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NOTATION

Unit means service unit or counter at which the server
is serving. :

kL,S.T, is abbreviated for Laplace-Steiltjes Transform,

H(x) is the distribution function of service times.
Its L.S.T. is denoted by h(s) and its first three
moments by o, 8 and Y respectively.

Yl(s) denotes the L.S.T. of the distribution of
busy period of an MlG‘l queue with service time
distribution Hl(x). .

Y(s) denotes the L.S,T. of the distribution of busy
period of the whole system (A1l the service units
considered together).

The convolution of two distribution functions F(x)
and G(x), O <x <=, is denoted by:

f*G(x) = Xx F(x~u) dG(u).

o)
The m-fold convolution of F is denoted by:
E ™) = e ) -

U(x) is the unit distribution:

U(x)

0 0
1 0

IV A

if x
if x

sij is the_Kroneckef delta defined by:

8,5 = 01if i £3

=Yifdi=J




9. For referring the equa.t'ions.we use the following
convention: (n) means the n-th equation of the
present chapter and (m-n) means the n-th equation

. of the m-th chapter. ‘
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CHAPTER I
A SINGLE SERVER TANDEM QUEUE WITH

NON-ZERO SWITCHING IN UNIT 1

1. Concepts aﬁd Definitions

In this chapter we conmsider a queueing process with two
service units, unit 1 and unit 2, and a single server. The

server attends to the two units alternately according to some

switching rule. A switching rule [Neuts and Yadin, 1968] is a

rule describing how the server changes from one unit to the

other. The server may change from one unit to the other either

by a non-zero switching rule or by a zero switching rule. By
& non-zero switching rule the server continues to serve in a
unit until some upper number of consecuﬁive services have been —
completed and then he switches to the other unit. By a zero
switching rule the server stays in a unit until the queue in
it becomes empty and then he switches to the other unit.

 In this'chépter we discuss a non-zero switching rule for
unit 1 and zero switching rule for unit 2. The zero switching
rule for unit 1 is dealt in the next chapter.

We say that two units are in tandem when the output of the

first unit is the input to the second. It is assumed that




customers arrive in unit 1 iﬁ accordance with a Poisson process
of Qensity A. The input for unit 2 is_those who have completed
service in unit 1. |

The durations of the successive service times in ﬁnits 1
and Z.are identically distributed independent positive random
variables withrdistribution functions Hl(') and Hz(')
‘respectively. Further the gervice times are independent of the
arrival times. |

In the case of non-zero switching the server starts in _
unit 1 at time t = O and continues to sefve in it until he‘nas_
given k services without interruption or until the queue be-
. comes empty, whichever: comes first. k is a positive integer which

we will . call . as the switching parameter. The time interval

spent without interruption in unit 1 is called a l-task.

Similarly we define a 2-task. A l-task followed by a 2-task

both togethér will be called as a cycle of tasks.

The customers who have completed service in unit 1 queue
up in front of unit 2. .The server afte: completing the 1-
task switches to unit 2 and serveé there until the queue in it
becomes empty. After finishing the task in unit 2 the server
| gwitches back to unit 1 and continﬁes the process.
ﬁhen k=1, we obtain simply an M/G/1 queue with service

time distribution H, * Hz(').
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2. Distribution of Busy Period

L

The server begins in unit 1 at t=0 and serves between the
two units alternately according to some switching rule. The

time required for both the units to become empty simultaneously

for the first time is called a busy period of the system.

Suppose that there is a Poisson input of density A in
unit 1 and that the service time distributions of the two units

are Hl(') and H,(+). Then since the distribution of busy

. pefiod does not depend upon the order in which thé customers

are served [Welch (19€5)], the distribution of busy period of
the model defined above is equivalent to the distribution of
busy period of an M/G/l queue with input rate A and service

time distribution the convolution H, * Hz(-). Hence from the

~classical results of an M/G/1 queue [Tekacs 1962, p. 477 that

if y(s) is the Laplace Stieltjes Transform (L.S.T.) of the
distribution of busy period then y(s) is the unique root
in the unit disk |z| < 1 of the equation

(1) z = hy(s + A - Az) h(s + 7.\'- Az ),

The expected length of busy period is given by:

o, + o

on) = k2 )
(2 - v = iy o, 1Mo - hap >0,
= ifl-lal-)\az'=o,



3. The Basic Imbedded Semi-Markov Process

and its Transition Probabilities

" Macroscopically the queueing proceSs consists of busy
periods alternatiné with idle periods. TEach busy period -
consists of a random number of alternating l-tasks and
2-tasks. Every busy period can be decomposed into a random
number of cycles of tasks.

Here we assume that at t=0 there are i > O customers
in unit 1 and none in unit 2. In the case i=0‘the‘prOCess
stqrts with an idle period.

Let us define the sequence of random variableé To, Tl’
Tpyeeeees where T, = O and T_ is the duration of the nth cycle
of tasks, n=l,2,.... Let én denote the numbe:bof customers

in the system at the end of the nth cycle, n=1,2,.... and

g = i. | . e

It follows from the regenerative properties of the input

gnd service processes that the bivariate sequence of random

variables
(3) {gn, T, 0 > 0} | -
ie a Semi-Markov sequence with state space {0,1,2,..... 1.

We recall the definition of Semi-Markov sequehce.
Consider & double sequence of random variables
{(Jn,xn), n=0,1,2,...} defined on a complete probability

space and such that:

o e
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(L) () p[xo 20} -1,

(11) P{JO--'-k}wk, where a, > 0, 'P)él a, =1, and I 18 the state
' B ; space
(iii) P[Jn=k, X, < x | Joodpreeesdy 1% Xm0 00X ]
!
) ?[Jn=k’ Xy 5% l Jn~l} - QJn_lk(x)’

for n=1,2,.....
then the process [(Jn,Xn); n > 0} is called a Semi-Markov
sequence. The functions Qij(XL i,j=1,2,.... are mass functions

which are non-decreasing and they satisfy:

Qij(X)

Qi.](m) = PlJ, lyJ=l.2:f"_

0 for x <0,

where (Pij) is the transition matrix of the Markov chain

{Jn, n > 0}. For further details of Semi-Markov sequences
we refer to Pyke (1961), Neuts (196€).

To study the transition probabilities of the Semi-Markov
sequence we first define an auxiliary probability functioh
6.

Let us define:

(58) {0 = 5, Ux),

where & is the Kronecker delta and U(-) is the distribution
degenerate.at zero. For n > l,‘Ggg)(x) is the probability
that, in an MiGli queue of input rate A and service time
distribution Hl(') the initial busy period involves at

least n services, that the n-th service is completed before

[



time x and that at the end of the n-th service there are j

customers waiting, given that there were i customers initially.

@ | \-Thenf‘orizl:.
1 Ay ()it
o) o - j: A M ()
(m1), , _ 932 n) oy )Vt
G a0 - ® jj o) ()™ ),
n>1,
Let gj%l)(s) be the L.S.T. of Ggg)(x) and:
(6) £M(s,2) = 1 ‘ggg)(s)zj , el ;éIL, n>0,
. i §=0 J |
Then:
~ | g§o)(s,z) = Zi 3
i M &Ms,2) = 2 b ()
. h, (s+A-)Az) 0 _
g™ (s,2) = 2 [l (s,2) - 6{V(5,00], w1,

where hl(') is the L.S.T. of Hl(:). -

Successive substitution yields:



(82)

. . cho(saamaz) T (s+n-2z)-"
g§n l)(S,Z) = [ 1 - 2 ] z _v‘ l[—_]-__—i-.-_—-z—_] 1(-11 \)’ll)( ,O)

|

n-ytl

| + an. s+ |
(6b) [h L(s42-2) A 2 [hl( A= XZ)] Ey)(s»o)»

n>1,

From the definition of Ggg)(x) it follows that:

(9) g§“)(s,o> =0 for i > n ,
Hence froﬁ_(B):
ZlO) ggn)(s,z) = g1 h;(s¥k—xz) for i>n>0,

\

A Summary,ﬁf Known Results
The properties of the probability functions Ggg)(x),
already known, may be summarized as follows: For proofs -
of these we refer to Takacs (1960), Neuts (1968b)
Lemma 1.1
If Gl(x) is the distribution of busy periods for an
Mle |1 queue with input rate A and service time distribution

Hi(-) and Yl(s) its L.S.T., then:.

SIS a(s) = ¥i(s) , 131,




Lemma 1.2

2

If Yl(S,U) = X g£n)(s,0) o R lu‘ <1l
n=1 , .

then:
. © (n) n .
(12) £ g '(s,0) 0 =vy)(s,0) , 1>1,
n=1
For v =1, Yl(S,l) = Yl(s) and then lemms 1.2 reduces
to lemma 1.1.
Lemma 1.3

If |z} <1, Jo| <1 and i >1 then:

® @ (n) j n z[zi-yi(s,w)]
(a3 ot (s)e o= z-ohy (erh-dz)
~For © = 1 one may rewrite (13) as:
i i . e
«© & (n) J _ Z[Z 'Yl(s)] .
- no jo1 P13 (8027 = T

Lemma 1.k
If R(s) > 0 and o] <1 then z = Y,(s,0) is a root of

Takacs'’ functional equation:

(15) z = oh (s+h-)z) , lz | <1,

Further z = yl(s,w) is the only root of this equation in the
unit circle |z| <1 if R(s) >0 and |e| <1 or R(s) > 0 and

o] <1 or R(s) >0, |v] <1 and -2 <O



'Lemma 1.5

In lemma 1.k taking w = 1 we get that for R(s) >0,
- |

!

z = Yl(s) is & root of the equation:
(16) z = hl(s+)\-)\z) ,

Further 9 = Yl(O) is the smallest positive real root of the
equation: |

(17)  e=n(x-20),

and if 1-) % <0 then 6 <1 and if 1 - )\al?_Othen 8=1.

From lemmas 1.4 and 1.5 it follows that:

- 0.
(18) YJO+) = ifl-<iAa >0,
1y l-)\ql 1
= if1-2q =0
(19) (0+) 3 if 1 -1 o >0,
(1-Aa) .

If v, (0,0) = £(v) then
l

(20)  £'(1)

ifl-xal‘>o

1-x o . ] '

n
8

ifl-)\a1=
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. AT B :
(21) £(1) = Lo+ 1 if1Ae >0,
)3 1 7.

(1-2 al)? .(l-h o

Now we define the transition probabilities of the Semi-

e " Markov sequence {En, T> N> 0} defined in (3) as:
. . - - . '
= f = 3 = 3 !
(22) Q3(x) =Pl =3, 1 <x|g | =i] -

For i >0 and j > O,

(23) |
J k -A(v-u IX(v- J-v K
Qij(x) = vfgjj ju dG( )( Je ( ) ——%3—;%1 qa, Hg )(qu)
(u)(v) " '
2 T e B ),
r=i Yo “u
() (v)

. where H(n)(-) is the n-fold convolution of H(:). The second
term on the right hand side of the above expression vanishes

for i > k.

If qij(s) ;s the L.S.T. of Qij(x) and

@) glem) = T a0 e <,
then:
(25) | . i

0y = 2 ot ey [ o x Bl 4 40

25 g®e) | (o) 0% 5 1y

r=i

- fori >0and §j >0,
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(26a)
| k

L -1 Ny
\‘\qi(s,z) = gik)(s,z)hg(s+k—kz) + §. ggr)(s?O)hg(s+A—}z),

Ir=1

for 1 < k,
(26b) = ggk)(s,z) hg(s+x—kz), for i > k,

From (9) and (26) it follows that:

[T o Bt

@7 q;(,0) g£r)(s,0)h;(s+x) if i<k,

r=1

=0 if i > k,
Next we introduce the taboo probabilities OQ£?)(X)

defined by:

- (28)
Q(n)(x) = P{T +T +...+T <x,& =j,E #0 for v=1 n-1
0'ij S0 17T n="7"n 77 et
| &, = i}, n> 1,
(o) _

That is, oQi?)(x) is the probability that a busy“pbriod has

at least n cycles of tasks; that the n-th cycle ends not later

“than x and when it does j customers are waiting, given that i

customers were in unit 1 at t=0.

From the definition it follows that:

-

2 Q5w =q@



>and

o +1),. Itk e ) /
9Q§? (=) = vfl X: OQgg)(x-u) d gvj(u), n.Z 1,

' ' - ) }
Since each cycle of tasks can have atmost X services in units
l and-Z, in the above formula v can be atmost j+k.

n n
Let oq).(_j)(s) be the L.S.T..of oQij}(') and:

() r(s)= » a(e),
o '1J]

n=0 07ij

. o o)
(300)  ny5(s) = = 0 i5e)
(31a)  r.(s,2) = 5 or15(8) 27,
() ms2) = T ()2, |a| <1, B(s) >0,

o1 =0 o ij _
or |z| <1, R(s) >0,

() a{™(s,2) - aMe) 2,

Then:




(33) Q(Q)(s) o

0 1Ly . L)
— _(n) Itk o (1) .
oty () = E TG g (s) , n> 1
(34) oquo.)(s,Z) =z,
1™ - o _,f’v‘ Y(s) a(s,2) , iz,
omli(s’z) = qi(s:z) + V—_Z-:]_ Omi\)(s) q\,(s;z) )

. ‘ m .
Note that < qgn)(s) = m.(s,0) is the L.S.T. of the
pey © 10 oi

distribution of busy period of an M|G |1 queue with a Poisson
input of rate’l and service time distribution'Hl * H2(°).

That is:
- (35)  m(s,0) = v'(s) , 11,

More properties of the taboo probabilities oQgg)(-) are studied
in the zero switching case .

4. The Joint Distribution of Queue length

and Virtual Waiting time

Virtual Waiting time:

The virtual waiting time at tiﬁe t is defined as the
length of time a (virtual) customer arriving at t has to wait
before beginning service in unit 1. TFor the non-zero switching

case the virtual waiting time at time t will be dehoted by

O g e S s e




. . .
ﬂ§ )(t), where k is the switching parameter defined earlier.

Queuve length:

The mumber of individuals in the system at time t still
requiring éome service in unit 1 is defined as the queue length
at time t. For the non-zero switching case fhis quahtity will
be denoted by §(k)(t). |

Let 0, ,(t,x) be the joint distribution of the queue length
g(k)(t).and-virtual waiting time Ték)(t), given that at t=0

there are 1 >1 customers. That is:
(36) Aeij(t,x) = P{g(k)(t) - j, ﬂgk)(t) <x | 80y = i},

Further let for i>1,

(37)

oy (6:0) = B{g® ()3, 0 <1V (e) <x, W (r)p0
for all v € (0,8 | €X)(0) = i} ,

Formula (3€) can be written in terms of (37) as:

(38)

t
0;5(6:%) = 8 5(5,) + |

] glj(t -u, x)d Ml(u)

e {5 w)ag, 100 | o) - 1] v
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where Mi(-) is the renewal function of the general renewal

-

process formed by the beginnings of busy periods,

O for x <0
U(x) = { .

1 for x >0

To obtain the equation (38), consider the event on theiright

hand side of (3€) which can be split into three mutually

exclusive events:

(1) The time t falls in the initial busy period,

§(k)(t) =jand O < T]](_k)(t) < x, given that g(k)(‘o) =1i. R
(ii) The time t does not fall in the initial busy ?eriod bﬁt»

in some other busy period which started at time u (0 <u <t)

with a single customer, ( )(t) = jand 0 < ﬂ(k)(t) < x,

given that g(k)(o) =i

(iii) The server is idle at time t (that is ﬂ( )(t) = 0),

given that £K)(0) =
The probabilities of these three events give respectively
the ﬁhree terms on the right hand side of (38).
For i > 1, let xyij(t,x) be the probability that at t
the original cycle of task has not vet ended and that
(k)(t) i, 0 < ﬂ( )(t) < x and ﬂ§k)(r)#0 for all 1¢(0,t],
given that at t=0 the service started in unit 1 with i

customers. Then:

| oot
(39) gyt 2T a QD) g
(w)

i N




This formula is obtained from.the fact that at time ¢t the

server 1is serving in the (n+l)th cycle (n=O,1,....) of the

e , *  initial busy period. The n-th cycle eﬁﬁed Between u and
u#du (0 <u <t) leaving v(=1,2,...) customers in the system.

‘We define the following transforms for R(s) > O,

"R(%) >0and |z| <1:

o

* _ ~-8X
O e A
*% C e *
0. .(&,8) = j e ° 6, .(t,s) dt,
ij o i3
. % 3 ‘
0.(68,2) = £ 6..(5s) 2*
i . ij
J=0
.d * ® .sx
. QiJ(t,S) = Xo e d Qij(t,X) 2
X%, S
6y3(88) = [o ™ o (t,9) at
- :
**, 3
§i(€>s:z) = L Qi,(g,s)za s
- j=0 13
* ©  _sx
4 (659) = jo e a4y, (t,x)
| w RS < A
4. .(g,8) = X e ¥, .(t,s) at,
ijgr=? o igh?

P kx ;
b5 (65.2) = T w0(5,6) 27,
v , §=0 S

(-]

ml(g)-= I

(o]

e-gt d Mi(t)’,



Lemma 1.6

o

- For R(s) > 0, R(€) >0 and lz] <1, the transform "

\’xi(g,s;z) is given by: ‘

(o) | - ' !
k 1 :

¥ (g,s z)= —mZO h2 l(s)' [(:mhz(s)-l'jti:‘+)‘-s-._,\c.>m‘zhl(s)h2(s)j |

. : _ -1
. [zhl(s)-hl('S'F)\-}\wmzhl(s)hz(s))] ]

Si

: [uh[hg(é)-lj z[nl(s)-hl(§+x-xuhghl(s)hz(s»1[uhzhl(é>h2(s>J. |

- [zhy (s)-hy (E-dopzh, (s)h,(s)) ) ¢ (5, zhy (s)hy ()

| . h k),
(e Ly (Shmhezhy (D (o)) (5, oy (D (5))
k-1 (@
+ % [z2(1-¢ )h (s)+(u z- l)h (ERh-rc zhl(s) z(s))]h (s)g. (5,0)
v—
whe_re wo, Gy ""wk-l are the k-th roots of unity.
Proof': ‘
The proba‘oility. "'Jij(t’x) is given in terms of the

probabilities G:(Lt) (u) by:




(%)

- _ t t+x t4x .
. () -x(t-u) [x(t u)1J v
. ﬁij(t,x) = J J J dG; (u) e
T~ v=0'o “t ‘v . J=v
ng - ) - (@)(v) (v;)
. L7k
-4 H(k)(v u)d, (H(J)*H e )) (v-v)
t+x t+x

j j ngz)ku) e-l(t_u) LL&E;BlJi
r=i o "t “v . J- -
(w)(v) (v;)

;-j_ .
. degr)(v-u)dvl(H£j)*Hz([k]k))(Vva)

: | k l J

0 1 j jt+xjt+# e r)(u) - (t- u) LA%E—%%AE_E
r=0 v=1 Yo v

(@)(v) (v,)

- ] _{L_ )
| a4 H (v-u)d (H£J'l)*H ( ] ) (v ~v) ,
- 1

where [ X ] is the greatest integer not exceedlng E

is performing a 2-task at t and that the previous l-task
: éonsisfed of k servicés. The cycle of tasks in which the

server is serving at t started with i customers in unit 1

at t=0. The 1l-task enés aftér k services leaving v ‘

customers in unit 1 at time u. The number of arrivals

between times u and t isvj#v so that at t there are j

Y A e T = SRS AN T ~ TS hakaail



customers in unit 1. The services of the J customers start
after the completion of the 2-task in progress at t. Let )
this 2-task end at time v. If j is a multiple of k, say mk,
where m is a positive integer, then the (virtual) customer
eneters service after the service cbmpletion of j'customers
in both the uhits. That is, after the completion of m cycles
of tasks, each cycle consisting of k services in each unit.
If j is not a multiple of k, say mk+r (0 < T < k), thén the
) (virtual) customer enters service after the completion of 'm
cy?les of tasks together with a further service completion
qf r custpmers in unit 1. Let this service completion occur
gﬁ time vl. Now we integrate and sum over all_choices 6f
Vs U, v, v,

server is performing a 2-task at t and that the previous
l-task consisted of only r ( < k) servicés, leaving the
unit 1 empty-ét the end of the l-task at timé u.

is performing a l-task at t. The-cycle of tasks current at
t started with i customers in unit 1 at t=0 and r (5 k -1)
service completions afe made befére t. The last service
completion before t occurs at time u at which there are v
customers waiting in unit 1. The number of arrivals between
times u and t is j-v. Now there are j-1 customers, excepting

the customer in service, at t ih unit 1. Let the customer

A 3 T s 9 e



who is in service at t complete his service at time ¥ and
.. let the service completion of the j-1 customers occur in ;,
. ) unit 1 at time vy Finally we sum over"all‘choices of r,

Vs U, V, V. !

