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‘%. Introduction.

This paper is a continuation to the results presented
in an earlier paper of the author [4)] and may be read in the sequel, although we shall
attempt to make it as self contained as possible. The models considered in [4]
involved the infecting pérticles which were assumed to be undergoing growth processes
such as a birth and death process. Such is the case when these particles are self- |
reproducing in nature, such as bacteria, viruses, etc. The methods presented in this
paper are not only applicable to such situations but also to those where the infecting
material is not necessarily self-reproducing in nature, such as certain carcinogenic
agents and toxic materials. As in [h], we shall be concerned with a growth process

X(t) related to the infecting material, where, to begin with, the state space of the

process is not necessarily the set of nonnegative integerssbw

Also, we shall be concerned with experimental
studies of quantal response to infection, where we shall have three factors in mind;
the infecting material, the host and a well defined response, Which the infecting
material elicit from the host during the course of the experiment. At time t = o, a
certain dose of the infecting material is injected into each of the n experimental
hosts, which are then followed for their response. Let n(t) denote the number of
hosts not responding by time t. The plot against t of n(t)/n is commonly known as

the time dependent response curve. In [h], a class of stochastic models for response

* This investigation was supported in part by research grant GM-10525 from the National
Institute of Health, Public Health Service, at University of California at Berkeley.

¥* To appear in the proceedings of the symposium on "Mathematical Aspects of Life
Sciences" held at Queen's University in June 1969.
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curvesl;::Z introduced and studied in some detail. There, the reader may also find a
brief survey of some of the earlier mathematical models related to such curves. Most:
of these models are based on é common hypothesis, namely the existence of a fixed
threshold, so that as soon as the process X(t) touches this threshold the host responds.
In [4], this hypothesis was abondoned in favor to a more appropriate hypothesis sugges-
ted by LeCam, namely that the state of the underlying growth process at any moment :
determines not the presence or the absence of response, but only the probability of re-
sponse of the host. In contras} to this, the models based on a fixed threshold hypo=i
thesis, would be (in the present sense) deterministic in character.

One of the reasons that have lead some researchers to believe in the threshold
hypothesis is the fact that in certain experimental studies, the observed number of
infecting particles at death of the host showed no trend with the change in the injec;
ted dose (see Meynell and Meynell [3]). In [4], it was shown how such an observation
can be explained easily even under the new model without relying on the threshold
hypothesis (see also sec. L4,k), While under the threshold hypothesis, the state of the
growth process of the infecting particles at the moment of response of the host is
fixed by assumption, this same state is now a random variable under the new models,
Thus, the study of the distributions of the response time and of the state of the prq;
cess at the moment of response becomes quite relevant. The latter random variable
has also been found to be of independent importance in certain experimental studies
concerning bacteriophage reproduction (see Puri [6]). 1In this paper, a method, al-
ternative to the one used in [4], for obtaining the distribution of these two random
variables is presented, The method is then illustrated through applications to the
situations involving different types of the underlying growth processes of the infect;
ing particles. In each case, the distribution of the two random variables is obtained
& studied. These results are presented here with the hope that some of these could
easily serve as potential mathematical models applicable to variety of live situation;

arising specially in biological sciences.



2. Abrief account of an earlier model.

For the sake of convenience, we name the response as death of the host. Iet T
denote the length of life of the host starting from t = o, the moment when the dose
was injected. Then Pr (T > t) treated as a function of time t is the theoretical
counterpart of the response curve or alternatively'the survival curve. Let X(t) de-
note the state of the growth process of the infecting material at time t, with X(0)
eqgual to the initial dose injected. We now introduce another procéss Z(t) .defined as

1 if the host is alive at %
(1) Z (t) =

0 otherwise.

Because of its very nature, we choose to call the process Z(t), the Quantal.response

process,for the host.

In order to review some of the methods used in (4], we take this occassion to
give a brief account of one of the models (model B) studied there. It was assumed"
there that the infecting particles are self-reproducing entities such as bacteria or
viruses, and that X(t) is a linear time homogeneous birth and death process with birth
and death rates A and p respectively. X(t) then denotes here the number of live par-
ticles at time t, with X(0)=m, the number of live particles injected at t = O. The
basic assumption that relates the processes Z(t) and X(t) is given by
(2 pr(2 (1) =0 | 2(t) =1, X(t) =x ) = £(x) 7 + o(r) .

