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SUMMARY

A random error component is introduced into linear models for analyzing dats from
designed experiments. This error component is called a ‘restriction error’ becauss it is
used whenever a restriction on randomization occurs in the design.
Discussion of the usefulness of this restriction ervor in randomized complete block
designs, nested factorials, and split plot designs is given. Accompanying each discussion
is an example of an experiment on prosthetic cardiac valves.
Further, the restriction error concept is used to look at the controversy regarding a
pooled split plot error. :

INTRODUCTION ' ' . .’

There are many possible models for the analysis of data from any designed
: experiment. It is aimost certain that any linear model used is only an approxi-
: mation to the appropriate nonlinear one. Given that the nonlinear model is
not known, we believe the first problem in developing a good lLinear model
is to write down the most general linear model to represent all the possible
sources of variation. The next problem is to decide which terms to discard
n this general model. This decision should be based upon theory and/or
experience.

Specifically what makes the development of linear models in this paper
different from the development in other papers and books is that we intro-
duce a random component called a ‘restriction error’ into our model corre-
sponding to every restriction on randomization introduced in the design.
This forces the general linear model to be different for different designs but
allows experimenters to delete terms for a specific experiment if they believe
these effects are zero.

The restriction error is not estimable from the data but it is placed in
the model (appropriately indexed) and is allowed to appear in the corre-
sponding analysis of variance as a source of variation. There are no degrees
of freedom (p.r.) and no sum of squares (SS) for the error; however, since ‘
1t appears in the theoretical linear model, the variance component for it
does appear in the expected mean squares (Ems). This variance component
: in the Ems forces the experimenter to recognize it and account for it in the
? F-tests. The real power of restriction error is that it forces the experimenter
{ not only to recognize the restriction on randomization he has imposed on
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his design (usually to save time and/or money) but also to see its effect on -
the overall results of the experiment. Almost always this effect is to decrease
the number of degrees of freedom for the appropriate error.

It is interesting to note that the restriction error does not disturb the
algorithm presented by Bennett and Franklin [1954] and more recently by
Hicks [1964] to derive the expected mean squares given the linear model.
The Ems are still obtained in the same straightforward manner and are
correct when restriction errors are in the model.

The first design discussed in this paper that has restriction on randomi-
zation is the randomized complete block design (rcBp). The second is the
nested factorial and the final one is the split plot design. In the linear model
presented for the analysis of the data from each of these designs, the re-
striction error has a decided effect on the F-tests for the important main -
effects and interactions. For all designs, an example using prosthetic cardiac

valves in the experiments is given.

SIMPLE DESIGNS
Suppose that b levels of one fixed set of treatments and ¢ levels of another
fixed set are run in all possible bf combinations on bt experimental units
- completely at random. The design of such an~experiment is called a com-
pletely randomized design (crp). The linear model for the analysis of the
data from such an experiment, if the interaction of the sets of treatments is

zero, is usually expressed as:

;=1,2,---,b
y”=”+B‘+Ti+€(i!) ;‘=12...’t (1)

where

y:; = the response from the experimental unit treated with the 7th level
of treatment B and the jth level of treatment T,
g = overall mean,
B, = the effect of the th level of (fixed) treatment B,
T, = the effect of the jth level of (fixed) treatment T,

.5 = the (random) within error resulting from repeating the 7th ievel
of treztment B with the jth level of treatmert T on different experimental
units. In this case the (5j)th combination is not repeated but the interaction
is assumed zero. Thus an estimate of the error mean square may come from
the interaction source and all analysis of variance assumptions hold so that
the eu; are Nip{0, ¢2), i.e. normally and independently distributed with
mean zero and variance o2 . The corresponding analysis of variance (ANOVA)
is given in Table 1. _

To be able to write model (1) it seems appropriate that one must assume
there are no restrictions on randomizations in the design of the experiment.
This may be called a two-way factorial completely randomized design.

Suppose, next, there are b blocks in an experiment, and ¢ fixed treat-
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TABLE 1
ANOVA ror THE paTA FROM THE CRD UsING MODEL (1)

EMS (Expected
Source D.F. mean square)
Treatments (B;) b—1 o? -+ t&(B)
Treatments (T;) t—1 o 4 ba(T)
Within error (e¢j)) b-1D¢t—-1 2 -

(assuming interaction BT is zerc)

EMS: Theoretical values derived from model (1).