Taking the transform of (41) results in:
(42)
* ) = J (k) \pd ..‘[%]k ro ;sv -(E+7\-s)t M; J vdt'
yes) = T domem, ()] & jo A
o + a1 (v)
3 | . S
k| -
., }: g( )(t;)h (s)hzk (S).“ - SV “‘ve-(sﬂ\-s)t _Q%)j at
r=i o o

. d ng)(v)

k-1 Ly
+ L 3% g(")(g)h Yotny © ()] 7ov[ e (ihost (*j)i b
r=0 y=1 : o "o

CaH (), -

T I\ M A T i Rt 1 L o R R g Tt 8 e e A R S T e




Hence:

(43)
RACTRIE IR § (e £) [zby ()] j -SVX V- (E-s)t
v=0 o
w [xzhl(s)tjj'v [J]k 0
2 =Y (S)dth (v)
=y (3-v)* v
'k-l ) v © \zh £ J
s pafdofe e Bgs
r=i (o} o | ,j=0 !
e
h;gk] (s) at 4 ng)(v)
k-1 o v o
\ ' ( 2 -sv[ - (E6h-s)t
rig v—l (E) 11 ( )X jo _
= [azn (s)6] 7 (35 -
. Jf\, Gt (S)dt.dHl(v),

Taking the summations inside the integrals is justified

by Lebesgtie Dominated Convergence Theorem. In (43) to sum

the series inside the integrals we use the theorem in Appendlx

A by taklng y = hz(s) % 1 for R(s) > O. Then:

aTmAr A e e




i3 (¢,5,2) = % Z [hz (s)[w hz(s) l'l[g+)\-s )\(., zhl(s)h (s)]]

. [w [hz(s 11{ 28( )(g)[u zh, (s)h, (s)]
| - (s)-n5 (e anh( b (s))]

k-l )
+ 2 gr(gnh(s)h(gmxuzh(ﬂh<sn]
r=

Bl ()
+ I35 g (8) ez (s)hy(s) 1V hy(s) )

r=0 =1

nh<axuﬂgwh@nm<wﬂ]

(hh)
R -l
% [h (o) lgpp(s)11080-s-Ag 2y (5)hy(s) 1]
[onteate)-23 {68 (g 0,2m, (s)ny(s))
. [h‘z‘(s)-hlz‘( §+>\-J\wmzhl(s)h2(s 3B
k-1
+ oz g( )(g,o)[hz(s) ) (§+x Ao zhy (s)h, (ﬁ))]
r=i

k-‘ | -
AT Wa(6) T 1687 (5,0 zhl(s>h2<s>> eF(g,01

* ‘[L-hy (EA-Ae zh. (s)h ()] gl(s)]} ] N




: Formulé (26) gives:
801 (5, i (), () 5 (E-heh (o)n(s))

k-1 (r)
+ % g (g, O)h (&+A-ey zh, (s)hy(s))
r=1

(45) = q;(Euzh (s)hy(s))

Again, using‘(8b) we have:

L (E-\w zh (s)h 2(8))4T
L)Zh (s)hz(s) ]

of Bz (o), (5))-6{")(£,0) - [

[ e e ny(e)]

I (F+l Aw zh (s)h ( y)xr-v
L (v)
[ & Zhl(s)h (s) ] gi\) (&,0) ,

Using this, the last term in (44) becomes after simplification:
(46)

| z' [opa()] [g(r’<g,w oy ()n,(5))-27 ) (,0) |

) [l-h.l("s+x-)\wmzhl(s)hz(s)) |-h1(s)] -

[h (s)-h, (&AL 2h (s )h'( )] .
= zhl(s) h‘(§+x Xc>zh (s)h (s)) {[b zh (S )h, (s)]

k-1

- 7 Tahy() T (5,008 (5, (s, (5)0E(s) )

v=1
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Substituting (45) and (4€) in (44) and simplifying we prove

the lemma. " - f.

Lemma 1.7
For R(s) > 0, R(§) 2 0 and lz| <1 the transform !
Di(g,s,z) is given by

n .
I T ey, (8)y (E,s,2)
n=0 v=1

1) 8,(g,s,2)

x, (g)‘yv(g:snz)

o v

il
i o8

v
where ¢i(§,s,z) for i > l_is given in lémma 1.6, and.
°riv(-) is defined in (39). |
Proof:

Upon taking transform in (39) we obtain:
'm ©
AR (O R

.
n=0 v=1 ° 1V

*
mij(g,S)

o RO

Multiplying both sides by zd and “summing with respect to j we
get (47).
Theorem 1.1 '
For R(s) >0, R(%) >0 and’]zl <1 the transform
ei(g,s,z) of the joint distribution 0, ;(t5x) of queue length
- and virtual waiting time at time t for the tanden queue with

non-zero switching rule is given by:




RN

(48)

0y (65,2) = 8,(5,5,2) + el [ 2, (¢
i §,8,2) = i 58,2 EFA-AY(E ["’)\ Ql(S,S,Z)] ’

vwhere Qi(g,s,z) for i >1 is given by lemma 1.7.

L

Proof:

The transform of (38) yields:

(49) - 6(5,8) = 87 1(&5) +m ()3 (5,5)

e + 8,5 jm;'gt P{ﬂik)(t)=ol§(k)(0)=i} at ,
’ (o] .

The Kronecker delta in the last term is due to the fact

| that:

P{80)(6)=5,7(%) (¢)=0|5(0)-1)

LI}

0 if j#0,

-~

P{n§k)(t)=o | g(0)=1y if j=0,

If M(-) is the renewal function of the general renewal process
formed by the ends of busy periods and m{g) its L.S.T.,

then:

(50) Xme'gt P{ﬂ£k)(t)=0 | §(kj(0)=i} dt
| re-E_;t j—t oM (t-u)

(o] O .

d M(u) ’

_ m{E)
€+ g




where u is the end point of the last busy period before time

t and no customer arrives between u and t.

- Since the input is Poisson, between two sucéessive busy

periods there is a negative exponential idle period. Consider
the renewal process formed by the end points_of'busy periods
and let Fl(-) be the distribution function of the initial
renewal and F(-) be the common distribution function of other .

renewals. Then:

Fl(i)=G(l)(x), which is the i-fold convolution of G(-)

ORI PRRY

where G(.) is the distribution function of busy periods.

~

Hence the renewal function M(t), which is the expected

number of renewals in [0,t], is given by:

| 5 (n)y
M(t) = (5 * T FVV)(8)
n=0
Taking L.S.T.‘we get:

m(g) = £,(8) T £(x)

n=0

£, (5)

s R(E) >0 ,

“where fl(g) and £(g) are the L.S.T. of Fl(') and F(-)

respectively, which are given by rl(g) = vy (&) and

£(5) = 3008

A+E

ey e




That is:

Substitution of this in (50) yields that:

(e}

61 [ -0 | €%)0)-t) at

(o]
_ Yiggg
T EA-Av(E)

Also,

(52)  mug) = gy n(e)

. _aYNE)
T OER-AY(E)

The relation (52) between the L.S:T. of Mi(t) and M(t)
holds because of the fact that the beginnings of busy periods
areiébtained by adding negative exponential idle periods to
the end poinﬁs of busy periods.

Substitution of (51) and (52) in (49) gives:

oy g™ DY) : vi'(gz
eij(gis) = Qij(g,s) »+ §+7\-)\Y(€,) QLj(E;,S) + BOJ g+)\'XY C

" Multiplying both sides by zY and summing with respect to j

we get the theorem.

[ < e arrn oy v Lt # Sttt i . T
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5. Distribution of Virtusl Waiting time

- The stochastic behavior of the process
{ﬂgk)(t), 0 <t <=} is as follows: ﬂ§k)(0) is the initial
occupation time of the server. If ﬁgk)(0+) = 0, then the
server is idle at time t = O+ and until the arrival of a
éustomer who ihitiétes a busy period.
t

Consider the arrival times t within a busy

1, 2,..--

period which started at £ = O with 1 > O customers in unit 1.

tn is the n-th arrival point of the busy period. Let

(v) be

i=mk+r (0<r <k, misa positive integer) and Xn

the sefvice time of thé n-th customer in unit v,,v;l;?.
Then at t ‘the arriving customer has a service time
x(il)l in unit 1. Hence at t_ + O the virtual customer has

to wait a further X§ig units of tiﬁe more to enter service
in unit 1, provided i+n is not & multiple of k. That is, if-
i+n is not a multiple of k then at t_ ﬂgk)(t)‘has é jump of
magnitude X§1g, On the other hand if i+n is a multiple of k
then the virtual customer has to wait until the completiop'

of that cycie and hence at t ﬂgk)(t) has a jump of

magnitude:

(1), (2) L2 (2)
' Xi+n * Xi+n—k+1 * Xi+n-k+2 Foeee ¥ Xi+n

This is shown in Figure 1. -
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Graph of the Stochastic Behavior of the Process {ﬂik)(t),05;<9}

for i> 1, let lwi(t,x) = P{ﬂik)(t)fxlg(k)(0)=i} be the

distribution function of virtual waiting time ﬂ£k)(t), given

*
that at t=0 there were i customers. lwi(t,s) is the L.S.T.

of lwi(t,x) and:
(53)

Theorem 1.2

(o]

o]

¥ -t ¥
Y (g,8) = J e 5 lwi(t,s) dt

L3

DN
For R(s) > O and R(E) > 0, the transform A (g,s) of

the distribution function 1Wi(t’x) of the virtual waiting

(x

time Ty )(t) is given by:




SR ‘** -** o i £ *% 3
R CRORTNCDR ey [ 0] s

i>1,
where lhz*(z,s) is given by: ! . |
(55) | | '
- 1 Bl T
WA (Es) = £ z%[ﬁz (5) Toh,(5)-11(grA-s-he by (5)hy (3]
- |
[, 8611 {Teby (eI ()T - ¥H(2)
k-1 k-1 A
. (v),
RS TCRERC Ol (£,0)} |
Proof': ' '

From Theorem 1.1 the transform of the joint distribution
eij(t,x) of queue length and virtual waiting time is given by
Gi(E,s,z).' Hence the transform of the distribution of viftual
waiting time is obtained by taking the limit z -1 in

ei(g,s,z). That is, from (k8):

(56) lw:*(E:S)

lim 6.(E,s,z)-
. i
A —-,l -

i ‘ . -
_y (£)
8, (5,51) + oS0 (5,5,1) )

Hence it suffices to prove that:

CIONER CERVESN WG




b

— ]

Lemma 1.7 gives:
: | i (n)
(58) ' Qi(g,s,l) x 0 13 (g) V (€>S 1)
n*O J= l
where from lemma 1.€ ﬂ-,.-.(E,s,l) is given by:
' k-1

b(65,0) = & £ [n5 M) g, ()11 E-saeyn <s)h2(s)1]
. m=0 .

[ealrbe-2 2ty (ohn(e) g L5 0 (o)

. |
x5 (-mde)e{ (5,00} ]
I

Substitution of this in (58) leads to:
k-1 '

o g(gs1) = slny 1(3)[(1,1« (8)-1 T A-s-rcyp L(e)ny(e)T]

m=0-

w511 £ g0 odny ()1 2 (5,0)
n=
2" g h (o)ny(s))

il (n) v (v)
I e >:. (1-¢%) B3(s) & (g,o>}]
which establishes (57), noting that from (33):

N ﬁ?’(z) 8; 5 and from (35)f n%; (n)(E,O) v (E) .

5L




Limiting Beh#vior of the Virtual Waiting time Process
"~ The limiting behavior of the distribution of virtual )
waiting time is given by:
Theorem 1.3
.Ifix oy + X o, <1 the iimiting distribution_

lim lwi(t,x) = lw(x) exists. The L.S.T. of lW(x) is

t @
given by:
(59)  jels) = (1-Aay-hap) e A (0,8) )

. %
where N (0,s) is given by (55).
If hy, + A, > 1, then lim .W.(t,x) = O for all x.
1 2 - £ o 173

In order to prove this theorem we first show that:

Lemma 1.8

- ol (k) (x) .
e 7, (0= H{1(6) = 0 | £'(0) = 1}
then the limit 1lim Pio(t) = P: always exists. We have:

N {1-701_-)«12 if doy + ha, <1

(60) P = v
0 _ if Nal + XQz >1

Proof':
If M(+) is the rénewal function of the general renewal

process formed by the ends of busy periods, then:

p, 0z M) e) = 0 | o) - i} = [ e gy




By Smith's Key Renewal Theorem,

- : . 1 -Au
e lim P, (t) = -j e du if My, + Ao, <1
‘g} § e 10 nJg gi 2
=0 if A, + A\

1 o 21

, ' 1 . - .
vwhere y = A(l-lal-kaé) is the mean ren?wal time. Hence the

lemma is proved.

Proof of Theorem 1,3:

Summing equation (38) with respect to‘j we get the

distribution of virtual waiting time as:

. t '
(61)  pw(6,x) = A (6,x) + [ A (Beu,x) @ (u)
| - o | |
+ P{n£k)(t)=o |_g(k)(o)=i} U(x)
_‘ ﬁhere: o
- 62 (t,x) = T B, . (t,x
(62) 1Ay (5%) 5 Qla( _ ) )
Taking L.S.T. of (61): _
(63) | | | )
t

1W:(t95) = lA:(t,S) + I lA;(t-u,s) dMi(u)~

+ p{n{®)(e)-0 | ) (0) - i}

Using Smith's Key Renewal Theorem (Theorem U, Appendix D)

and lemma 1.8 and taking the limit of (63) we have:



(64)

-
©

: -~ . % ' _ N / .
@ | tlt;nm _lwi(t-,s) = l(l-xal-)\az)jolAl(bu,s)du+_(l-)\q1-l@2) >
. ' !
if l—kai - haz >0
=0 if l-lai - laz.g 0.

_ . -
*
since from (41) it can be shown that lim ?‘¢ij(t,s) =0

t = «j=0
* oy
which implies from (39) that 1im _A. (t,s) = lim ZQ.St,s)=O.
. 1 N i
t <o t o j=0
Again, (64) can be written as:
(65)

L,
lim lW.(t,s) =
T S §
t o

- - =0 7 if l-)\ol-)\ozz <0

f

3 - . ’
(1-Aai-xa2)[1+xjplf(o,s)J if 1-zoy-Aay, > O,

. %
- , From (55) it can be shown that N (0,s) is continuous at s=0.

Hence by Zygmund's Theorem {Theorem 1, Appendix D) the

limiting distribution lim |W(b,x) = (W(x) exists and the
t - o :

L.S.T. of iW(x) is given by {€5).

Formula (55) can be rewritten as:



o (h5(s)-1]0h (s)h,(s)-1)
ol (0,8) = (— — )
® ki (s) [ny(s)-1A-s-2b, (s)h,(s)]

(l [hk— (S)[U h (S) 1]}0-s-2c »h (s)h (s)]]

[U [h (s) 1] {u h (s)hz(s) -1

+ k?:lor (0) kzl (1-°)n, (S>8(“)(° O)} ] )

j=1 13 v=Jj

= g (s) + 7(s)
where ;l(s) and ﬁz(s) are respectively the first and the
second term of (66)
Taking the limit s - O in (66), we see that the
numerator of f,(s) is zero while its denominator is non-

zero. Hence:

7 0+)

¥
1A (0,0)
’ ot

l_ )\.al

2

- > -
laz

which together with (59) gives lu(O&) =




~ Expected Value of the Limiting
Distribution of Virtual Waiting time
Let Mﬂ‘(k) denote the expected value of the limiting

distribution of ﬁgk)(t)L Then

o d _
SO - 55 aue)]

]

: 3 *%
- }(?‘*ai‘kaz)'sg lAl (O,s)]S=O R
From (6€):

€)  Fanes)] =0+ e

~

where the number of primes indicates the number of successive
derivatives taken with respect to s. Let Al(s) denote the

numerator and Az(s) the denominator of Tl(s), so that:

Ap(s)n, (s) - 0,(s)a, (s) ]
[Az(s)]2 5=0.+

(69) 7 (o) =

Applying de 1'Hopital's rule four times on the right hand

side of (69) we geﬁ:
’ ' | ‘ \ 2
200 = [45(00a"(0) - aj(0)ay ()] [3(0)]

Where after simplifying we obtain:



u 3 '
8, (0) ¥ 2y (o + o)

QIKO) 3k[a (B, 2o 0,48, )+ (k- 1)02(0 401, )48, (o 41 )]
Ag(o)_= - 2o, (-1 + A o+ Kaz)
“(o) Sk[z(k 1)~ (-14hory +hxy )+ 3har, (B +20 0,48,
+ 352(-1+xal+kaz)]

. Hence:
(K-l)az(al+a2)(l-hai-xa )- (Bl+zo a,*8,)

(1) gl(on) -

2(1-2 -xaz)z

1

Differentiating Lz(s) with respect to s and setting S=d=

a, k-1 ¢
" 2
550) =2 7 —2 (o
2 Vel (1eg)? 0T
k-1 N (v)
RSO z (1-¢) ¢; (00)}
J:
e k-1 o
(11) == I I:E—
m=1 ~ %n
a, k-1 k-1 kel Spl-9p) ¥ (6,0)
+ "’): by Orl.(O) . Y (l )2 ? 3
J=1 J v=§ mal 7Y

From the properties of the roots of the equation zk-l =0

we find that:



30

A 1 k-1
- (Y T T5 . >
m=1 l kﬁ 2 /
k-l w k-1 ' T
(12) . Togs (e =-
=1 m  m=l m J

By the method of partial fractions we'get:

ui+l = 1-(v+1)(1-uh)+v(l-uh)2;(vjl)uh(l°ﬁh)2+(v"2)dﬁ(i;%n)2

+ s seceas -t zwv-z(l_u

)2

v-1 2
R (l"uﬁ)

which gives: _
"
kl'l um(l um-) _ k-1

o Y . 1-q _ 2 _ )
m=1 (1-uh) m=1 m . m=1 (l-uh) - om=l (1 ¢

/7

L

= v(E%i)-v(k-l)+[(v—l)+(v-2)+ ceeed 241]

k-1 »
since 7 ¢ =-1for 1 <r <k-1. -
m=1 n
"That is:
, v
k-1 Lh(l_hh) __ v(k-v)
(13) L e Tz
m=1 (l'“h) » ‘

Substitution of (72) and (73) in (71) yields:

R



o -

o, k-1 k-1 (\))
" I o5 (0 B v(k-v) g57(0,0)
g=1 " 1 v=j

Formula (68) together with (70) and (74) leads to:

(75)
Q_ ,¥¥ 1 r .
= A, (0,s) = (k-1)o, (v, +or, ) (L=Aov, =Aos, )
os 171 2(1-)\01-)\a )2L 2 1_ 2 12
(K- l)a
. - (Bl+20 "'Bz)]
o k-l k-1
2 - - ' (v)
=5 i 1. (0) : v(k-v)gi¥/(0,0)
2) =1 o 1j v=j J
) It follows from (67) that:
- _ : A(B +2r1 a +Bz) (K-l)czz
(16) M (k) = o -
m, z(l-wl—)az? 2
%, k-1 k-1 (v) '
* =5 (1-xy-2a,) ji‘l 0rlj(O) vzjv(k-v)gj (0,0)

where o1 ( ) is defined in (30).

It is worth noting that for k=1:
t, (2) = M6y7210,) | 220k i)

which is the expected value of the limiting distribution of the
virtual waiting time of an MlGIl queue with impute rate A and

- _ service time distribution H *Hd( ). For k=1 the tandem model

B e




reduces to an M(G |L queue with service time distribution
Hl*Hz( ¢ ) . , - {
Conjecture:

For all k > 1:

(17) - | Mn1<k+l) <Mn1(k)

The proof for k=1 is simple:

From (76) we have:

My (2) = My 2) = 3 [(rag )y 0l (0,001 ]

<% [@eg-n0p) rpy (0)-1] < o

g

. - A .. — . 1
~since from Theorem 3 of Appe?dlx B j;l rl.(o) < l—hal-kzz

€. Queue length Process

Let Pij(t) denote the probability that at t, j customers
are in unit 1, given that the service started at time £=0

with i customers. That is:
(78) Pij(#) = P{g(k>(t) =] lyg(k)(o) = i} N

Let nij(g) be the Laplace transform of Pij(t) and:

©

(19)  w(8e) = T (020, el <1, R(E) 20
=0 .
‘ ’ or |z| <1, R(E) >0

For i=o and j > O we have:



.

' 5
(80) L (%) l+€ + X:E nlJ(E) , and

(81) A (g,2) = XTE [l + N X (@,z)]

The equation (80) is obtained by considering: |

(i) 1If j=O then there can be either no afrival in [0,t]
or there is a negative'expoqential idle period followed by a
busy period.
(ii) If j > O there is a negative exponential idle period
followed by a busy period, and in this case the first term on
the right hand side of (80) vanishes.

For i > O we have:

Theorem 1.h:

The generating function ni(é,z) is given by:

1

©2) (52 = (6 ¢ 5L 14y (60)]

where

-1

[ (8A-a2) lz-n (gn-22)7 ]

[ty (50r2) -2 Laom (8en2)] ¥(e)

- (L (saaz){ 7y (82)- T (%)[g( )(g,z)+ Zg( (5,0) ]}]

3=1°

and orij(g), ori(g,z) are défined in (30) and (31).



Proof:
The geﬁerating function ni(g,z) isrpbtgined by taking the

limif as s =0+ in the transform Gg(g,s%z) of the joint

distribution Gij(t,x) of queue length and-vi;tual waiting time.