The function f(x), in general called the risk function, is defined on the state space

of the process X(t), is nonnegative and satisfies certain regularity conditions. Let:

(3) By ()= (2(6) = 1, X(8) = x | X©) = m, 2(0)=1 )

with

[>=]

(k) Gy 1 (s3t) = Sa X P, l(t) = E (SX(t)

X=0

z(t) | X(0) =m, 2(0) = 1) ,

defined for lslS 1. Thus

(5) Pr (T>1%)=">rPr <Z(t) = 1): E Z(t) = Gy (13t).
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Following the standard argument, it was shown in [4] that the generating function

(g.f.) G satisfies the partial differential equation

s3]

- 2 S‘ x
(6) G, = As™ = (A + ) s + ] Gy =) 8 f(x) Px,l (t) ,
X=0
with Gt and GS denoting the partial derivatives of G with respect to t and s respective-
ly. Here (6) is to be solved subject to the boundary condition

(7) Gy o (s50) = &

Once (6) is solved for G, this yields using (5) the desired distribution of the response
time T. However, as it stands, (6) is too general to lend itself to an easy solutien,
since f(x) is left unspecified. Following [L4], we consider the simple case where f(x) =

Bx, with B being a positive constant. With this, (6) simplifies to yield

8) ¢ =L As® - (Au+B)s+p] o .

The solution of (8) subject to (7) is easily obtained as

m
ry (s-rg) - 7, (s-rl) exp { A (rl—r2) t }
(9) Gx;l (sst | m) = (s-ré) - (s-rl) exp { A (rl-re) t ;}

where rl and r, are, with positive and negative signs, respectively

(10) Ty, Tp = i;— [}h+u+ﬁ) + { (A+u+3)2 - lpal %:} .

Since (l-rl) (l-r2) =-B/A < 0, it is easy to see that

< < <
(11) 0 r, 1 r, .

From (9), it easily follows that

(12) Pr(T=®)=1im Pr ( T> t) = lim (}Xl(l;tlm)=r’32rl ,
>

T o
so that T is not a proper random variable.
Another problem that was solved in [4], was to obtain the distribution of the
number XT of particles at the moment T of death of the host, irrespect of what T is.

The method that was adopted there is the following.



Let tl > 4. Then it is easy to see that

P, N
(13) Pr(X(t)=k,T=t1) = - 5—,5-1— Pr(X(t)=k,Z(tl)=l) ,
from which it follows that
. ( .. 1 I d Pr (X(t)=k, 2(t,)=1 I
(14) Pr XT—k T )—m o atl, dt
ty =t
Now if q
(15) ¢ (ust,t,) = y o Pr(X(t)=k z(t):i)
X,1 Y72 /, > 1 >
k=0
and
o
(16) H@|T<=) = ) WP (x=k|lT<=),
k=0
each defined for |u] <1, then (1k4) yields
(17) H (u] T<e )= - L I 3 gXl(u;t,tl) at .
Pr (T <%= ) 0 5 ’ It =t

The expression for g, , (u; t tl) can be obtained from Gy (u; t) with a little
> 2 2

effort. Using this, (16) gives the desired distribution of Xpe The final expression

for (16) in the present case turns out to be

- 1l-r um - T m
(1) =H (ul T<eo ) = 1 rl) ( 12) v - 2 ) .
(u-rl) (u-r2) (1 - r, )

In the next section, we shall give an alternative approach to finding the distris
butions of both T and XT. This approach appears simple and is more revealing. A |
flavour of this approach, the reader may already find in [4] (section U4), although there
it was not pressed too far. .

We close this section with the remark that besides the above model with f(x) = Bx,

another model was also considered in some details in [U4], where the risk function f
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depended not only on X(t) but also on its integral Y(t) = f X(T) dt. The integral
© 0

Y¥(t) represents the total time lived by all the live bacteria during the time interval
(0,t) and as such is contemplated as a measure of the amount of toxins produced by the
live bacteria during (0,t), assuming of course, that the rate of toxin excretion is |
constant per bacterium per unit time. We shall demonstrate through the approach pre-
sented in the next section, that integrals such as ¥(t) arise very naturally while
studying the problem of response time distribution, without even making the risk func-
tion f depend on such integrals. 1In effect, it turns out that the study of the dis- |
tribution of T is equivalent to studying the distribution of a certain related integral.

