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1. Introduction and Summary. Let X : pxl be distributed N (EL’ E) vhere
& and E are both unknown. Let E be the sum of product matrix of a sample
of size N. To test the hypothesis of sphericity, namely, Ho : E = 02 E-P’
where 6° > o is unknown, against H, : % # o2 I Mauchly [10] obtained the
likelihood ratio test criterion for H, in the form W = | g! /T (tr 8)/» 1°.
Thus the criterion W is & power of the ratio of the geometric mean and the

arithmetic mean of the roots 815 0550nes ep of |§ -0 ,;[,! = 0 (see Anderson

[1)). For p = 2, Mauchly [10] showed that the density of W is

(1.1) f(w) = % (n—l)w%-' (n-3)’ o<w<1l,

where n = N-1, The exact distribution in the null case was ebtained by Consul

(3], [4], in the form

1 h % - - cvay p S -
(1.2) 20) = K(pm)ws (n-p-1) Gp,o wl (p-1) + (p-1)/p, 3 (p-1) .
b,p O, ':fli’ ..., %‘ (P"‘l)
where
k(p,n) = (2m)2 @) F- %m0 pann s B rpd (aesen)]
. j=1

* The work of this author was supported by the National Science Foundation,
Grant No. GP-11473. o
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m,n 1 P

and G (x ) is the G-function defined in the next section.
P,q bl,..., bq

In this paper we have obtained the general moments of W both in real and
complex cases for arbitrary covariance matrices and also the corresponding

distributions of W in terms of G-function.

2. Some definitions and results. In this section we give a few definitions
and some lemmas which are needed in the sequel. First we define Meijer's
G-function by 11]

m n
8. 5000, & _ I r(b,-s) O I'(1-a.+s)
RS G0 il P = S = W x5 ds ,
a

c

2.1) ¢™° (x
( ) p’q.( bl"“,

aq P
I I(i-b.,+s) 0 I'(a.-s)
J=m+l : Jj=n+l

where an empty product is interpréted as unity and C is a curve separating the

singularities of from those of

n
I F(l-aj+s), q>1,

m
I T(b.-s)
3 j=1

Jj=1
o<n=<p<g,0<m<q; x#oand |x| <1if g =p; x # 0 if ¢ > p.
The G-function of (2.1) can be expressed as a finite number of generalised
hypergeometric functions (see Pillai, Al-Ani and Jouris {12] end Luke [9])

and in particular we have

2,0 2158
2. G.°A (x =
(2.3) 020 (x| 4 \0)
b a_+a,.=b_=b,. -1
% 1 (1-x) 1 2172

.2Fl (a2-b2, al-bz, al+a2-bl-b2, 1-x)

I'(a,+a_,-b,~b
1271 o< x<1

)

where 2Fl here is the Gauss hypergeometric function.



3.
Now we state the Gauss and Legendre's multiplication formula for gamma
functions as
n i(n-1) 3-nz
(2.4) rr_ll Il z + (r-1)/n ] = (2n)2 n® " [(nz) .

Further, the hypergeometric function of matrix variates is defined by

F - ) b;E,T=

. (a))g --- (ap)x Ce (8) ¢¢ (D)
Fa (al,. p5 Ppoeees By T z Z

L TR (T G (L) &

where the zonal polynomials, Ce (+), and (>K are defined in [6] .

Lemma 2.1, Let E : mxm be a complex symmetric matrix whose real part is p.d.

and let :.g : mxm be an arbitrary complex symmetric matrix. Then

1
(2.5) j exp (-tr Z §) 1g!t'5(m+l)c,c(g §)dss= L (t,K) LZ,!'t Cp (32{1)
S>o

where I"m(t,K) is defined in (15) of Constantine [2] and R(t) > % (m-1),

(See Constantine [21]).

Lemma 2.2. Let Ebe as in lemma 2.,1. Then

1
(2:6) [ ew(-4trg) gt 2N alc @g)as
S>o

T (t, %) 29 plngineg) Ce (T) / Plmt + k),

Proof, We shall consider the cases when (1) q > o and (2) q < o.

(1) @ > o. From (2.5), for u > o we have



ey ] e (e g |5l
S*>o

- (m+
6 ) as

tmtk -tm-k
= 2 u rm (t,K) Cy (:g) .