From Theo:em 1.1 we have:

'ni(s,z) lim 6, (&,s,2)

s -0+ . _
= vi(e) .
Qi(g’o’?) + m [l'*')\ gl(CS,o’Z)J

Hence it suffices to prove that:

(8%)

(85) mi(g,o,Z) = Xi(é'uz)
~ From lemma 1.7, ﬁi(-,-,-) is given by:
| _ 3 v o(m) oy 4.(E,0,2)
(86) ‘ Qi(E,O,Z) - I .-/' Oqu (g) Jd
n=0 j=1

where ¢j(g,o,z) from lemma 1.6 is given by:

-1
(81)  45(8,0,2) = [ (§rh-rz) Lz-hy (5h-r2)] |

[[l'hl( §+)\-XZF) ]zj+l" tz'hl( §+)\-)\Z ) ]q,] ( g’ Z)

&M (5,0)]]

since other terms in the summation on the right hand side of

k-1
! (z'l)h1(§+x‘lz){§§k)(§,z)+ 7
v=l

(40) for m=1,2,....,k-1 vanish as s - o. Substituting (87)

in (86) we find that:



(88)  2;(50,2) = [(g-ra)[z-h (emr-ra)] |

e — [z[]_-hl('E_+,\-7\z)] 2:Q.Loqin)(g’z")moqlg.n‘)( g,-o)) :
. n=

a(m1) (g o)

Ol
n=0

- [z-hl(grx “Az)] Z

) o PN )
(g (5 k-kz)jzior;j(g){gj (520 T 6.V (5,0)] |

v=J
o : -1
= [( E+x~Az) [z-hl( E+r-2z) ]:\

[zi [z-hy (5A-2z)-2(1-h (E-02)] v (8)

- (2D (8ena) {7y (620 T 2 (9) (809 (g,0)

e
It~ 8
|

_ R o]

_ wﬁich proves (85).
. Limiting Behavior of Queue length
The limit of Pij(t) as t - o alwvays exis.ts by a theorem
of Smith (1955). ' . | -

Let us denote:

(89) 'P; = lim P, (t)
t = o
and
(90) P(z)='_2'OP§zj, 2| <1,
_ j=




Then by a standard Tauberian Theorem (Theorem 5, Appendix D)

vwe have:

i

Ty
(1) Fy= im j Py(t) av

gli?o £ I Pij(t) at

which together with Theorem 1.4 gives:

lim € =, ( z)
€20

: v (E) '

(l—hal-kaz)[l+xxl(0,z)] if 1Ay -Aoy, >0

P*(Z)

it

(92)

{

0 . Af 1-dag-de, <0

-

where xl(o,z) from (83) is given by: : o

(93) % (0,2) = xLz_hiﬁ_fm{_—z+hr,(x-xz)[orl(o,z)

8

(o)fg(“>(o e T &0 0>3]}
l ‘ _.

'
IIN

, _ J
~ Substitution of (93) in (92) yields the following:

- Theorem 1.5.

The generating function P*(z) of the limiting pfobabilities

y




(o8) o ‘
P(z) = (1-)o n -Aop)h; (A-Az) [z-h (x-xz)]'l {-l *OF (O,Z)‘f

150 [g( )(o, Z)+ 27 83 v)(O 0)] } ;

)
i
H'ﬂ 8

J
where 0rlJ.(-) is defined by (30).

The Steady State Expected Queue. length
Let Mg(k) denote the mean of the limiting distribution

of §( )(t) as t = ». Theorem 1. 5 gives:
M (k) = S P (Z)L:L

(l 10 NN

_ 2. 4.
(95) ———% [y (100 )0y ) T s ,{oru(@

2(1- )ao

- ; 2@ B}

‘\)1

. (l-xal) Ta(a 1){ry(0)- z 1,0} ]

(1-2o -\, ) e

1 [J{[ZXO (l Aoy )4\ Bl]+(3 -1)(1-)\x )J

i 2(L-\x l)

@ - % 2@ &) ]
v=1



CHAPTER I

Here we consider a tonden qwue with o zero switolhiicg
Jyule in units 1 and 2. At %=0 the acrvor sharbs in wnii 2
and continues $o serve there until f“f guevs ia wih 1 Lo

comes empty. After compiating the 1-task bthe server switchos

y -
tq unit 2, serves 2ll tha eushors e there, fuen switches nooi
to unit 1 and continuas in thag m.::mér. IT the whole .:'Js"r:.

_ is empty the server waits in urit 1 for the arrival of a
custozer who initiates a busy pericd. -

The analysis of the queus with zero swilching case is
. easier than non-zere switehing cezo., The disrtribubicn of
busy pericd for the zero switching case is the seme as in
non-gero switching case (Chap. I ‘section Z) -
1. ZIrarsition Probebilibies of #he Pnsiz
KWe use the seme notebions & in hag, 1.

T e e ey S S e et . e a4 = e R A £ o o e S Pt o



e 1, < vlSn-'l - i}

(1) qyx)

f‘jx jx dG(r)(u) -A(v-u): ~l§ﬂéill- dH(r)(v-u)

r=1

(u)(V)

The transforms qij(s) and gi(s z) of Q..(-) are given by:

. - (r) -(s+0)x (Ax J (r)
@ eyl r-’i 24 <s>j ij—l any” (x)

qi(s‘,é) = ng)(s,o) hIz"(sﬂ-hz)
r=1i
(3) | = vi{ss nyls + 2 - a2))
(by lemma 1.2)
If °Q§ )( ) are the taboo probabllities defined in (1.28) then:

{(x) - By Ulx)

o ij
and

(&) °Q§?)(x) = ;‘ XXQQ(H l)(x-u)dQ (u) n>1
e v=1 "o

Their transforms are given by:

q:gg)(s) = aij
(5)
qig)(s) 'E qig (s q,5(s) »n>1,




48

oq§0)(s’z) =zt : : . ;
© | o o
()(SZ)= lofsl)(S)q(SZ),n>l ,

A further discussion of these transition probabilities is

given in Appendix B. o | | b

2. The Joint Distribution of Queue length

and Vlrtual Waltlng time

B e MR R s s Rk R SR AU N R

For the definitions of queue length and virtual waltlng
time we refer to Chep., I £-4. 4 Let &(t) and ﬂl(t) respectively

denote the queue length and virtua; vaiting time at t. Define: E
(1) 0;40e,x) = B{E(t)=3, N (8) <x | §(0)=1]

8)

A o Y Sigi i o ittt R Ry St R

ﬂij(t,X) = P{g(t)=j, 0 <7 (t) <x,M(7)#0 for all 1€(0,t] 2
| &) =1 } ]

Analogous to equatioﬁ (1.38) we obtain: - ;
(9) eij(t’x) = Qij(t’x) + Io §lj(t-u,x) d, (u) 3
+ B{&(t)=3, M (£)=0 | €O)=i} u(x) , | o




Let ‘}’ij (t,x) denote the probaﬁility that at time t the origihal
cycle has not ended that 3f{t) = j, 0 < 111({:) <x and
T&(-r) £ 0 for all t€ (0,t], given that\'n.t‘ t=0 the service
started in unit 1 with i cust_omefs.'

We define the transforms .eg(g,s), é:;( E,s), \',l:;(g,s),
91'(§,S,Z), Qi(E,S,z) and ¢i(§,s,z) as in Chap.. I sgé.-k.
Lemms 2.1 |

For R(s) >0, R(§) > 0 and |z| <1, the transform

¢i(§,s,z) is given by:

E+A-s

(10) 4y (&s,2) = §+A_s_l§hl(sj {a,(8,5552)-q, (,2h, (s))

R ICACI ) INORNCIREN O

- -l .
[z (s) by (ermran ()|} L 121,
Proof:

The probability ‘hij (t,x) is given by:

(11) |
o & bttxbex A (4o _n)1d

o = 21 gl e ) Dttt
r=i o t v :

.+ ; ,‘jz j‘l: j1:+x\‘\t+x dG(r>(u) e'}‘(t'u) [ i':-u .‘j-v‘
Cr=0v=l %o "t ‘v v g

() (v) (vy)

QHl(v-u)dH](.'j'l.)(vl-v) -




The first term is obtained by assuming that the server is

performing a 2-task at t. The cycle of tasks inrwhich the

e ‘_  server is serving at t starts with i customers in unit 1 at

- t=0 and the unit 1 becomes empty after r services at time
u(0 <u <t). There are j arrivals in (u,t). The service of
these J customers starts after the completion'of thé 2-task
in progress. Let this 2-task end at time v(t <v <t + x).
The service completion in uhit 1 of the j customers oceur

‘at time vl(v <v, £t + X). Now we integrate and sum over

1

all choices of r, u, v, and vy

The second term is obtained by assuming that the server

is performing s l-fask at t. The cycle of tasks in which the
'sérver is servihg at t starts wi£h i customers in unit 1.

at t=o. Let there be r service completions in unit 1 before
t. The last of these occurs at time u and at this time there
are Vv customers waiting in unit 1, There are j-v arrivais

in unit 1 in the interval (u,t).so that at t there are j;l
customers in unit 1 excepting the customer in service. The
service completion, in unit 1, of the customer in service
‘occurs at time v. The service completion, in unit_l, of the

1

Jj=-1 customers occurs at time v,. PFinally we sum. over-all

choices of r, v, u, v, and vl.

Equation (11) is valid for all j > O, For j=O the last

term disappears. Upon taking transform in (11) we find:

- e

N e et 2 e pea, —
e PSP a e e iy mprmaeny e e,



P

(12) - o L
Es) = Zg(r)(t)w’( )X "’"f (et B9 e e w)

O
v 3 (x) ? ~sv(¥ -(gn-s)e ()7
+ % Zg (§)h ) G
=O v=1 ( Xoe Xo J=v
at dHl(v)
Hence: |
0;(85,2) = T ¥ 1(E5) 20

J=0

1 @ . | |
= Erk=s-Azh, (s) Lfigg)(é)[llg(s;-h§(§+x-xzhl(s))]

o

v 5 2T (On N (e)e vy (5)-n, (5a-heh (511}
r=0 v=1

- Using (3) and (1.14) and simplifying we prove ‘the above lemma.
Lemma 2.2 |

For R(s) > 0, R(E) >0 ahd 21 <1 the transform
Qi(g,s,z) is given by:
(13) |

8y (g,s z) = E+A-s- izh (s)L.n [ (n)(g &+\ S) gn)(gthl(S))}

+ z[hl(s)-hl(g+x-xzhl(s) )] -

[z, () - my (gen-dany ()) [

z [ a{™(gan () a{™ (e (g))]}

- n=0 Lo 1



Proof:

‘As in lemmsa 1.7 we have:

. ' i © o (n) ;T
(lh) éi(g’syz) = nzs vz; oqiv (g) ¢v(g,§:z)

Substituting ¢i(§,s,z) from lemma 2.1 and simplifying the

result follows. The convergence of the serices
[+~

z oq§n)(s,z) is discussed in Theorem 3 of Appendix B.
. n=l '

Theorem 2.1

For R(s) > 0 R(§) > O and \z\if 1, the transform
6, (€,5,2) of the joint distribution eij(t,x) of the queue
length and virtual waiting time at t for the tandem queue
with zero switching is given by:

(15)

ei(E,S,Z) = Qi(g,s,z) + E+A-AY(E

i,
__1_£§1_7 [1+k§l(§,s,z)] , i >1, o
where Qi(g,s,z) is given by lemma 2.2,

Proof':

Similar to the proof of Theorem 1.1.

3. Distribution of Virtual Waiting time

The stochastic behavior of the process {ﬂl(t), Ot < }
pay be described as follows: nl(O) is the initial
occupation time of the server. If ﬂl«)+) = 0 then the server
is idle at t=O+. Let i be the initial queue length at t=0

and tn the n-th arrival point and Xgri the service time, in



vunit v; of tile custoner arrivi‘ng at time t . At t .the value of
. T] ('b) has a jump of magnitude X(l). Between any two arrlvals

| 'ﬂ (t) decreases linearly with slope -1, As soon as Tll(t) reaches
zero, it jumps suddenly to a magnitude equal to the tctal service
time of all the customers present in unit 2 at that time,

after whlch 1t linearly decreases with slop -1 until the arrlva.l

of & new customer. This is shown graphically in Figure 2.
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FPigure 2

Graph of the Stochastic Behavior of the
Process {T\l(t), 0 <t <=}




Let jW; (t,x) = P{W (t) <x [ £(0) = 1} be the :

~-.. distribution function of the virtual waiting time W (t), =

given that at t=0 there are i >1 customers in unit 1. Let
*% ' ' - ) '
A (E,s) be the transform of lwi(t,x) defined in (1.53).
Theoreh 2.2 '
' ) X%
For R(s) > 0 and R(§) > O the transform A (€,s)

of the distribution function lwi(t,x) of the virtual waiting

time T&(t) is given by:

% ** vi . T
18) e = (e + EJT%%EJ (1% 87 (8,8) ]
" where
. " S .
an a7 (gs) = [sesaang ()] {nd(e)-vie)
i, Eth-s\ 1, €4\
+ ? an(gy—_r)f'an(g:—x_)]} s
n=1
and
2,(52) = z
(18) an( g’z) = Yl{g’hz[-g"’)\")\an_l(gyz)]} s I 2 1,
Proof:

*% : ’ ‘
We get lwi (&,8) by taking the limit z = 1 in the trans-
form Gi(g,s,z) of the joint distribution Gij(t,x) of the

queue length and virtusl waiting time. Theorem 2.1 leads to:

M5 (6,8) = im0, (&,s,2)

AR I

: V(e .
8 (88,1) + gL Ey(6e1)]

(19)




Hence it suffices to prove that:
. - . » | .
R (20) Qi(gys’l) = lAi (Q,S) y 1>1,

From lemma 2.2 we have:

(21)
8;(6,5,1) = [srh-s-An ()17 {nl(s) + T o o) (s, 8
=
SOy
OO

Equation (3) gives:

A (o) - a0+ 2 1Mo ¥

. o™y
g

©

- (“)(@0)+_Z q<“)(g>q (@5—>

(o T By

i

(5,00 + alm (g, By

which upon summing over n leads to:

[+ o]

r a®Eve) - 1 a0 z o™, B

n=0 n=0 n=1

Yig) + 7 _al™g,
n=1

(For convergence of these series we refer to Theorem 3 in

Appendix B)

Substitution of this in (21) yields:




(22)

8 (6,5,1) = [Grhesn (s )] EBRE >‘[oql“)(f;,g‘°_x ?)

0q§n><a,—%~;i>]}z

Using lemma‘z of Appendix B and simplifying the above expfession

we prove (20),

Limiting Distribution of Virtual Waiting time
Let lW(x) be the limiting value of lwi(t,x) as t < o

and let ,a(s) be its L.S.T. The existence of the limiting

~ distribution can be proved by Zygrmund's theorem as in

Chap. I section 5.

" Theorenm 2.3

The L.S.T. of the limiting distribution lw(x) of the

virtual waiting time ﬂl(t) is given by:

(23)
(1- -\ -Aar, ) :
1908) = =g NG ) { * A n?i 1-2, (0,2 )] }

-if 1-xal-ha2_? 0]

0 otherwise

]

where the functions an(',') are defined in (18).
Proof: _
Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:




[
£
2]
S
1

. *¥
(L-don -hzp) [ #2107 (0,5)] it 1-dey-ha, > O,

0 otherwise

*¥%
where | A (0,s) is given by (17):

s
ik
b3
—
9 .
i

) = Dosiiy (017 {ry ()1 ¢ 7 [a (0,55)
n=1
-an(o,l)l}
_ 1 2 A-5
@) = ey G ¢ T li-a, (0,55)]])
The convergence of the series Z [1-a (O )] is discussed
. - n=1

’

in lemma 7 of Appendix B.
Substituion of (25) in (24) proves the theorem.

Taking the limit as s ~ 0in (23) we observe that:

(1- Aai-Xa ) ©
(26) 1‘”(0) = Tm—- l:l + 7 a'(O l)]
. n=1
=1 if 1-Aag e, > O,

by lemma 1 of Appendix B.

Expected Value of the Limitipg Distribution
| of Virtual Waiting time
Let M_nl denote the expected value of the limiting
distribution of ﬂl(t). Taking the derivative of (23) results

in:

57



PAY

3 quls) | | .
(1-Ae, ~Aor.)
(271) = -———fﬁ;—fi—- {x p 11 + T s ‘(0,1)]
2(14\01) omel
) . (l-)‘al) o) ) N
"7?‘”n5_%#OJJJ

Using lemma 1 of Appendix B and si mpllfylng (27) we obtain:

1[81*62+2( *01

"(28) M, =

Ty

2102 ) 01~ (2%

l}\al
Computationof higher moments seems to be very tedious.

x(sl+62+2ala )
If we denote M,“ 16 lal-)\a )-— which is the steady state

expectedvnrma]_ waiting time of an M ‘G ‘l gueue w1th service

time distribution H *Hz( ), then 1t can be shown that:

1 o : _ 1 1
EM‘Q'—§<MT11<CJ.MT]-CZQI’ foranycl>-é-, c2<—2-,

4. Distribution of Queue length

Let Pij(t)=P{§(t)=,j | 8(0)=1} and nij(g) be its Laplace
transform and
(29)  (8,2) = P T, (§>z » R(8) >0, |z| <1

J=0
or R(E) >0, |z| <1

Theorem 2.4
The generating function :ti(g,z_) is given by!

[



(30)
.ﬂ (E,Z) = Xl(g,z) E’r)%y [l + A X (gsz)] i 2z 1,

where X, (g,z) is given by:

(31)
X;(6,2) = i =F (7 [ - ddegn]

+ z[z;nl(gﬂ-xz)]-l[l-hl( gA-1z) |

z[ a(52) = ap(ev ()]} izl

and the functions an(-,') are defined in (18).

Proof':

Analogous to equation (1.84) we obtain:

| | i
(32)  m(2) = (5,0,2) + 81 ey(5,0,0)]

where . (§,O z) is obtained from lemma 2.2:

g, (§,O Z) §+)\ Nz {hz oq(n)(gs §+)\) = oq_]_(‘n)(g,z)]

z[z-h (§+R-Xz)]-l[l-h (g+x-xz)]

+

g zLﬁ“%g,>- “%gﬂﬂg»]}

Xi(g,z)

(by lemma 2 in Appendix B)




which together with (32) proves (30).

Limiting Distributiqn of Queue length
- . ..
Let P, = 1lim Pi.(t) » :
J t e J. T ) ]
and ’

. o
* * 3 :
(33) P(z)= T P, 29 lz] <1,
s J
J=0 _ :
where the existence of the limit is established as in Chap. I
section 6.

Theorem 2.5

*
The generating function P (z) is given by:

(34) |
(1-Xal-)\a . (A-rz) o . '
* 2/%1 :
P-(z) = = T |l-a_(0,z) | if 1~y =Aa, > O ,
hl(h-kz)—z =0 [ n'". ] 1 2;

O otherwise,
where the functions ah(-,v) are defined in (18).
Proof:
It follows as in (1.92) that:
(35) P*(Z)=glimo £ x, (€,2)

(l-koi-kaz) [l + A Xlg),z)} if 1-xal-xa2 > 8,

0 otherwise,

vwhere Xl(O,z) is given by (31):

B S g A e E T Y T PR T 0 T e




(36) Xl(o,z) = if%; { ;i [an(o,l),- an(o,z)]
. n= :
+ z[z-hl(h—lz)]-l[l-ﬁIQA;kz)]

g[ (Oz)-a(01)]}

n

’ (A-Az).

- by (A-dz).

)\{ A by (hz) | 7 [l 2, (0, z)] }
Substitution of (36) in (35) proves the theorem.

It cah be shown that:

P (1) =

Expected Value of the Limiting Distribution
of Quéue length
Let Mg denote the expected value of the limiting distribution

of E(t). From Theorem 2.5 we obtain:

5 P*(z)],_l

(1- -y -Aa )

-——-—__-- 2 1- + z‘ a’(0,1)
2(1-hay)° {[ ml( e ) : Bl] “n

+ (1) f a”(o 1)}

n=0

x2(51+52)+zxa1(1—xai) '

37 _ =
21301 ) - () )

(by lemma 1 in Appendix B)

}‘al+)\Mnl




5. Distribution of Total Time in the System
Consider all the customers present in unit 1 at time t.
Their total time required to complete services in unit 1 as

well as in unit 2 is defined as the total time in the system

EE_E'. We denote by ﬂz(t) the total time in the system at t©
for the zero swifching case, |

Lét Zwi(t,x) = P{’nz(t) <x | g(0) = 1} be the
distribution function of the total time in the system ﬂz(t),
'give'n that the queue length at t=0 is i,
Further we denote:
(38)

| ZAi(t,x)=P{O < _nz(t) < x,nz(r);éo for all 1€(0,t] | g(0) = i}

B

and iet zxj(t,x) be the probability that at time t the original
cycle has not ended and that 0 < ﬂz(t) <x and

'nz(r) # 0 for all 1€(0,t]), given that at t=0 the service started
in unit 1 with i customers. Analogous to equations (1.38) and

(1.39) we obtain:

(39) t' - -
M (6,%) = A, (,x) + j A, (6-u,%) an (a)
o]
+ 2 {ny(6) = 0 | 5(0) = 1} Ux)
gnd
(40)

] © t

2Ai(t,x) = T T j

(n) .
RN doqij (u) 2;(J.(t-u,x)



For R(s) > O and R(E) > O we define the following transforms:

. ° @
W, (E,8) = X e f e aw.(t,x) at
23 ) ‘o 2
** o ® e [© _
zAj (g,8) = Joe 5 Le-sx dZAj (t,x) dt
*¥* © g [© -sx
ZX' (&,8) = I e-g j e ax.(t,x) at
J o o zJ
Lemma 2;3

*%
For R(s) > O and R(E) > O the transform ZXJ' (8,s) is
given by:

(b1)
FeseAY, (s)
25 (65) = [E-snn (s )-x (s)Yl(s)] 1 [g,——f—~—-s—] |

-, (Ey(e)Y ()] +
¥, (s)-hy (ga-xny(s)¥, (0) |

;hl(sﬂ\-)\Yl(S) )=hy (8A-Ah,(s)Y, (s) )]

[(OMONE qj(g,kgﬁ'-s)] }oazt.