3. An slternative approach via the digE;ibution of an integral of the growth process;

We shall introduce the approach in maximum possible generality. Letlzi (t) =
<?l (t),onn,s Xk(ti>'be some vector valued growth process, with its state space X bein%
a subset of the k-dimensional euclidean space. ILet Z(t) be the quantal response pro-:
cess as defined before, with
(19) Pr (z (t+1) = 0 | 2(%) = 1, 5=5>= f(gs,t) T + o(&)
vhere it is assumed that the risk function . f£(X,t) is defined for every point (gat)
of the product set X x [0, ), is measurable and is nonnegative. Furthermore, it is

t
required that the risk function f be such that the integral f f <§ (T,w), f) ar
0

exists and is finite for every finite t > o and for almost every realisation w of the
process‘z(t). Here ZKT,w) denotes the state of process‘z(t) at time T for a given
- sample path @ of the process. For a given w, it can be easily shown using (19) and a:

standard argument that

(20) E(Z (t) | w) = exp { - Iz f (z (t,0) , T) ar }

Taking its expectation over all therelisations of the process {X (t)} , one immediatély

obtains

(21) P(T>t)=E<Z (t))=E[eXP{'J‘zfQ$(T)> T)dT}].
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Thus the distribution of T can equivalently be obtained through a suitable transform
such as Laplace transform or a characteristic function (c.f) of the distribution of
t

the integral Y f (g (T), {) dT. By using the same argument, it is easy to establish
Js _

that in the case of our model of section 2, the g.f. Gy l(s;t) of (4) is nothing but -
b

t
a transform of the joint distribution of X(t) and the integral I f <x (1) ) ar.
0 .

More exactly .
(22) Gy l(s;t) =B (sx(t) 7Z(t) >= E { sx(t) exp [- J £ (X(‘r-)) ar :\} .
> 0

t
The word transform for the integral I f <?(Ti> dT 1s used here rather loosely without
0

loss of any generality for this can always be achieved by a slight modification of re-
placing the function f by v.f , where v plays the role of the dummy variable that |

appears in a Laplace transform. Thus while obtaining the distribution of T through

the g.f G of (4), one obtains, as a bye-product, the joint distribution of X(t) and the

t
integral I f‘(? (T):> dT , without any extra cost.
0

The distribution of the state XT of the process X(t) at the moment T of death of
the host, can be obtained by using a similar argument. Since T, in general, may not be

a proper random variable, let us redefine X, conveniently as

T
X (t) if the host dies at t
(23) 51‘ =
X (=) if it never dies,

Then for a given realisation w of the process { X (%) } R

it can be easily shown that



t Ny
(2l) B (exp [i W X ] ! w) ) I“’ L1l X (6,0) e'fo f@ﬁ ('r‘,w),'r>d7 f({ (t,w),t> at
0

. D
+ e 1w X (=,) e -J‘O f@ ('r,uo),'r> ar

Here‘g' = (u .,uk) is the dummy vector valued variable, needed to define the c.f.

l,"
Taking expectation of (2L) over all the realisations of the process {5 (t)} and inter-

changing the expectation and the integral sign on the right side of (2k) by virtue of,

Fubini's theorem, we obtain

(25) E (e iu’X T) = I: E {exp [iu’x(t) - IZ.ng(T),T) m].f(}g(t),t)} at

e

+E{ei£'2§(m) -Iof-X(T),T>dT}

From this we immediately have

(26) E<e ~~T|r< m> - — [O E{ exp [iu’X(t) - Jt £(X(7),7) d'r].f(zg(t),t)}dt
0

In the next section, we shall illustrate the usefulness of the formulas (21) and (26) by
applyingvthese to situations with varying growth processes. In general,lg(t) may be &
vector valued process. For instance, in [6], the author encountered a situation where

in X (t) =<>cl (t), X, (t)), X (t) represented a simple birth and death process, whiie
Xé(t) represented the total number of deaths occurring during (0,t) for the process
X, (t). 1In the examples of next section, however, we shall restrict ourselves to the

case where the growth process is not vector valued, so that X (t) is replaced by X (t).

