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A Queue subject to Extraneous Phase Changes

Marcel F. Neuts, Purdue University and Cornell University

ABSTRACT

Many service systemsexhibit variations of a random nature in the intensity of
the arrival process or of the speed of service or of both. Changes in work shifté,
rush hours, interruptions in the arrival process, server breakdowns, etc. all fal;
into this category.

The present study deals with a generalization of the classical MlG]l queue b&
considering an extraneous process of phases which can be in one of the states
[1,...,m}. During any interval spent in phase i, the arrivals are according to a
homogeneous Poisson process of rate ki and any service initiated during such inte?-
val has a duration distributed according to Hifl). The process of phases is as-
sumed to be an irreducible, Markov chain in continuous time and is fully charac- 1

terized by its initial conditions, by an irreducible stochastic matrix P and by

10

Independently of the queueing aspects, this arrival process is a generaliza-.

the mean sojourn times o ..,c;l in each phase.
tion of the classical Poisson process which can be of interest in modelling simplé
point processes with randomly fluctuating "arrival” rate.

Two approaches to the time dependent study of this queue are presented; one :
generalizes the imbedded semi-Markov process obtained by considering the queue im-
mediately following departure points; the other approach exploits the relationship

between this queue and branching processes. The latter is more eloquent from a
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purely theoretical viewpoint and involves iterates of a general type of matrix
function introduced by the author. By making extensive use of the Perron-
Frobenius theory of positive matrices the equilibrium condition of the queue is
obtained. While retaining a similar intuitive interpretation the equilibrium con-
dition is substantially more complicated than for the MlGll model;

The recurrence relations which yield the joint distribution of the phase
state at time %, the gueuelength, the total number served and the virtual waitiné—
time at t are exhibited in detail. Via transform téchniques a number of limiting
and marginal distributions are discussed. The discussion relies heavily on the
theory of Markov Renewal processes.

Throughout the paper and in a final section the author advocates the use of
the structural properties of the queue and the resulting recurrence relations to
organize the numerical analysis of complex queueing models such as the present
one,

More explicit results for the case of two phases are given and are compared
to results obtained by Yechiali and Naor for a closely related two-phase

generalization of the MIMIl queue.

1. Introduction.

The queueing model discussed here is a generalization of a model treated by
Uri Yechiali and Paul Naor [24]. These authors, who kindly sent us a prepublica-
tion draft of their work, discuss an MIMll queue, modified as follows., The queue
alternates between two phases I and II. 1In phase I, the arrival and service rateg
are hl and ul, whereas in phase II they are hz and Hio e The successive lengths of{
time during which the queue is in phases I and II are independent, negative-
exponential random variables with parameters 61 and 02 respectively. They

examined the equilibrium equations for the queuelength and obtained a necessary

and sufficient condition for the queue to be stable.



We propose to discuss the following partial generalization of this model.

Consider a single server queuve, governed by an extraneous phase process. This

phase process is assumed to be an irreducible, m~state Markov chain in continu-

ous time, with only stable states. As is well-known, this Markov chain is fully
characterized by its state at t=0, by the transition probability matrix P of its
imbedded discrete parameter chain, which is irreducible and stochastic and by the
parameters cl, 02,...,0m of the negative exponential sojourn times in th; states.

1,...,m respectively - Pyke [19].

The arrival process to the queue is assumed to be a homogeneous Poisson

process of rate hi > 0, during any interval of time that the phase process is in
the state i, i=1,...,m. This process, an interesting generalization of the
ordinary Poisson process, is discussed in some detail below.

The successive service times are assumed to be conditionally independent

given the phase process. A customer whose service time is initiated during a
phase of type i has a service time distribution Hi(~) of finite mean @,. For
most considerations in this paper the queue discipline is immaterial.

There are many potential applications of this model. Many queues naturally
exhibit random fluctvwations in their arrival rates or service characteristics
or both. Traffic queues typically oscillate between periods of heavy, medium
and light traffic.

Many service mechanisms are operated by personnel of varying skills and
working speed. This succession of work shifts can in some cases be modeled in
the terms defined here.

Interruptions in fhe arrival process correspond to phases during which the
arrival rate is zero. They may hence also be treated within the present framework.

A further special case arises when one or more (but not all) of the service

time distributions Hﬁ(-) are degenerate at zero. This is interpreted as a
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shut-down of the server with dismissal of all customers who have not yet begun
service,

Before embarking upon the mathematical exploration of this model, we discués
one assumption in some detail. The service time distribution of a customer de-
pends only on the state of the phase process at the time his service begins. Ours
is therefore not a direct generalization of the Naor-Yechiali model, since these
authors assume that the service rate of the Markovian queue, treated, chénges as}
soon as the state of the phase process changes. To extend the Naor-Yechiali model
directly to general service times introduces very considerable analytic complica;
tions. In all but the case of negative-exponential service times, one has to
meke assumptions describing how a service which straddles one or more phase
changes is handled.

In a great majority of potential applications our assumption, on the rela-
tion between the phase and the service time distribution is not a serious limita-
tion. Whenever the phases are long compared to individual service times, the
practical importance of this issue is little. In a traffic situation, such as
an intersection, it amounts to assuming that a vehicle finding itself in the
intersection when the light turns red (or amber) continues to cross at the same
speed,

In this paper the phase process is a continuous time Markov chain, so that
the sojourn times in each state have a negative exponential distribution. This
is clearly a limitation and it may be desirable to develop a generalization of
the present model by introducing a semi-Markovian process of phases. Given the
present state of the art in Queueing Theory, this semi-Markovian phase model could
be discussed in terms of imbedded Markov processes but the computational details
are truly forbidding. The present technique, akin to the theory of Branching

Processes, does not carry over to this case,.
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Should one wish to study a phase process in which the time intervals in each
phase have generalized Erlang distributions, i.e. distributions which are convo-:
lutions of finitely many negative exponentials; this case can be handled by our
technique. It suffices, in principle, to augment the number of phases suffi-
ciently and appropriately so that the sojourn times all become negative exponen-'
tial. This technique, due to A. K. Erlang [7], is classical, We refer to the |
monograph by D, R, Cox and W. L. Smith [6, p 110 ff], where it is very readably

discussed.

2. The Arrival Process.

The process of phases, an m-state irreducible Markov chain in continuous

time (with all stable states), may be studied equivalently in terms of the semi-

~

Markov sequence { (:Jn’Tn.)’ n >0, To =0 } of the successive states Jn visited

and the successive sojourn times Tn,n > 1. The transition probability matrix for

the semi-Markov sequence { ( n’Tn ), n>0 } is given Dby:

~ ~ -F.X
= 3 = 4 - - 1
(1) P Jn+l =35 T < x J, =1 } pij< l-e ) ,

for 1<i, j<m, Gi >0, Py = 0, i=1,...,m. The matrix P = [pij} is stochastic

- Pyke [19].
The sojourn times Ty B > 0 are conditionally independent random variables
given the Markov chain {3;} - Pyke [18].

In the arrival process considered here, customers join the queue according to
a Poisson process of rate Ai during any sojourn interval spent in the phase i.

Let N ( £ty >,‘tl < t, be the number of arrivals during the interval < t 5ty :l ,



then the assumptions imply that the random pairs [ Tn’ N ( To +ooot Tn-l’

To +...+ Tn) ] s 1> 1, are conditionally independent, given the Markov chain

{ J };Mbreover:
n

(2) P{ Top =95 Ty SX, N (T +ob® 7 4.4 Toep) =V | I = 1}

X -o.u-X\.u (k.u)v
i i i
=P, . e 0 . du,
ijd, v i

for1€4i, j<m, v>0, x>0.
The main'properties of the counting process N (*,+) are summarized in the

following lemma,

Lemma 1.

8. For all 0<%, ... St the random variables N (0, t,) , N (t ,t ),...,
N (t,VI l,t ) are conditionally independent, given the random variables

* * *
JO, J sesesy o J, represents the phase at time t.

tl Ty I
b. The process N (tl’tg) is conditionally stationary in the sense that the con-

# *
ditional distribution of N (tl’tz)’ given Jt and Jt , 1s the same as the
1 2

* *
conditional distribution of N (0, t.-t.), given J and J . Since we
2 1 o t2-tl

shall only consider these conditional distributions in the sequel we shall
henceforth write N, for N (0,t), t > 0.

¢c. The conditional probabilities:

3 *
(3) ?ij(n,t)=P{Jt=j,Nt=n Jo=i}

forn >0, 1<1i, j<m, t >0, satisfy the equations:



-(hji0 . )t (xit)“

(4) P (n,t) =5 e ;
ij ij n.
m n t \V)
~(A40 )T (A1)
+z o. D. z I e *+ 1 2 P . (t-T, n-v) ar
i %ip o v! pd
p=l1 V=0
Proof

The random variable N (tk’tk+l) » 0 < k <M, depends only on the path of the

*.
continuous parameter Markov chain Jt

paths in the nonoverlapping intervals (o, tl) ee. (%

during the time interval (tk, tk+l)' These

M-l’tM) are themselves

#* *
conditionally independent given the random variables Jo,...,J » a5 may be shown

ty

by repeated application of the Markov property.

One may also prove a. by showing directly, but tediously, that the

-x- -
joint conditional distribution of N (o, tl) yeoes N (tM%l’ tM) given J_ =1 ...,
* > - 3 .
Jt =1, factors for all choices of M, io ,..., 1y and tl yeess tM‘
M

The proof of part b. is elementary and follows directly from the fact that:

(5) p { J* - 3 , J* -3 } _p { J* - J* . }
t2 tl t2~tl e}

since the Markov chain has stationary transition probabilities,

The probabilistic argument leading to (4) is standard. Either the Markov
chain remains in the state i during (o,t] and n arrivals occur in the correspond-
ing Poisson process of rate hi -~ or - at some time T, 0 < T < {, the Markov
chains enters some state p and some number v, O < v < n, arrivals have occurred
in (0,7]. During the remaining interval (T,t] n-v additional arrivals must

occur and the Markov chain must go from state p to state Je



Lemma 2,

The equations (4) have a unique bounded solution Pij(n,t), n>0, 1514,

j<m t>o0,

Proof':

We define the generating functions:

o]
v n
(6) Pyi(z,t) =) P.(nt) 2", |z]|<1,
& n=o0 Y
and the Laplace transforms:
[} —§t
(7) 7y 4(2,8) = [0 e Bzt at,

for lzl <1, Re§>0or Izl <1,Re§>0.