Proof:

The probability zxj (t,x) is given in terms of the

probabilities Gg.‘)(.) by




(42)

© © © t bxtex bx '
=2 v v or [T et
S TR V=0V, =0r.=v o+, o Tt Sy T _ J
PRI R0 () (vy) (vE)
u)l{v Vl VZ

\Y

v ' _ |
;e MEw) W] T A(v-t) [xgv;t?'lvz 4 ) (vew)
2’ :

l.
(ry) ( (vy)
4. ¢ -v)d H -
V) V50 vy-v) v, 2 (vp-vy)
o ® ® © b b X X ()
+T T LY zjjjjac.(u)
r=0y=1v,=0v_=0r_=vty, +y_-1"0 't v v Jv

PR T ) ()

V. .
S AW DT At D1
vy Vo | v1it.

- (xy) . (r+vty, ) -
ca6 - 1o(vyv) A H, 17 (vymvy)
1 ViV Tyt Vv

The first term is obtained by assuming that the server is

pefforming a 2-tesk at time t. The cycle of tasks in which

the server is serving at t starts. with J customers in unit 1

at t=0, andnfhe unit 1 becomes empty after r services aﬁ time

u. The number of arrivals in unit 1 between times u and t is

vy . The'r.customers in unit 2 ag time u have service completién
at time v and Vo is the number of arrivals in unit 1 between

times t and v. At time v there are v.+v

1Yz customegs in unit 1.

e XL



Starting with v Y, customers at time v, unit 1 becomes empty

1

1 services at time vy The service completion of the:

customers in unit 2 occurs at time Vo Finally we iniegrate

after r
ho!
and sum over all choices of Ty Vis Vo Ty U, vy vy, and \CE

The second term is ebtained by assuming that the server

is performing a l-task at time t, The cycle of tasks in which
the server is serving at t starts with j customers in unit 1
at t=O,I.There are r serviée completions in unit 1 before t.
The last service completion before t occurs at time»u, at
which there are v customers waiting in unit 1. The nﬁmber of
arrivals in unit 1 between times u and t is vy The service

completion of the customer in service at t occurs at time v

~

and there are Vo arrivals between t and v. At time v there

are v+vl+v2—l customers waiting in unit 1. Starting with these

v+vl+v2-l customers at time v, unit 1 becemes empty after ry

services at time vy- lastly the service completion of the

r+v+vl customers, who arrived in unit 1 up to time t, occurs

in unit 2 at time‘vz. Now we sum and integrate over all

choices of r T u, v, V énd V..
e s Vo Vp s Vos 1 Y Vs Vo 20

Teking the trensform of (42):




v. (r,) :

1l 1 !
()

\)1+V2,0 :

© ' \’l © . \32 v
: j (Bt (At? at j e-(s+k)v(kv2' g ng)(v+t)

o) Vi° o Vo©

THVUY, (r)’

. (2] o (o] o . o0 (r)
+ L T 7T z (§) (s)gw\,l+v2-l o(s)
rqov=1x1=0vzﬁjrl=v+vl+v2fl

o ] vy - Vo o
. X o (&)t (xtzl at X (s )v (kv}| at (v+t)
o Ve o Vo
Using lemma 1.1 and simplifying the_above expreSsion leads to:

o - [E+1-2h Tv
Z‘g(r)(s) j (S) h(s) at

*%
2xj (F;,s) req
© -[s+>\ AY, (s)]v-
. I e 1 { deér)(v+t)
o

(r) TH+Y @ - [6+h-dh,(s)Y, (s) ]t L
Z‘ f h Y e dt
I Zeem e e |

+ .

o -[s+A- KY (s)]v
: j e BT au (vt)
(o] ) .

L --[s+x-XY (s)]v
| nggg)m e 7

v '-[g-s4xvl(s)-xhz(s)vl(s)]t

e

i at an{F) (+)



o < [s+A-AY, (&
¢ LT g§r><g>hr*v< )Y”' () [ e ) ,
r=0 v=l o _ 4!|

v lesan (s)-1i (s>Y ()3 ()
‘Je | at any (V)

©

. Qe |
- [g-s+xyl(s)—xh2(s)vl(s)] {rf} ggg)(a)[hg(s+x-le(s))
= mg(enang(e)Y ()]

(r) THY v-1 - .
+ rz; vg;gJ <g>h2 ()¥) ™ ()] (s41-1Y, (s))

_ hl(g+x-hhz(s)§l(5))3 } :

Using (3) and (1.14%) and simplifying further:

(45) )
§-S+ Y s
X (88) = [EenaYy(s)-xny(e)y (o) ] {g (e,

SOOI RROENCE SN OMON|
[l (@) - Mieny (0] [y (araea, (6))

. hl(g-)\-)\hz(s)Yl(ES).)] }

This together with Yi(E,hz(s)) = qj(§,§+;'s) proves the lemma.




. : Lemna 2.4

_ | L e, .
For R(s) > O and R(E) > O the transform o0y (g,s) is given

q@p T by:

(46)

*

.zAl [g-sm( (s)-Ah (s)yl(s)] t [ (E’g s+ﬂ1( s)

B
- ap(&hy(s3vy(8)) | + [ (8)-by (8a-an, ()Y, (s)) )

¢ [y (s an¥y (8))-ty (812-hm(s)¥, ()]

J CROBYCRIE N CAANOINO)

S - e5) )

where the functions an(-,-) are defined in (18).

Proof:

Upon transformation of (40) yields:

A T(E,s) = ; ; (n)(é) x**(g )
. s - 2 S

2'i n=0  j=l o ij 273 ’

. Substitution of 1emma'2.3 results in:




(b7)
E-5+AYy (s)

\ZA:*(E,S) = [g-szYl(é)-khz(s)fl(s)]—l{nga[ q( )(gf-—-—-—--)

| . -1
- oqgn)(g,hz(s)Yl(S))]+[Yl(5)-hl(§+X-khz(s)Yl(s))]

. [hl(s+x-xvl(s))-hl(§+x-xh2(s)Yl(s))]

[ nylervy () =
n=1

(n)(g’ E+A- s))] }

Ol

This and lemma 2 in Appendix B together with

@

Y'(g) prove the lemma.

<“)(§,0)

nfl

Theorem 2.5

*%
For R(s) > O and R(E) > O the transform My (€,s) of the

distribution function 2Wi(t,x) of the total time in the system is

given by:
(48)

¥ **® 'Y'i ) .
Zwi_ (g’s) = zAi (Q,S) + m_:;{%%gy [1 + A zAl**(g’S)]s ,l le

_ %%
where A (¢,s) is given by lemma 2.k,
Proof:

Similar to the proof of Theorem 2.2.

(™ (g,0) + z(oq‘“’<:,h ()7, (5))

[ TS —




Limiting‘Distribution of the Total Time in the System

Let W(x) = 1lim W, (t,x) and _o(s) be its L.S.T.
2 £ = 2'i 2

The existence of the limiting distribution can be proved as
in Chap. I section 5.
Theorem 2.6

‘The L.S8.T. of the limiting distribution of the total time

in the system is given by:

(49) 2t:)(IS) (1-hoy ~Aay) (142 2Iii*(o,s')] if 1-\ey-Aa, > 0,

0 otherwise,
*% L
where ZAlv(Q’S) is given by:

s

(50) ' -
-1, AY. (s)-s

*% : / 1
oM (0,5) = [:..s+hYl(s)-)\h2(s)Y1(s)] {ni:l[an\o,_T_)

EACHCIACHER
RAQRN SN BN
+ [y (A=Y, (8))-hy (et ()v, ()) ] -
- [a(e)vy (o)1 4 El(an(o,hz(s)vl(s>>-an<o;*—;§->)]}
n= ‘ : ' :

and the functions an(-,-) are defined in (18).
Proof': . |

Equation (49) is obtained as in Theorem 2.3 and (50) from

lemma 2.4 by taking € <0,




In (50) taking the limit s = O, we observe that:

o o0 @ /
e . ‘ a, + 755 z an(O,l) i
o ** - 1 n=0 .
(Sl) * zAl (O’O) - (l - A az) .
A o
l—kai~kaz

(by lemma 1 in Appendix B)

Now from (L9) it is easily seen that:

zw( 0 = 1 if 1-xay-ha, > 0.

The Steady State Expected Value of the Total .
. Time in the System.
| Let Mn'z denote the expectéd value of the limiting
distribution of ﬂz(t). From (49) we have:

o)
i ™ 2w(s)]s=o_

I

D . #® .
(52) - Marday-hoy) £ 2y (055 )Lo

¥ - -
To find the derivative o A (O,s)] we will proceed as
os 2 Ao

follows:

Let Al(s) and Az(s) denote respectively the numerator and

' *%
denominator of A (Cys). That is:

e et et Ao = o e b S RPN T N o S BT




(c

- (53)
le(s)-s

\\~;;'Ai(s) =.[Yl(s)-hl(x-khz(S)Yl(S))] ; [an(o, X
| n=1 :

)
- an(o,hz(s)vl(s))] + [hl(sﬂ\—)\Yl(s))

- hl(k~kh2(s)Yl(s))] [hz(s)Yl(s)—l

+ z La (0,n,(s )v (5))-a, (0,2 ))]}

(54)
Cb(s) = [ -seY ()M 80V, () | [¥y (8)-by (A-kny (5)v, (5)) ]

o N 8,(s) Al'(s) - b, (s) 8,(s)
55 Na sS .=
(53) 'a? 2" (© ?]s=0 ' [Az(s)_]2 . ]S=0

Applying l'Hopital's rule four times:

A (o) A“(o) A{(O) Ag(o)
’ (56) BS 2 l (O S)] 3[A”(O)]2
’ 2

where the number of primes indicates the number of successive

derivatives taken with respect to s.



{2 -

Computations yield: ( Y )2
R 2 al ., + oy 1 - )\oz
) ooy 1 "% 2
~. (57) Al(q) I N WA W
A%0) ='3(1'*“2)(91+“2)'{ L B, Ao, + k)
1 1-hay -ha (ae)® H TR e
2oL 0
- koz (’32 1- ]):az)}
1
(2 Ay ) @ |
- 3a1(l “\ ){ 1 al T ”(0,1) * B,
A(1- lai) n=1
20102 Bl }

+ +
“1-hoy (1-7\01)2(1-m1-xaa)

| (58) 8,(0) = éai(l-XQz)z
. %
m 1 1 2 ——-"'—°—al 2
8,(0) = - 3(1-)\&2){(—;’;1-)_2 T BN (o 1-7\0:1)
2o, @
- 2o (B + 1z ;alz)}

Substituting these values in (56) and simplifyiﬂg we obtain: .

(59)
3 1 o 0’1(2"*01) =,
& 2 (Q’S)]s-.-o e "O‘ ) { A(1-Aop ) e %)




Byt Bz(l—kai)z + Zalaz(l—Xal)_}

| ‘(1-xoi)2(1-xgi-xa2)

| \ -
- - {2(1-kai)3[1-(12%52)2] (1'*Qi’xaz)}

{-2y) (ir0, ) (8, 18, 2 0, L1224 1)
(by lemma 1 in Appendix B)

Equation (52) together with (59) yields:

6 .
(69) k{(l-lal)(lﬂaz)(Bl+82)<’r2aloe2[(1-Xal)2_+)\a2]]
an ) O

2(1 - xal) 1 - (l

2 _\2
=

6. The State of the Server
In this seétion we try to answer questions of the type:
(1) Wwhat is the probability that atvtime t the server is
busy (er idle)? (ii) If the s=rver is busy at t what is the
probability that he is serving in unit 1 (or unit 2)%

(ii1) And if he is serving in unit 1 (or unit 2) at t what
is the probability that he is serving the r-th customer of
the cycle in unit 1 (er unit 2)? - -

Finélly we study tﬁ% limiting behavior.af the above
prebabiliti=s.

We define the follwwing probabilities:



6. (t/1) is the probubilily Lhal at t the r-th customer
of a cycle cof tasks in unit v, v=1,2, is being served, given
that the service started at t=0 with i > O customers in unit 1,

and its transform:

(ee)
* 3 . -Et . :
(61) o) (s/1) = | o (/1) at, ez,
vr o vr
Further, ev(t/i) is the probability that at t the server is serving
in unit v, v=1,2, given that at t=0 there were i > O customers
in unit 1. Then:

(62)  8,(t/1) - El 6 (t/1) ,  val,2

Lemma 2.5

* .
The transforms er(g/i) of evr(t/i) —are given by:

(63) . | -

L N ) 1) (e 1ygT1)
or(El) = § [1n, ()] E oy (6,77 (e0)g; (9’0):\

m(8 ol (r-1) ¢ 1y (1)

+ 2 [0, (8) oyl (677 (60057 (5,0) |
(64)
* 1 i (n) '
05e(811) =  [1-1,(0) 2 a0 lJ(s)g (.05 ()

(€)
ml [1-n (g):\ () (e, 0mI(e)

iol g [m] o lJ(g)g

where 0rij(') is de%ined in (1.30), ml(g) in (1.5?); ggn)(.’.)

in (1.6) and:

L — i A AT T Py BN =, ST 7 A i S ey g s



i

~

~

I[rfnj =1 ifr <nand O if r > n.

-\Proof:

Let oevr&!i) be the probability that at time t the server is serv-

ing the r-th customer of an arbitrary. cycle of tasks, in unit v,
given that the queue has not become empty in [0,t] and that at

t=0 the service started with i >0 customers in unit 1. Then:

(65)

) o o t t -
6. (tli)= ¢ -z = a o™ (r-1) 4 —u
Axle 1) n=0j=1 j,=1 xo oty () Xu 33 _(ul :

. o [1 - Hl(tful)]
If thé queue has never become empty in {o,t], let the se?&er be
serving in the (n+l)th cycle of tasks at t, n > 0. At the end
of the n-th cycle of tasks there are j > 1 customers in unit 1,
given that at t=0 there were i customers in unit 1, and the
n-th cycle of tasks endea between u and u+du. This probability
is given by doQ§§)<u)' Starting with j customers in unit 1 at
time u, fheré.are at least (r-1) Sérvices up towfime.ul which

is the last epoch of service completion before t and at the end

- of the (r-1)th service j; > 1 customers are waiting in unit 1.

This probability is given by the second integral. The last
factor [l-Hl(t-ul)] ensures that at time t the server is serving
the r-th customer. Finally we sum over all choices of n, Jj, jl’

u and u, to obtain (65).

1




By a similar argument we gel:

@ -
@ e e e o) (v) |
| 092r(t‘1) ) nig JEH v=j T <v] X 4% (u)j dG (ul “u)
. I ngr—l)(uz-ul)[l-Hz(t-uz)]
h

where the factor I[r<m] is present because if unit 1 has v
services then unit 2 can have only at most v services.

The Laplace transforms of (65) and (66) lead to:

(67)

* . 1 e r-1
n%#ﬂﬂ=g[b%@u.ijilom@)%h)@)
. (88)

* [ ©
- 6 N N e (V) g1 e
0% pp(El1) = £ [1-h,(8) | LRI % rg5(Segy (6)ng ‘(5)
The usual renewal argument gives:

* 1. * 1. . * i '
(69) 0, (811) = o (&l5) + m(8) 6 (£l) , v=1,2,.
Substitution of (67) and (68) in (69) proves the lemma.

Lemma 2.6

; ' _
If Ov(gli) is the Laplace transform of ev(tli), then:

oz e

e



{O

| o1 2 .
(70) egﬂn=5330159[1-vwﬂ
+§5@>£ or1y(8) [2 - ¥i(®)]

o)
)
P
‘m .
[
I
ualH

(11) T ICARCEHCEROMN

J

+ 3 ml(g) z lj(g) RAGRHIREN

where Yl(-) and Yl(',') are defined in lémma 1.2.
Proof: |

This is immediate upon summing over r > 1 in (63) and (64)
and using lemms 1.3. | |
Lerma 2.7 -

If l-hal-kaz > 0, the following limiting probabilities

are:

(72)
(1) 1lim 8, (t]i) kai(l xai \Y,) z ; (O)g(r 1)(o)

Tt 4w GBI E
73)
(1 - . (v)
(1) 1;13:11% 0%, Lt \1) xqz(l hoy - Aor,) le ” Iiesv] o™13(00850 > (0)
(74)

(iii) lim o (t‘l =), , w2,
t 4o




Proof':
The proof follows from a Tauberian Theorem (Theorem 5,

Appendix D):

(715) im0 (c]i) = lim ge (gli) , v1,2,

t 2 £ =0
(16) lim 6 (t|i) = 1im €6 (eli) , v=1,2,
t v Y £ <9 v

Hence using .(75) in lemma 2.5 we get (72) and (73).

Using (76) in (70) and (71) we have for v=1,2:

sz(l-kal-xaz) ©

(17) lim 6 (t)i) = i rqy:(0)
t wo Y ‘ l-}‘a]_ j=1 °1j

Theorem 4 in Appendix B gives:
o )Laz
0) = ——
Z o ryy(0) =1+ 1%y Ao,

j=1
1-Aal

l—halﬁkaz

(78)

Substitutionof (78) in (77) provés (74).
Theorém 2.7 '

If 6(t|i) is the probability that the server is busy
at time t, given that the service started at t=0with i >0
customers in unit 1, then the Laplace transform 6*(§‘i) of

6(t |i) is given by:



(79)

PN RCACCE R EMO) RRHCON

Em(© 2 0 [2- i(g,hz(én]

Further the stationary probability that the server is
busy is Aal + laz and hence the stationary probability that

the server is idle is l-lal-kaz.

Proof:
We have:
(80)  e(slt) = 8 (b]1) + e (tl1)

which gives:
(81) 0 (gll) 6 (gll) + ez(g\l)

Hence (79) follows from (81) and lemma 2.€.

lim o(t i) lim Gl(t\i) + lim 6 (tll)

t 4+ o t o t =

Nzl 1 sz .

(by lemma 2.7)

Expected length of a cycle of tasks. Starting with j >0

customers in unit 1, the expected duration of & cycle of tasks is:




Uk

3 ‘ Q Wd
~ = q.(s,1) = - = Y{(s,h,(s))
os 3 ]s_: os 1 ‘? ]S o

J(al+az)

1-\

(82) _ =
: L

Expected sojourn time. Consider the Semi-Markov sequence

{§ 5T, »n > O] defined in (1.3). Let Ty be the expected

sojourn time of this process in state j. Then:

. 1 "t %
(83a) W=x* 1= Mo
j(oy+a,)
(8%) M trTyg— . dzl
~ 1 .

where (83a) is obtained from the fact that once the procéss

reached the state zero, there is a negative exponential idle

period with expected duration % and further a cycle of tasks

started with a single cutomer in unit 1 whose expected value

is given by (82). (83b) is obvious from (82).

Mean recurrence time. Let L be the mean recurrence time of
3 ,
state j of the process {En}. Then:

% - ¥'(0), Y(+) defined in (1.1) ,

=
it

(8k)

1
x(Ilhal-xaz)
Let Mij(t) be the expected number of visits to state j by the
process {En} in (o,t], given that g =1, and mij(s) be its

L.S.T. Then:




82

(85) m, (S) = m, (s) x+( 0mld(S) *omysls)y 321, 5 >1

' where Omij(-) are defined in_(l.30).
This ;s obtained from the consideration that a visit to j
can occur either with or without an intermediate visit to the
state O [Neuts (1969)].

From (85) we get for j > 1:

p,-l lim s m, .(s)
j s=o0 W

oml .(0) slJ;m0 s m, ( )

(86) Sy 5(0) w7

If pij(t) is the probability that the Semi-Markov process
is in state j, given that it started in state i at t=0,

*
andpj = tlim Pij(t) then:
-4

*

87)  p,

P » 3 =20,

_ 1
|3

Substitution of (83), (84) and (86) in (87) yields:
- _
po

(1 +ha) (1= ey - M) | (L - 2ay)
and

= Doy o) (A-dog -a)3 m ((0)3(1-hy), 5 21,

e
<
f
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‘such cycles.

7. Generslizations

The Tandem Queue With More Than Two Units

Let us consider m(> 2) service units. The input to
unit 1 is a Poisson process of density A, and the input to
the (r+l)th unit is the output from the r-th unit,
r=1,2,...,m~1. After getting service in the m-th unit the
customers départ from the whole systeﬁ.

At t=0 & single server starts serving in unit 1. He
switches from unit 1 either by a zefo switching rule or
by a non-zero switching rule, while he always observes a
zero switch rule in all other units 2,...,m. In all tﬁe

units the customers are served by the order of their arrivals

- and the server is busy as long as there is at least one

customer in the whole system. 8Service times are assumed to
be mutually independent positive random variables and
independent of arrival times.
Each\cycle of tasks consists of m tasks, task-i,...;
task-m, and each busy period consisté of & random humber of
Let Hl(-);:..,Hm(-) be the service time distributions in
unit l,...,unit m respectively. Tbe distributions of busy
periocd and_virtual vaiting time an& queue length are obtained
by replacing Ha(-) by Hz(-)*H3(-)*...*Hm(-) in the results of

two units. The corresponding moments are obtained by replacing
N

n m m-l m ' o
o, by T o, 8mdp, by I g +2 £ I &y ay .

is2 i=2 i=2 j=i+l

e e o AT T T e T YN AT S T e T LT TR



vhere av

= S xdH (x) and B = j x“aH (x), v=l,...,m |
o Vv V. Y% v .

Infinite Tandem Queues. Suppose that the number of service
e i |

units m is infinite. Let Sv be the service time of a customer
in unit v, v=l,2;.,.. . Then Sl,sz,;.. are independent random
varisbles with distribution functions Hl('), Hz('),...