Furthermore, unless otherwise stated, it will be assumed that f (x,t) = B x, for



convenience, More sophisticated integrals will naturally arise if one bends upon
taking more complicated forms of the risk function f. The distribution problems of
such integrals have been studied by Bartlett [1] and elsewhere by the author([5];[7],f§]).
E; Applications. N
In this section we shall restrict ourselves to the case with T (x,t) = Bx, so tha%I

the formulas (21) and (26) simplify to yield

(27) EZ (t) =9 (0,t),
and
iu X
(28) E(e '|rT<o) = =iP J —i-g—————dt,
P(T < =)
where [t
iu X(t -B X d
(29) w(u,t)=E<em ()e 70 (T)T>

In particular, if the state space of the process X(t) is the set of nonnegative integers,
it is preferable to use g.f's instead of c.f's, so that

-B ft X(T)ar

(30) EZ (t) =¢ (13t) = E(e ) ,
and
(31) E<s XT| T<°°>= —Bs r G (s;t) dat
P (T <) o 5 ’
© where

t
X(t) -8 J X (1) ar
(32) G (s; t) E( 0

As expected, it is evident from (31) that Pr (XT =0o|lr<cw) =
In the following subsections, we present the results for the various well known growth

processes where in each case the state space is the set of nonnegative integers. For

each case, we first derive the transfornm



t
(33) o (sust) = E(sX(t) e-u JO X-(T)d'r>

Then using this, (30) and (31) we obtain the distributions of T and Xpe

4.1 Poisson Process. Let X(t) be a standard Poisson process with constant input
o aa¥] NSNS DD DA DDA NP A
parameter v, with X(0) = 0. By using an argument similar to Puri [5], it can be
easily shown that here the transform ¢ of (33) satisfies the integral equation
-Vt t -vr - (t-Thu

(34) @ (s,uzt) =e + vs ]‘ e e ¢ (s,u;t-T) 4t .
0]

This can be easily transformed into the differential equation

-ut

(35) ¢t =V (S e - l) ¢

which yields, subject to ¢ (s,u;0) = 1, the desired solufion as

-ut
(36) ¢ (s,u3t) = exp[ - vt + -\-’Tsl- (1-e ) ]

Thus from (30) we have

. ) 8t
(37) P(t>t) = E 2 (t) =¢ (1,B3t) = exp [-vt t g (L-e ) ]

Clearly T is a proper random variable here. Again the equation (31) yields

X (e}
(38) E(s ) = Bs X 09 (s:B58) 4
0 9 s
o -Bt -8t
= Vs J (1-e ) exp [-vt + Y5 (1-e ) ] at.
0 B

From this, it follows that for k > 1 ,

10
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N (v/B) k-1 o -vt -8t k
(39) Pr (X; = k) & ————— f e (L -e ) at
' (k) 0
v (v/ )k-l X k -1
- —2 Y () x|
I' (k) r=0

For the case, where v is.time dependent, one can easily show that

-u(t-T)

(30) @ (s,u3t) = exp [- jz (1-5se ) v (r)ar |

From this the analogues of (37) and (38) can be obtained in a straight forward manner.

Finally the above model'can find its use, for'instance, for the case, where the
host (patient) faces events such as heart attacks or accidents according to a Poissoh
process and ﬁhe problem is to study the distribution of the length of life of the host.
4,2 A Death Process with Immigration. et X(t) be a simple linear death process with
immigration, with p denoting as the constant nonnegative death rate, v(t) the time
dependent nonnegative rate of immigration. It is assumed that the function v(t) is
integrable over (©,t) for eﬁery t > 0. Let X(0) = m. The case with v(t) = 0, corre-
sponds to the simple death process without immigration, and is therefore a special case
with A = 0 of the simple birth and death process dealt with in section 2.

Thus with v = 0, m = 1, we can easily obt#in that

‘ t
X(t) -u [, %(T)ar
(1) E (s e | v=0,m=1) =9 (s,ust | v=0, m=1)

LB +<~._u )e'(”+u)t

g +u B +u
On the other hand, for the case with m = 0 but v(t) > 0, an argument similar to the one

used in (l?], [91), leads to
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t
(42) E (? X(®) e ™ [O X(r)ar | m = q> = exp { - JZ [1 - m(s,u;t-Tl v=0,m= l)] .