The equations (U4) may then be written equivalently as:

-(li to, - ki z) t

(8) Pij(z’t) = 8,0 +
- ’ -y rog -Ag2) T
E: 9:Psp I e ,ij (z, t-T) ar ,
p=1 °

for t >0, 1< i, j<m. Upon taking Léplace transforms we further obtain:

-1
(9) Ty4(2,8) = 8;5(8 +n, +o0, =A, z)  +

-1

m
2, o, Pip (B +\ +0i -~ z) ij (z,8) ,

for 1€41, j<m |z] <1, ReE>00r |z] <1, ReE>0.
It suffices to show that the equations (9) have a unique solution matrix,

whose entries Tij(z,g) are analytic in the (z,§) - region of interest.
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Let AO be the diagonal matrix with (Ao)ij = Gi&ij and A the diagonal matrix
with Aij =8, A, and let I be the identity matrix of order m then tHe equations

(9) may be written as:

(10) T (2,8) = (§ T+ A +A -Az)™
+(ET+A +A - T A PT (2,5),

where T (z,§) = {Tij (z,E) } .
The matrix I - (§ I + Ao +A - 1’\2)';l A, P is nonsingular in the region of
interest as the spectral radius of the matrix (§ I + AO + A - AZ)-l A, P
is strictly less than one. This follows from the Perron-Frobenius theory of

nonnegative matrices [8], since we have:
(11) I[T(sx+a +a-na)ta pl. |-
o] o] ij

C, ..
iP5y < p

| §-+Gi-+hi = Ay z |

ij

with strict equality for some pairs (i,3). This implies that the matrix of
interest has a smaller spectral radius than P.

It follows that:

y o . -1 -1 (: 1
@18 =] 1-(srva +a-nz)ba o] (g1+a +n -
and this may be rcwritten as:

(13) T (z,§) = [ EI + A; + A (1-2) - A P ]-}

which implies also that the entries Tij (z,8) are analytic functions of z and &

in the region of interest Re § > 0, lz}] <1, or Re € > 0, |z} < 1.
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Remarks
1. It is easy to verify that the bivariate process (J:,Nt) is a Markov chain
with state space { l,...,m } X {o,l,...}. The functions Pij(n,t) are its tran-
sition probabilities.
2. There is little difficulty in studying the counting process assuming that
the underlying phase process is a finite Markov renewal process. This was done
by Kshirsagar [11], who assumed that the arrival rate does not depend on the
state of the Markov renewal process. His discussion can be carried out without
this restriction.

In the sequel we need the quantities Aij (z,8), 1<1i, j<m, defined by:

[ee]

(14) Ay (28) = [ e

e}

-Eu .
Pij (Z’u) d Hi (u) 2

for Re § > Q’lzl <lorRe§> OJIZI <1. H (+) is the service time distribu-
tion of a customer commencing service during a phase in state i.

We note that Aij (z,€) is the transform with respect to x and n of the

probability:
X

(15) [ P 5 (n,u) 48, (w), n>0,x%x>0,1<1i, j<m
o] .

which is the probability that a service time starting during a phase in state i,
lasts for a length x at most, ends during a phase in state J and that n arrivals

occur during this service time. Clearly:

[eo]

(16) Ay (2,8) =) 2" [ R [ Py (nu) am () ],

n=o0
Since the functions Pij (z,u) are known, the transforms Aij (z,8) are also
known in principle. The fact that we cannot always write down explicit expres=
sions for the Aij(z,g) does not limit their usefulness in the theoretical discus-
sion. Actual computations should follow a different path altogether. This point

is elaborated in the final section of this paper.,
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The matrix A (z,§) = { Aij (2,€) } is also the transform of a bivariate

semi-Markov matrix, since the expression:

@ X

ZT U (y-n) Y Pij (n,u) a Hi (u)
(7) n=o °

Yooy ) e @)

n=o ©

where U (*) is the distribution degenerate at zero, is a bivariate distribution
function for 1 < i, j < m. It is a distribution continuous in x and concentrating
on the nonnegative integers for y. A discussion of the basic properties of
multivariate semi-Markov matrices may be found in [17].

The following are some properties of A (z,§) used in the sequal.

Lemma 3

a. PFor i=1,...,m: m

(18) L Ay (L8 =n (@)
§=1

where h, (§) is the Laplace-Stieltjes transform of Hi (+). It follows that the
means of the row sum distributions corresponding to the continuous variable are
i=1,...,m, the mean service times.
b. The matrix A (1,0 +) = A (1-,0) is an irreducible stochastic matrix, Unless
some of the distributions H, () are degenerate at zero, all its entries:
o0

+) =
(19) A5 (1,0 +) i Py (L) 4B (w)
are strictly positive. AiJ. (1,0 +) is the probability that a service starting in

phase state i ends during a phase in state j.

i

Proof:

Setting z = 1, we note that Pij (1,t) is simply the transition probability



i2

(20) N Py (L) =1, t2o0,

Formula (18) follows by integration. Since the mean service times are assumed to
be finite the next statement is obvious.

The equality of the two matrices in b. is immediate from the properties of
transforms of bivariate distributions or from Abel's theorem.

It is well-known that for a finite Markov chain with stable states only,
Pij (1,u) > 0 for u > 0. - Chung [3]. Furthermore Pij (1,0 +) = 5ij' This
implies that Aij (1,0 +) is strictly positive, whenever Hi (+) is not degenerate
at zero. The interpretation of Aij (1,0 +) is evident.

Let us denote by nl s ﬂm the stationary probabilities corresponding to

the stochastic matrix A (1,0 +), i.e. the unique solution to the system of

equations:

m CO
21 n I P .
(21) z p 5 PJ (1,u) a H (u) =ﬁj s
p=1 P
m .
22 mT. =1
(22) L =1,
p=1

A quantity of fundamental importance is dw defined below. The integral in
(23) is the mean number of arrivals during a service initiated in state i of the

_x_
phase process. p can be considered as the mean number of arrivals during an

"average" service. As we shall see p  is the traffic intensity for the model

under study.

(23) p =

®~

™ l Ky (t) a i, (t) ,

*
T 1

1
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where:
~ m
(24) € (8= ) K (8),
3=
K, (t) =1im &P, (2,8), t>0.
1j o Az Tig VBT B2

~

Clearly Ki (t) is the expected number of arrivals in a time interval of
length t, which begins during a phase in the state i. These expectations exist as
is shown by the following argument. The expected number of arrivals during any

interval of time is clearly an increasing function of each of the arrival rates

~

Ay se.es A, SO that K, (t) is majorized by the function t max (hl,..., xm) ,whizh is
the expected number of arrivals during an interval of length t in an ordinary

Poisson process of rate max (A Am). Since the distributions H, (<) have

1 200

finite means, this same argument shows that all the integrals appearing in (23)
are finite,
Differentiating with respect to z in (8) and taking limits as z = 1 - , we

obtain:
431t
(25) Kij (t) = sij Ay te +

m .
o5 o |
i ip

=1 0

t 4717
e ATP . (1, t=-T) + K ., (t-T ] dar
7R s (0 ) v () Jar

for 1< i, j<m.
m

Py = 1 and 2, Pip (1,t) = 1, we
p=1

Summing over j, keeping in mind that

10~

obtain:



1L

(26) ks (t) = }\it e +) Gipip I e Kp (t-T) ar
o]
p=1
Ay ot - o t ~ o (t-T)
=<&-:-> (l—e )+cyi E pip I Kp (t) e ar
1 0=1 °

This equation can be simplified by setting:

~ o.t
(27) £, (t) e - 9, (t) , i=1,...,m; t>0.

Upon differentiation with respect to t, we obtain that the m functions @i (t) ,

i=1,...,m are given by the unique solution to the system of linear differential

equations:
m
a y o3t .
(28) T P (t) = o /, Pip ¢p (¢) + Xi e s, i=1,...,m .
p=1

with the initial conditions N (0) =0, i=1,...,m.

The functions K, (t), i = 1,...,m are therefore known in principle, so

*
that the quantity d defined in (23) may be computed.

3. A first Imbedded Markov Renewal Process.

We now consider an imbedded Markov renewal sequence for the gueueing process

described in the introductory section. Let to =0, t., ¢t . be the successive

1> T2t

epochs in which departures from the gqueue occur; let §o, §l,.., and Jo’ Jl""
denote respectively the queuelengths and the states of the phase process,
immediately following to, tl"’

As usually:
+

(29) § 0y = (5, -1 +v),

where vn is the number of customers joining the queue 4during the service time
of the n-th customer. The random variable vy depends on the past only through

the state Jn of the phase process at time tn+. It follows from this and from
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the definitions that the sequence of triples:

(30) {<Jn’gn’Tn-Tn-l)’nzo} (T-l=o)

is a Markov renewal sequence, defined on the state space {l,...,m} X {0,1,...} .

For definitions and fundamental properties of Markov renewal processes, we refer
to [18] and other basic references listed in [15].

The transition probability matrix of the sequence (30) is defined by its
entries:
(31) Q (i,k; j,k'; x) =

P{ T3 =3d> 8=k, 7 -7 <x|J =i,8 =k}

wihich have the following explicit forms:

(32) For k' > k-1> 0 :
Q (1% Jok's x) = | P (k' - ke, u) dH, (u),

For k' < k-1 :

Q (i,k; j,k'; x)

[
Q

For k = 0 :

H
~18

X
Q (1,05 3,k'; x) o | By, (00w) @ (pu15 5,k x-u) au
’ (o]

p=1

i

As in the theory of the MlGIl queue, important probabilities in expressing
the time dependence of the queue are those associated with the busy periods and
with the paths of the queuelength process during the busy periods. We first con-

sider these by extending a classical first passage argument to the present case.

Transitions within a busy period.

Let there be k ~ 1 customers at t = 0, i.e. §o = k, let Jo = i and let

t_ = O be the begirning of a service. We define OQ(n) (i,k; j,k'; x) as the
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probability that the initial busy period involves at least n services, that the
n~th service is completed not later than time x, that at the time of the n-th
departure there are k' customers in the queue, that at the time of the n-th
departure the phase process is.in the state j; all this, given that Jo =i,
§o = k. For convenience we set OQ(O) (i,k; j,k'; x) = 6ij 8y

U (+) is the distribution degenerate at zero. We have the following recurrence

i? U (x), where

relation:
+1 . .
(33) o™ (1,5 3,k x) =
m k'+l b4
T (n) _
[ 24 I OQ (i,k; h,v; x-u) 4 Q (h,v; j,k'; u) ,

forn 20,1<4i, j<m kZ1,k'Z0.

Formula (33) appears to be quite well suited for numerical computation as it
stands. It yields more easily to a theoretical discussion however after we have
Jowered the slightly ill-reputed "Laplacian curtain' over it.