P Stands for fixed component (all levels of these treatments are in the experiment).
All sums of squares (SS) can be calculated from data.

The symbols appearing in ‘source’ are used to help the reader utilize the algorithm to derive
the EMs.

ments are completely randomized onto { experimental units in each of the . .. ..
b blocks such that there is a different randomization in each block. The
model for analyzing the data from such an experiment has been given by
most authors’ and implied by many others to be the same as model (1).
This design is certainly not completely randomized because there is a differ-
ent randomization of the treatments in each block, not just one randomiza-
tion over the whole experiment as would be demanded for a crp. In general,
statisticians agree that this is a randomized complete block design (rcBD);
however, they co not always agree on the model to analyze the data. Wilk
[1955], Addelman {1969], and others have suggested using a model for a
generalized randomized block design which includes the usual crp and rcsp.
This paper stresses restriction errors and in this section deals with a model
that accounts for errors between blocks in contrast to the usual one that
does not, namely model (1).

Since there is a different randomization of treatments within each block,
it seems there should be some recognition in the model that the error to
test the hypothesis of equality among the treatment means should come
from within the blocks. On the other hand, if there is interest in testing the
hypothesis that block means are equal, it seems that there must be an error-
outside the blocks. The former test (for treatment means) would be satisfied
using the error designated in model (1), but the latter test (for block means)
does not seem to be satisfied using the same error.

One linear model that seems to express all the sources of variation men-
tioned above with the assumption of no interaction of blocks by treatments
and also provide intuitively correct tests is:

=1,2,+++,b
1,2, -, ¢ @

’ y

Yei = p+ B:+ 8y -+ T; + euny

1 Since this procedure is so common, Peng ([1967] p. 93) provides merely a recent example. Pointing this
out is not meant to be disparaging to him.
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where _
9;; = the response from the experimental unit given the jth treatment

in block 7,
g = overall mean, . ‘
B, = effect of the 7th block. In this case B; may be random. or fixed,
but we will assume it is fixed for the anova, |
&4 = the 7th block or restriction error, ~Nip(0, ¢}), and completely
confounded with B;. Here 8. (¢? is not estimable from this experiment),
will have zero ».F. and no sum of squares, but will be recognized in the
analysis of variance expected mean squares and called resiriction ervor be-
cause of the restriction on randomization of the treatments onto the zth
block’s experimental units,
T; = the effect of the jth treatment (fixed),
g5 = error within the combination of the 7th block and the jth treat-
ment combination. It is assumed that e.; is NID(0, 62). This term is esti-
mated in the analysis of variance from the interaction source assuming the
interaction of the ¢th block with the jth treatment is zero in this experiment.

The analysis of variance for this model, including the Bas which can be de-
rived from the algorithm given by Bennett and Franklin [1954], may be
written as in Table 2. The line drawn between the restriction error and treat-
ments indieates that no source below this line should be tested with any
source above it and vice versa. One can understand this concept by looking
at the Ems. This will be a general procedure for all analyses in this paper.

We do not wish to digress but it should be understood that we use ‘some-
times pooling’ procedures (Bozivich et al. [1956]), and if the mean squares
may be pooled (usually with the probability of type I error (@) taken as 0.25)
the rule of crossing over the line may be violated for certain tests of signifi-
cance.

It can be seen from Table 2 that the correct error for blocks is restriction
exrror with zero p.F. not the within error with (b — 1){f — 1) p.F. indicated

TABLE 2
ANOVA ror DATA FroM RCBD USING MODEL (2)

Source ’ D.F. EMS
Blocks (B3) ' b—-1 o 4+ toy + @ B)
Restriction error (5¢n) 0 &2 + te?
Treatments (T';) ' t—1 o + b&(T)
Within error (ec:5) b-1e-1) = oL