. v (T)ar }
Now combining (11) and (L2) while using the property of independent growth of the

t

particles and the linearity property of the integral [ X(T)dT, we immediately obtain
0

for the general case ,

m

(13) ¢ (s,u5t) =[@ (s,056 | v=0,m=1) |

t
. exp { - IO [1 - ¢ (s,u; t-7 | vy=0,m=1) ] v(T) ar } s

where ¢ on the right side is as given by (4l).
Again since P(T > t) = ¢ (1,83t), it is evident from (L41) and (42) that T is a
[e=]
proper random variable if and only if I v(T) 4T = ®., 1In the event when
0

[o2]

A = IO v(T) &7 < | we have from (43),

(p' ) exp{- E A}=<P(s,ﬂ;‘”) ,

(4) Pr(T = @)
p+ 8 po+ B

1im @ (s,B3t).

t -

where ¢ (s,B;®)

with regards to the distribution of X, using (31) we have

X (o)
(45) E (s T[T<m)=_ﬁ.§_...__,j O 9 (s, B; £) at .
P(T<=) ‘o d s

Unfortunately using the expression (L3) for ¢, (L45) cannot be put in any reasonable

closed form. On the other hand, note that Gy 4 (s3t) of (4) is same as ¢ (s,B3;t) as
>

per equation (22)., As such, occassionally a considerable simplification is achieved for

the derivation of the expression (L45) by using the forward Kolmogorov differential
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equation given by

(46) G, = (s-1) v(t) ¢ + [u - (B+u)s :] G,
which is subject to the initial condition G(s,B;O) = sm.

This yields

(h7) GS = ﬁm [Gt - (s-1) v (t) G :I'

The right side of (L7) is defined for s # g =

el It is sufficient, however, to obtain

(45) for s # §4$WI’ for when § = =t o (45) can be easily obtained by a continuity

8 +
argument. Thus for s # E—%—E, using (47) in (45), we have

X
(48) E (s T | <)

Pr(T<m) IO 0 (gm) 5 {G (s,8;7) = (s=1)v(T) . G(s,B; T)} ar

m (o]
= sty e {605,828 = (1) .« [ w(r)a(s,85m) ot
Using (4h4), this finally simplifies to
X Bs {( i b o ~(s-1) r v(t) G(s B'd’r)d'r}
(ug) E(S T l T<‘D) - |:L+B 0 EhgE) ,

{ b - (B+u)S} { 1- <u+B> M+B }

where G(s,B;T) is same as ¢ (s,B;T) given by (43). We observe that for the case with

v(T) = 0, (49) simplifies to
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X - ] <:‘~£L—{> g - (:—EL; i
(50) T o) = + B . . wHBs »
50 E:<} | < ‘> T <:M ﬁ &) — <:S - E%E:>

which yields a truncated geometric distribution for XT given by the probabilities

B ' - m-k

_ o) o B+ B B C .
(51) Pr(XT_k T<) = 1-< m )n <u+B/ ; k=1,2,...,m,
p+B

L.3 A simple Death Process with the risk function f (x) = B (m-x).
Let X(t) be a simple linear death process with constant death rate p & with

'X(0) = m. This being a special case of Section 4.2 with vw(T) = 0, we have from (41)

(52) @ (s,u3t) = [ (:u i u.) + (s - - i u) e -(u + u) t] m .

‘Let the risk function for the death of the host be f(x) = B (m-x). This particular
risk function was found useful in building up a suitable stochastic model applicable
to the survival of platelets in the human blood. The work pertaining to this, done in

collaboration with Mr. C. Guillier, will be reported elsewhere. With this risk funection,

we have the expression for G of (22) as given by

t
. ~Bmt X(t) B XO X(T)?T ~Bmt
(53) Gy ; (s35t) = e E(s e )=e © (s,-B3t).
Using (52) in (53), we obtain
_ - -8Bt —pta™
(54) GX,l(S;t) = [(; ﬁ &) e + (s - E—%—g) e ],; for w £ B.

The case with u = 8 is obtained by taking the limit of (54) as p tends to B. Finally

(54) yields

m

(55) P(T > t) = @ (1,B3t) = Kﬁ) e-Bt -<u ? ﬁ) o -p“t] .