Let us write the Laplace-Stieltjes transforms of the mass-functions

Q(n) (i,k; j,k'; x) by oq(n) (i,k; j,k'; §) , then (33) may be written as:

0
(n+1)
(34 0™ (1,k5 5,05 8) =
m k'+1 o
y T (n) ,. -Su
L L g (i,k; h,v; §) e P . (k'-wv+tl, u)dH (u),
h=1 v=1 °© c[ hj h

Furthermore we introduce the generating functions:

& *
(35) Owij (z,g,w) = z L- Oq'(n) (i,k; j,k'; g) zk Wn ,
n=o k'=o '

defined for Re g£>o0, |z| <1, |vw| <1, or Re § 2 0, lz| <1, |w] <1

or Re § >0, |z| <1, |w| <1 and for 1 <1, j<m,
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After a number of routine manipulations, we obtain that the system of
equations (34) may be replaced by the equivalent system of linear equations in

terms of the generating functions oWij (z,8,w).:

k+1

(36) z Owij (Z:§>W) = 613 Z +
m
v (28) [ Jap (2,8,w) = W (0,8,w) ] ,
h=1 J

In matrix notation, (36) may be written as:

(37) § (g [ a1-wa(z8) ] -

i1 T-w W (0,8,w) A (z,8) ,

where W (z,8,w) = { owij (z,§,w) } and I is the m x m identity matrix.
The matrix equation (37) is similar to an equation occurring in the theory of
queuves with semi-Markovian service times or interarrival times Ginlar {4,s],

Neuts {12, 13]. The following lemma is the analogue of Theorem 1 in [12].

Lemma k4,
For every pair (§, w) with Re § > 0, lwl <1, or Re § 20, lw] < 1, the

equation:

(38) det [ 2T -wa (2,8) |

" has exactly m roots in the unit disk |z] < 1.

[}
o
-

Proof':

Each entry of the matrix A (z,§) satisfies:

(39) bwagy o) L]l ag [Izl,Res]slwl Py
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with strict inequality holding for some pairs (i,j). The spectral radius of
w A (2,8) is therefore strictly less than one for Izl <1, Re § >0, |WI <1,
or |z| <1, Re § >0, |w| <1, or |2| €1, Re § > 0, |w| <1, so that the
eigenvalues w ﬂp (z,E) of w A (2,§) are all less than one. p = 1,...,m.
If these m eigenvalues are all distinct throughout the region of interest,

then for each (suitable) fixed £ and w the equation:

(40) zZ =W ﬂp (z,8) , p=1l,0..,m,
has a unigque root in the unit disk by Rouché's theorem. It then follows
immediately that (38) has m roots in |z} < 1.

If the m eigenvalues are not all distinct, then we can still show that (38)
has m roots in Izl < 1 by a perturbation argument and by appealing to Hurwitz's
theorem. For the latter, see Titchmarsh [23].

Using lemma 4, we could proceed to discuss the equation (37) as in references
[h,S?lE,lSJ. We would obtain an additional system of equations for the unknown

term W (0,§,w) by noting that the entries of the matrix:

b [+ 1w g s ] [s1-vacn ]

can only have removable singularities in Izl < 1 for each (§,w).
We choose not to present this argument in detail as we consider the following

alternate approach more elegant and illuminating.

L, A second Imbedded Markov Renewal Process - The Markov Renewal Branching Process,
The queueing process under consideration lends itself particularly well to

an argument suggested for the MlGll model by David Kendall [9] and developed in

detail in Neuts [lh]. It was a pleasant discovery that the matrix formalism in-

troduced in [16] can also be put to use here. Before defining the imbeddedfproceSS



19
uéed in this section, we recall the definition introduced there.

et F (z) = { Fij (z) } be an m x m matrix whose entries are analytic func-
[o=]

™

tions of z in lzl < 1, with Maclaurin series F_,(n)zn = F.. (2).

a ij ij
n=o
By C = {Cij} we denote an m x m complex matrix such that Il C ll =
m
max 5‘ Icij' < 1. The matrix function F [.] is defined over the set C of
i .
J=1

matrices C by:

(k2) F [c] =z pn) o0

n=o
where F(n) = {Fij(n)} and C” is the ordinary n-th power of the matrix C.

It is easy to verify that F [-] is a continuous mapping of C into itself

provided F (z) ¢ C for all lzl < 1. If this is the case, the functional iterates

(3) n (z) = Fn-1 [ F(2) ] - F [ Fn-1 (2) ] > nzl,

o~
~
1

F (z) =z1,
are also well defined.

We now define an imbedded discrete parameter process in the queue as follows,

1

Starting at t = 0, with k 2 1 unprocessed customers and in phase i, we define Tl

as the time until all customers present at t = O have completed service. By

1 !
§l we understand the number of customers arriving during (O, Tl) and by I, we

1
1 .
represent the state of the phase process at time Tl +. For notational convenience
' 1 1 1 1
we set TO = 0, IO =1, §O = k., If 51 = 0, then Tl is the end of the initial busy

1 1 1
period., If §l > 0, then T2 is the time at which all customers present at Tl have

]
departed and I2, 52 are respectively the state of the phase process and the

1

queuelength at that time. Equivalently, §2 is the number of arrivals to the

1 t
system in (Tl, 7,1 .
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t

T |
Continuing in this manner, we define the triples (In, En, Tn - Tn-l)’

n > 1, recursively and it follows routinely from lemma 1 and the basic defini-

1 .
- A = = i
Tn-l) » 020, T =T =0 } is a Markov

1 ]
tions that the sequence { (In, 8 Ty

renewal sequence on the state space { l1,..., m } x { o, 1, ... } with the states
(3, 0), 3=1,..., m, absorbing.

The transition probabilities Q (i,k; j,k'; x) defined by:

- « 2 1, -— — 3 —_— ] - :. '=
(k) @ (i,k; J,k,x)—P{In_l_l—.],gr'l_i_l—k,Tr'Hl T<x| I i, &7 k}

may be written in terms of the probabilities whose definitions preceed (33) as:

(45) Q (ks 3.k x ) = o) (g 5,005 x)

The following lemma expresses the generating function of the Laplace~

Stieltjes transforms q (i,k; j,k'; §) of the mass functions Q (i,k; j,k'; x ) in

terms of the matrix A (z,§) defined in equation (1k4).

Lemma 5
For 1< i, j<m, k> 1 and Re § > O, lzl S lorRe § >0, Izl < 1, we have:

©

(46) | z 3 (i,k; 5,k'; ) 2° = \: A" (2,8) ] ?
k'=0 1

Proof':

By virtue of (L45), we have that:

(47) z T (i,k5 3,k'3 &) 25 = Z Oq(k) (i,k5 3,%', € ) 25
k'=o k'=0

The recurrence relation (33) yields upon taking transforms and recalling (32)

that:
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(18) Z oq<n+l) (1,k; 3,k'; §) 2° =
k'=0 '
m © «© o X
Y oy oY M e B (Ko, w) A K () a ™) (1,5 b, vi1, x-u)
=1 y=o0 k'=v °© ©°

m w
- Z Ay (2:8) "'ZL[ z oq(n) (1,k; h,v; E) z¥ - oq(n) (i,k; h,0,§) ]
h=1 v=0

We note that for n < k-1, the quantity Oq(n) (i,k; h,0,§) is zero, since with k
customers present initially, the initial busy period involves at least k services.
Since also:

®

GO W R R L Al WX
k'=0

we obtain recursively from (48) that:

(=]

500 ) @™ ka9 F ST [ R ]

.}
>

k'=0 iJ
for k < n. In particular for n = k, we obtain the desired result.

We now obtain a full characterization of the matrix aw (0,8,w) appearing in
equation (37). To this effect we first define the following random variable of
independent interest.

Let Gn denote the total number of customers served up to time Tﬁ, provided
Tﬁ is defined. In other words, en is the total number of customers served up to
and including the n-th generation of customers in the queue.

If we let ;E(ngi,k; j,k's ry x) with Laplace~Stieltjes transform ;a(n)

(i,k; j,k'; r; §) be the probability:
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, ' '
(51) P { In =3, §£ = k', Bn =T, Té < x, §v # 0,v=1,...,n-1 Io=i, §O =k }
then we have:

(52) oq(n+l) (i:k; jsk'; r; §) =

m r

YooY @™ (s nvs tevs ©) T (s 3,0 €)
/, /, Oq‘ sy 2V ] q sVs J» 3 B
h=1 v=1

for n > 0, provided we set:

~{0)
(53) @ (ik; §,k'; ¢, §) = 855 Ok’ Bop

where the deltas are Kronecker deltas.

Introducing the generating functions:

(n) S e~ :
(5’4) oéij (z,§,w) = 2_‘ z OC_{ (i:k:'v J.k'; T, g) Zk Wr ’
r=1 k'=o
(52) may be written compactly as:
(n+1) °© o o ~n) r
(55) 2,4 (z,8,w) = F F Y @ (4,kh,v;r,E)w [Wv NCRSN
J [ 4 i “hi
h=1 v=1 I*%1 dJ
by (46).
(n) (n)
Finally let o@ (z,8,w) be the m x m matrix with entries oQij (z,8,w)

and let the matrixfunctional iterates A[n] (z,5,w) be defined by:
(56)  Ap,y (z:5,w) =21

A[n+l] (z,8,w) =w A [ A[n] (z,E,w) , § ] , n>0.

for |zl €1, Re §20, |w| <1o0r|z] €1, Re § >0, [w] <1, or |2| <1,

Re § > 0, 'w' < 1. The equation (55) can then be written as:
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(n42) () (n)
(57) & (&) =2 [ wA(28), 8w -8 (08w

O

for n > O, with:

)
(58) o@(o (z,8,w) = 2% I,

Using a simple induction argument and (56) we further obtain:

(o) i
(59) OQ (Z,g,W) =z I,
(n) k k
oQ (Z,g,w) = A (Zﬁg,w) - A (O’g,w) b
(n] n-1)
forn>1, k>1.
Remarks
(n)
Formula (59) expresses the matrices O@ (z,§,w) , n > o0, in terms of

suitable matrixfunctional iterates of the known "fundamental" matrix A (z,E).
While these functiénai iterates correépond in the real time domain to extremely
complicated successive substitutuons, they exhibit a remarkable simplicity in
terms of the formalism developed here. A number of interesting conclusions may
be drawn from (59).

(n)

Before doing so, we recall what egch entry of O@ (z,5,w) corresponds to.

(n)

Specifically oéij (z,6,w) is the transform of the probability mass functions,
which express the chance that:

a. The initial busy period starting in a phase-state i, with k customers
involves at least n generations of customers and is in a phase-state j at the end

of the service of the n-th generation custamers.
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b. the queuelength at the end of the n~-th generation's servicetime is k!
and the total number of customers served by that time is r.
c. the n-th generation customers complete service no later than time x.
Clearly this complicated joint probability itself is of little immediate

interest, but by particularisation the many results may be obtained,

The joint distribution of the initial busy period and the

number of customers served during it.