Note: The restriction error is represented in the theoretical model but cannot be estimated
from the data in this experiment. All of this is recognized in Table 2 by writing down the
source (restriction error), showing zero (0) D.F. to depict the lack of data and expressing
the theory in the Eums; also, there is no sum of squares or mean square. Of course, the other
three sources have sums of squares that can be computed from the data.
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before. Since there are zero p.r. and no sum of squares for the restriction
error, there is no test for blocks in this experiment. Many authors® have
indicated that there should be no test for blocks for various reasons, but
none has been specific to indicate it from the model as we attempt to do here.
It should be pointed out that many times the experimenter is interested
only in whether or not blocks have been effective in reducing the estimated
error to test treatments. Under these circumstances the investigator may
test that the combination of block effects and the block error (our restriction
error) is zero. That is, the hypothesis could be stated from Table2as H, : o2 +
P, (B) = 0. Tt is obvious, then, that the within error is appropriate for the
test and it would make no difference in the test whether model (1) or model
(2) is considered.

The real danger in using model (1) in analyzing data from rcep oceurs
when the experimenter is interested in the block means. To be more explicit,
frequently experimenters want to use treatments to represent the blocks in a
RCBD and restrict randomization of another set of treatments inside the
ones used as blocks. Recognition of this restriction on randomization demands
a model other than model (1). Our suggestion is that model (2) will provide
the basis for a more nearly correct analysis of the data from such a design.

An example to demonstrate this danger occurred in a medical-engineering
problem (Beeson [1965]). An engineer constructed a mechanical apparatus to
simulate the circulatory system of human beings. A storage tank was used to
control the pressure of the liquid, simulating the blood, in the system. A
pulse pump squeezed flexible rubber tubing in the system to create the
pulsing action needed to simulate the heart action. The motor on the pump
could vary the pulse rate between 0 and 220 beats per minute. In the experi-
ment 6 rates, between 60 and 160 beats per minute, were used and 4 prosthetic
cardiac valves were inserted individually in the mechanism. The experi-
menter assumed (perhaps erroneously) that each valve type was adequately
represented by only one valve used in the experiment.

The purpose of the experiment was to select the best valve type out of
the four for all pulse rates and/or best valve type for particular pulse rates.
To a statistician this means that the main effect of valve types and the inter-
action of valve types by pulse rates should be examined carefully.

One of the variables to be measured and analyzed was maximum flow
gradient (mmHg.) and it was found to have reasonably good statistical
properties for analysis.

The experimenter thought it was too time-consuming to run a completely
randomized design (crp) of all 24 treatment combinations of 4 valye types
and 6 pulse rates with 2 observations per treatment combination. The crp
would require that the mechanism holding the valve type would have to be
dismantled and reassembled 47 times. Hence he could draw, at random,
one valve type out of the 4, seat it and randomly run the 12 pulse rates
(6 actual pulse rates each repeated once). Next he could select one of the

? An example is Ostle [1963] p. 368.
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remaining 3 valve types at random and with a new random order, run the 12
pulse rates as before. He could continue this procedure for the other 2 valve
types. o

This experimenter recognized that he would have basically a rosD (veally
more than one observation per cell). Since valve types act as blocks and each
valve type occurs for only one run, there is no repeat of the valve type’s
performance by repeating in the machine or replication. Intuitively then
the error should come from between blocks but all of these D.F. (3) are used
for valve types. '

If (as commonly oceurs) model (1) is taken as the basis, the following
linear model would be used: '

]

¥V
S

=1,2
Yoir =2+ Vi+ P+ VP, + eisys ; 1.2 . k=1,2, ®)

=

where

Yinr = kth maximum flow gradient (mmHg.) for the sth valve type
and jth pulse rate,
& = overall mean,
Vi = effect of the ith valve type (fixed),
P; = effect of the jth pulse rate (fixed),
VP;; = effect of the interaction of the sth valve type with the jth pulse
-rate,
ik = error of the kth observation within the 7th valve type and jth
pulse rate, NID(0, ¢2), (random). :

I

I

Model (3) implies there is only one error term, namely within valve types,
but this will not give us a correct test for valve types because we need a
between block error for this test.