15
Clearly T is a proper random variable. Again, substituting (54) in (31), in a rather

straightforward manner,

(56) E(S ‘3m2< )(ﬁ_) (S'E—%-B' uiﬁ(m_r)

m-l=-xr r

-esmzc G Grts) ——

o (1) + B (meior)

ﬂ;ﬂ Time Homogeneous Markov Branching Processes.
Let X(t), representing the number of particles alive at time t, be a time homo-

geneous Markov branching process as defined in Harris [2]; Let a positive constant b
be the associated risk of death of a particle and let h(s) be the g.f. of the

i~
probabilities Pyo k=0,2,3,..., with ;‘ Py = 1, where Py is the probability that a

k=0
particle is replaced on death by k new particles. We assume that h;(l) <o, Let as
before f(x) = Bx be the risk function for the death of the host and X(0) = m. Let

ft
X(t) -B. X(T)ar

(57) #(s,B5t) =E (s e ° [m=1).

Then, because of independent growth of the particles and the linearity property of the

integral J X(T)ar ,
0

(58) 6 (s,858) = | a(s,058) ]

It can be shown that & satisfies the forward Kolmogorov equation
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(59) 8, =[ bn(s) - (B+D)s | 8 3

which is subject to the initial condition & (s,B;0) = s. Here ét and @S are the

partial derivatives of ? with respect to t and s respectively. It was shown in [8]
that

(60) 1im & (s, B; t) = a ,
e

where q is the root lying between O and one of the equation

(61) h (u) = (1 + —%— Yu .

Here ¢ <1 if B >0 or P =0 and h' (1) > 1, and equal to one if B = O and h' (1) < 1.

Let B8 > 0, so that

(62) lim G (s, B3 ) =g
e
for all I S I—f 1. Thus

(63) Pr(T=%)=1im G (1, B; t) =4q

teco
and hence T is not a proper random variable.

Again, for s # q, we have from (59)

$
(64) 8 = L
5 bh(s) - (B +0D)s

From (58) and (L) it follows that

[ ] m-1
_om| & (s, B;t) |. o
- (65) G = b ; for s £ q .

bh(s) - (B +0b)s

Thus we have from (31), for s # q ,
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Wm-l
X - m [ & (s, R; t) | 2,

(66) E (s T | T<w) = B at
| 1-q fo bh(s) - (B +D) s

= , Bs . & .
— (1-a") [b h (s) - (B +b) SJ Xo G, (s, 85 t) at

Bs (g8 - &)
(1-4") [bh (s) - (8 +b)s |

where in the end we have used (62) and the fact that G (s, 8; 0) = s".

Since, being a probability generating function (p.g.f.) (66) is continucus in s, its
expression for s = q can easily be found by its continuity. Thus (66) gives the de-
sired p.g.f. of XT. Also, in the above, we have demonstrated as to how the Kolmogorov
forward differential equation for G helps in getting the expression for the p.g.f. of
X, without even obtaining first the explicit expression for G.

T
Let h'' (1) < =, Then from (66) we immediately have

(67) X = -2 + h' (1) -1

T oo q" (8/b)

. )
(68) Var Xp = (l(g/z)él))

2 m
2 Inr () + (@ -nr (1)) - Bt
C [" @) + ¢ (1)] —4

In certain experimental situations (see Meynell & Meynell [3])the observed
9

number of particles at death is of the order of 107, Furthermore, it is observed that

this number stays about the same on the average without regards to the initial dose m

of particles injected into the host at t = 0. From this fact and (67), it follows that
in such situations we must have h' (1) > 1 and that B is considerably small, but posi-
tive. This suggests that one could approximate the distribution of T for small B8, valid

for such practical situations. Thus using (66) we obtain
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| -1
S| e, x(0)m) < [1 (1))

e

(69) 1im E (
B-0

From this, it follows that for small B8 ,

h' (L) -1 b 2
(70) Xp w ; B %o

The approximation (70) is only in law. The fact that this approximation is inde-

pendent of the initial dose m, is quite compatible with the observations made by
Meynell and Meynell [3]. This fact was observed once before in [4], where the under-
lying growth process was a simple linear birth and death process. We now have shown
that a similar result holds even for the more general case of branching processes.
Once again this also shows that the observation made by Meynell & Meynell [3] can be
explained by the above theory without relying on the hypothesis of existence of a
fixed threshold.

In the closing we remark that formulas analogous to (21) and (26) have also been
obtained and studied for the case where the (time) parameter set of the process is a
discrete one, unlike the cases considered here where it is continuous. These results,

however, will be reported elsewhere,
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