Setting z = o in (59), we easily show that:

N (n) k
(60) z 0§ (0,8,w) = A[N] (0,§,w) ,

If we denote by ¢N (i,k; j; r; x) the probability that the initial busy
‘period with k customers and in phase-state i initially lasts for N generations

and ends before time x during a phase of type j and involves exactly T services,
then it is clear that:

o«

® =X
) ) v [ e ayy (ks g -
(o]

r¥k

N (n) s - k
Z OQiJ (O,§,w) = LA[N] (Oﬁgiw) ]1‘] 5

n=1

If N tends to infinity wN (i,k; j; r; x) converges to the probability

1
v (i,k; j; r; x) that the busy period with initial conditions §o = k, IO =1i,

ends before time x during a phase of type j and involves a total of r services.

These probabilities converge to the stated limits because the corresponding events

converge. Actually for N > r, if not earlier, ¢N (i,k; j; r; x) ceases to depend

on N,
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Let us set;

8

— ® -Ex (x)
(62) 21 W I e ay  (ik; 35 r; x) = Yij (&,w) ,
r=1 ©

_ (k) (k)
then the m x m matrix vy (§,w) = { Yij (8,w) } is given by:.

(k) k
(63) v  (§,w) = lm A

(1) k
un s (08 - v oewn]

(1)
for k > 1. Henceforth we shall write vy (8,w) simply as y(§,w),

We state this result formally as a theorem:

Theorem 1

The probabilities ¢ (i,k; j; r; x) which express the joint conditional dis-
tribution of the duration of and the total number of customers served during the
initial busy period as well as the state of the phase process at the end of the
initial busy period, given the initial conditions Io = i, gé = k, have a
generating function, defined in (62), which is given by the limit of the iterates

of formula (63).

Corollary 1
The transform (62) is equal to dwij (0,£,w), since both refer to the same

set of probabilities. We may write:

k
(6,"‘) OW (0,§,W) =Y (§,w) ’

Corollarz 2

In view of Cor. 1, formula (37) may be written as:
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(65) W (2,8,w) =

k+1 k -1

[z 1-wy GaEs) | [s1-va@Esn]

Corollaxry 3

The matrix y (§,w) must satisfy the equation:

(66) yEw=walyEw, 8],

for Re § > o, lw1 < 1 or Re § > o, ‘w1 <1l

Proof:
This follows from (56) and (63) by a routine argument establishing the

continuity of the matrix function A [Z,8) in Z for || 2 || < 1.

Remark:

Equation (66) is the analogue for this model of the classical Takécs func-

tional equation for the transform of the joint distribution of the busy period and

the number of customers served during it, which occurs in the theory of the MlGli
queue,

As in the simpler case, equation (66) corresponds to a fairly simple system
of recurrence relations for w # 1, whereas for w = 1, it corresponds to a system:
of nonlinear matrix integral equations of Volterra type. To show this, we note

~ that the equation (63) implies that:

(67) ¥ (i,k; 35 r; x) =



a7

z z W (ibl; il; rl; ‘) *“J (ilbl; i2; re; ‘) * s 00
Ek 11’12"'°’ik-1

¥ (4515 35 15 x)

for k > 1. E _ is the set of all k-tuples (rl,...,rk) with r, > 1,... r, 21 and

In view of (67) it suffices to show that the ¢ (i,1; j; r; x) can be calcu-
lated recursively. By considering all possible situations at the end of the

first service we obtain:

X
() ¢ (1555550 =0, [ py (o) an (w

1

r X

|7, (5w ¥ (o5 35 -5 xu) @ By (w)

+
~1s

~

1 9

]
o

forr>1,1<4i, j<m x>0.
Formulae (67) and (68) display a set of recurrence relations from which the

probabilities ¢ (i,k; j; r; x) may in principle be calculated for all values of

i, k, j, r and x. The recurrence is initiated by:
bls
69) v @wLHmH=s, | By Gwan @,

o)

The reader may verify that upon taking the suitable transforms the equations

(67), (68) and (69) lead to (66).

Corollary 4

The equation:



28

(70) Z=WA[Z)§]> HZ”il,
has a unique solution y (§,w) = Z, with entries analytic in w and § for Re § > o,

le < 1.

Proof:
The functional equation (70) may first be discussed in exactly the same
manner as the basic équation (4b0) in [16]. We summarize this approach without
repeating all details.
a. There exists a solution, namely the limit of the sequence of iterates in
(63). |
b. If Z is any solution of (70) and if T (§,w) and u (§,w) are respectivelj
an eigenvalue and the corresponding right eigenvector of Z, then 7| (gy) is a root

of the equation (38) in the unit disk. Moreover the equation:

(71) [nEmI-vam@En, s JaEw-=o,
is satisfied.

If we can show that the m roots of (38) and the corresponding right eigen~-
vectors determine a matrix uniquely, then this matrix is clearly the only solution
to equation (70). This is however an exceedingly difficult question. ginlar
[5] has given general sufficient conditions for this to be the case, but his
conditions cannot be checked in specific cases as they require explicit knowledge
of the roots of (38).

The uniqueness of a solution analytic in § and w for Re E >0, Iw] < 1 can Ee
shown directly as follows. By the uniqueness theorem for generating functions
and Laplace-Stieltjes transforms every analytic solution to (70) must have coef-?
ficients of wr, r > 1 satisfying the recurrence relations which we obtain upon

taking Laplace-Stieltjes transforms in (68) and (69). The latter are true
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recurrences which express terms for higher values of r uniquely in terms corre-
sponding to lower values of r. Given any set of initial terms corresponding to
r=1, 1<i, j <m, we may therefore calculate in principle the coefficients of
W for r2>2.,

This argument uses the assumption of analyticity of the solution crucially.
Finally it suffices to show that we can determine the constant term and the
coefficient matrix of w uniquely from (70).

Setting first w = 0 in (70) we find Z (§,0) = 0 as expected since the busy
period involves at least one service.

Using this, dividing both sides of (70) by w and letting w = 0O, we see that
the coefficient of w in Z (§,w) is given by A (0,§). But this is precisely the
matrix of Laplace-Stieltjes transforms of the quantities given in (69).

The initial terms are therefore determined and hence the coefficients of wr,

r 2 2 by the analyticity assumption.

Remark

This argument cannot be applied to the equation:

(72) z = A [2,8] Hzll<sy,

obtained for w = 1., While the uniqueness of a solution to (72) remains a difficuit
open question, it is as far as queueing theory is concerned an academic one. The

probabilities of interest may be calculated recursively, whereas on the other hand

an explicit solution of (72) followed by inversion of the laplace-Stieltjes trans-

forms is beyond any practical reach.

5. The idle times and the busy cycles.

The initial busy period is followed by an idle period which lasts until the

arrival of a new customer. Because of the regenerative nature of the queueing
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process, the epoch of arrival of a new customer is the beginning of a new busy
period, this time with one initial customer. Conceivably during the idle period
one or more changes in phase-state may occur. The probability that an idle |
period starting in phase-state i, lasts at least for a length of time x and that
the phase-state at time x is j is equivalent to the probability that during an
interval of length x the phase process changes from state i to state j and not a
single arrival occurs; this is however exactly Pij (o03x).

We define a busy cycle as the time between two successive epochs in which the
queue becomes empty. Each busy cycle consists of an idle period and a busy
period with one customer initially. An exception to this is the initial busy
cycle, which we interpret as identical with the initial busy period with k
customers initially.

We now show that the successive busy cycles are the sojourn times of a
finite-state Markov Renewal process. Consider the Markov Renewal Sequence
(30) {(Jn, £, Tn-"l'n_l> , n>0 } discuyssed in section 3. ILet
T, + T, + T . be the times of successive visits to the set

2 % 71 2 32"

of states E = { (1,0) ,..., (m,0) } in the corresponding semi-Markov process.

Tl’ Tl + T

Furthermore let el, 6 . be the first indices (or equivalently the states of

PEERE

the phase process) of the states in E visited at these times., We also set

It is clear that the random variables Tl’ T2 5+« are the durations of the
successive busy cycles and that eo is the initial phase-state and 91, 32 seee
the phase-states at the beginning of each of the subsequent busy cycles.

Since the random variables Tn’ n > 1 are first passage times between the
states in E for the Markov Renewal sequence (30), they could be infinite with

positive probability when the semi-Markov process corresponding to (30) is tran-

sient.
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Since the Markov Renewal sequence (30) is clearly regular and irreducible it
follows that the successive states (ev,o), v=0,1l, ... of the set E which are
visited, along with the times Tl’ T2 s++« between such visits form again a Markov
Renewal sequence, denoted by:

(73) {Cen’Tn>’n->-°}

This m-state Markov Renewal sequence will be referred to as the sequence of
busy cycles. The transition probability matrix of the sequence of busy cycles
could be improper in the sense that the sojourn times could be infinite with
positive probability.

However since we have interpreted the random variables Tn, n>1 as first
passage times in the regular and irreducible Markov renewal sequence (30) it follows
that:

the sequence of busy cycles (73) is (positive) recurrent if and only if

the Markov renewal sequence (30) is (positive)recurrent,

We now write down the transition probabilities for the sequence of busy

cycles. Firstly, since T, is just the length of the initial busy period, we

1

have:
(>

(74) Je dP{G 3> T <x|9=i,§o=k}=[yk(§,l)]“,
ij

o}
Secondly, for each of the subsequent busy cycles, the probability %3 . (v3x)

that a busy cycle beginning in the phase-state i, lasts for a length of time not

exceeding x, involves exactly v > 1 services and ends in the phase-state j is

given by:
X
(75) X4 3 (vix) = z A, l Pig (o3u) ¥ (p,15 3; v; x-u) du,
p=1

where the {'s are given by formulae (67), (68) and (69).
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If we denote by Nn’ n > 1, the number of services dispensed during the n-th

busy cycle, we actually have:

-]

[>-)
v -Ex
(76) Eij(g,w)=§;w l e dP{9n=,j,Tn_<_x,1\In=vl9n_l=1}
v=1
> v o -€x
=zwfe dxij(v;x),
o
v=1
for n > 2.