The corresponding analysis of variance is given in Table 3, which shows
clearly that if model (3) and the corresponding analysis were used to investi-
gate valve types, the within error mean square would be the denominator
in the F-test. This is a contradiction and another model must be found for
such an experiment. We believe that model (2) offers a basis for a more
realistic model, namely:

Yiir = p+ Vi + &, + P; + VP, + ik @)
TABLE 3
ANOVA usinG MopzL (3)
Source D.F. EMS3

Valve types (V,) - 3 o + 12 9(V)
Pulse rates (P;) 5 o2 + 8 &(P)
Interaction (V,;) 15 o? + 28(VP)

2

Within error ( eg;ss) 24 Te
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where

Oy = restriction error caused by the 7th valve type being useq continu-
ously while all pulse rates are run, N1p(0, 73), (random),

The correspondirg analysis of variance for thig experiment is get out
in Table 4. Tt is seen that the mean Square for the restriction error (which
is really a between, block error and intuitively correct) would be the denomi-
nator to test valve types. However, there are zero n.¥. and no sum of squares
for the restriction error, Consequently there is no mean Square and there is
no test for one of the most important factors, valve types, when this design
is used. Hence if the experimenter uses model (4) in hig preliminary outline
of the analysis from this proposed design, he will know he should change
the design of his experiment before he hags run any part of it.

COMPLICATED DESIGNS
A more correct design for the experiment described in the previous section

is to repeat the tests on the valve types at random and not to repeat the . .

pulse rates. In this ¢ase a randomly chogen valve_type is inserted and the 6
pulse rates are run at random. N ext, the valve type is removed and another
randomly drawn valve type is inserted again. The 6 pulse rates are randomly
run on this new valve type. This is continued until all 4 valve types have
each oceurred, at random, twice. These Occurrences are similar to blocks in
the RCBD with the exception that it is impossible for the same block to occur
for valve type 1 as for valve type 2, and so on. For this reason the occurrences

call this design a nested factorial. An example is in section 11.4 of Hicks [1964].
As in the ReBp the restriction on randomization (in this case pulse rates in
the occurrences of the valye types) is not explained in the model. Ordinarily

Yijro = p V.‘ + 0(.‘),’ + Pk+ VP.‘k + OP(i)ik + €(iik)
Z.= 11 21 3’ 41 j= 17 2)
lc=1,2,---,6, ®)

TABLE 4
ANOVA using MODEL (4)

e — T e——

Source ~ D.F. EMS
Valve types (V) 3 or + 1262 + 12 B3(V)
Restriction error ( 8cay) ] oF 312 o2
Pulse rates (P;) 5 of + 8 &y(P)
Interaction (VP,;) 15 o + 2 &(VP)

2

Within error (ecii) 24 Y
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where

~.

Y:ix = maximum flow gradient (mmHg.) obtained from the jth occur-
rence of the 7th valve type with the kth pulse rate,
& = overall mean,
V. = effect of the sth valve type (fixed),
O;); = effect of the jth oceurrence (random) in the 7th valve type
NID (0; 0'3)7 '
P, = effect of the kth pulse rate (fixed),
VP, = effect of the interaction of the sth valve type with the kth
pulse rate,
OP i, = effect of the interaction of the jth occurrence in the 7th valve
type by the kth pulse rate, N1D(0, o2 ),
i = Within error, N1p(0, %), in this case since there is only one
observation within the jth occurrence of the 4th valve type and Zth pulse
rate, there are zero p.r.

I

The corresponding analysis of variance in Table 5 indicates that the test for
valve types secems correct because the error mean square comes from between
oceurrences (comparable to blocks in the ReBD). The tests for pulse rate
and the interaction of valve types by pulse rates appear intuitively sccurate

- since the within occurrences provide the basis. However, if one wanted to

test occurrences in valve types, the mean square for within pilse rates would
be used as the error mean square if this model were correct. The same argu-
ment may be used here as for the rReBD to show that this should not be the
error mean square for this test.

It seerus, then, that the model for this nested factorial experiment would
be more accurately portrayed as:

Yl':'k =M + Vl' + O(i)i + 6(1'1') + Pk + IfPa‘k + OP(i)ik + €(ijk)

Z.= 1127 3, 4, j= 1,27
k=1,2 - 6, ©®)

where
8y = restriction error caused by the 6 pulse rates being run in the jth

TABLE 5
ANOVA ror DATA FROM THE NFSTED FACTORIAL USING MODEL (5)