Theorem 2.7. Convergence Theorem
[ — © .
L B. <® then the distribution

[}
(a) Ifoa= X o and B =
v
v=1 v=1
Gm(-) of the service time of a customer in the first m units,

+ ..+ §,,» converges to a probability distribution G, (*)

S
with first and second moments o and B respectively.
o .
- (b) The total service time I S\,of a customer converges in
V=l .

law if and only if for a fixed ¢ > o the three series

(1) i; Km dHn(x), (ii) ;agc) and (iii) ;Br(lc) converge,

n=1l"¢c n=1 n=1l *
c c
where a(c) = J x dH_(x) and B(c),= S x2 dH (x).
n o n n o n

For the proof of this theorem we refer to Feller (1966).

If the service time distributions are negative exponential,

Cwlh X . )

Hv(x) = l-e 6 , v=1,2,..., then by the convergence theorem the

distribution ofﬂSlf...+Sm convergés to a probability distribution
© o ' )

G, (+) if T =<=. G, (t) gives the probability that &

v=1 Vv
customer will be served in infinitely many units before epoch

t.



Under the conditions of convergence we have:

-] [ -

P{Z S 5x}=1r * H (x)
v=1 ¥ v=1 v

which is the convolution of Hl(-), HZ(')""' !

Hence‘the;distributions of busy period, virtual waiting time

and queue length are obtained by replacing Hz(-) by
m - . . .
n *Hv(-) in the results of two units.

v=2 '

Fquilibrium Conditions of the Infinite Tandem Queues. Under the

conditions of convergence of the total service time of a

customer, the queue will attain its equilibrium if

o .

1-A Z o, > 0. This follows from the results of an Ml 1
v=1 o

queue with service time distribution = * Hv(x) .

v=1
The Tandem Queue with Balking

Consider the tandem queue with two units. - Lét P be
the probability that avcustomer joins the queue in unit 2
and 1-p the probability that he leaves the system after .
getting service in unit 1. The distribution of busy period,
virtual waiting time and queue lehgth of this model can easily
be studied from the following considerations: We assume that
all the customers after getting service in unit 1 go through
unit 2 and get a non-zero service there with probability.p
and a zero service with probébility l-p. The distribution of

service time of a customer entering unit 2 is:



]

after getting service in urit v, v=1,2,...,m-1. Here also

(88)  p () + (1-p) U(-)

Hence the distributions of busy period, virtual waiting time; ete.

" can be obtained from the non-balking case by replacing Hz(-)

by (88). To get the moments, a, is replaced by p o, and B,
by P By |

| In the.caée of the tandem queue with m service units,
let P, be the probability that a customer joins the queue

in unit w1l ahd ].--p\J the probability that he leaves thé system

we assume that each customer after getting service in unit 1

goes through all the remaining (m-1) units and gets a non-zero
v-1

service in unit v with probability ( = pi) and a zero service

v-1 i=1
w1th probability [l -(n p. )] , v=2,...,m. The distribution
i=1

of service time of a customer in unit v is:
v-1
(89)  (x p)E()+[1- < x pi>] u(-)
. i=1 )
Hence the different distributions of interest can be obtained

from the non-balking case with m service units by replacing

H () by (89), v=2,...,m

8. Applications

The tandem models considered in Chapters I and II can
be viewed as a modified alternating priority model. In the

elternating priority model [Avi-Itzhak, Maxwell and Miller (196€5),




of

Neuts and Yadin (1968), Takdcs (1968)] customers arrive at two
service units, unit 1 and unit 2; in accordance with Pois;on
process of densities kl and Rz. A singie sérvgr attends’to
two units alternately according to zero switch rule énd serves

the customers in the order of their arrivals. In this:

alternating priority model suppose that the input to unit 2

is stored there as long as the server is serving in unit 1.

Once the server started serving in unit 2 the input to it is

shut off and stored in unit 1 until he switches back to unit 1.

As soon as the server switches back to unit 1 the stored input

of unit 2 is released from unit 1 to unit 2. This modification

~

is reasonable in cases where the arrival of a customer in unit 2
causes service interrupﬁion.there or in cases where only.those
customers of unit 2 who have arrived during the service time

of the customers of unit 1 have priority over the customers
arriving in unit 1 thereafter.

The analysis of this modifiéd alternating priority model
can be easily deduced from our tandem model: Custemers arrive
at a service system in accordance with a Poisson process of
density A.. Independently of othefs an arriving cuétomer is of
type 1 with probabiliﬁy p, or of type 2 with probability Py>
where D1+P, = 1, xl = Xpl, kz - hpz. Al; the arrivigg custoﬁers
vass through both the units 1 and 2. A type 1 customer receives
a non-zero service in unit-l and zero service in ﬁnit 2, while a

type 2 customer ‘receives a zero service in unit 1 and a non-zero




88

service in unit 2. The service time distribution in unit 1 -«
. of an arriving customer is.Hl(-) bwi’ch probability Py and

U(:) with probability P,, while his gervice time distribution
in unit 2 is Hz(o) with probability p, and U() with
probability P, where U(-) is the unit distribution. Hence
in our analysis in Chapters I and II we replace‘Hl(x) by

plﬂl(x)‘+ sz(x) and Hz(x),by pZHZ(x) + plU(x).
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CHAFTER ITI
ALTERNATING PRIORITY QUEUES WITH

"~ NON-ZERO SWITCHING

1. Concépts and Definitions

This chapter discusses a queueing model in which a single
server serves two units 1 and 2; the input processes to these

" are independent Poisson processes of rates A, and Kz

1
.respectively. The serverqattends the fwo units alternately
.according %o a non-zero switching rule. He continues to:
serve in unit v unitl he has given kv services without
- interruption there or until the queue becomes empty which~»
ever comes first, {gv\ml,Z, are positive integers, which-
are called the switching parameters. The alternating priority
queues with zero-switching (kl=k2=m) have been studied by
several authors: Avi-Itzhak, Maxwell and Miller (1965),
Neuts and Yadin (1968), Takdcs (1968). |
| It is assumed that at both unfts customers are served
in thevorder of their arrivals. The service times are
mutually independent positive rahdom variables; indepéndent
of the arrival times. Dencte by Hl(-) and Hz(-)_fhe

distribution functions of service times in units 1 and 2

- . . respectively.



We use the following notation:

) )

n(s) = [ ean (x), w12, R(s) 2 0,

v o v - Sl =

.. oo . ' . ) :
a, = Io x dHV(x), v=1,2. 1_

2. Distribution of Busy Pericd

" We recall that a task is the time interval spént without
inter;uption in a unit. 'A task in unit v.is referred to as
a v-task. It consists of atmbst" kv consecutive Serfiées
v=l,2.

Suppose that at t=0 the server starts serving in a unit.
The time required for both the units to become empty
;imultaneously'for the first time is cailed a busy period.
If the busy period starfs ﬁith the service of a customer
in unit v then the corresponding busy pericd is called a
v-busy period (or busy period of type v), v=1,2. Let uv(-)
denote the distribution function of type v busy peried, |
v=l,2.

The system becomes idle when both the units are empty.
The idle period has a negative exponential diStribution with
parameter hl + hz. After an idlé period a new busy period
starts in the unit in which a customer arrives first.
Remark:

As in Neuts and Yadin (1968), if the unit to which the

server switches is empty then we assume that he instantaneously




1

completes a task of -duration of zero there and switcﬁes'back
to the other unit.

Since the distribution of busy per;od éoes'not'depend
on the switching rule, {[Welch (1965)], it follows from Neuts

and Yadin (1968) that:

Theorem 3.1

If 6,(s) and 6,(s) are the L.8.T of'nl(-) and #,(")
respectively then:
(i) For every s wtthR(s) > 0, the pair Gl(s) and 92(3) is
the unique solution to the following system of equations:

(1) (a)

2y = by (89 0pmh 20 -hp2p) s 25 = Dp(sthy+hpmhyzy-Apz,)
(2) (v) 2y = Yl(s+kz-l2z2) ) 2, = Yz(s+kl—hlz1

in the region Izll.s 1, !z2|_5 1, where Yv(') is the L.S.T
of the distribution of busy period of an M|G!1 queue with
input rate kv and service time distribution Hv(')’ v=1,2,
(3)(ii) 8,(0+) = 6,(0+) = 1 if and only if 1-Aay-Aay > O
(iiti) 1f 1-A-Aa, > O then the means of nl(-)_apd n2<-)

are given by:

oo (04
M) = ek 67(08) = 2
(] -6y (o) = T-ha,ha, 62(0%) = 153 “Ror

2 1



- | 3. The Basic Imbedded Semi-Markov

. Process and its Transition Probabilities

] We suppose that at t=0 there are il

unit 1 and i, > O customers in unit 2. Furthermore a customer

> 1 customers in

in unit 1 is just beginning service. We may also start with
other initial conditions.

Let us define the sequence of random variables to?tl""’
where t0=0 énd tn is the duration of the n-th task. The odd

* numbered variables t are the durations of fasks in _ . Co

l’t3""
unit 1 and the even numbered variables té’th"" are the
durations of tasks in unit 2. Letén = (%il),Eiz)) be ﬁhe

~ number of customers in the system (unit 1, unit Zj at.the |

end of the n-th task, n > 1 and § = (il;iz). Further let
gn b= a random variable which takes valu=s 1 and 2 depanding

- on whether the (n+l)th task is a l-task er a 2-task, o
n>1, go=1. It then follows from the regenerative propsrties

of the input and service processes that the quadrivariate .

sequence of random variables:

) g g, B e - }

is a Semi-Markov sequence with state space:

,{},z} X {o,l,...} x {9,1,...}

Te study the transition probabilities ef the semi-Markov
- sequence defined in (5) we define the guxilisry probability

: (n) (m) .
functions )Gy (x) and ZGij (x) as:

1

e e e et - e e s A m e et e e 7E A e Smr s 2 o 8 & - £ B T 7 A AT A P TR 9 e iy T 4 | AL A Y T A T A g i T L e . = T T g T e i YT e T AT T T
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(6) ﬁ;’)(x) - 5, UG, w2,

/

and for n >1, G( )(x) is the probablllty ‘that, in an M\Gll
queue of input rate Av and service tlme dlstrlbution HV(~) the
initial busy period invol#es at least n services,‘that the n-th
service is completed before time x and that at the ena of the
n-tﬁ'service there are J cﬁstomers waiting, given that there

were i customers initially, v=1,2.

(l) - W (x y)J 1+l |

(éb) NG Y (x) = jx -(3—;1577— d H (Y), v=1,2,
(6c) |

o)y I o) Ay ()T

N ij X) = o1 GV (x~y)e (-;;177~— dH (Y), n>1,

V= 1:2:

| (n) (n)
Let vgij (s)‘be the L.S.T. ef vGij (x) and

M g -z e, ) <1, vz,
vl J.=0 V 13
Then for 9;},2: :
2 (e, = ot .
(8) (l)(s z) = 2 h (s¥A -} z)
+ h (s+\ -\ z) . .
R O e Y T I U Y

Vl z



The results analogous to lemma 1.1 through lemma 1.5 are

easily seen to be satisfied by thé probability functions

(n)(x)

Let us denote:

(9) L= (4585) 5 1= (9sd5)s 2= (0,0, 2= (2,2,)

~~

Define the transition ﬁrobability functions:

(10) Ql(.i\..’)l’x)

PO ¢-) I »
p{e a6t =8 e, T <x

e gil% 1’€( - }

(1) o) = {g=1,g5 elBey _5x‘

| €, 1"2 g(l)"ll 1'12}

We have:

(12)

t
[oh)
Q
He o~
A
—
~
=
®
t
>
Y]
[+
~~
>
=1

& (Liox) =

!
™1
o
Q
4 f‘\
N
Py
=
S
o
g
[+
P
m‘/
[
g

232
O for all other choices of the indices

éxcept for il = iz = 0,



'(13)‘

N Iy |
o) = o B e T |
x) = d,G, . (u) e — S
2\ o &igip G-y 7 |
if jz >1, Jl > il >0, iz >1
Ko -Au (A u) 1
- = jx a G(r)(u) e S
(31'11)
- if j = i 1 3
. 32 0, S 0, i, 2 1
=8 U(x) , ifi,;=3,=0,14 >1
1YL
= 0 for all other indices except il =1, = 0
For i, = 0= iy:
: (A2, )u
. 2
(14) Ql(ﬁ;J» = Ix Q (1,05 3, x-u) e . A, du,
Q
i(ll+lz)u
(15) (0, 3,%) = | @u0,153,%-w) e A, du
o

Let qv(ifijs).be the L.S.T. of @ (i,3,x) and
(16)

¥ B il ‘jz |
qv(j-v)i;s) = 20 jz q (}JJ,S) Z 2 , Izv‘s , v=1,2,
Jl"‘ . .

From (12) to (15) we get:




17) @ (4,2,8) = 2,2 {g, X ' )
1)y (Byzps) = =, {Jgil (sthpm0g20%,

kl-l .
+ 2. 185 (s+)\2'-x2z2,o)}‘, if i, 21,
r=i l o v
1
_ i
=2," , ifil= 0, i, >1

* ‘ l
(18) q5(1,2,5) = {zg m Sz 2,)
k, -1

2 .
+ I o83 (s+xl-xlzl,0)}, if i, 21,
r=iz 2

i

: =zt ,if1, 20,1 >1
' * Xl *
(19) ql(ggiss) = m ql(l,O; £:3>
172

* A, *
(20) QZ(QIEJS) = iz:x;:g qz(O,l; E!S)

Let R (i,j,x) be the probability that a busy period-lasts for

at-least n tasks, <hat the n-th task ends not later than time

X and that at the end of the n-th task J = (31,32) custamers are

waiting in units 1 and 2 respectively, given that the service

started with i customers, i; 21, in unit 1 at t=0. Then:

(21a) R (1,;4,%) = @ (5,3,%), 1, =1,
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. o  ® .
(21v) RZn+l(£,l,x) = T T Xx RZH(;V,X,x-u) .
: vl=l vz=0 o)

- dq, (w3,u) n 21,
i, = 1,

[+ «w

(21e) Ry (1,5,x) = = % rRzn-ﬁi’l’z"'“)
. o)

vl=0 v2=l

sz_(;\L,,j,u), n Z l, ll _>_ l,

Further let r (i,j,s) be the L.S.T. of R (i,,x) and

. *, . bt @ jl vjz
(22) r (1)2,5) = Z 2. r (i,j,s) =z Z ’
ne~~ 3 =0 5 =0 N~~~ 1 2
J;=0 i,
lzy‘ <1, v=1,2,
i, 21,
so that (21) gives: : T -
(233) rl(£3i15> = ql(i-}iys) )
[~} <] .
(230) 1y 4 (L,3:8) = T B r, (i,vs)q(w0s),
, v, =1 vy, =0
1 2 -
n Z 1, il Z 1,
. [ «©
(23C) an(ia’g;’S) = E—-O 3 an-l(i’z’s)qz(X’l’s)’
Vv, = v,=1 :
1 2
n > l’_il >1,



(Zha) I‘l(’j;,i,S) = QI(i)EJ,S) 3 il 2 1, *
(le-b) . r2n+l(§'v’4zv’s) = X z an(i’Xa’s)ql(ya’z’s) )
v, =1 v, =0
1 2 : _
n>1, il >1,
’ o0 <]
*- .
-(Zuc) an(.j;,’,st) = X z 2n-1(£’v’s)q2(2’i’s) [
: 1—0 v, =1 ~

n>1,1, >1,

- Analogously we define ﬁn(i,‘,];,x) as the probability that
a busy period lasts for at least n tasks, that the ﬁ-th task
ends not later than time x and that at the end of the n-th
‘{;asl; ’,J;customers are waiting, given that the service st';arted

with i customers, i, > 1, in unit 2 at t=0. Recalling (21):

2
(252) ﬁ’l(bi,x) = Q,(1,3,%), i, 21, o
: © ® .
(250) By (LX) = T T [ R (1uu)e, (v
v, =0 v_=1"0
ho! 2
n>1, i, >1,
[==]
@) Bl B E f B2 (5020 (3,
el v

n>1,1i,>1,
Similar to (23) and (24) we get the recurrence relations of the
transforms . (1 j,s) and r (1,z s) of R (1,J,X) 'VWe see

further that:




. Pl
-

- . . - (26) r (.jl;’}j\,’s) = P2 ql(i’x’s);n-l(:\\)f‘j’s)’

. n _ _ ~
a o \)l—O v, 1l
| and
) \ ™ o’ ) .
(27) rn(i"i’s) = X z qz(i,’k’,’s)rn_l(,\i’l’s)’ .
\)l—-l \)2—-0 .

4, The Queue length Process

Let us denote by él(t) and gz(t) the numbers of customers -
who still require some service inunits l and 2 respectively at

time t. As in Neuts and. Yadin (1968) we further denote:

’ (28)  w(,40) = g ()=, 5(8)=,
g (0)=,,6,(0)=1,}
E and
" @) et = p{ 5 (9)=a), 5(8)3,

|, (0)=1,,6,(0)=1,, }

where the subscripts 1 or 2 denotes that at t the server is in
unit 1 or 2 respeétively.

| Let for v=1,2, ﬁv(ijgﬁt) be the probability that at t there-
are J§ = (jl,jz) customers in units 1 and 2 respectively, that
the queue is never empty in (0,t] and that the original task

has not ended, given that the service started in;unit v at t=0

- with i customers.
~

e g
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* .
Further let wv(ifgfé) be the Laplace transform of

."lv(ls:i;t) and

; *%, © bl \ 31 Jg
(30) Y (i,z,€)= T T ¥ (1,J,§)z ,
v T~ . T
hﬁOJ{O :
Iz | <1, 1,2,
gl S
Lemms 3.1

Y . _
The transforms ¢v (i,2,€) of @v(i,ijt) are given by:

(31)
e far,.
¥ .(1,2,8) = z, {(§+xl+x2 M2 -Ay2,)
hy (§+2 +h - xlzl /2 2)] }
°[l'h1(§+xl+xz A 2y ApE z>] | ‘
i +1
{ 1 [1 N l(§+xl+x Nz a2 |

2 M%7 2 2
v~k kl Vv .
- l[l z. (E+kl+kz xlzl o2 2)] _

‘ V=
L (V)(€+x D) FENESE
*% 4
¥, (1,2,8) =z {(§+l FApmh 2 -Ap2 2)[ 2B (BFAy Fhp-hy 2y Aoz 2)]}
(32) : [l‘hz(g+*1+x2 \121 zzz)]
i+l
{ : [l (§+X 1A%y A2 z)]
k-1
2 v-k. k_-v
2 %2
-zl B (Egnghz e 2,) ]
» w1
.o (")<s+x Mzs0)) s ig 21,

A
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Proof;
We have:

(33)

k-l ' 3y-
1 1 .t -\ (t=u) [, (t-u)]
s - (r) 1 1N
ﬁl(})gjt)__ rfg vzi Soleil"(u)e (390

\

At (x t)

o G e 2,

(34) | IV
o e ) Dy(ew)] 22
¥a(1,3,t) B rzg vzi Iodeizv(u)e (Jpmvg):
-\t t)Jl-ll

~

The probabilistic arguments for these are similar to those in
Chapter I. Upon taking transforms in (33) and (34%) we obtain:
(35)

o i, . . -1
¥y (L,2,8) = z, [l‘h1(§+‘1+x2 Mzt *2Z2>](5+*1+X2 M2Z1Ng2,)

k,-1

(x) HOM bay
= {lgil (§+*2'Xzzz’zl)'1gil (5hg2g2:0) s 414 2 1,

(36) "
*x i :

”J (i Z) g) = l 3 -l
2 2y [l'hz(g+xl+xz Ay2y- zzé)](&-'+X ThomA 27 A2, |

k -1 .
2 .
. (r),. (r)
rfg {Zgiz (§#h =Mz 52) - 281, (E+xl-llzl’o)}
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The lemma follows now by simplifying (35) and (36) with the

" help of (1.8b).

For r=1,2; v=1,2, let #_ (i,i,t) be the probability that
at time't there are Q;= (jl,jz) customers in units 1 and 2.
respéctively, fhat the queue is never empty in (O,t] and that
the server is serving in unit v, given that the service started:
in unit r at t=0 with 1 customers.

In terms of the functions 'J;v and Rn we have:

. © © A
G0 Ay Eit) = @t =2 B [y
_ . vl=l v2=0 n=l "o :

-

dRZn(i‘J’X,’u)’ il z l

* ' © © o - t
(3B gLt = £ T T [ s,(v,5,t)
. \)1=0 v-2=l n=0 "o

dRZn-l-l(éL’r\i’u) s il >1,

«© (-] t

(<2}
£z 2|4 (v,4t)
\)l=l V2=0 n=0"o

(39) oy (L,4,t)

~

dRZn+l(,iJ.\l’u)’ iz Z »l;

(l&O) ¢22(£3l3t) = '#2(£;i>t) +-

© o o £ . N :

+ 7{_0 z—-]_ nz:lj “’IZ(X"l’t-u)dRZn(bX;’g)’»
\)l— \)2" - (e} .