Using (75) and matrix notation, we obtain:
(17) = (§,w) = T (0,8) .A. vy (§,w) ,

where 5 (8,w) = { Eij (8 ,w) }, T (0,8) is given by formula (10) and A is the

diagonal matrix with A, ., =6., X, .
ij ij
Formula (74) can also be written more generally as: y
«Q
v @ Ex
= 4 < = = i = =

(78) z W je dP{Gl > Ty %, N vleo i, §, k}

V= o '

(v en] .
1J

where y (§,w) is the fundamental matrix, studied in section k4,

6. The Equilibrium Condition.

As seen in section 5 the imbedded sequence (30) is recurrent if and only if
the sequence of busy cycles is recurrent. Since the latter is an m-state Markov
" renewal sequence it is recurrent if and only if the transition matrices with
transforms yk (§,1) and E (§,1) are proper semi-Markov matrices.

This is the case if and only if both y (O+, 1) and E (o+, 1) are stochastic

matrices.

The following result simplifies the investigation of this issue.
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Theorem 2

The matrix = (o+, 1) is stochastic if and only if y (o+, 1) is.

Proof:

We first show that:

(79) T (0,0t) .A. & =¢
where e is an m-vector with all its components equal to one. Equation (9) implies

trivially that:

m A o m m
- i i
(80) z Ti,j (0,0+) 7\3. = }‘imi + 11“1 z Pip [_‘ ij (0,0+) }\j ]
3=1 p=1 j=1

fori=1,...,m.

This is a system of nonhomogeneous linear eguations in the unknowns

i =

Tij (o0,0+) hj yi=1,..., m. Since P = { pij } is stochastic it follows

=1

that the values:
m

(81) Z Tij (o0,0+) Aj = 1, i=1,...,m
J=1

satisfy the system (80) and are therefore a unique solution.

It is now obvious that:

(82) Yy (o, 1) e=¢g,

implies:

(83) 2 (ot, 1) e = T(o,0+) .A. y(o+,1) e = T(o,0t) A e = e, by (77) and (79).
If v (o+, 1) is substochastic, y(o+,1) e < e componentwise with strict in-

equality for at least one component. By (79) this implies = (o+,1) e< e, com-

ponentwise with strict inequality for at least one component, since T (o,o+) A is

a positive (in fact, stochastic) matrix.
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It remains to investigate when y (o+, 1) is stochastic. The following dis-
cussion )gelies heavily on the Perron-Frobenius theory of positive matrices and on
the results on multivariate semi-Markov matrices established in [17). We first
cbserve that these results were proved using multiple Laplace-Stieltjes trans-
forms. Here we are dealing with multiple transforms which are mixed probability
gengrating functions and Laplace-Stieltjes transforms. There is no difficulty
however in applying the results of [17] since probability generating functions

£ !
(in w) become Laplace-Stieltjes transforms via a change of variable w = e 5 .

Any limit obtained as §' = o + is equivalent to a limit as w - 1- here.

Let us consider the matrices y (§,w) and A (z,§) forRe £ >0, 0<2<1
and 0 < w < 1.

Both are then irreducible, nonnegative, (sub)stochastic matrices over these
domains of z, §, w. That y (§,w) is irreducible follows from the elementary
observation that the Markov renewal sequence (30) is irreducible. There is hence
always positive probability of eventually reaching (j,o) from(i,o) in (30)for
i, J=1,..., m.

We denote the Perron-Frobenius eigenvalue of A (z,§) by 1 (z,§) , 0<z<1,
§ 2 0, and the Perron-Frobenius eigenvalue of y (§,w) by x (E,w), § > 0,
o0<w< 1.

The following properties follow immediately from [17].

Lemma 6

a, For 0<z<1,§>0,T (z,8) is uniquely determined and is analytic in
(2,§) for 0< z< 1, §>0 or 0<z<1, &>o0.

b, The function T (2,§) is a convex function Jjointly of z and §. For every
2, 0€2z<1, it is a strictly decreasing function of § > 0 and for every § >0

it is a strictly increasing function of z in O <z<1.



c. Since A (1,0) is stochastic, T (1,0) = 1.
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Moreover since the means of

the distributions Hi(-) are finite, i =1 ,..., m , the derivatives:

3

lin -1 (2,8) Lin
z71- z=]-
§-00+ g—io-i-

exist.

d. The derivatives in c. are given by:

*

o) szg_l- gz, N (z,8) =p ,
E-0+
and: m
(85) 14 kI N PR .
E~0+ o

*
where the quantity p is given by equation (23).

Similarly for y(§,w), §€ > 0, 0 < w < 1, we have:

Lemma 7

= 18,

.Q’J. s

a. For § > 0, 0< w< 1, the Perron-Frobenius eigenvalue X (§,w) is unique-

1y determined and is analytic in (§,w) for § >0, 0<w<1land § >0, 0<w< 1.

b. - The function ¥ (§,w) is jointly convex in (§,w). For every § >0, it is

a strictly increasing function of v in 0 < w< 1 and for every w, O Sw<l,

it is a strictly decreasing function of §.

c. The limit x (O+, 1-) exists and is the Perron-Frobenius eigenvalue of

Y (O+9 l')-

Corollag, 5

The matrix y (O+, 1-) is stochastic if and only if ¥ (O+, 1-) = 1.

Proof':

This is an obvious consequence of c.
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The following theorem establishes the relationship between x (§,w) and 1 (z,§).

The equilibrium condition for the queue is then an easy consequence.

Theorem 3

a. For every w, 0<w<1, and § > 0, the quantity ¥ (§,w) is the unigue
root in the interval (0,1) of the equation:
(86) z =w T (z,8) ,

b. As § = 0+, x (0+, w) tends to the smallest positive root of:

(87) z = w1 (2,0) , 0<w< 1.
For 0 < w< 1, equation (87) has a unique root in 0 < z < 1.
c. The queue is in equilibrium or equivalently y (O+, 1-) is stochastic if

and only if:
(88) p¥ <1,

Proof:
For every fixed z, 0 < z < 1, the entries Aij (z,§) of the matrix A (z,§)
are decreasing functions of § > 0. This implies that T (2z,€) is decreasing in
§ > 0 for every z in [0,1].
Furthermore 1 (0,§) > 0 and 1 (1,§) < 1, with strict inequality for § > 0,
and the function T (z,E) is convex increasing in z. Hence for every w,
0 < w< 1, there is a point of intersection between the curves representing the
functions w T (z,§) and z.
For fixed w and for O §'§1-<_§2, the curve of w 1) (z,§l) lies entirely above
the curve of w 7 (z, §2), considered as functions of z in [0, 1]. Likewise for
fixed § > 0, the curve of Wy N (z,E) lies entirely above the curve of W W (z,8)

for Wl > Wé.
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It follows that for each § and w with § > 0, 0 < w<land § >0, 0<w<1,

there is a unique abcissa z = %o (§,w) , such that:

(89) %, (5w) =0 x, €W, 8], o<x (&w) <1,

For § = O, W = 1, the value z = 1, is always a solution of the equation

z =1 (2,0). By continuity Xq (o+, 1-) is also a solution of this equation which
may or may not be identical with z = 1, This depends on the derivative of T (z,0)
at z = 1-. If this derivative, whose value is p* by Lemma 6, exceeds one then
the convex increasing curve T (z,0) has two distinct points of intersection with
the curve of the function z. Hence for ﬁ* > 1, we have that x_ (o+, 1-) < 1.

If p* < 1, then the curve of 1 (2z,0) lies entirely above that of the function z,
so that %o (o+, 1-) = 1.

Next, we show that ¥ (§,w), § >0, 0<w< 1, is identical with the Perron-
Frobeniusz eigenvalue X (§,w) of vy (§,w). To do so, we use the important property
that the Perron-Frobenius eigenvalue of an irreducible nonnegative matrix is the.
one and only eigenvalue with associated left and right eigenvectors all of whose
components can be chosen to be strictly positive.

Let v (z,§), 0<2< 1, § >0 be a vector with all its components positive,
which is the eigenvector of A (z,§) corresponding to T (z,§), then we have for

0<z<1, §>0 that:

(90) [Wn (2,8) 1 - wa (2,8) | v (2,8) = 0,

If we set z = Xo (§,w), then (90) yields by (89):

(1) [ x, Gw) T -walx, (&), 8 Jxlx, (8w, 81=0,

The equation (91) implies, since v [ x_ (E,w), €] # 0, that x (§,w) must be
- o = o)

a root of the equation (38) and hence an eigenvalue of y (§,w). Moreover, a
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corresponding eigenvector v L %o (E,w), €] has all its components positive, so
that %o (§,w) must be the Perron-Frobenius eigenvalue ¥ (&,w) of y (E,w).

This completes the proof of the theorem.

Theorem kL
*
a. For p < 1, the derivative:

-1

(92) .;;_lg "g—g" x (§,w) = xg' (o+, 1) = =@ (1p ) < ,
+

wl-

b. For p* < 1, the sequence of busy cycles is positive recurrent. Equi-
valently the Markov renewal sequence (30) is positive recurrent.

¢c. For p* = 1, the queue is null-recurrent. The unConditional means of all

busy periods are infinite,

Proof':
Since T (z,8) is a differentiable function of z and € in its domain of defi-
nition, the function X (§,w) is likewise differentiable for all points in its

domain of definition by virtue of equation (89), with the possible exception of

§ =0, w=1.
We have:
Q ) 0
(93) =7 b (§,w) =W N (Zag) « XF X (§,w)
ag [ 100 ]
d
+w - L (Zyg) ’
- o8 ]z=x (§,w)
. The limit as w = 1-, E~ O+, must satisfy:
(9%) (15" ) lm B x Ew)=-a
g0+
w1~

*
If p <1, this implies (92).
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If a finite Markov renewal process is irreducible and if all its sojourn
times have finite first moments, then the derivative at O+ of the Perron-Frobeniﬁs
eigenvalue of its matrix of Laplace-Stieltjes transforms is finite. Conversely
if at least one of the sojourn time distributions has an infinite first moment,
the derivative described above must also be infinite. It follows from (92), thaf
when p* < 1, the Markov renewal sequence of busy cycles has finite expected
sojourn times. Since the sojourn times of this sequence are first passage times
of the process (30) and since positive recurrence is a class property. - Pyke [18]}

it follows that both these Markov renewal processes are positive recurrent.

If p =1, it follows from (94) that lim "%E“’ X (§,1) cannot be finite.
g0+

This implies that at least one state of the sequence of busy cycles must have an
infinite mean sojourn time. However, the sojourn times of this process are first
passage times of the process (30). If in the process (30) there is a first
passage time with infinite mean, all first passage times must have infinite means
since null-recurrence is a class property.

Therefore all the busy cycles must have infinite expected lengths, when

%
p = 1.

Remark

At this stage we have obtained all the essential ingredients needed to discu#s
the transient behavior of the queue. The basic imbedded process is the sequence ;f
busy cycles, which is completely known in terms of the fundamental matrix of
transforms y (§,w).