To prove this case we differentiate (2.7) q times w.r.t. u under the

integral sign and let u = 1 to obtain

1
ey | e (dum) 15l THE D 9l6 sy as
§> o0

tmtk+q
=2 T, (8:,€) I(tmtk+q) G (T) / T(mt+x).

vhich is also (19) of Khatri [7].
(2) 9 < 0. To prove this case, we integrate (2.7) successively r times w.r.t. u,

change the order of integration and let u = 1, yielding

t - 1 (m+l) -r
(2.9) | em(-3trg) |3 (tr8) ¢ (T8 as
S>o
tmtk-r
=2 I'(tm+k-r) I‘m(t,K) Ce (1) / T(tm+k).
Since I'(tm+k-r) / I(tm+k) = 2 (tm+k,-;j)"l, (2.9) holds if
J=1

tmtk-r > o. This proves the lemma.

Lemma 2.3. Let Z : mam be a complex symmetric matrix whose real part is p.d.
and let.z : mxm be an arbitrary complex symmetric matrix and’g : pxXp be a

hermitian matrix. Then

(2.10) j exp (- tr 2 §) !g!a'P T (£s)as
S=8>o0
~ ~o -a ~ ‘ -l
=TP (a,k) 1217 T (z27)

where ?; (a,k) is defined in [6].



Lemma 2.k, Let T and S be as in lemma 2.3. Then

~

(211) [ e (-tr8) 15*P (tr gl T, (x8)as

= T'P (‘a,»c) F(ap+i+j) T (T) / T(aptk) .

Proof. The proof is exactly similar to the proof of lemma 2.2 and hence

omitted.

Lemma 2.5. If s is any complex variate and f(x) is a function of a real

variable x, such that

o

F(s) = f x*1 £(x) ax
o]

exists, then under certain regularity conditions
C+iew

f(x) = (2n i)'l I x"% F(a) ds.

C-iw
F(s) is called the Mellin transform of f(x), and f(x) is the inverse Mellin

transform of F(s). (See Titchmarsh [13] )

3. Distribution of W in the real case. Let‘§ ¢ pxp be distributed as Wishart

(n, p,‘g). Then the distribution of the latent roots 815 Bprvees gp of S has
been shown by James [6] to depend only on the latent roots oflz'and is given by

-1 Ll ne b
(3570 &) 16PN o (ge) T g,

1
(3:1) (e, n, B) |5 F
i<j i=1

o}

where



2
-in 1 ion

2 2P
k(p,n,T)=IZ} n /{2 r, ()T (3p) }

~e

= i .o o s e > .
G = diag (g1, 8ev05 8,) 5 2> 8 Zgy zg,>o
The distribution (3.1) is not convenient for further development and the
convergence of the series is slow. But the convergence may be improved by

writing (3.1) in the form suggested by Pillai (See Pillai, Al-Ani and Jouris
(12 ),

#(n-p-1) ,
(3.2) k (p, n, E) |g| exp (-3 tr G) U (g.,-g;) F_ (4, G)
i<j J

where
-1
) .

n=ta-z

(g

1Y
Theorem 3.1. Let G be distributed as in (3.2) and et W = |G|/{ (tr G)/p} be

the sphericity criterion. Then the h-th moment of W is given by
pb IZI ~#n C!C (M) k 1" (in + n,K) F(gpn + k)

z z r(ePn'*'Ph"'k)
k=0 K

(3.3) EMWP) =

l"p (in

P
Proof. To find E (Wb) we multiply (3.2) by IEI /L (¢rg)/ p ], transform

G- HV }i ' where H is an orthogonal and V a symmetric matrix, integrate out H

and V using (44) and (22) of Constantine [2]. We get

1 2
G8) 2 6P) =Pk 5 DT, God

o]

') L L /o (z) K]
k=0 K
(304n)-3(p+1)
J exp (-3 tr V) |v] (br V)P ¢ (v)av.
V>o

~
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Applying lemma (2.2) to the integral on the R.H.S. of (3.4) we get (3.3).