221




* - 3 » ) . , ;
- . _If ¢¥v(ifgf§) is the Laplace transform.of grv(ijgft)

T~ ~ and
. end - o o 33
L ) e - T 5 g (0t et

el <1, r1,2, va1,2,

then formuiae'(SY) to (40) give:

[+ w0 [=+] ‘

(42) 2,28 =9 (L,z,89+ £ T Ir, (i,y,8)
: vl=l v2=0 n=1

*%, ® @ bl . ¥*%
(43) g o(1,2,5) = 2 on 21, (00 (2,8
: vl~0 v2=l n=0 :
121,
- L"LL % . < [+2] [ee] ‘~ ] N 2
. (W) g (Lz8) = 2 2 2o, (LY (%z0),
N vl=l v2=0 n=0
i, > 1,
*% *%,

] * - - » - -
Denoting by nv(%)l)ﬁ) the Laplace transform of “v(ifﬁjt)

- defined in (28) and (29) and

R e
v Shatise Ao & pmon R T e e - s o e . . e



[22] o
(46) n, (1,2,€) = £ £ «x (1,3,5)2
i_=0 Jzzo

Jy J2
2 b

!zv!_g 1, v=1,2,

we obtain:
Theo?em 3.2

The transforms of the Joint distribution of queue lengths
§l(t) and gz(t) and the type of the unit served at t are given
by: ' .
(17) o 1
LoD = a1z 000 (98,20 T8 gm0 (1,050

~ AT (,055,8) » M (0,152, 8)1, 5, 21,

+

and:

(48)

S LeD = AHLn0 + 600X A0, (e (0]

*% *% ] ]
048, 5(1,052,8) + A,0,,(0,1;2,8)] » iy 21
*% _
where ﬂfv(.’.") are given in (42) through (45).
Proof: ’ \ . N
The result follows from the ususl renewal argument given

in Chapter I. For a complete pro@f we refer to Neuts and

Yandin (1968).
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5. Applications

-

There is a large class of application in which the priority
assignment follows more naturally fromt£he nature of the service
demanded than from the urgency with which the service is needed.
In many practical applications a switch of servicé from one
class of items to another involves a set up cost oi éet up
time. The clasgification of the input items according to
similarity_of service requirements is hence desirable. The
- alternating priority model was first discussed byiAvi-Itzhak,
Maxwell and Miller (1965). They considered the alternating:
priority model with zero switching. The model we considered
in Chapter ITI is the non-zero switching case which is a
generalization to zero-switch. Although the analysis of the
non-~zero switching model is‘very complicated, it is more.
practical. In the caée of a device controlling traffic éf éh R
intersection the zero switch rule allows one stream of vehicles
access to the intersection as long as there are vehicles in
this stream and a steady input of vehiéles in this stream
delays other streams indefinitely. A comprémise rule is to
allow a certain number k, of vehicles of one stream access

1

te the intersection and then that stream is stopped and - -

\

to ailow a certain number kz from another stream, etc. The

optimum numbers kl and kz may then depend on traffic conditions.




CHAFTER IV
A PRIORITY RULE BASED ON THE
RANKING OF THE SERVICE TIMES FOR

THE MG |1 QUEUE

1; Conéepts and Definitions

This chaptér presents mainly the content of the article
by Nair and Neuts (1969). Here we propose,é priority rule
based on the length of service demanded by a customer.

Tekacs (196Y) discussed é priority queue based on the raﬁkings
of the service times of the customers and obtained the
asymptotic moments of the virtual waiting time assuming thaf
a customer with a shorter service time has priority over a
customer with longer service time. Here we consider a
different,.but related problem.

We first recall é.branching process description of the
M|c |1 queue suggested by Kendall (1951) and investigated by .
Neuts (1969). Suppose that at time t=0 there are i >1
customers in the queue and that one of them is just enteriﬁg
service at that time. These customers form the first
generation and their total service time is the lifetime

of the first generation. Customers arriving during the
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lifetime of the-first generation, if any, make up the second
generstion, with its lifetime, and so on. If at the end of
the first or a subsequent generation's lifetime there are no
customers in the queue, then there is an idle period at the
‘end of which a customer arrives who makes ub the first generation
of a busy period;

It is clear that tﬁe life time of a generatioﬂ does not
zdepend on the order in which customers have been served dur-
" ing it. Ve will study the virtual waiting time for}thé Mlefr

queue under the assumption that within each generation customers

are served in the order of shortest (or longest) service times.

| We will call these policies the shortest proéessing timg (seT)
and the longest processing time (LPT) disciplines, respecti&ely,
and compare them to the first-come, first-served (FCFS)
discipline. .Once the rearrangement is achieved within a
generaéion, the incoming custoﬁers thereafter do not upset
it;vhence the question of service preemption does not arise

here.

2. The Basic Imbeddea Semi-Markov Precess
We assume that #t t=0 there are i > O customers in the
queue and that the one with shortest sgrvice time enters
gervice immediately. A sequence of random variables
To’Tl”"' is defined as follows: TO = 0 and Tn is the time

at which all customers, if any, present at Tn- complete

1

service; if there are no customers at Tn-l’ then Tn is the
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time at which the first customer who arrives after Tn-l

completes service. That is, Tn is the time of service ccmpletion

. of n-th generation, if the n-th generation is not empty. On the

otherrhand, if the n-th generation is empty, then Tn is the time

of seryice cornpletion of the first customer who initiates the

first busy period after tine Tn—l'
Let Q(t) denote the nunber of customers in the system,

at time t+0, vho still require some service. Then the

bivariate.seqﬁence of randocn variables:

(1) {€<Tn); Tn+l h Tn’ n > 0}

is a Semi-Markov scaguence.

We define the taboo'probabilities:

~

2 @ - o  Ux), -

o ij
and
Qgr.l)(x) = P{T <x, gT )=j,§(T Y£0,v=1,2,...,n-1
o1ij n - n v

| E(To)=i}- ,n>1

3. The Virtual Vaiting time Process

Consider an M|G|1 queue that has a Poisson input with

parameter A and a continuous service-time distribution function
H(+) with firite mena . We denote by N(t,x) the waiting time
of a.virtunl customnr arriving ot t whose service timé'is |

x >0, where than M\Gll queue observes an SPFT discipline, and

M(t,x) the correspording virtval valting time in an Mlg |1



queue with an LFT discipline. Let

| (3) Wi(t,x,y)

P{O <Nt,x) <y | &(0) =_i} ’

(&) Ai(t,x,y)' p{o <N(tx) <, lK‘T’x) fo

for ail 1€(0,t] \ £(0) = i}

Then as in (1.61) we have:

. ' ‘ 't
(5) W, (tx,5) = A (t,3,3) + | A (b-7,%,y) @ (2)

+ p{ﬂ(t,x) =0 | g0) = i} u(y)

* * o
Let Wi(t,x,s) and Ai(t,x,s) respectively be the L.S.T. of
Wi(t,x,y) and A, (t,x,y) with respect to the variable y and
. ok *¥,
let W, (g,x,s) and A (€,x,s) respectively be the Laplace
* ¥
transforms of wi(t,x,s) and Ai(t,x,s) with respect to t.

Further we'denofe:

i

(6) H(z) gz) if0 <z <x,

O ctherwise, -

~ (n) R (n)
and h(s), h(s), IChp (s) the L.8.T. of H(-), H(-) and-oQij ()
respectively, and

@ M= 2 aWe e, )<,
| §=0
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Lemns 4.1
. ' o ' 3
For R(8) > 0 and R(E) > O, the transform Ay (g,x,s):of
A (t,x;y) is given by: | |
® ¢ (Bx,8) = 5 @(gz) h(gz>]

where:

9) z = h{s+xﬂ(x)[1-ﬁts)]}, 7! = h{§+xﬁ(x)[1-ﬁts)]} ,

_ and

(10) 1 (8,2) = z, B (§,2) = W[ g-dn ;(5,2) |, n 21,

Proof':
We have:
(1)
y+t o =A(v- v-u
A. (t,x,y) I I s g Q( )(\1) )\( u) .LM___)_J.V

(u)(v) =0 371 ve0

{

\Y . ' ] .
2 6 H 0 E ) v)a x|

where H(-) is defined in (6), H(m)(-) and ﬁ(m>(°) are the m-
fold convolutions of H{*) and H(-). The probabiligtic

drgument to get (11) is the fol}owing: If the queuve has>

never become empty in (0,t], let the last beginning of the life
of & generation occur betweén u and u+du and let there be j
individuals in that generation. Let the end of the life time

of that generation be between v and v+dv (v > t). In the

o s s - ; eyt i o g e T e T o e AT e = e+ A% b mmae e | Sreees e 1R e Syt e e



interval (u,v), v > O'customers arrive, and they have priority
h ,overlfhe virtuel customer if and only if their service time
e \ does not exceed x. If there are k suchlicustomers, 0 <k <,
then the distribution of their total service time is ﬁ{k)(-).
The formula (11) is obtained by using the indebendénce

. properties and summing over all allowable values of n, j,

v, kK, u and v.

Taking the transforms of (11):

. (12)
* o5t (n) (v-u){sﬂH(X)[l h(S)]}
ylems) = Io jt o ooy (e
(u)(v)
) . d H(j)(v-u) | - : i ;
. v . )
B (13)
B G - 2 ng:o'j:{'l A (WP RNl

- ndLEn(a) (1-5(s)) 1)

_g%s- %; {oqgn)(‘s,Z) - o gn)(g,z')}»,

n=0

\

" where Z and Z' are defined in (9).

.Now the lemma follows from lemma 1 in Appendix C.

T e e M i e g oz crpmeg e = o



Thearem U4,1
For R(s) >0 and R(g) > 0 the transform W, (g,x 8)
e of the distribution functien of the v1rtual walting time

N(t,x) is given by:
() W (x,e) = ey : - [ma(52) - my(s,2)]

i N @
g A - '
+gﬂh&éﬁ+<§agiﬁéaﬁﬁégzﬂ}

where Z and 2’ are given by (9) and hn(-,-) by (10).
Prosf':
Taking the transform of (5) we get, as in Theerem 1.2,

that:

. i ,
*x% ¥ *
(15) wi (E,X,S) = A:*(g.vx:s) + §+l-)\$(§ I:l'*')\A;: (g,X,S)]‘

The theorem now follows frem lemma 4.1.

Limitiné Behavior of Virtual Waiting time Precess
Let W(x,y) = 1lim Wy (t,x,y). The existence'of‘this
: ®
limiting distribut:o: can be demonstrated as in Theorem 1.3.
Theorem k.2
The L.S.T. w(x,s) of the limiting disﬂtri_bution'_?lj(x,y) of

the virtual waiting time T1(t, x) is given by:

(16) w(x:s)

- (1- m){l . nzo h (0,2)-h_ ,’z‘):\ }, if 1-Ay > 0,

O otherwise,



vwhere hn(~,-) are given by (10) and

(7)) 2 =n s+hH(x)[1-ﬁ1s)]} »Z=n {AH(X)'[I-EKS)] }
Proof: |

Similar to the proof of Theorem 1.3. As in (1.65) we

obtain:

(18)  wlxys) = (1-Aa) [L + A Ay (0,x,8)] if 1-k @ > O

0 otherwise,
Substitution of lemma 4.1 in (18) proves the theorem.
Taking the limit as s « O+ in (16) we observe that

qu?0+) = 1.

~

The Moments of the Limiting Distribution

We use the following notation:

(e}

8= jo o® an(u) ,
Yv= f: u dH(u),
o = j:u an(u) ,
By, = j: uz dH(u) s ~
Yx = Iz 3 aH(u) ,

and

(19) ¥, (x,8) =1 (0,2) - h_(0,2) ,




where Z and 2 are given in (17).

In terms of the functions 4, formila (16) yields:

' © ‘J/‘".(X’S)
20 ,8) = (1- -r T 22—t
(20 elws) = () oo T B

By lemma 3 in Appendix C the series ¥ wn(x,s) is dominated
n=1

by a convergent series if 1-\ o > 0. Hence by Lebesgue

dominated convergence theorem, term by term differentiation

gives:

N = sy/(x,5) - ¥,(x,3)
- = w(x, = A(1l- z
(21) - & of S)]s=o (1-2a) R ]s=o

Applying l'Hopitai's rule twice we get:

~

' a- A(1l- = Z
(22) - L ux)] =2 5 oy
’ =0 n=0

where the number of primes denotes the number of derivatives

taken in succession with respect to s. Similarly:
‘ 2 , . o
(23) fliﬂﬁiﬁil] . - éiliﬁﬁll £ 4"(x,0)
2 3 n
Os 5=0 n=0

From (19) we have for n > O,

(24)

' : 2 ~ 2 2 o~
: o7 o7 37 377

¥(x,0) = n%(0,1)(&) () I NSRS

os 8=0



(25)  42(x,0) = n"(0,1) [(a ) @Z ] .
. =0 . o

3 3% & “azi'

+307(0,1)| == =% - == —3

n s Sd os 3 2 =0

3 35

+n/(0,1) [2£ - 25
os ds~ ~s=0

Further it follows from (17) that:

- _
= =-q(l+)\a)
os =0 x! °?
A
=<7 =-laa,
98dso x
2 .
o7 2.
-~ —= =gl +Ao ) +AaB
’ asz s=0 * x
2
07 2 2 :
——— =\ ﬁa +}\QB ’
asz s=0 X . x o
9—3—2-] = - Y(1+\y )3 - 3B (I+n)) - A Y
Bs3 8=0 * x * x !

3. 52 '
- Y )? - AB B oa - Aa Y,

3]

Substituting these calculations in (2h) and (25) and summlng

over n with the help of lemma 2 in Appendic C we obtain:

6)  §/(x,0) il j
2 ¥ (X, =
( n=oVn (1-2)(1- 22

and




3 N e

(1) E {x,0) = — t
n=0 (1-2x) (1-2%

{3xss + (1%

. (1+3Aak+3hzai)[Y(l-x )+3k ]}

Let M (x) and n(x) denote respectively the first and second
moments of the limiting distribution of W(t,x). Substitution
of (26) and (27) into (22) and (23) respectively leads to:

A B(L + 2 o )

‘(28) MB(X) = 2(1 _ hz 2)

and

(29) YB(X) = gzz-xgag— {ﬁkﬁB + (1= 13 3) (1+3xax + ?k )

. [Y(l-x?aéifzxza 6%] }

~

4, The longest Processing Time Discipline R

In the longest processing time (LPT) discipline, within
each generation the customers are ordered according to thelr
length of service times, with highest priority going to the
customer with longest service time. The virtual waiting time

process of the present case can be treated as in the case of SPT

_ discipline. As we have denoted T(%t,x) is the virtual waiting

time of a customer arriving at t whose service time isx >0
in the case of LPT discipline. The Laplace-Stieltjes transform

of the limiting distribution of T(t,x) can be obtained as in
(16):




3 g -

. : 2 : ' ~
(30) | (1-ha){; -2 nz;[hn(o,;) - hn(o,g)]}, for 1-}a > 0,
vhere | , o 'j
() ¢=bls + ADHED Q- BT,
T 00 - ) O - Ko,

h(-) is the Leplace-Stieltjes transform of ﬁ?r)
and

H(z) - H(x)

(32) - fz) = BEA

, if z > x

0 otherwise ,
The first and second moments of the limiting distribution of
T(t,x) are obtained from (30) as:

s+ 2 A az)'

2(1 - \E az)
and
. : ' 2
A * 3 3,~-1 * 2%
(34) Va(x) = ——=5—— 13088 + (1-A"a”) " (143 +3\ ", )
'n‘ 3(1_)\.2a2) {. X X X
.. [y(l-x?az) +_3x%a32] }
where _ ' : -
5% _ * _
o, =o-a 5B =B - B

5. Comparison of the SPT, LPT and FCFS Disciplines

Let N(t) ve the virtual waiting time of a customer arriving

at t in an M|G|1 queue with FCFS discipline and let My be the

‘mean of the limiting distribution of N(t). Then it is known that:




(35) M- 'z'('i')fx%T ,

From (28), (33) and (35) we observe an interesting relation-

ship among MB(x), M:ﬁ(x) and M.n
(36) g = 3 [(x) + (o]
Also,

| (31) MB(X) 5I\Ln _5M;ﬁ(x) ir avnd only if o 5% ,

Again, gn(x) and Mﬁ(x) are random variables with respect to X,

which has a distribution function H(:). If we denote by Ex'

the expectation with respect to the random variable X, then:
- . )

E, M (X) = | 1 (x) an(x)

x5 o A7

~

(38) | = ;(—l—%—-— [1 + 2\y-= 2\ I u H(u) dH(u)J

and

(39) E,_ 15 (X) = —22o [1 + 2\ j u H(w) ancu)]

In particular if H(x) = 1 = e ux, x > 0, then: -

(#0) B My(x) = ~olZte)

() B we(x) = RL2E3)
and

(42) M-n = n ;_p 5

IR Y

et s e e o - - R i i T A



-where p is the traffic intensity & . Hénce_in the case of an

ML queue:

(43) E, Mp(X) < ¥y <E (X))
Furfher examination reveals that:

, + 2\ .
That is, the steady state éxpected virtual waiting time under
SPT rulé is obtained from the steady state expected virﬁual
waiting time under FCFS rule by multiplying ﬁith the factor
(1L +2r a&)‘ (1+ Ax) which increases monotonically from
1/(1 +\x) for x - 0 to (1 +2x)/(1 + M) for x = », The
%actor 1+ 2x¢x)/(l + \) > l/tl + ) > L , since \x <1

2
by the steady state condition. Hence:

1 .
ﬂﬂ(x) >3 M,n for all x >0,

1 ' . :
and gﬂ(x) V3 M,n as \@ ' 1 and for small x. Again,

1+20x
1+

(1+27\ax)/(l+>\oz) < ( Y =2 - 1/(1tn) < % which implies

that:
3 .
Ml](x) <3 M, for all x >0,

and Mn(x) t % as A 11 and fo#'largé x. Thus:

M

M, <M (x) 5%1\&

(15) 2 Sty

o+

1

Similarly we observe:



pNAV

: . 1+ 20 o::: '
4 N R |
‘ (46) M"ﬁ(X) (1+xa)Mn’
‘ "If we draw the graphs of y = M, (x) and y .= M=(x), then it

is easily seen that they are symmetrically situated on either

side of the line y = Mﬂ' Hence whenever Mﬂ(x) satisfies

L 14247
vz I+A M?
.M
)C‘ 1
. S M
- = e 1
i ! ' > A=
o :tL)‘x Ao T Nx
Figure 3.

The Comperison Graph
the inequality (45) Mﬁ(x) also satisfies the same inequality .
but realizes in the reverse direction. They are concurrent

with Mﬂ when o, = %. This is graphically shown in Figure 3.




6. A Renewal Argument

Equation (11) can be written as:

(47)

ey H(j)(dz) ; ™M EAEQZ

t ©
(txy)= | = R ()
Ai : “oj= ° 1 t-u =0 Ve

1

2 ) E 1 T (tyeue)
k=0

which is obtained by replacing v-u by z in (11) and defining

s o
. n=0 o1ij

state j is entered without visiting the state zero in [0,t],

starting at state i. Defining:
(48)

t-uty ,. o | vV v
_Fj(t-u,x,y) = I H(J)(dz) £ e M il%l. z (;) Hk(x)
t-u =0 V' k=0

. [1 - H(x)]v.k 78 (hayouez) ,

ve rewrite (47) as:

t o

(49)  A(Exy) = }O T Ryt (o)

(49) tégether with (5) gives:

t o

j £ R, (dw)F,(t-u,x,y)
o j=1 o 1ij dJ

(50) W (t,%,y)

+.

t
[ 8 (e, a ()

+

P{N(t,x) = 0 | &(0) = i} u(y)

(t) = oRij(t)' oRij(t) 1§ the expected rumber qf t;mes




L

.

1lLoo

By Smith's Key Renewal Theorem (Theorem 4, Appendix D) and

-

<. lemma 1.8:

(51)  Weey) = dim W (6,xy)

t = o

)

«© O

1 1l
= F.(1,x,y)d1 + = X Al(r,x,y)dr
i

H
™8

o J

+ (1-x@) U(y) , ifl-Aa >0,

O otherwise

where o is the mean recurrence time of state j without
5 .
visiting state O and u is the mean renewal time of the general

renewal process formed by the beginning of busy periods.

From (1.52) and (2.86):

v = 0and wt = A(1-M) e

o.
J

Hence further simplification of (51) gives:

(52)
Wley) = (-aa){u)n jzionlj<+w>jo Fi(nxy) At
if 1-aa > O,

0 otherwise,
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7. An Exact Comparison of the Waiting times

. |
L~ :

~ _ - Under Three Priority Rules .

- A number of comparisons between SPT, LPT and FCFS rules
. !
wvere carried out in the earlier sections in regards to expected
waiting times in the equilibrium staﬁe. Many questions which

involve more than expected values may be asked however and in

order to answer them an exact comparison of the waiting times

as random variables needs fo be made.

: We may "visualize" the definition of the three random
variables T(t,x), N(t,x), N(t) on a common probability space

as follows. Imagine that a customer joining the queue at time

't consists of three identACal pafts.l, 2; 3 all requiring a
processing time x > O. Part 1 waits in front of a server operating.
under the SPT rule, part 2 in front of a server operating under

the LPT rule and finally part.3.waits in front of a unit governed

by the FCFS rule. Then T(t,x), T(t,x) and N(t) are the waiting

times of parts 1, 2 and 3 respectively.

An Auxiliapy Caleulation
Consider the time points t and $+t’, t >0, t' > 0. The
probability that during the intervgl t, jl customers arrive
whose service time is less than %,‘jz whose service time is
greater than x and that during (t,t+t’) j3 and j, arrive with -

service times respectively less and greater than x is given by:

AT e e L T e R R R AT - 4 . MR TR R e R Y iy i R Y7 T8 SETAY 3 s s S M e s Ly 5 e — . -




-

~.