By using the regenerative nature of the queueing process and the results
obtained in sections 3 and 4, all other processes of interest such as the queue~
length at time t, the virtual waitingtime at time t, etc. may be treated routinel&.
Finally, by appealing to a general result of Smith [20] for regenerative stochastic

Processes the limiting distributions for these same quantities may be written
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dowm. The ergodic properties of these continuous parameter processes follow

immediately from those of the m-state Markov renewal seguence of busy cycles.

7. The Queuelength, the Virtual Waitingtime and the Total Number served.

We now consider the queue at time t > 0. Among the many features of the
queue at t, the following are of particular interest: (a) the state Jt of the
phase process (b) the queuelength § (%), i.e. the number of customers in the
system counting the one being served. (c) the virtual waitingtime T (%), i.e.
the length a customer arriving at t has to wait before his service begins. (d) the
total number N (t) of services completed in (0,t]]

We propose to discuss the recurrence relations which govern the joint dis-
tribution of Ty s §(t), N(t) and N(%) and to obtain, where possible, closed form
expressions for appropriate transforms. A variety of results concerning the
marginal and limiting distributions then follow.

Define the following probabilities:

(95) eij (k,k'; x2 v t) =

P{Jt=j,§(t)=k',ﬂ(t)ix,N(t)=\)'Jo=i,§(0)=k}

and:

(96) oeij (k,k'; x3 v; t)

P{ J.=3, §(t)=k", N(t) € x, N(t) = v, §(T) # 0. 0<T<t | 3 =i, §(0)=k}

with all the variables ranging over the appropriate sets of values.

Before we write the recurrence relations which determine the quantities in
(95) and (96), we consider the following important probabilities. Consider the
interval (O,t]. One or more busy cycles may have ended during this interval. On

the other hand, if t is included in the initial busy period, then no busy cycles
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(n)
were completed in (0,t]. Let Kij (v;t) be the probability that before t at
least n > 1 busy cycles have ended and during them v customers were served and at
the end of the n-th cycle the phase process is in state j, given that it was in

state i initially.

By an elementary recurrence argument we obtain that:

: C gt (n) k n-1
v st) = =
G Y e any wme{y gm .= Em I
v=k
for n > 1.

In order to bypass a lengthy formal argument, we observe heuristically that
the "differential"§' a K(n) (v,t) is the elementary probability that in (&,t+dt)
n;l *
there is a transition in the process of busy cycles, that the phase process is in
state j and a total of v customers have been served in all the campleted busy
cycles, given the usual initial conditions.
From (97) we obtain:

(98) Z z w i e-§t dKFr.l) (v;t) =
= =K

1J
1

Z { Yk (8,w) En-l (g,w) } o= { yk (§,w) [ I-%2(§8,w) ]-l } )
n=1 d o

forRe§>O|wl‘_<_lorRe§_>_0, [w] < 1.
The matrix I - & (§,w) is nonsingular since 5 (E,w) is the transform of an

irreducible bivariate semi-Markov matrix. The spectral radius of & (§,w) in the

domain of interest is less than unity,

For brevity we write:

(n)

(9) Ky (vit) =) K (wit)

o

n=1
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The empty queue

We have that:
m t

(100) eij (k,0; x5 v; t) = Zl I P . (o; t-u) 4 K, (v;u),
=1 o pJ ip

independently of x for all x > 0. The probability argument leading to (100) is
the following. At some time u prior to t a busy cycle ends and no new customers
arrive in the interval (u,t). We also keep track of the state of the phase pro-
cess and the number of customers served up to u.

In terms of transforms:

> v Sl -Et
(101) }: w f e eij (k; 03 O+; vy t) dt =
v=0

[ @m (260 ] T8 }ij ,

The non-empty queue

Next we express the probabilities eij (k,k'; x3 v; t), k' > 0, in terms of
the probabilities oeij (k,k';x; v; t). In order to do so observe that in (0,t]
either the queue has never emptied out or alternatively one or more beginnings
of busy cycles precede t. In the latter case, as we are dealing with a regular
Markov Renewal process there is a last beginning of a busy cycle before t. More~-
over since we have already dealt with k' = 0, we may assume k' > 0, so that there
must be at least one arrival between this last beginning and t. In other words
we are in the busy period portion of the busy cycle which includes the instant t.

This leads to a natural decomposition of the event corresponding to
eij (k,k'; X; v; t). Tn the latter case let the busy cycle coveiing t start at
time u < t and the busy period covering t at time T, u < T < t. Let the states
of the phase process at u and T be p and p' respectively, then we obtain from

the law of total probability that:
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(102) I (k,k'; X3 v; t) = o°ij (ksk'; x5 v; t)

t T
i i oep,j (1,k's x; vev'; t-T)

+
IpJMB
Lde

\)l

]
£,P~/]a

o
-

Ppp, (03 T-u) Ap, d K, (v'su) ar ,

ip
It remains to study the probabilities oeij (k,k'; %; v; t). Consider the
corresponding event, In order that at time t Iy = 3 g(t) = k's N(t) € x, and
N(t) = v without the queue being empty in (0,t], given Jo=1, §(0) = k, the
last departure prior to t must be the v~th, ILet it occur at some time T < t.
Let there be k:' o< k' , < k! customers at time T + and let the phase process
be in some state p ¢ {1,...,m}. |
In order that E(t) be equal to k', k'+k'' new arrivals should occur during
(T,t]. Moreover the phase process must change from the state p to the state j
during that same interval. Let the customer In service at time t depart at
time t + v, In order to satisfy M(t) < X, the k' ~ 1 individuals in the system
at t + v who arrived prior to the virtual customer must all leave before time
t + X, Therefore we must have O < v < X and the total service time of the k' - 1
customers should not exceed X - v,
This verbal discussion again corresponds to a natural decomposition of the .

event into mutually exclusive or regenerative sets of events, Applying the law

of total probability and the regenerative properties of the queue we obtain:

(103) 0, (kk'5 x; v; ) =

18

t x
I f a Q(v) (i,k; p,k""'; 7). P . (k'-k''; taT)
d 4 o t Rt | > > . PJ 1 .

=

)

k''=1 p=1 o

1

.[z ch (r3v) ].d Hp (t + ver) {:2 z OQ(}({;:Ilgz-l; a'; n; x-v} ]
r=0

n=o g'=1
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(v) (k'-1)
where the mass-functions o8 (i,k; p; k''; 7) and o0 (o, k'~130'; n; T)

were defined in Section 3. Note that
IBU (r; v) is merely the probability

r=0
that the phase process changes from state j to ¢ during a time interval of
length v. It is hence also equal to ch (z3v), z = 1, so that we may write the
sum as PEG (1; v) provided the reader correctly interpret this symbol.
(Formula (103) relates oeij (k,k'; x5 v; t) to quantities already expressed

in terms of the fundamental parameters of the queue. Should one attempt to per-

form explicit numerical computations leading to results on the timedependence
of the queue one would have to do so usiﬁg (103) and the auxiliary functions which
were discussed earlier in the paper.

'Pursuing the theoretical discussion, one may wish to obtain closed form
expressions for the equations (103) via the use of transforms. The suthor
attempted to calculate the transforms

(k)
(lo)'l') Oeij (Zss:W>§) =

%”‘ ? - ® -§t—SX ' k' v
1. . .

i Z j; f{)‘ e dx Oeij (ksk y X5 Vg t) dt., z w o,

k':l V=0

from equation (103) but his efforts were frustrated by the noncommutativity of
the matrix product. However, this only affected the portions of the calculation
related to the virtual waitingtime N(t). If we content ourselves with a dis-
cussion of the (marginal) distribution of S g(t) and N(t), then further pro-
gress in the discussion may be obtained.

Letting now x tend to + « and defining the transform:
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(k)
(105) oeij (z,w,8) =
2 2 gt k' v
32 24 I e (’ei'j (k,k'; +o3 vg t)at. z w ,
k'=l y=0 °

we obtain successively that:

(106) oeij (k,k's + @5 v; t) =

m t

L Z | Poy (E' =K' € o) [ 1 - Hy (t-7) ] doQ(v)(i,k;p;k”;T),
kt'=1 p=l (o] . :
and
(k)
(107) Oeij (Z,W,g) =
_111\ o ] E' k' v o oEt t .
z W e dt P . (k'ek®t} twr) | 1-H (t-T)
D>:l \)Z'o 57;1 k5>7'=1 j; ]; P P [ P T]
(V) 11 |
aQ  (iL,k; 0, k 5 7)
m © : : =} K+ © -} ~§(T+‘t') )
L e Doy
p=l v=0 k''= =0

(v) :
at. 4.Q (i,k; o, k''; T) ,

after interchanging two summations and two integrations,

We now have:
k) 2 k' oy et (v)

. il
(108) oeij (z,w,E) = z { Y 2 z W fe 4.0 (1% p,k''s T)}
[s]

4

p=1 v=o k''=l

{ S zkl Ile-gt'ij(l,t)rl-H (t')] dt }

2
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The expression between the first two curly brackets is seen to be equal to
owij (z,8,w) - owij (0,8,w) upon consideration of formula (35). Recalling
(64) ~ (65), it is therefore also the (i,j)=entry of the matrix:

k+1

(109) [ 1-wy (&) ] [e1-va@a] -y 6w

=z [ zk I- Yk (§,w) ] [ z1-wA (z,§) ]-l >

The expression between the latter two curly brackets 1s equal to:

-]

k ® gt @
1 k1Y) St =
(110) z z ‘i e ij (kl,t ) ét j‘t' d Hp (u) =
Ky =o
} S ' g
i d Hp (u) % e ij (z; t') dt' =

@ u
‘([ de (u) i {exp(-gI-A-A°+AZ+AOP)tt}detI=

(]

j;de (u){[I-exp(-§I-A-A°+AZ+A°P)u]

[ S+A+ Ao - Az - Ao P ]—l } .
pJ

One may verify by writing out the entries that the latter expression is

the (p,j) - entry of the matrix:

-1
- + L J -
(111)[1 A(z,ﬁl][% A+A A, AOP]
Only the mere outline of the matrix manipulations involved is given here.

The details are easy to fill in, but are lengthy, Crucial is the representation;

(112) P(z,t)=exp(-A-AO+AZ-A01’)t, t >0
While this follows directly from Markov Chain theory, we may also verify

directly that:
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® Bt -1
(113) T (z,8) = j e P (z,t) dt = [ EI+A+ A - Az - AP ] R
[e]
both from (112) and from (13). )
(kx
Returning to (108), we see that the m x m matrix o° (z,w,8) =

(k)
{ oeij (z,w,5) } is given by:

k

@ e[z 1oy Go][rr-vaen ] [1-860 )16 |

The formal analogy between (114) and the corresponding expression for the
much simpler M|{G|1 queue should be noted.