Source D.F. EMS
Valve types (V) 3 of + 602 + 12 &y V)
Oceurrence in valve types (Owy) 4 o2 + 6 o2
Pulse rates (Py) 5 of + o2, + 8 &y P)
Interaction (V.Py) 15 o + ot + 2 &(VP)
Interaction (OP ;) 20 ol + oZ,
Within error (eq,) 0 o2
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~.TABLE 6
ANOVA usiNG MopEL (6)

Source D. k. EMS
Valve types (V) 3 o‘f + 60? + 6 0'3 + 12 &4(V)
Oceurrences in valve types (Owys) 4 o; + 6o} + 602
Restriction error (5 0 o? + 60}
Pulse rates (Py) _ 5 o + o2, + 88y P)
Interaction (VP,;) 15 o2 + o2, + 28,(VP)
Interaction (OP (i) 20 el + o2,
Within error (eqssny) 0 o2

occurrence of the ith valve type. This has zero D.F. and no sum of squares.
It is assumed that it is NID(0, o3). :

The corresponding analysis of variance is given in Table 6 from which i+
can be seen that all the previous tests that seemed correct are tested as they
were before, In addition, there is no test for oceurrences in valve types since
there is zero p.r. for the appropriate source to test-it, namely restriction
error. This is consistent with the rcpp result. .

The actual design of the experiment used by Beeson [1965] was a split
plot. He set up 2 random blocks in which he forced all 4 valve types to appear
once before any val—e type occurred twice. Of course, he randomized the
order of using the valve types in the machine and randomized the 6 pulse
rates for each valve type.

Some authors® believe the analysis for such an experiment should be ag
in Table 7, where the arrows on the mean squares indicate that the main

TABLE 7
- '/ANOVA OF USUAL SPLIT PLOT DESIGN

Source ' D. T Mean Square (NS)
Blocks : 1
Valve types 3 14 )
‘Whole plot error 3 w.
Pulse rates 5 P
Valve types X pulse rates 15 (PV
Split plot error 20 N

effect of valve types would be tested by the whole plot error and that the
main effects of pulse rates and the Interaction of valve types by pulse rates
would be tested using the split plot error. In order to calculate the whole

3 Examples are Yates [1967] p. 785 and some of his references plus Federer [1955] p- 274,




A N A Yot e,

e 3 b SR G st e S L

.
ERRCNSN

e

Ay

264 BIOMETRICS, JUNE 1970

plot error sum of Squares one would use the blocks by valve types interaction
sum of squares and to calculate the split plot error sum of Squares one would

combine the blocks by pulse rates and blocks by valve types by pulse rates
sums of squares.

random.

- We take the view that if the experimenter has worked in the field of
investigation for some time and ‘knows’ the errors involved, he should pool

lieve this thinking is consistent with our use of restriction error in the RCBD-

and that the Tollowing linear mode} Is appropriate and allows for the some-
times pooling methods (a numerical example will be given later):

Yii = p+ B, + 6y + V; + BV + Wiy + Py
: | =1 9
+ BP1'I;+ VP,‘};"‘ BVP:‘;’I: + €(ijk) ;, - i’-gy . ] 61’ - 3’ 4’

where

Yiir = maximum flow gradient (mmHg.) obtained from the 7th block,

Jth valve type, and kth pulse rate,
# = overall mean,

B; = effect of the ¢th block (random), NID(0, ¢j),

0y = first restriction EITOr zero v.¥., NID(0, ¢2),

Vi = effect of Jth valve type (fixed),

BV,; = effect of the interaction of the sth block with the jth valve

type: NID(O; a,zl’”,)’

@iy = second restriction CIIOr, zero p.F., NID(0, o) (cf. Kemp-

thorne [1952] p. 375; the n;; of equation (13) is similar to this w;),
P, = effect of kth pulse rate

BP,, = effect of the interaction of the 4th block and the kth pulse
rate, N0 (0, ¢2,),

VP, = effect of the interaction of the jth valve type with the Zth
pulse rate,

BV P;;, = effect of the interaction of the 7th block with the jth valve

type with the ith pulse rate, N1D (0, Trvp),

&y = within error, zero D.F., NID(0, ¢?).

