5.2) construct two distribution functions Hl(‘), He(‘) such



114

that H.(x) <1, H(x) <1 for all x and lim 1-H, (x)

1 2

3 l-HEin
does not exist. GSet pij = %, 1<14,5 <3 ang we Lave that
1im PfI =3] =0 but neither Lim B[I = 1] nor
I .

e n
lim P[I = 27 exist.
e n

One can also construct an example where one state has a
positive weak limit but the other states do not possess weak

limits. If 1-H,(x) = 2%, x>0 ‘then 1-H (n) =277 .

Define 1-H2(x) as follows:
1-H2(x) =1 if x<0
1-H,(2n) = p72n
1-H,(2n-1) = pmen |

For remeining values of x , define l—HQ(x) by linear

interpolation so that

1-H2(x) = 2'(2n+2)[1 + 3(2n+1-x)] if xe(2n, 2a+l)
- o~(20%2) if xe(2n+l, 2n+2) .
1-Hl(2n) l-Hl(2n+l)

Then i:ﬁgzéﬁj = 1 and l—H2 ShTT =2 so that

'1-H1(x)

1lim does not exist.
. lfH2ZX5
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Define a(x) = (l—Hl(x)) - (l-Hg(x))

_ox _ pe(en) [y, 3(2n+1-x)) if xe(2n, 2n+l)

X 2-(2n+2)

2 if xe(2n+l, 2n+2)

and set
l-H3€x) = l—Hl(x) + a(x)
= 2-(x-l) - 2-(2n+2)[l + 3(2n+l—x)] if xe(2n, 2n+1)

2-(x-l) . 2-(2n+2) if xe(20+l, 2n+2).

Then l-H3(x) is the tail of a distribution function and

l-Hl(En) ) l-Hl(2n+1) 1-H, (x)

_ 1
THE(2a) ~ 17 TE(Zad) -
i3 3

so lim does not
¥ l-H3!x§

wWino

exist. Letting pij =

W

y 1<£1,j <3 gives

1-p(x) = 5(1-H)(x)) + §(1-Hy(x)) + F(1-H,(x)) = 1K (x) -

1-H_ (x) 1-H2(x) 1-H_(x)
Therefore m= 1l but J]:g T (x and i_lﬁ T

do not exist. Hence state 1 has a positive weak limit but

states 2,3 do not have weak limits.
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