(53) ooM=NE T IMHGOT T v HG)] 2 I [1-K(x)])
. , iy ,331 e .
) {xt’[l-n(x)]}J“

3,

We assume that x is a point of continuity of H(«) so that
the probability'that one or more customers have service time

exactly equal to x is zero.

Let U{ and Ué be the total service time of all customers

in (0,t) with service time respectively less and greater than x.

Similarly Ué and Uﬁ are the corresponding quantities for the

customers arriving in (t,t+t’).

We define W(t,t’ ; xl,xz,x3,xu) as the probability that

~

for given t > O and t! > 0, the randcm variables U', u’l !

2’ U35
U, satisfy:
’ 4 7 s - -
Up £%5 Up S%5 Ug X3, U 23
It follows from (53) that:
| SO S 0 O
(Sh) w(t’t’;xl’lex3jx)+) = E 2 2 2 e !

j J J
e e Do 3 DelenGo1
ETU—— 5

IR E XN IR CEUDRY CRJINE Y

Jh (3 G e ()



taking Laplace-Stieltjes trénsforms: ’ f

where H and H are defined in (&) and (32) respectively. Upon

Lo SRR <o B o s TN |

(SS)W(tt l’SZ’S’Su)‘{jjj 11 "53Xam8)X),

0O 0o 0 © !

- a oWt ,xl,x

s X
.,Xh

2 ?’“u)

we obtain:
© o« w

* ' o ®
(56) W (t;t';sl,sz,s3,sh) =L I T %
-l=O Jzzo J3=O Jl :O

’
e-lt-xt :

. ’ J-'
[at(x)) e nm] R H(xm 2 a1

. s !

- exp{-m-u “neH(x)R(sy Jrit L-B(x) 16s )
+ 36 H(x)B (s )4ae [L-00x) (s, |

Wé now return to an MiGzl quéue, which we consider at time
t. We define the following five randcm variable;._ Uo is
the length of time beyond t until the generation of custdmers
in service at time t completes its.service. Ul and U2 are

respectively the total service times of the customers with

processing times less than and greater than x who have joined

the queue since the beginning of the service time of the current

generation and before t. U3 and Uu'are respectively the total

o




1ze

service times of the customers with processing times less

i
!

"~ than and greater than x, who join the queue during the time

interval (t,t+UO). | ’
If at time t the server is‘idle all the five variabiés
are zero, |
We shall e#press the joint distribution of the waiting
times T(t,x), T(t,x) and T(t) in'terms of the joint distribution

of the random variables Uj, J=0,.4., k.

The Joint Distribution of Uj, j=0,...,4
Let oRigt,xb,xl,xz,x3,xu) be the probability that in |
(O,t).the queue has never become empty and that the variable
U, 3=0,...,4 associated with the time point t satisfy
U. €x., Jj=0,...,4, given that at t=0 there were i > 1 customers

J J
in the queue, one of who was beginning his service at that time.

. Then: ’
B AR
7 o VOsX5oXy s Ko X5 X), _'n=0 w1 9% o © iv T
(') (x)

. dH(“)(t+t’~r)

'7 W(t-r,t';xl,xz,x3,xh)
Lo g _
The prqbabilistic argument for this is the following: At
some‘time T prior to t, the géneration in service at t enters

service. There are some nunber v > 1 customers in it, so

that the duration of the total service time of these v customers



has as its distribution the vAfold-convolution H(v)(-) of H(-).
It Ub <% must hold, then the total service time of these v
customers canhot exceed t+xo. The othef”réduirements Ui :;xl,
U, sz, U3 < X3, Up<x, account for the factor W(t-r; N |
tfxlgxz,xs,xu). The probabilities ong)(') are defined by (2).
Taking L.S.T. of (57):
® o @ o o o

(58) OR:*(§’§0’31’82’33’34) =l el [ 1]

o © 0O O o ©

-SOXO-Sle-SEXZ*S3X3-SuXu

. : R-(t;x s X >X-,X s X )
ho,xl,xz,x3,xu o1 0’12273

-and recalling (56), we obtain:
- (59)
A ¥, ' 2T (), N7 ,
oB; (8s8,58y,85,858,) = T T q (g)Jo X exp{-étl-ltl |

'm
i
- n=0v=1 v o

() (x,)

Nk s by HOOR sy )ty Dok () s )

+ W HGOR(s ) +nx () 10, ) Jar (¥ (o Jat

~ -1
= {&8N(x) (s, 65 ) 1A (L-H(x) 1 (s, )-Blsy )1}

zd{oqgn)i@,h[k+so-KH(x)EKs3)fk(l-H(x))ﬁ?su)]}
n= , ;

- 2 e nleanas(R(s, A enx)(s,)11 }

fr ey v = e ¥ rr i = N T S © o en S0 e s iy T A T Y T 3 AR = e M ) ot s (L VR Sis Lt emtemrme e 40 e e e = i s e S S S e e e =



L)

in terms of the functions oqgn)(g,z) defined in (7).
Next, let Ri(t’xo’xl’xz’x3’x4) be tﬁg probability that
at time t, the random varisbles Uj associated with t satisfy
’ N
'Uj-f xj, j=0,1,2,3,k4, given that at t=0 there were i customers

in the'queue.

The standard regeneration argument as in (1.38) leads to:

(60) R, (t X ,xl,xz,x3,xu) = B (t X ,xl,xz,y3,xu)
: .
f Io ORl(ﬁ-u,xo,xl,xz,x3,xh) dMl(u)

+ ?{g(t)=o } £(0)=1} UCIFENTIEN

where: .

U(xl,xz,xa,xh') =1 if’?j >0 for all j=1,2,3,4 -
= O otherwise.

Upon taking transforms in (60) we obtain as in (15):

. ** ** .
(61) Ri (€,30351352,53>su) = ORi (gsso:slsszss3’3)+)

VI R B (55058, ,55055,5,)]

When 1-\x > O, the existence of a joint limiting distribution
for Uj’ J=0,1,2,3,4 is guaranteed as in Theorem 1.3. Further
when l-da <0, Ri(t,xo,xl,xz,x3,xu) tends to zero for all i and
x;j >0, j=0,...,4, Since the limiting distribution exists when

 1-dx > 0, its transform is given by:



(62) R (s ’51’52’53’31) = g11m0+g R (g,s ’51’52’53’Sh)

e - 1
= (1-)q) {}+R R (O+’SO’Sl’Sa’S3’Su)I'

‘The Joint Distribution of 1T(t,x), W(t) and M(t,x)
The random variables T\(t,x), ﬁ(t,x) and N(t) are, for each

t >0, related to the random variables U&, Jj=0,1,2,3,k

associated with the time instant t by

r(63) | 3(t,x) = U, + U + U3

nt) = U, + Uy + U,

TW(t,x) = Uy + Uy + U,

That this is indeed 50, we argue for T(t,x). The other céses
are similar. Consider a virtual cﬁstdmer with service time x
arriving at time t. He has to wait until all customers of the
present generation, if any, have been served. This is a length
of ti@e Ub. Ne#t, in the next generation, all customers with
service time less than x are served aheéd of him. Regardless
of the actual order of service the total amount of processing -

time required by all customers with service time less than x

is U, + U

4 3" Ui is the processing time of those who preceded
him and U3 that of those who succéeded him in the arrival

sequencé. We have:

\
o BT e



- ‘»'“~ (6ﬁ) ;B(t,x) ¢ o+ (t) ¢, ¢ T(t,x) g3

(C#Garts) Uy + (G+0,) Uy + (GG3) U

+

gl U3 + é:3 UL‘- )

which implies that:

| U | TS R Y Tk O Yo
LL P . - Tt RN iaast 2 3*/53
(65) , Si.(gsgl:g27g3) X € E[e J at

O

*¥
Ri (g, €1+€2+ €3, gl+g2, g2+ g33 gl’ g3)

*% - ' '
where R, (*3°3°5°s*,+) is given by (61). Formula (65) shows
~ how the joint distribution of W(%,x), N(t) and Ti(t,x) is
related to the basic parameters of the MIG |l queue.

The Limiting Joint Distribution. The Limiting joint distribution

of the three virtual waiting times is given by its Laplace~
Stielejes transform:

(66)

. ) *
870013000 65) = (-ma){1on B)(0, 640405, €000 €405, 60 5
**. | | :
where R, (¢y+55°5+,+) is given by (59).

Moments of the Limiting Disbribution of Basic
Variables Uj, j=0,1,2,3,4,

Let us denote::

5 = (so,sl,sz,s3,su), 9= (0,0,0,0,0)




L34

(619 o =o(x,) |
5o+ MH(x) (s, )55 ) A [L-H(x) VR (s,) -5, )

(68) Y = ¥(xg)
=_h[A+sO~XH(x)gzs3)-k(l-H(X))ﬁisu)]

(69) ¥ =Tx,s)
' = h - (0)R s )M (2-H(x ))h<s )]
U= 4y (553)

n

=h (0,Y) - n (0,¥), n>0,

. where the functions hn(~,~), n > 0 are defined in (10). It

(70) R'(s)

follows from (62) that:

(l-?\a){l . _é\_ n;go[oq:](_n)(of?)- q(n)(O 7 ] } .

(L-x) {1 -2 ¢
for s

© \:’n(x),s‘)}

(similar to equation (20))

Let Eép denote the expected value of the limiting distribution

- of the variable U, and U the colwm vector:

s e U U




L3¢

Since the calculations are lengthy we state the results only.

.. The matrices of first and second moments are respectively -

given by}

S

, 3 R (2)_

(12) - B y-(~—= )
i s=g

~

;

* ¥* ! ' . 3 :
where ax, Bx’ a%, Bx are defined insection 3 and section Y and:

!
;
!

= ap/2(12%°)

o
]

t=1

[an]
i

= .’3£ (1-x3a3)'1[v+3>\2a52(1-5\2a2)fl] s

=

lI

=

C:m o
1




=

53

That is, a is the steady state expected residuel 1liCe length

@ . of the generation serving at time t and _b-az. its variance.
| Moments of the Limiting Distribution of

_1_1(13,}{'), T](t) and -’ﬁ(t,x)

Let us denote:

a (6,x), 1101 0
A= M(E) A= 1110 0.

L W(t,x) i1 01 0 1

so that from (63):

A=AU
(14) E A= A(E V) | :
- (75) Em(A A’) - A(Ewg-’g’l) AI

E,Uand E_ gg’ are given by (72) and (73), and substituting

these values in (74) and (75) and simplifying we obtain:

. (1+2)\ax) a.

(76) E_A-= (1) a

t i
¥, |
; (l+2hax) al



i
| 22
| ; b(l+37\ax+3h o,
(17) .
. i Y e
: v
P _ . A 3 . 22
E_(AA )~i b(l+ 3 oF 5 M, b{(L+aar o
1.
H é‘- 2
g f 5 A an&)+kaxa +ABa
;;
%b(l+3x %) S S A
i 5 k3o o b(l+‘§-a 5 A, 3o, +3N o )
{ ) .
! 3.2 ¥ * ; *
; + 5 QQ&)+X6X a | F 2N B, @

The Limiting Probability
CP{R(tyx) <N(t)}as t v @
Let Ai(t,xz,x3) be the joint distribution of U, and U3
given t and OAi(t,xz,x3) be the probability that in (0,t) the
queue has never become empty and that the variables U2 and U3

¥

associated with the time point t satisfy U, < Xo U3 5:x3,

given that at t=0 there were i > 1 customers in the queue, cre

of who was beginning his service at that time. Then the

renewal argument as in (5) leads to: -

t
(78) Ai(t’XB’XB) = oAi(t,XZ,X3) + XOA]_(t'u>X2’X3)dB41(u)

+ PLE(6)=0 | §(0)=1} Ulx,x3)
where:

1 if x

in

. U(xz,x3) >0and x; >0,

2

0 otherwise

e ——




Further let g(t,t’; xz,x3) be the joint distribution of U, and

U3 given t and t’, then as in (54):

(719) glt,t5xp%,) = = % o~ Mt (1-H(x)) -1t "H(x)

Jzzo J 3:0

H (xz)ﬁ

. D 0-HG) 1) 8 D013 5492) (33)(x )

- ] []
Jz‘ 433'

Similar to (57) we have:

(80) oAi(t’XZ’x

3) L X I j 4 an)(T)dH(V)(t+t'-T)

o)
n=0 v=1 o v

(t) (1)

. g(t-T,t';xz,x3)

t

] Xod oRiv(T) Fv(t-T,xz,x3)

i
To8

where oRiv(.) is defined in section 6 and:

o2l

(81) F (t-1,%,,x5) = |

dH(v)(t+t,-T) Q(t—T,t';xz,x
o}
(t")

3)
Substituting (80) in (78) and applying Smith's Key Renewal
Theorem (Theorem 4, Appendix D) we get the limiting distribution

A(xz,x3) of Ai(t,xz,x3) as t9«, as in (52):

(82)
Mixgsxg)=(raa){Uxgxg) + 2 2 Fay ()] Fy(rngungdac)

ifl-XNa>0

= 0 otherwise
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From (63) it follows that:

. (83) Lim P{N(6,%) <(t)} = im p(U3.< V2!
t <o t2e
- Xo.so 3 Mxgoxg)

© o) XZ ©
- (1-Na){}+xj§; ole(+w)jo 1 dx2x3Fj(T,x2,x3)dT}
' (xz)(x3)(7) .

‘8. Applications

The main objectives of a priority decision are to reduce
the response time, to acknowledge customer importance and urgency
of request and to serve in fair order and to iimit the lgngth of
wait. For the best average performance the shortest service-
time-next rule May be just right. But under this rule a steady
stream of shortest‘requests may.delay a longest requeét indefinitely.
The rule proposed in this chapter is a compromise to fhis, since
within each generation the service request of o customer with
long service time is fulfilled. Our model, of course, assumes
that the service times of the customers can be dfdered before -

hand.




10,

1l.
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(1) © Xy Kk

APPENDIX A

A THEOREM 6N SUMMATION OF SERIES

Theorem

For & given positive integer k, the sum of the infinite

_ series:

o q [n+v]k k-1 uh(uhy)v (yk—l) © Xy
5. _

k-1 €

o R

n.

n=0 =0 (c&y-l) N

for all x, for all yfl, and for all integral values of v >0,

where [%] is the greatest integer not exceeding % , and

l = uh’ui""’Lk-l are the k-th roots of unity.
Proof':

Let us denote:

_ o [n+v K
(2) tey) = 3 T K
n=o B°
- | i
(3) Be,y) = | & 20, ¢ a
o
Then: [n+v]k
(!*) _ f‘(s,y) = ? )
n=0 s

Suppose that O < v < k-1, then (4) can be written as:
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. k~y-1 2k-v-1 3k-v-1 .
o k 1 2k . l
£(s,y) = +y D 4y > T
@ ‘\\"\ . - n=0 511+l n:k-v ,Sn.+l . n=2k'\) . Sn+l
o k-y-1 k - k-1 '
2 s O R ]
n=0 § sV =0 8 :
K-v . x, k
= ;_v o S k—vy (s '1ﬁ = » for Iyl < sl ,
s (s8-1) & V(s-1)(s7-y") :
X v, k k
8 + 8 -1l) -
:. (5) - (y ) Y

(s-1) (s®-3%)

. Next we consider r k < v < (r+l) k-1, r=0,1,2,... In this case:

+
- B
f(say) = € 1..__;1__,
n=0 'sn
' N S
. = % Y .-
- | n=0 8n+l
4
_ B o y
(6) _ y nEO Bn+ZL

where r’ = y - rk and 0<r’<k-l -

Hence substitution of (5) in (6) yields:

1 ' x
Hoyy) = Lol v 87 (1) - )
: (s-1) (&° - ¥5)
» . rke k v-rk, k .

(& - 1) (s*- )

T = gy e v e e o oo



To find the inverse transform we use Bateman (1954), Tables

of Integral Transforms - (p232).

“fThat is, if f(s) = %-%:g- ,

where P(s) = (s-al) ...(s-ozn), o £ o for i #r and q(s)

is a polynomial of degree < n-1, then the inverse transform

of £(s) is givén by:

nQ,(oz) ax

@) ) = = —-(a—y

“where P (s) =—If—( ) .

-0
Corparing with thivs we have in (7):

p(s) = (s-1) (s° - ¥)

(s-1) (s-0y) (s-ayy) -+ (s=q_y¥)

80 that a]. l am+z = wmy, mzo,l,? v ,k-l

oy # oy for i#j since y#1l by assumption. Where © 2y g

(@)

are the roots of zk -1=0

as) = rk[s + sV rk(yk-l) - yk]

P () = (=) (5 - ¥

S (Zn -

Pog) =1 -9

;d
’.

)
Q

3]

i

N
g

!

k k-1
B;'n(c\)my"l)y ‘ ’ m=0,l,u0-’k-l

= (wmy-l) yk‘li(w -0 )(wm-wl) |

(wm-wm l)(um ) (wm"ci{-'-']:)

%1




vwhere the simplification is obtained from the properties of

the roots of the equation zk -1=20.

~—
~ .

e \ Q(a1) =0

k
Qlay,z) = (0¥)Y (y-1), m=0,1,... k-1,

Hence using (8) the inverse transform f(x,y) of f(é,y) is
given by:

k+1 Q(am) o X

"'—("'"7 e
Pm am

i}

7 £(x,y)

m
€

e to)Y Ky
L kL g0 65D g

=

n=0 ,(uhy-l) yk'L

This fs independent of r and hence the result is true for all

v > 0. v -

R T R T
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APFENDIX B
PROPERTIES OF THE TABCO PROBABILITIES
OQL’)( ) FOR THE TAIDEM QUEUE WITH ZERO

, SWITCHING

(The results and proofs of this appendix closely follow Neuts (196€9))

Starting with the semi-Markov sequence {En,Tn,.n > 0}

'_défined in (1.3) we define the taboo probabilities OQ§§)(')

_8.3:
K f_g’)(x) = 6, U(x)
oM iyy = - s L
(1) Q7 () = q (x) = plg =3, 7 <x | g 5 =1)
and
(n)(x) = P{T, +.. AT <X € =3, g\fo v=l,...,n~1 |t =1}
o2 ij 1 > %n *3 o

‘n >1

Let oq_gg)(S) be the L.S.T of OQ§’.‘)_(x) and

O R A C PP
Further we denote:

_ 7 _(n) |
(3) Omij(s)‘- z Oqij (S) B i Z 9’

n=1




B my(e) = ()

It is seen that:

(5) | ~j§1' omij(s) 29 = z [q(“) .s ,z) - ].(L“)(s,o)]

We define the following szquence of functions:

ao(s,z) =z

(6)

Yl{

a (s,2) s,hz(s+k-Xan_l(s,z)]} ,n>1,
where.Yl(-,-) is definad in (1.12).

Throughout this appendix we use the follewing notations:

- : arll(ozl) = BZ n(o’b)]
v a2
a.n(o,l) = —5 an(O,z)
oz .
'
Yl(o’l) = az l(o Z)]
/(0,1) ? 1(0,2) ]
Y, (0,1) = —z3 Y, (0 ,Z)
1 az} z=1
Lemma 1 N

If 1-x A - A 228 > O then:

(1 T a(0)=

and



- ' © | Na, 24,1
(8) =z a (0,1) = xz{(l-lgl-laz)[l - (mg-f.) :‘ }
2 '

{Go2) 8y + 8y + 2 (o) o o)
T T A T T B 3|
1
Proof:
- From (6) we obtain:

a.r:_(O,l)_= Ao, Y{(O,l') ar;-l(o’l) ,n>1,

Successive substitution yields:

.n
- (9) 25(0:1) = [X o ¥(0,1)] 2/(0,1)
. = ( )\.sz )n '
l-l Q'l
since Y/(0,1) = —%— by (1.20)
I R -k ay 7 )
1\
Hence (7) follows for l—-')\_rvz <1.

Similarly differentiating (6) twice and simplifying results
in equation (8).
Lemma 2

For R(s) > 0 and i >1,

10 a(s,2) = a(s,2)
oqgn)(s,z) = aj;(s %) —'aj“l-l(s,O); n > 1,
Proof:

From (2.3) we have:

R e e e



(1) q(s,2) = Yiis,hz(s+x-xz)}

=-ai(S,z)
Again,
4; (a3, (5,2)] = ¥ (s,n,Loronay (8,2)1)
= a%(s,z)
and
(12) K En) s,a.l(-s,z)1 = vgl o2 iz‘l)(s) q, [s,a (S z)]
-z oqi‘: V) eyl5e)
Y CT O I ol )
) @MV = 2 o™ g e,
v=1
- (n)
=v3_:1013< s) ay(5,2)
| = gn)[s,al(s,z)] = ongln)(s-’o)b
Setting z = O in (13) leads to:
(1) (M)(e,0) = @ P g (5,01 - (P D(s,0)

Substitution of (12) and (14) in (13) yields:




n+l . n-i : n-1
i ™ s,2) =l s,a (5,201 - af )[s a, (5,0)]
é@b " Successive similar substitution gives:

(15) @™ (s,2) = _ ‘1)[s,a (5,21 - oM s,a 105,001

¥; {s,h,(sh-da (5,2)])

- v]i_{s,hz[s-m-xan_l(S,O)]}

i

ol,1(5,2) - ai(s,0)

From (10) and (15) we have:

it

A" (s,2) = ah(s,2) - ol (5,00, n 21,

For n = O,

( )(s z) 2

%

Lemma 3

Far 8§ >0 and 1 > 1,

(16) n}i@w an(s,o) = nmlo(s) = Y(s)
Proof':

From lemma 2 we have:

(n)(s z) =

= an(S,z) - an_l(.sao)’ n>1,

[ et
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Hence:
- of0) ‘
n=1 °
o v i
The left side of (17) is the L.S.T. of the probability
AN(X), where AN(X) is the probability that a busy period with
one customer initially lasts for at most N cycles of tasks

and has a duration at most x. It can be argued as in Neuts

(1969):

L) <1,

Ay(x) <Ay,

which implies that the transforms a, (s 0) is increasing in
- N'for s » 0. Hence by Helly-Bray theorem (Theorem 2, Appendix D)

a (s 0) converges to the L.S.T. of a probability mass functlon

That is:
lim a,(s,0) = (“)(s 0)
N— ,n-l
=y (8) = ¥(s) by (1.35)

Lemma 4 ' -

If ] Kl (n)(< 0) " = v(s,0), |el <1,

n=

then:
(18) p oqgn)(s,o)wn = .Yi(s-,w), i>1,

n=1



Proof':

Analogous to the proof of lemma 1.2,

i ) o Lemma_5

If R(s) >0 and !¢} <1, thea z = Y(s,0) is a root of

the equation:

(19) zZ = Yl{s,hz(s+k—Az)] R \i!_s 1,

Further z = ¥(s¢,w) is the only root of this equation in the unit
circle |z} <1 if R(s) >0 and le! <1 or R(s) > 0and |o} <1

“or R(s) >0, o] <land 1l -2ra -\ a, < 0.