The corresponding analysis of variance is given in Table 8, the tests in which
are understandable from the EMS. We believe that the controversy on
pooling or not pooling BP and BV p may be resolved by a sometimes pooling

R S s
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~-TABLE 8
ANOVA ror MopEL @)

Source D.F. EMS

Blocks (B,) 1 a? 4 éaj + 240} + 2402
First restriction error () 0 ol + 602 4 2402
Valve types (V) ‘ 3 or + 602 + 602, + 1284 V)
Interaction (BV;,) 3 o + 602 + 602,
Second restriction error

(wiiy) _ 0 ot + 602
Pulse rates (Py) 5 of + 40} p + 80y P)
Interaction (BP ) 5 o? -+ 402,
Interaction (VPy) - 15 o+ odyp + 2&(VP)
Interaction (BV P, ;) 15 o2t el
Within error (eg,) 0 ol

procedure for the given problem, unless the experimenter wished to specify
his model before running his experiment. '

To give further explanation for our position in analyzing split-plot design
data in this manner, let us compare this analysis step by step with the nested
factorial, Table 6. The premise we use is that there is s possibility of a block
by treatment (BV) interaction if g split plot design is used. This source has
3 p.F. in Table 8. There is ne BV interaction, of course, if the nested factorial
is used. Then the blocks and BV are not separable as in oceurrences in valve
types with 4 p.F. in Table 6.

If it is agreed that a block by treatment interaction may exist, and this
seems quite logical when block means are of interest as in many engineering

. experiments, then there certainly may be a block by treatment interaction

at another stage in the design. For example BP may exist, in which case we -

can see no reason for the possibility that BV P cannot exist separate from BP.

All this is not to say, in many agricultural experiments where blocks effects
and block error are not Separable or the experimenter does rot want to
separate them, that he should not run his split plot analysis as given in
Table 7. In this case the experimenter has used a model that he ‘knows’ ig
correct when he began his experiment.

Our experience in various other fields is that experimenters do not have
this information and may gain information by using the flexible model (7)
and test this model using the analysis in Table 8. The use of the restriction
errors at the various stages allows the investigator to think about various
sources of variation that are covered up when only the analysis in Table 7
is carried out. '

NUMERICAL EXAMPLE

Using the actual data from Beeson [1965], the analysis turned out to be
as in Table 9. When the correct tests are made, only one source, pulse rates,
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. N TABLE g
ANOVA rog paxy USING Mapry, (7)
Source D.F. MS
—
Blocks (B;) 1 17.52
First restriction eITOT (§(4,) 0 _
—_—
Valve types (V) 3 420.41
Interaction (BYV;;) .3 77.19
Second restriction eITO0T (w(yyy) 0 _
Pulse rateg (Py) 5 427 .64*
Interaction (BP;) 5 51.97
Interaction (VPy) 15 133.79
Interaction (BVP;;) 15 56.84
ithin error (eqiiny) 0 —_—

* Indicates significance at a = (.05,

s significant at the a = 0.05 level. However, the mean squares of the inter-.

Source D.F. MS
\_\\\
Valve types 3 420.471%*

Pulse rates 5 427 64+
Valve types X pulse rates 15 133.79%

Pooled error 24 56.73
** Indicates significance a a = (.01,

brocedures are undertaken.

models for each restriction on randomization to account for possible error
caused by that restriction,

(2) These restrictions must be recognized prior ¢ running the experiment,

S R (e Nt e W e s 2




RESTRICTION ERRORS FOR LINEAR MODELS 267

(4) There seems to be no reason for the restriction error not to be used
in models for any designed experiment, for example in Latin Squares or any

complex incomplete block designs.

I wish to thank Professor James N. Arvesen, the referees, and the Editor
for their helpful suggestions. This research wag Supported in part by NIH
Grant 5T01-GM-0024 at Purdue University and by Bayer and McElrath,
Ine., Management Consultants. '

‘RESTRICTION ERRORS’ POUR. LES MODELES LINEAIRES
(UNE AIDE POUR DEVELOPPER DES MODELES DANS LES EXPERIENCES
PLANIFIEES) . ,

RESUME

Une composante d’erreur aléatoire est introduite dans des modeles Iinéaires qui
servent 4 analyser les domnées d’expériences planifiées. Ce taux d’erreur est appelé ‘restrie-

ques est donné.
LEnfin, le coneept sert & la discussion du probléme de Verreur dans Jes expériences en
split plot.
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