Theorem 3.2. For any finite p, the p.d.f. of W is

(3.5) £(w) =¢(p,n, %) ) ) ——p—T1p I(% pn + k)
k=0 K
(n-p-1) o I a ,..., &
2 p p) M *>
. w G (w ’ 1 P) >
p’P i bl,;o., bp
where L L )
5p(p-1) ~-3n z(p-1) |
¢ (p,n, T)=m 15| (2n) / T,(zm) s
ay = (k+3-1) /o +% (p-1) by =k + 5 (p-3) .
For p = 2, (3.5) reduces to
7, 70 3n-3) g op ok o+ 1
N U Ul +k) ooy 1
(3.6) f(w) = éz“r?i‘-‘fr‘"’ Z = Ce (M) w

k=0 X

Fy (ag'bg’ a,-b,; a,*ay=b, -b,, 1-w) .

Proof. Applying (2.4) on I'lp(4 n + h + k/p)lwe have from (3.3)

2 = k % - % pn-~k
B =c¢(e,n, 2 ) Hl{2 ¢ (0P L(3 pn + 1)} /!
k=0 K

10 P(h wonok b (3] / T3 oo (Qerg-d) / 3) + 1) ] .
5=

Using Lemma 2.5, the density of W has the form
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2 ¢ (W) ddpn-k % (n-p-1)
(3.7) £(w) = ¢ (», n, T) Z L—r—p T+
c=0 K

1«'? o

q Ctie il:f__l".(r+b)

(2w i) J W 5 ar ,

C-ie 0 T (r+a,)

izl

where

r=fn+h -3 (p-1), b = ks + % (p-3), ay = (45-1) / p + § (p-1) .
Noting that the integral in (3.7) is in the form of Meijer's G~function, we can
write the density of W as in (3.5).
(3.6) can be obtained easily from (3.5) by pﬁtting p =2 in (3.5) and using
(2.3).

Remark. Putting £ = I in (3.5) and (3.6), we can easily deduce the result of

Consul in (1.2) [3], [4]. amd Mauchly in (1.1), [10].

4. Distribution of W in the complex case. Let § : pxp be distributed as a

Complex Wishart (n, p, g) (see Goodman [4]). Then the distribution of the

latent roots g., g,,..., of § is (James [5])
1’ 82 & * 2

ar -1 n-p o P
(3.1) ke, n, ¥ F (-¥ ,0) g I (g -e) 0T dag
~ ~ ~ N . J N 1
i<y i=1
where ~n D (p-1)
lZ‘. T ~
k (p, n, 2) ; T' (n) and
r (n) r »(P)

pd Ppoeees bq; S, T) are defined in (83) and (88) of James [6].
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As in the real case, the convergence of (4.1) may be improved by writing

it in the form

~ ~ ~ n-p 2 P
(4.2) k (p, 0, 2) F, Q4 Q) exp (-tx @) [g] T (g;-gy)" T dg

-1

~

where M. = I - X%
~l p ~

Theorem 5.1. Let G be distributed as in (4.2) and let W= |G|/ [ (trG) / p 72,

Then h-th moment of W is

a2 ¢ (1) ~
(#.3) 2—1|g| ) Z —— T (ap#) T (nh, K) / T (np+ksph).
T (n) k=o
D

1Y
Proof: Multiplying (4.2) by |G| / [ (tr G) / p) ] , using the transformation

1

G- UVU where U is unitary and V is hermitian p.d. we have on integrating out
U and using the results (see Khatri [8])that the Jacobian of transformation is
2
J(G uv) =1 (g -g;) h, (U)
i<
L (p-1)

I h, (U) = ————— , we have
and that ~ =

_t FP(P)

UU =1
ph lgl -n n+h-p -ph
g (W) = Z Z’ o (M ) j exp (-tr V)|V| (tr V) c LA
F (n) = .
D =0 )

K(I)k'v>o

Using lemma (2.4) to the integral on the right, we get (4.3).



Theorem 5.2. The density of W is

sp(p-1) ~ -0 3(p-1) o ~ o~
o lz|  (am) = Ce ()
f(w) = 2 L }; o T (pn+k)
Fp(n) kK=o K
1
5=-pn-k n-p Pp,o0 alaz,..., a
.p W G (w b b Py,
P,p SR

where a; = (k/p) + (§-1) / p + (p-1), and by =ky -3 +p

10.

Proof. The proof is exactly similar to that of theorem 3.2 and hence is

omitted.
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