1

Proof':

Consider the recurrence relation:

~

_ (20) o) - ERNOIOIEESS

which gives:
- == +l +l e} [==] E ( )-- .

B O o T o) 5 o))
= wlvzi’qlv(s) YV(s, )
(by lemma 4)
(21) = 0 {q,[5,%(s,0)] - ()}
' That is: |
@) Use = 2 @) - wayaY(s0)

Tyt e g

N e et i



= oY {s,h, [Baa-av(s, ) ])

(vy equation (2.3))
which proves the first part of the lemma.

The gecond parf follows from Rouche's theorem (Theorem 3,
Appendix D); For a complete proof'ﬁe refer to Takdes (1962),
p. 48. | '
Lemma, 6

For R(s) >0, z = ¥(s) is a root of the equation:

"(23) z = Yy {s,h,(s40-22)) , |z <1,
Further Y(0) is the smallest. pesitive real root of the equation:
(24) 6 = v, {0, n,(r-16)]

v.and if 1-A oy = A @, <O then 6 <1, if 1-A o - Ao, > O then
6 = 1.
Proof:

Proof of the first part is similar to that of iemma.S, by
taking w = 1.

For the second part, the proof is analogous to that of
lemma 2 in Neuts (1969). For completeness we repeat that proof
here, since our funétional equation is different from that in
| Neuts (1969).

Consider the graphs of:

y=xandy-= Yl[O,hz(k-kx)}




g

and consider the increasing sequence of points whose abscissae

are an(0,0). At the point x = an(0,0) we have:

y = Yl{O,h [}\‘)\an(o’o-)}}: & (O:O)

and lim a (O 0) = Y(0) which 1mp11es that Y(0) is the smallest
3 o
posigive real root of (24).
If 1-» ai - A az < O then from lemma 5 it follows that 6 < 1.
If 1-\ al = M a, >0, then the graph of y=1 fo,n. (\ )} does

not intersect the line ¥y = x in [0,1) so that 8 = 1 is the only

root of (24),

Remark:
From lemmas 5 and € it follows thet if 1-A o - A oy > 0
“then: .
a, +o
. 1 2
(25) - v(0) = ‘
1 -2 oy A Qy
‘ B. + 20, O, + 3
(26) v/(0) = = Lk
(o - N )
l -\
fe) ‘ 1
(1) S v0,8]| =v(0,1) =
ow =0 1 - - A o
Lemma 7

If s >0, 0 <z <1 and l—)\a -)a > O then:

8 z) - a, - a (0,
(28) nz; a_(s,2) (s o)] < 2 1 (0 o)]

A ay,

<




Proof':

The summands an(s,z) - an(s,O) is a monotonic increasing

- function of z'and a decreasing functicn of s Hence by Setting

& =0and z = 1 in the summands we get.the first part of!the
inequality (28).

It can be shown that a;(O,z) >0 for all z in [0,1], so.
that an(O,z)iis a convex function in [0,1] and its graph lies

entirely above the tangent at z = 1. This tangent has an

_intercept:
i A 052 ?
2(0:1) - 1(01) < - ()
where the value of aé(o,l) is taken from (9).

n
7

Hence an(0,0) > 1 - (37==-) which proves the lemma completely.

Limiting Properties of the Semi-Markov Sequence. The limiting

properties of the semi-Markov sequence defined in (1.3) is
studied through the following theorems.
Theorem 1

0 for all

If n;ggm P{t =5 | =i} = Bys 3 20, then By =
J if l-\ - A <O. If l-kal-hy >0and O <z <1, then
1 2 2= - -
o . ©
(29) B(z) = £ 8. 29=1-8 T [1-a(0,2)]
. J O n
J:O . rl n:l

where Bo is given by: '

(30) gt = - 2, (0,0)]

n=0
and Bj > 0 for all j.

e AL




Proof:

-

The stationarity equations for the imbedded Markov sequence
{gn} are:
(31)

@w oo m

. A v-u J vv'
By = s, = | acl 0w Bl vy

©® o o J :
’ i) - }\.—
* B, I 'f X q G(v)(u) e A(v-u) L~£E%EQJ— d Hgv)(v-u), j >0,
o = lo J. 2 =
v=l "o "u .
The first term is obtained by considering r 2 1l customers
in unit 1 followed by a l-task and a 2-task. The second term
is obtained by considering an idle periocd followed by a l-task
and a 2-task. FEquation (31) shows that all Bj are strictly
positive if and only if Bo is strictly positive.

From (31) we also obtain:

Bz) = zp, T ¢OmI0aa) + 8, T el (OmI0nz)
r=1 = v=1 v=1
© ) >
= rfi B, Yy {0, (A-2z)} + B v, {0,h,(N-22)]}

B(Yy (0,1, (x-22)3) - 8 (1 - ¥, {0,h, (A-22)}]

That is:

(32)  B(Y,{0,h,(x-22)}) - B(z) = B 11 - ¥, (0,h,(r-22)]]




e T

If 1-\oy-Ma, <O then from lemma 6, z = Y(0) <1 is a root of

i

‘the equation z Yl{O,hz(A-Kz)}. Setting z = Y(0) in

i

(32) we get Bo O which implies and implied by Bj = 0 for all
. If - y-\a, > O, we replace z in (32) by e (0,2)
r = 0,1,...,n-1 and add the resulting equations to get:

_ n
(33) B(a,(0,2)) - B(a (0,2)) =5, £ [1-a (0,2)]
r
. _ r=1
Letting n = ® and noting that dn(O,z)vﬁ 1 a8 n3 = for every

*z in [0,1) we have:

(34) B(1) - B(z) =B, T [1-a (0,z)]
. o n
n=1
- vhich proves (29) since B(1) = 1. Finally equation (30) is

0 in (34).

obtained by setting =z

Theoren 2
[ ]

If 0 <z <1 and l-hozl—)\ogz > 0O then,
- j - j
(35) Jf om]_a(o) 2" =B JE]_ B. »Z'

Proof:

From (5) we have:

e i e e R L £ 5 i i P i e =0 ] DA AN £ S0 T, AR TR T R L Y e (= S Sy a4 o e o e
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o
~
N
[}
l

o]

il

(This rearrangement is a

2 [ a9y (0 z) -

z [l-an(o,o)] -

Q§n)(§,0)]

n=1

[ea)
X [l-an(O,z)]

n=1 n=1

1lowed Ey lemma 7)

-1 -1
(B~ - 1) -8, 01 - B(s)]
sl Blz) -1=p"1 5 B, 2
o} o J

. J=l

Theore@_g

Ifs >0, 0<z <1
: - ( )
- (36) p> (s z) <
n=l
Proof':
For s > O‘and 0] Lz
[es] . .
% 'Oqj(_n)(ssz)
n=1

and l-\x

l~xa2 > 0, then:

l—XOi

< e —r o A ——
l—kal-kaz

O'U)P—‘

1]
‘M8

i}

[
+
8

(by Theorem 2)

[ n(O 7) - a (O O)] !



=8 s since_ z Bj =1,

[¢) J=O
[o»]
=1+ Z[1-a(0,0)], by Theorem 1
n=1 n , - '
A 1 -2
R i X =TT O%.
- al-,az -'al-“az
(by lemma 7)
Theoyem 4
If 1 - Aoy - Xa, >0 then:
G s (0) - L %
37 Zj I.O= N
jop 0 0L I-Xog -\ o
. <o § )\a 2 —1
T i(3-1 ,‘:2{_-,[- 24y 11
(38) J_=1:1(J )omla(O) N4 (1Mo -y) i <1-xal) 1]
sz 2 sz ‘
{(l-kai) By * B 7 2(1-xal)a132}

Proof':
Equations (5) and-(10) give:
[eo] j— [es] N
(39) jz; oty 5(0) 27 = nzi[an(o,z) - an(o,o)]

Differentiation with respect to z gives:

(ko) 3 om0 = T a,(0,1)

where term by térm,differentiation is valid by lenma 7.




[ .

Similarly,
) ® o .
‘»\\'\ ,4 Y - Vi .
L (W) jfl 3(3-1) o 5€0) niilan(O,l)

Substitution of lemma 1 in: (40) and (41) proves the theorem.

P



APPENDIX C

To facilitate reading Chapter IV we state and prove the
following lemmas which are essentially in Neuts (1969).
Starting with the semi-Markov sequence
_ {g(Tn), Tpep = Tp» 0 > 0} defined in (4.1) we define the
taboo probabilitiss oqgg)(-) as:

(0),
o 3 \f) =By U(x)

it

- @ o)

1] Q; (%) = PLE(T,)=3, T, T <xle(r )1

- and

. 0Q§§)(x) = P{T < x, E(Tﬁ)=j,§(Tv);éo,v=1,...,n;l‘g(TO)zi}

n n
Let Oq§j)(s) be the L.S.T. of ong)(x) and

(2) oqgn)(S,Z) = _J-fo 'Oq§§>\<s> 29, _’Z‘ <1,

We define the fellowing sequence ef functions:

ho(s,Z)-= z

(3)

hn(s,z) ‘hfs+r -2 hn-l(s,z)] ,n>1

e o e om0 3. s s 330 A ST AP et 1op T4 A ar b <A1 % e e T - e e : - e —_—



Further we denote:_

d
h;_(o,l) = hn(O,z)]
_ =~ z=1

P .
n1(0,1) = 25 1 (0,2)]
oz z=1

h;’(o',l) -3—3— h (O,z)]'

Bz3 1 z=1
Lemma 1
If1-Xq>0, then:
. © l
() £ h’(0,1) = ==
n=0 n 1-\x
. 0. 2‘
(5) E nr(0,1) = —t2 ,
- n=0 - (1) (1-2%7)
- @ 3 5 2
w 1 1 3NN aB
(6) £ n%o,1) = +
n=0 B (1-)a) [l—)\3r_7,3 (l-}\zaz)(l-k3a3)]

where o, B and Y are defined in Chapter IV.
The proof is similar to that of lemma 1 in Appendix B.
Lemma 2 ‘ ~

For R(s) >0 and i > 1,

(7) Oqgo)(s,z) = hi(s,z)

i

n . > ) )
aiM6,2) = whe,2) -l (5,00, m 21

R
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Again the proof-of this lemma is analogous to the proof

of lemma 2 in Appendix B.

Lemma 3

Ifs >0, 0<z <land 1l - Aqg >0, then:

(8) 2 [n (s,2)-n (0,0)] < z (1-n (0,0)]
Ay
10w

Far the proof we refer to the parallel proof of lemma 7

in Appendix B.

EFRWISH

Fer further properties of the taboo probabilities defined

in this appendix we refer to Neuts (1969) where they are

extensively treated.
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APPENDIX D
SOME WELL KNOWN THEOREMS USED

IN THE TEXT

Theorem l: ZYGMUND'S THEOREM
Let {Fn(x)} be a sequence of distribution functions all

vanishing for x <0 and let

m .
j' U GF (x), - <w<e .
. .

{l

1) g (e

If the functions ¢f_(w) tend to a limit in an interval around -
= 0, and if the limiting function is continuous at & =0,

then there is a distribution function F(x) such that Fn(x)
tends to F(x) at every point of continuity of F(x).

[Ref: 2ygmund (1951)]
Theorem 2: HELLY-BRAY THEOREM

If g(x) is bounded and continuous when - ® < x < ® and Lhe
sequence of distribution functions Fn(x) converges to a

distribution function F(x), then:

[o=] (=]

(2) vin [ g ar ()= [ e(x) ar()

n-= o - <)

[Ref: Loéve (1963)]
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Thebrem 3: ROUCHE'S THEOREM

If fz ) and g(z) are regular inside and on a closed

contour C, and lg(z)| < | £(z) | on C, thén'f(z) and

2(z) + g(z) have the same number of zeros inside C.

{Ref: Vhittaker and Watson (1952)] |
Theorem 4: SMITH'S KEY RENGWAL THEOREM

If M(t) is the expected number of renewals in (0,t],
Q(+) is a positive integréble and decreasing function, then:

(3) Xt a(t-u) a(w) > = [ q(w) au

=i

o}

- where p is the mean renewal time

[Ref: smith (1958)]

Theorem 5: A TAUBERIAN THEOREM ’

If M(t) is non-decreasing and such that
fee)

m(s) = j et dM(t) converges for R(s) > O, and if for some
o
non-negative number o, lim s~ m(g) = ¢, then:
§ =0
1m ME) e

t o Y {o+l)

(Ref: Widder (l9u7)]

e T T T s



T

- DOCUREHT CONTROL DATA - R&GD

(Security claesification of titlo, body of sbatract and Indexing enrotation muet bo entered when the ovarall report le classilied)

3. REPORT TITLE

On Certain Priority ISmm Queweq

4. DESCRIPTYIVE HOTES (Type of report end incluaive dales) ' T
Technical Renort, December 1559

1. ORIGINATIN G ACTIVIYY (Corporate suthor) _ 2. REPORY SECURITY C LASSIFICATION .
Purdve Universlity _ Unclessified”
e 2b. GROUP

5. AUTROR(S) (Lcet nzae, ficat name, nitisl)
Nair, Sreekenten S,

6. REPORT DATE 76 FOTAL HO. OF PACES 7b. NQ. OF REFSE
December, 1959 . , 165 : 53
. Ba. CONTRACY OR GRANT NO. . £668. ORIGINATOR'S REPORT NUMBER(S) ’
NONR 1100(26) & GP 7631 Mimeograph Series No. 21k

b PROJECT NO. .

c. . 9b. gJHER Hs‘PorﬁT NO(S) (Any other numbors that may be nulenea'
°

d.

10. AVAILABILITY/LINITATION NOTICES
Distributiocn of this document is unlimited,

11. SUPPL EMENTARY NoTEsAleo supported by 12. 5PONSORING MILITARY ACTIVITY
National Sclence Foundation Office of Havel Research
Washington, D.C. ' Weshington, D.C,

ga apsTracTThis thesis deals with three priority qusues. Chapters I and 1T treat =

ver serving alternately between them end Chapter IV treats a single server M Gll
queuve with & priority rule bzsed on the renking of the service times. In Chapter I
the server serves the two service units alternately with a non-zero switching rule
in unit 1 and a zero switching rule in unit 2. The case of zero switching rule for
unit 1 is dealt in Chapter II.  In both cases the distributions of busy period,
virtual waiting time and queue length and their ergodic properties are studied in
terms of leplace transforms. In Chapter IIT we consider the alternating priority
queues with a non-zero switching in each unit, Distributions of busy period and
queue length ere discussed. In Chepter IV we study the virtual waiting time pro-
cess of an MlGll gueue under this priority rule: within ench generetion customers
are served in the order of shortest (or longest) service times. Here we also study
the limiting behavior of the virtual weiting time, and compare the means of the
limiting distribtutions with those of first come, first served discipline. Applica~
tions of the different priority models are discussed at the end of Chapters II,

IIT and IV.

venteing model with two service units in tandem and & single server =iternating-ve-
ftween them. Chopter III deals with two independent gervice units with a single ser-

i
H

DD R 14738 . : ' Unclagsified

Security Classification

= e > e ey 1o e e ey v e S T Yo o T, T P S T P AN g

s AT

s e AN D



L T e Y

! VN A LINK 8 el

= ‘ : : INK C
KEY WORDS TTAT : 7
N = vt ROLE wT ROLE wT
g . !

[UPUUGN G SO S

1. Tandem Queues . i -

2. Alternating Priority :

3. Shortest Processing Time : :

. Virtual Weiting Time ' ' I i
Queue length : S
imiting Distribution ' - : B
Branching Process ' '
State of the Server

- Trensiticn Probabilities

0. Busy Perilcd

L
INSTRUCTIORNS .
1. ORIGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard blalemenls
of the contractor, subcontractor, grantee, Department of De- such as:
fense activity or other organization (corporate author) issuing (1) “‘Qualified requesters may obtain copies of lhxs
the report. . report from DDC. "’
2a. REPORT SECURTY CLASSIFICATION: Enter the over- (2) *“Foreign unnouncement and dissemination of this

all security classification of the report, Indicete whether
“Restricted Data’’ i3 included. Marking is to be in accord- )
ance with appropriate security regulations. (3) **U. S. Government agencies may obtain copies ol

2b. GROUP: Automatic downgrading is specified in DoD Di- S;l:y;egl?g:jlld:;cﬁgé t;r;;rguD‘I‘DC. Other qualified DPC
rective 5200. 10 and Armed Forces Industrial Manual, Enter a g

report by DDC is not authorized.”

the group number. Also, when applicable, show that optional i e =
markings have been used for Group 3 and Group 4 as author- . (4) ‘*U. S. military agencies may obtain copies of this

ized. ) report directly from DDC, Other qualified users i
3, REPORT TITLE: Enter the complete report title in all . shall request through _i
capital letters. Titles in ell cases ahould be unclassified. " 1
If a meaningful title cannot be selected without claasifica- : .

tion, show title classification in all capitals in parenlheﬁls (5) " All distribution of this report is controlled Qual-
immediately following the title, ified DDC users shall request through

4, DESCRIPTIVE NOTES: If eppropriate, enter the type of O

report, e.g., interim, progress, summary, annuel, or final, If the report has been furnished 1o th P L
Give the inclusive dates when a specific reporting period is Services, ;)t?pertment s?"cou;;’;rci for ‘ I'- . t(hé pzlflthn iLn.:’lh ‘
covered, . . cate this fect and enter the price, if known ' ‘
5. AUTHOR(S): Enter the name(s) of author(g) 2s ehownon | 1} SUPPLEMENTARY N . .

or in the report. Enter last name, first name, middie initiel, tory notes. ‘OTES: Use for additional explana-

If willtery, show rank and branch of service. The name of .

the principal author ix en sabsolute minimum requirement. 12, SPONSORING MILITARY ACTIVITY: Enter the neme of

the departmental project efiice or luboratiry sponsoring (pay~

6. REPORT DATL: Enter the date of the report as day, ing for) the recearch and development. Include address

month, year; or month, year. If more than one date appears :
on the report, uae date of publication. . 13. ARSTRACT: Enter an abstract giving a brief and t 1. tunl

) . . summary of the document indicative of the repourt, even though
7a. TOTAL NUMBER OF PAGES: The total page count it may also ‘appear elsewhere in the body aof the technical re-

B N

should follow normal pagination procedures, i.e., enter the et 1 . )

Pmber of pages containing information gg ;tm({::::uional space is required, a continuation sheet -hall
r . N A y . ’

7b‘ NUMBEF: 3FlnR'EF RE)?CES- Enter the total number of It is highly desirable that the abstract of classified ret - °s

references cite e report. be unclassified. Eech paragraph of the abstract shall end «. &

Ba. CONTRACT OR GRANT NUMBER: If appropriute, onter an indication of the militery security classification of the in-

the epplicable number of the contract or.grant under which formation in the paragreph, represented as (TS), (S). (C), or (U)

the report was written. : There is no limitation on the length of the abstract. How-

8b, 8, & Bd. PROJECT NUMBER: L‘nter the appropriate ever, the suggested length Is from 150 to 225 words.

military department identification, such as project number,

subproject numbet, syutem numbers, task number, etc. 14. KEY WORDS: Key words are technically meaningful terms E

or short phrases that characterize a report and may be used as

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi~ . index entries ‘for cataloging the report. Key words must te

ciul report number by which the document will be identified selected so that no security clogsification is required. Identi-

and c9nlrolled by the origineting activity. This number must fiers, such as equipment mode! designation, trade name, military

be unique 10 this report. . project code name, grographic location, may be used us key

95. OTHER REPORT NUMBER(S): If the report has been ~ | WOrds but will be followed by an indication of tecinical con-
usgigned eny other report numbery (either by the originatur text. Th". sssigament ol links, rales, und weights,1s cptional. L
or by the sponsor), also enter this number(s). 4 b -
10. AVAILABILITY/LIMITATION NOTICES: Enter any lim- ;
itations on further diseeminstion of the report, other then those f

DD 7. 1473 (BACK) S e

Security Classification

. .
T - - . — o e oy T 0 Ao e o, AP T 1 Aaag T T Ty e T o7 av e e - R e 1 e