The final step is now r;utine. Recalling (101) - {102) and applying (97)
(k
and (1l4), the transform eid (z,w,§) defined bys

t g(t) w(t) l
E { z W ( I{g, = 3} l § (o) =k, J =1 } at

® g
(115) i €

is the (i,j) entry of the matrix;
(k)
(116) e (Z,W,g) =

z [zk I~ yk (§,w) } [g I~wA(2,§) ]-l [ I~ A (2,8) ] T (2,8)
1

) -
() | T (0,8)

Yy (g,W) [I i

144

vy (g [1 -

I

(§,w) ].l T (0,5) A z [ zI=~vy (§,w) ] .

[ zI-wA (z,§8) ]-l [ IeAZ(2,§) ] T (z,5)
The first matrix is the "contribution" of those paths where t is included
in the initial busy period, the second one corresponds to t included in an idle
period and the third term corresponds to t included in a busy period other than
the initial one, Formula (116) allows for rather substantial simplifications,

based on the feollowing observatlon:
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It

(un) [ 1 - (6w T 1 0 =[ 70 (0,0) - T (0,8) = (6. T

-1
= [ EI+A+4 =D PeAy (§,w) ] ’
by formulge (77) and (113).

After a number of routine matrix operations, we obtain:
(k)
(118) o (Z,ng) =

k+1 r -1

2 L

k , -1
by @[ sTeara <8 Peny @) ] .

zI-wA(z,g)].'l[I-A(z,§)][§I+A+Ao-Az-AOP]

{I-z[§I+(1-z)A+A°-AOP][zI-wA(z,g)]-l

[I—A@g)][§l+uﬂ)A+%¢oP]d}'

= Z

k+l[zI~wA(z,§)]'l[I-A(z,§)][§I+A+A°-Az-A°P]-l.

k .
+y (g,-w_)[§I+A+AO.A°P-Ay(g,w)]l[§I+(1.z)A+A°-A°P]

=1 -l
() [ 21evn(8) ] A g1 @ nva-a?]

This formula is the complete analogue of the corresponding result for the

MlGll queue, In fact, interpreting the latter as the case m = 1, ¢ = 0, we obtain

successively;
(119) A (2,8) =h (£ +\ = Az) , A=X, 8, =0, P=1,
and: K+1

Z

(k)
(120) 8, (z,w,§) = ey wree v Bl

. !z.w!h$§+)\-)\z)
Z » W _s','l')\n?\ZJ ’

which is identical to formula (65) in Neuts [lhj, where a derivation of the core

responding result for the MlGll queue was given,
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The Limiting Distribution of ( I § (¢) )

Setting w = 1 in (118) we obtain the matrix of transforms eij (z,1,8):

7 gt §(t)
(121){ e E{z I{Jt=j}l'§(o)=-k,Jo=i},

Let us consider the process of busy cycles, which is as we have seen an
nm-state Markov Renewal process. This finite Markov Renewal process has a
stationary version if and only if it is positive recurrent, ji.e. if and only if
p* < 1. [19]. Ve may connect the processes Jis § (t) and N (t) to the
stationary version (which corresponds to an appropriate cheice of initial con-
ditions [19]) in exactly the same way as done in the preceding section, where
these three processes were related to a particular non=-stationary version of the
process of busy eyeles. If we perform the detailed calculations as before, we
find an expression for the joint distributien identical to the limit given below,

Without presenting the details, which are by new standard in Queueing
theory, we conclude from this argument that the limiting expressions below are
indeed transforms of joint conditional probability distributiens.

Finally we must argue that the expression obtained frem rélating the proces«
ses J,, g(t), N(t) to the stationary version of the process of busy cycles is |
indeed the limiting distribution as t tends to infinity in the case p* < le.

In order to see this, we first let x tend to infinity in formuls (102),
obtaining thus the marginal conditional distribution of Tps g(t) and N(t).

We can then sum over v from k to + @, yielding the marginal distribution
of J_and § (t). Finally appealing to Smith's key theorem for regenerative

t

processes [207] we obtain that the limits 6; (k') = 1lim
e

[--]
{ 24 eid (k,k'; + @5 v; t) } exist and must satisfy:
v=k
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% m m -} ‘co ‘
(22) o) () = ) == Y a [ or (o5 ) gee (L5 4 e; vy ) an
p=1l P pr1a ° v=1 -

in which Mp is the expected recurrence time of the state p in the process of busy
cycles, Actually the transform of limiting joint distribution of Jt’ g€(t) can

be obtained directly from (118) by evaluating the limit matrix

(k)
(123) lim £9 (z,1,8) ,
§o+
We shall show that this limit exists and is independent of k. Moreover the
limit is an m X m matrix with constant columns, We now exhibit the details of |

this argument.

(124) 3in o [21-4 (28 ]'l_[ Iea(8) |[s1vn+a, -as- AOP]?l

=0,
for all |z| < 1, x> o,
Moreover by an important result [19] from the theory of Markov Renewal

processes, we have:

k =1
(125) 1m € y (51) [ T.=(51) ] = w
§=o+
% -1 *
vhere N, =0, wvhenp >l and N._ =M, , vhenp <1, M, is the mean recurrence
id - 1) J J %

time of the state ) in the process of busy cycles; It follows that for p < 1, we

have:

(126) e* (z)=N.[(l-z)A+Ao-AOP:}[ZI~A(Z,0)]-1A(Z,0) .

-1
[ (lOZ) A+ AO.AO P ] (Z-l) P

and it is easy to see that the right hand side does not depend on k and is a

matrix with constant columns, Also
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.\(.

(127) e;j (z) =

\/Ja
o
Py
e
C S’
[\

k'=o0
We may verify that (122) leads also to (126) upon taking generating functions
with respect to k'.
* *
If the queue is unstable, p > 1, then the limits Sj (k?) are all zero, by
Smith's theorem [20] and the fact that N = 0. (
The main difficulty in applying (126) is to determine the mean recurrence

times Mj’ jg=131,...,m

This is considerably simplified upon using the following theorem,

Theorem 5.
Let ¥ (§), § > o be the PerroneFrobenius eigenvalue of the matrix B (E,1) =
T (0,§) A ¥ (5,1), for § > o, then in the stable queue we have:

¥

(128) . u; M= - Y (o +) 5

where the uj are the statienary probabilities associated with ¥ (o +, 1),

Proof:
-1
We use the known fact that the matrix N, with entries Nij = Mﬂ is given by:

Lim §[I - 2 (5,1) ].1 ’

Eo+

and that 2 (o+, 1) is an irreducible stochastic matrix in the stable case,
Moreover let u (§) be the left eigenvector of E (§,1) hormalized so that

as § =o+, u (§) tends to the vector of stationary probabilities Ef associated

* *® 3* 3

with  (o+,1), i.e,u =1 (o+,1) and U feetu =1,

Il

Rewrliting:

(129) u (§)

I

(5,1) =¥ (5) u(5) ,
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as:
— =1
(130) w (@) =2t E o) [LFSM 1
for § » o and letting £ tend to o+, we obtain in the limit:
* e
(131) u = - ¥' (ot) . u N ,

* *
However since N has constant columns and since u, +.,.+ u, = 1, we obtain:

1
3% oy
(132) n., = _u_i. 5
i Mi

i=1,...,m,

This theorem has a number of interesting implications.

Corollary 6: In the stable queue:
m 1 -1
(133) v =] ) 5 [
i=1 *
Proof:

This is immediate upon summing over i in (132).

Corollary 7:

Let:
(134) 1um "2 GL) evte *
g—lo-{- g = Y- 3 -e- = 2
*
then it is easy to see that vj is the mean sojourn time in state j in the process
*

of busy cycles. Equivalently vj is the expected duration of a busy cycle starting
in the phase state j.
Then:

(135) - ¥ (o*) = u . ¥
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Proof:

This is immediate from theorem 2 in [17].

Corollary 8

m v%
(3 Lo
=1
Proof';
Substitution of (132) in (135),
This result is not surprising to those familiar with Markov renewal processes.
If we consider the probebility that at time t the finite Markov renewal process 6f
busy cycles is in the state j, then theorem 7.1, p. 1254 of Pyke [19] identifies
the limit of this probability as V: M;l. So the latter are the 1imiting proba-

bilities of m mutually exclusive events, rendering (136) obvious.

Corollary 9
e
*

The relationship between the means vs and expected duratlons of busy periods

is the following:

let:
-1 o
(137) -5 [ vy (§,1) e=~e ] - v o,
as § = o +, then v° is the expected duration of a busy period which starts with

J
the phase process in the state j at its start,

From (134) and (77) we obtain:
* ‘.1

(18) y = 1m g [I-2(1) ] e =

E~o+

lim g-l [ I-T(0,5) Ay (§,1) ] e =

§~o+

R (R TTTURYS FRPTRAN SRS I
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-1 o
lim £ [ I-T/(0,8)A ] e +T(o,0¥)Av ,
£-0+
*
It is elementary to show that the first limit exists and is a vector t ,
*
where tj is the expected duration of an idle period starting in the phase state j.
Likewise [ T (o,0+) A ] is easily seen to be the probability that an idle
ij
period which starts in the phase state i ends in the phase state j.
The final result:
* ¥* o
(139) v = &t +T(o,0)Ay ,
is therefore also highly intuitive,
Corollary 10
* .
The matrix 8 (z) of (126) 1s a matrix with constant columns and each row

* %
is therefore given in particular by u @ (z), However:

* *

(10) u o (z) =<M;l,..., Mj) . [ (lez) A + A~ P :] [ zI - A (z,0) ]-l

~l
A (z,0) [ (Lez) A + AO-AO P ] (z-1) ,

In particular:

# * -1 -1
(241) 2.8 (0 = (M LM ),
Proof;
———

*

Immediate from the definition of the matrix N, The particular choice of u

is immaterial. We see that "»']/i"" is the limlting value as t tends to infinity of

. J

the probability that at time t the server is idle and the phase'state is jJ.
el

J=1,4e.,m, It follows also, using (133) that [ - ¥ (o+) ] is the limit

of the probabillty that the server is idle at time t.
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8, The Case of Two Phases

The matrix formalism, though highly useful in obtaining the theoretiecal re-
sults given above, tends to obscure the rather formjdable manipulations involved
in obtaining the timedependent solutions in actual cases. While the author

would strongly recommend the development of numerical solutions from the recur-

rence relations rather than from transform solutions, more explicit results in

the simpler case of two phases retain some interest., In particular we wish to
make comparisons with the results bbtained by Naor and Yechiali for a closely
related but not identical two~phase model.,

Ifm =2, i,e, there are only two phases 1 and 2, then the matrices of in-

“terest particularize as follows:

0 1 /a0y o o\
(142) P s O),, v~ 12)} S S

and hence:

|

Ay +05 =252

It simplifies matters if we use the spectral decomposition of the latter

matrix, Its eigenvalues are given by the roots of:

- - - —‘ =
(143) ["1“’1 Ay ﬂ] ["2”’2“"2Z Mj =09,=0,
or:

T - 1 [ (hl + he) (1-z) +ao, +a, ]

[ - . -
+ L (Klﬁsl xlz) (k2+02 lzz) - 0,0, ] = 0,
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The discriminant of the latter equation is:

2
) [ (ahy) (@e2) +op -0y |+ b 0,0, = V.(2) ,

and is real for -1 < z < + 1 and strictly positive there except in the trivial

case Kl = xz, o, =0, = 0, vhich we exclude henceforth from consideration. The

1 2
discriminant vanishes ohly at the points: ;s ~~1 ~
+ - + i .
L+{ A ka) <: oy +1i /;;:F
This implies that the matrix A - Az + Ao - AOP has two distinct eigenvalues
in the region |z| < R, where R is the smaller of the moduli of the two points

where the discriminant vanishes.

The two eigenvalues may be written as:

2 3
(185) Ny (2) = £ { (A;9y) (2w, + {{ ) (1ez)ioy 0, | +hope) b,

and:

2 Ry
(2) = 3 { (A 9,) @-2)opie, - ([ G a)adoe, | +hog,) T,

Calculating a pair of corresponding right eigenvectors of the form(i )and(l )we
*1)  \*2

obtain: , ( ) ( |
A=A l-z) + 0, - @ 1
1 1 72 1 2 1 5
(146) % =% { - . -2 ()},
corresponding to nl (z) and:
x = X { (A -2,) (1-z) + % - 9% L L vE (2) }
2 oy 2 2 7 ?

corresponding to ﬂ2 (z). The spectral representation of the matrix A - Az +
A - A P is now:
o °

(1k7) 1 1 uN 0 x -1




Using formula (112) we obtain:
(148) P (z,t) =

., “"n t
/ 1 1\ [ 2 o\ [x, -1
1
>
Tyt g = %y
X X, i\ 0 e =X +1
1 2 ; 1
7
vhere 1, T,, X, X, are given by (145) and (146). Noting that X, - X

<1 1
o V (z) and performing the metrix products in (148), we obtain:

(159) ol ¥2 (2). P (2,8) =

1
~N.t =Nt
1 2 Nt <Nt
X, e -x e e 1L +e P
b4
X X e-nlt - e-ﬂzt x e-nzt - X e.nlt
12 2 1
This immediately yields an expression for the matrix A (z,E):
13
(150) o, ¥ (z). A(z8)=

X% [he (8+1,) - B, (g”'ziy Xy (841,) = xhy (§41))
The matrix A (1,0 +) is given by:

(151) A (1,0) =



2
5, +hy (0)40,) 1 -hy (o)%,)
9
g, +0O
P (0. 4,) 2 b (0.4,
— « == h o_4o l]+— h o t0.) |
ol cl 2 172 cl 2 1727
where:
> -(ol+c2)t
(152) h, (ol-+02) = }; e d Hy (),
@ -(ol+02)t
h, (0,%0,) = [ e a|, (8)

For purposes of comparison with the Naor-Yechiali model we note that if
-IJ‘Vt
H (t)=1-¢ , Vv = 1,2, then:

-1
(153) B (o3%0,) =py (wy +o0y +0,)

-1
h, (Gl+02) =py (b, +o, +0,)

We note in (151) that A (1,0) is stochastic as it should be. -
The stationary probabilities associated with A (1,0) are

0y =0y, by, (o) +0,)

(154) m, = ’
1 o, +0, =0, hl (cl + 02) -9, h, (cl + 02)
0 - Oy =9y By (oy +0y)
2 o, to, -0, hl (ol + 02) -0, h, (cl + oé)

As is to be expected these do not depend on A, and he .

1
Next, we calculate the functions Ky (t) and K, (t) as defined in (2k4),.
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(155) Ei (t)

€, (t)

o lim
1l z»1l-

We have:

(156) v (1-) = (o
x (1-) = -
x, (1-) = -
M, (1-) = -

and:

(157) ¥ (¢) =0y

__cdl?_. { V-i (z) .

2
1.*02) ) 'nl (l—) = cl—'-o.z) 'n2 (l-) =0 )
o, ,
;l-, X5 (1-) =1, ¥ (1-) = -2 (Ay=A,) (oy-0,)
‘_’g)‘l'kz X,(l)_ xl-xg
’ -~ — - A —————
dl Gl + %, 2 oy + o, |
A, 0, +tA 0O
1 ! 172 2 "1
— (A, 0. +A o)), T, (1-)=- =
o, *+0, 171 2 27> 2 o, +0, J
lim 1w S— } -T]lt -yt
zo1- L "2V (z) v' (2) [ (x,-1)e - (x;-1)e ,

1

im . g_z__ {P(z,t) S} -

z-1 -

(xlxe-xl) e - (xlxa--xz) e

-%— s -1, T -t -1 ~N,t
+V (z)[ el-xienej+va(z) [—(xg-l)el'nlt

-ﬂ t 1
+ (xl-l) e © T]gt] } =

)\102 + )\201
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Similarly:
~ MOt Ay 00 -hl - X5 - (cl+02)t
(158) 2 ('C) - o + o t - 0.2 P) 1l-e 3
1 2 (cl+02)

We note that:
(159) Ky (t) =k, (t) = At, for A, = A, =\ .
and in general.

(160) O2 fq (£) + oy K, (¢) M Oy * Ay 0

O‘l+0'2 O'l+0'2

=1 -1

The last result is interesting since o, (o +-02) and g, (Gl + 02) are

1
the stationary probabilities of being in the state 1, respectively 2 in the con-
tinuous time Markov chain.

Let @, and o, be the means of H (-) and H, (+) then using (154) and (158),

%
we obtain that p defined in (23) is given by:

A O, A, o) { [02 - 0, b, (0'1+02)Jafl -:Erl-cl hl (olwe)] @,
' o

x M 9
(161) o =
9 ¥ 9% 1 =91 By (og70,) + @y -0, by (0,40,)

We see that the first factor is an average of the arrival rates ll and ha and
the second one an average of the mean service times dl and “2‘

part is of course to discover just what the correct averages are.

The interesting

In the case of negative exponential service times the equilibrium condition

is given by:

(162) p = e T W - L, 1 —
o, +o, L By +0. 0, gy Wy ta, +o
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This should be compared to the equilibrium condition:

~ A. O +A.O
12 T Ty :
(163) p = < 1
By O *Hy 9y

of the Naor-Yechiali model. We recall that the difference between this model and
the two-phase case with negative exponential services treated here is the follo-
wing:

In our case the service time distribution of a customer depends dnly on the
vhase state at the beginning of his service, whereas in the Naor-Yechiali model
the rate of service of an individual customer may fluctuate with the changes in
vhase.

o

*
Comparing ¢ and p we obtain:

~ o o (o0, +0,)
* K
(164) p"=p . (1+F+E) f1e L 2
LS| By 92 Tk 9
and we note that if My and B, are both large compared to °1 and 62 then pw and p

are very nearly equal. This is intuitive as it says that the durations of the
phases are long whem compared to individual services, so that services straddling
one or more phase changes will be infrequent. It is still noteworthy that the

% ~
ratio of p and p does not depend on kl and h2.

9. Remarks on Computation

The remarks on numerical computation which come to mind are very similar to.
those matle in Section VI of [16]. We shall therefore not repeat but refer the
reader there. It is clear that in the study of more complicated queues there is.
little hope of developing anything like the elegant combinatorial procedures of
Takacs [22] to yield explicit expressions for the quantities associated with
M|Gl1 and GI|M|1. On the other hand the transform methods as used in this and

many other papers are mainly of theoretical importance. If the convolution
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algebra on the Lebesgue-Stieltjes measures on the Borel subsets of R were as
familiar to most as "ordinary" products between complex functions, there would be
little or no need for transform methods in Applied Probability.

For an excellent example of such a transform-free approach, the reader may -
consult the basic paper [10].

Recent papers in Queueing theory have reiterated the "Laplacian curtain."
complaint and with a great deal of justification. However, the complaint is jus-
tified only when a complicated transform formula is passed off as a "practical"
solution. When it becomes necessary to organize the computational work involved:in
a study of the transient behavior of a queue, the structural properties, such as’
the recognition of one or more imbedded Markov Renewal processes and the recur-
rence relations induced by them become far more important than "explicit"
-formulae in terms of multiple transforms.

Recurrence relations, falling as they do under the general qualitative
description of "initial value problems" are ideally suited to the iterative
abilities of digital computers [1].

As we have repeatedly indicated in the theoretical discussion, it suffices
to analyze the paths of a queueing process with Poisson input during the intial :
busy period. All the queue features at an arbitrary instant of time t can be
expressed in terms of these by making judicious use of the regenerative nature
of the queueing process at the ends of busy periods.

This approach was used to date and‘to this author's knowledge only in the
work of U.,N. Bhat and Sahin [2] who calculated rather extensive tables for the

timedependence of M|D[1, M|E, |1, p|M|1 and E |M{1. While this author can only
applaud this contribution to practical timedependence-studies of queues, he would
personally favor the construction of a library of computer routines for the tran;

sient analysis of more general queues such as Elell, GIlEkll, MlSMll, SMlMll,



63
certain bulk service queues and in view of its potential applicability in
Traffic analysis also the present model. In view of the large number of para-
meters and arbitrary probability distributions involved in these models, tables
and graphs are bound to be either too limited in range or too unwieldy for prac-
tical purposes.

A final word concerns the relevance of timedependent discussiohs of queueing
models. In unstable queues they are of course the only possible ones., However,
even in a stable queue of some complexity one often needs to know the time-
dependent properties of some of its simpler components.

Notably such gqueues as those with alternating priorities or the tandem
queues, which have yielded to analysis of their transient behavior fall in this
category. One decomposes the multivariate processes associated with these in
terms of simpler events associated with MIGIl or similar elementary modelé. Even
to express the limiting distributions of the complex model one needs to know
"timedependent" distributions of simpler processes. A concrete instance of this
occurs in the present paper. The equilibrium condition parameter p* involves the
timedependent functions ‘Ei (t) of the arrival process. If m is larger than
about three or four we need to calculate these functions numerically and perform

*
a numerical integration in (23) to get an approximate value of p .
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